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PUKANSZKY'S CONDITION
AND SYMPLECTIC INDUCTION

C. DUVAL, J. ELHADAD & G. M. TUYNMAN

Abstract

Pukanszky's condition is a condition used in obtaining representations
from coadjoint orbits. In order to obtain more geometric insight into
this condition, we relate it to symplectic induction. It turns out to be
equivalent to the condition that the orbit in question is a symplectic
subbundle of a modified cotangent bundle.

1. Introduction

One of the original goals of geometric quantization was to obtain a gen-
eral method of constructing (irreducible) representations of Lie groups out
of their coadjoint orbits. The idea was to generalize the Borel-Weil-Bott
theorem for compact groups and Kirillov's results for nilpotent groups.
Since then geometric quantization has led a somewhat dual life. On the
one hand, in representation theory where it is called the orbit method (see
[8] for a relatively recent review). On the other hand, in physics where
it serves as a procedure that starts with a symplectic manifold (a classical
theory) and creates a Hubert space and a representation of the Poisson
algebra as operators on it (the quantum theory).

Recent results in quantum reduction theory [5] allow us to show rig-
orously in some particular cases that geometric quantization intertwines
the procedures of symplectic induction and unitary induction. Since the
latter is one of the ingredients in the orbit method, this gives a geomet-
rical insight into the "classical" part of the orbit method. In particular,
it allows us to give a geometrical interpretation of Pukanszky's condition
on a polarization which is completely different from the well-known in-
terpretation that says that the coadjoint orbit contains an affine plane. In
fact, we prove (Proposition 3.9) that Pukanszky's condition is equivalent
to the statement that the coadjoint orbit in question is, in a noncanonical
way, symplectomorphic to a symplectic subbundle of a modified cotan-
gent bundle (where modified means that the canonical symplectic form on
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the cotangent bundle is modified by adding a closed 2-form on the base
space). For real polarizations these results have also been obtained with
completely different methods in [12]. Again for real polarizations we ob-
tain as a corollary that Pukanszky's condition links the two dual lives of
geometric quantization.

This paper is organized as follows. In §2.1 we recall briefly the basics
of symplectic induction, and in §2.2 we show (heuristically) that geomet-
ric quantization intertwines symplectic induction and unitary induction.
Then in §2.3 we prove that unitary induction from a one-dimensional uni-
tary representation of a subgroup is equivalent to geometric quantization
of an induced symplectic manifold. In §3 we use this induced symplectic
manifold to prove the above-mentioned interpretation of Pukanszky's con-
dition. In §4 we give an example of this interpretation that is particularly
interesting for physics: the fact that the symplectomorphism of the orbit
with modified cotangent bundle is not canonical translates as the fact that
the position of a photon has no intrinsic meaning, i.e., depends heavily
upon the observer. Finally in §5, an appendix, we collect some notation
and conventions used throughout this paper.

2. Symplectic induction and induced representations

2.1. Symplectic induction. Let (M, ώ) be a symplectic manifold and
let H be a closed Lie subgroup of a connected Lie group G. Suppose H
acts smoothly on M by symplectomorphisms and admits an equivariant
momentum map JM\ M -> ί)*, where ί) denotes the Lie algebra of H.
Symplectic induction ([9], [13], [25]) then constructs in a canonical way
a symplectic manifold (Minά, ω i n d) on which G acts smoothly by sym-
plectomorphisms with an equivariant momentum map Jinά: Minά -> g*,
where g is the Lie algebra of G.

To construct Mind one proceeds as follows. The group H acts on G
by h: g ι-> Rh-\g = gh~ι and we denote by ΦT*G the canonical lift of
this action to T*G, equipped with its canonical symplectic form dϋG.
We identify T*G with G x g* by identifying g* with the left-invariant
1-forms on G. In this trivialization the action of H on T*G is given by

Φ r σ ( * ) ( S , μ) = (gh~l, CoadG(h)μ),

where we have added the subscript G to stress that it concerns the coad-
joint action with respect to the group G. This action admits a canonically
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defined equivariant momentum map JT*G: T*G —• ί)* given by

We denote by ΦM the action of H on M, and we construct an action

Φ ^ of H on M = M x Γ*G by Φ ^ = ΦM x Φ r G , i.e.,

Φ~(Λ)(m, * , μ) = (ΦM(h)(m), gh~ι, CoadG(A)/<).

This action is symplectic for the symplectic form ώ = ω + dϋG it is
a proper action because H is closed. Moreover, this action admits an
equivariant momentum map J~ = JM + JT*G for which 0 e ί)* is a
regular value. The sought-for induced symplectic manifold (M i n d , ω i n d)
is the Marsden-Weinstein reduced symplectic manifold

To obtain the hamiltonian action of G on Minά we make the fol-
lowing observations. The group G acts naturally on itself on the left;
the canonical lift of this action to T*G is hamiltonian and given by
g: (g, μ) ι-> (gg, μ). We let G act trivially on M to obtain a hamilto-
nian action of G on M with the canonical equivariant momentum map
/ : M —• Q* given by

(2.1) 7 ( m , # , μ ) = CoadG(£)μ.

This action commutes with the //-action on M and leaves J~ invariant;

hence it induces a symplectic action of G on Minά. Since 7 is invariant
under the //-action, it descends as an equivariant momentum map for the
G-action on M i n d which we denote by Jinά . This finishes the construction
of the induced symplectic manifold. The following proposition describes
the relation between {Minά, ω i n d ) , (M, ω), G, and H it is a special case
of a result of A. Weinstein [24].

Proposition 2.2. M i n d is a fiber bundle over T*(G/H) with typical fiber
M. Moreover, restriction of ω i n d to a fiber yields the original symplectic
form ω on M.

Proof Let a be a connection on the principal //-bundle G —• G/H,
i.e., α is a fj-valued 1-form on G satisfying:

VΛ e H Vr G Γ^G : (Λ j- iαyy) = Ad*(*)(α,(Γ)),

where we interpret elements of I) c g as left-invariant vector fields on G.
Restricting our attention to left-invariant vector fields, we can interpret ag
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as a projection a : g —• ϊ) by dualization we obtain a family of injections

{a*: ϊj* -> g*|g e G} satisfying ^°α* = id^* . Going to cotangent bundles,

we consider the canonical projections pv : T*G = G x Q* -> G, π: G —•

(?///, and pr: T*(G/H) -+ (?///. It is easy to verify that pr: / ^ ί 0 ) =

G x ί>° -> (? is the pull-back bundle of the bundle T*(G/H) -> (?/// over

the map π , where the projection Jγ*G(0) -» T*(G/H) is just π*~ .

We now note that /^(O) = {(m, g, μ)\JM(m) = ι*μ] £* M x G x f>°,

and we define a map P: J^l(0) -^ G xl)° by

The kernel of this map is obviously diffeomorphic to M, and the defining
properties of a connection show that it is equivariant for the //-actions.
Hence P induces a map P: J~l(0)/H = Minά -> J~*l

G(0)/H * T*(G/H)
whose fiber is diffeomorphic to M. We thus obtain the following commu-
tative diagram:

G

(2.3) jrnod// jπ*-1 jπ

^ind — Γ - T*(G/H) — — > G/H.
P Pr

This proves the first assertion of the proposition; the second is left to the
reader.

2.2. Geometric quantization and induced representations. To forge the
link between symplectic induction and induced representations, we make
two additional assumptions. In the first place we assume that H is con-
nected, and in the second place we assume that geometric quantization
applied to the quadruple (M, ω, H, JM) yields a unitary representation
UM of the Lie group H on the Hubert space %fM. Of course this re-
quires additional data such as a polarization ^M on (M, ώ), but we will
not specify these explicitly. The aim now is to apply geometric quantiza-
tion to the quadruple (M i n d , ω i n d , G, Jinά) in order to obtain a unitary
representation of G.

^We start by applying geometric quantization to the symplectic manifold

(M9 ώ). We equip T*G with the vertical polarization ^v and define on

M the composite polarization & = 9'M φ j ^ . It is an elementary exercise

in geometric quantization to prove that the Hubert space %? obtained by
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quantization of (M, ώ) with this polarization can be described as

, ψ(g)) d*<

where ( , •) denotes the scalar product in βfM, and dg denotes a nowhere
vanishing volume form on G. For convenience we will now make the
choice that dg is a left-invariant volume form (which is unique up to a
nonzero real factor). When one then quantizes the action of G on M ,
one obtains the unitary representation U of G on βf given by

(2.4) (U(g)ψ)(k) = ψ(g-lk).

Note that this nice description is due to our particular choice of the volume
dg on G.

The next step is to implement the Marsden-Weinstein reduction from
M to Minά by means of the group H. Although no proof is known, partial
results obtained in [5], [6], [7], [9], and [21] all indicate that the following
conjecture is true, a conjecture which describes the Hubert space ^ n d

obtained by applying geometric quantization to the reduced symplectic
manifold M i n d = J~\θ)/H.

Conjecture 2.5.

^ d S { ^ iηVΛ e H : U~(h)ψ = Όet(AdH(h)Γl/2 • ψ).

In this conjecture t/~ is the unitary representation of H on β? ob-
tained by geometric quantization; note that the adjoint representation is
with respect to the reducing group H. Of course this equivalence has to
be read with caution because (i) in general one has to enlarge βf before
there are elements satisfying the condition of the right-hand side and (ii)
one then has to restrict to elements that are square-integrable with respect
to a measure that is not specified in terms of i f .

The representation U~ is readily calculated as being given by

(Uΰ(h)ψ)(g) = Det(AdG(/0)~1/2 • UM(h)ψ(gh).

The factor Det(AdG(/z))~1/2 is due to the fact that the left-invariant vol-
ume form dg on G is not invariant under the right-action of H, but
transforms with Det(Adσ(Λ)). Combining this with the conjecture, we
find the following description of ^ n d :

(2.6) ^ n d 3 {ψ : G - *M\Vh e H : ψ(gh'1) = γ(h) UM(h)ψ(g)},
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where we have defined the function γ on H by

(2.7)
Det(Adc(A))

The scalar product on β^mά can be described intrinsically by the fol-
lowing procedure (sketched). For ψ, χ e β^mά we construct the volume
form dV = (ψ(g), x(g))dg on G. We then contract this volume form
with the generators of the right-action of H on G to obtain a form a on
G. Due to the defining property of ^ n d , this form is closed and hence is
the pull-back of a volume form dV on the quotient G/H. Integration of
this volume form over G/H then gives the scalar product (ψ, χ)ind on
^nd ^ e c a n find ^ e u s u a l description directly in terms of the functions
ψ and χ if we introduce an auxiliary function p on G which is strictly
positive and satisfies:

We denote by dμ the volume form on G/H obtained from the volume
form dV — p(g)dg on G by the procedure described above. With these
preparations we have

du
P(g) dμ'

where we note that the quotient under the integral sign is a function on
G/H, again due to the definition of ^ n d . Finally we note that a different
choice for the generators of the right-action of H on G changes the scalar
product on ^ n d by a constant factor.

After the description of ^ n d as quantum Hubert space of (Λ/ind, coinά)
we have to determine the representation of G on ^ n d associated to the
hamiltonian action of G on Minά . With reference to the same partial re-
sults as for Conjecture 2.5 and using that / i n d is obtained from the (glob-
ally) //-invariant momentum map / (formula (2.1)) one "deduces" that
this representation is just the restriction of the representation U (formula
(2.4)) of 6 on / restricted to <^n d. If we compare this representation
of G (formulas (2.4), (2.6), and (2.8)) with the standard description of
the induced representation of G, induced from the unitary representation
UM of H on %?M ([8], [16], [23]), then we see that they are the same. In
other words, geometric quantization intertwines the constructions "sym-
plectic induction" and "induced representations," of course modulo the
fact that Conjecture 2.5 is still open in the general case.
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2.3. A particular case. We now consider the particular example of
symplectic induction in which the original symplectic manifold is a single
point. This example will play an important role in our interpretation of
Pukanszky's condition. Although it might seem to be singular, the con-
structions all make sense. Since the action of H on M = {pt} is trivial,
a momentum map JM for this action has a single value v0 e ί)*. The
condition that JM is equivariant is equivalent to the condition that uQ is
invariant under the coadjoint action of H on ίj*:

/ equivariant <=> uQ Coad^ -invariant.

We continue with the symplectic manifold (M, ώ) = ({pt}xΓ*G, dϋG).

The momentum map / ~ : AT —> fj* is given by

(2.9) / ~ ( p t , g , μ ) = v0 + J τ * G ( g , μ ) = vQ- i j μ .

It follows that the constraint set J^l(0) is given by

(2.10) J~\θ) o

We thus see that if we drop the (now superfluous) reference to the point
pt, we just have to reduce the canonical action of H on T*G at v0, i.e.,

We now invoke the Sternberg-Satzer-Marsden-Kummer reduction the-

orem ([20], [18], [1], [15]) to describe this reduced manifold. With a a

connection on G -» G/H as in the proof of Proposition 2.2, we define

the 1-form av = v0 o a on G. Using that a is a connection and that v0

is invariant, it is elementary to show the existence of a closed 2-form β

on G/H such that dav = π*β . Careful inspection of diagram (2.3) then

proves the next proposition.

Proposition 2.11. P: (Minά, ω i n d ) -> (T*(G/H), dϋG/H + pϊ*0) is a

symplectomorphism.

We call a cotangent bundle T*Q in which the canonical symplectic

form dϋQ is modified with the pull-back of a closed 2-form β on Q

a modified cotangent bundle (note that dϋQ +W*β is always symplec-

tic). Thus Proposition 2.11 states that M i n d is symplectomorphic to the

modified cotangent bundle T*{G/H). Note however that this symplec-

tomorphism depends upon the choice of the connection a and hence is

not canonical in the general case. The induced action of G on T*(G/H)

can be described as the unique action that covers the canonical left-action

of G on G/H and that is symplectic with respect to the symplectic form

dϋG/H + pτ*β (see also [3]).
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Next we tackle the question of quantization and we start with (M, ω) =
({pi}, 0). The Hubert space <%*M consists of sections of a complex line
bundle over a point, i.e.,

Geometric quantization of the momentum map JM yields the infinitesi-
mal representation τ: f) -> E n d ( ^ ) given by

The assumption that geometric quantization of (M, ω) yields a unitary
representation translates in this context as the assumption that this algebra
representation τ can be integrated to a group representation χ: H —•
U(l) c End(C). In other words, we assume that i vQ is the derivative
(at the identity) of a character / of H. By abuse of language we will say
that vQ e ί)* is the infinitesimal form of the character χ .

It turns out that the assumptions we have made so far allow us to apply
the results obtained in [7] and [5], results which tell us that in this particular
case Conjecture 2.5 is true. We note in particular that the assumption that
u0 is the infinitesimal form of a character χ is equivalent to the condition
in [7] and [5] that the ϋ-action lifts to a connection-preserving action on
the prequantum bundle above (T*G9 dϋG). We thus have proven the
following proposition.

Proposition 2.12. Let χ be a character of H, a closed and connected
Lie subgroup of a connected Lie group G. Denote by ι>0 e ί)* its infinitesi-
mal form and by U the unitary representation of G obtained by induction
from χ. Then we have:

(i) χ is obtained by geometric quantization of the quadruple (M, ω,

H,J¥) = ({pt}90,H,v0),and

(ii) U is obtained by geometric quantization (using the vertical po-

larization) of the quadruple (M i n d , ω i n d , G, Jinά) = (T*(G/H), dϋG/H +

pf* β, G, / i n d) which is obtained by symplectic induction from the quadru-

ple ( {pt} ,0,#, i/ 0 ) .

Remark 2.13. Without additional hypotheses the above proposition is
true for geometric quantization using half-densities; for half-forms quan-
tization additional conditions concerning metalinear structures are neces-
sary [7]. If H is not connected, Proposition 2.11 remains true; Propo-
sition 2.12 also remains true with half-density quantization, provided we
add absolute values under the square root sign in (2.7).
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3. Pukanszky's condition and the structure of coadjoint orbits

3.1. Polarizations and Pukanszky's condition. For the remainder of this
paper we fix a connected Lie group G and an element μ0 e 9*. To make
notation less cumbersome, we denote the coadjoint action of G on 9* by
a simple dot, i.e., for g e G and μ e 9* we have g-μ = CoadG(g)μ . We
define Gμ c G as the isotropy subgroup of μ0 with Lie algebra 9 c 9,
and we denote by (9 = G μ0 = G/G^ the coadjoint orbit of μ0 in

9*. We denote by 0C the complexification QC = 9 0 z'9 of 9 with its
canonical injection 9 «-• 9° and complex conjugation ~: 9° —> 9° the
adjoint action of G is extended by linearity to 9C .

Given a linear subspace α c 9 containing $μ we define the symplectic

orthogonal α1" by

/ = {X e 9|V7 e a: μQ([X, Y]) = 0},

and we extend this notion in the obvious way to subspaces of 9° contain-

ingβ^ + ' V
Lemma3.1. 9"1 = gμ c α 1 , (o±)± = a, and dimα+dimcf1 =

Definition 3.2. A polarization is a complex Lie subalgebra f) of 9°
containing Qμ + i$μ and satisfying:

(i) ί) is invariant under the AdG-action of Gμ

(ii) f,± = f);and

(iii) ϊ) + ί) is a Lie subalgebra of 9 .

Remark 3.3. Condition 3.2(ii) is usually given as two separate condi-
tions: (ii-a) dim c ί) = ^(dimR 9 + dimR gμ ) and (ii-b) μo([f), ί)]) = 0.

Remark 3.4. One can easily show that polarizations as defined above
are in 1-1 correspondence with (/-invariant polarizations & on ff.. in
the sense of geometric quantization, the correspondence being given by
coadg(ϊ))μ0 = ^ c (Tμ @μ ) c . Condition (i) guarantees that & so de-
fined is indeed well defined, (ii) translates to the fact that &" is Lagrangian,
and (iii) states that & 4- & is involutive.

Remark 3.5. In the special case ϊ) = ϊj one says that I) is a real po-
larization; at the other extreme ϊ) + Ίj = gc, one calls ί) a purely complex
polarization.

To any polarization ί) we can associate two (real) Lie subalgebras D e e
of 9 by the relations ϊ) = ί) Π 9 and e = (ί) + f)) Π 9. These Lie subalgebras
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will be fixed throughout the remaining part of this paper. We denote by
DQ c EQ the connected Lie subgroups of G whose Lie algebras are d, resp.
e. It follows from conditions (i) and (ii) that D and e are Lie subalgebras
of 0 containing α that are invariant under the Ad^-action of G . We
deduce that the subsets D = DnG c E = En. G are subgroups of G.

We now collect some elementary facts about these objects (e.g., see [14]
or [22]).

Lemma 3.6. (i) D x = e.

(ii) DQ and D are closed Lie subgroups of G with Lie algebra d.
(iii) ιζμQ e ϊ>* is CoadD-invariant.

(iv) e° and μ0 + e° are invariant under the CoadG-action of D.
(v) If E is a Lie subgroup of G then its Lie algebra is e.

Lemma 3.7 (Pukanszky's condition). The following three conditions are
equivalent:

(i) μo + e °cG.μ o = ^ o .

(ii) D.μo = μQ + t°.
(iii) D μ0 is closed in 0*.

Proof Since μ0 + e° is invariant under D, it follows that D μ0 c

μ0 + e°. From Lemma 3.1 we deduce that dim(ί> μQ) = dim(μ0 + e°)

and thus we conclude that D μ0 is open in μ0 + e°. Hence we find the

implication (iii) =» (ii). Since the implications (ii) =• (iii) and (ii) =*• (i)

are obvious, we only have to prove (i) =Φ (iii).

Therefore assume μ G μ0 + e lies in the closure of D- μ0. As above

we have Z> μ c μ0 + e° and because by hypothesis / / G ^ we still have

dim(Z) μ) = dim(μ0 + e°). It follows that D-μ is also open in μ0 + e°
and thus D μ intersects D μQ. It then follows immediately from the
existence of # e G with μ = g μ0 that μ e £> μ0 .

Remark 3.8. The definition of Pukanszky's condition as given above
is the one used by M. Vergne [22] in the context of solvable Lie groups;
there are other versions of this condition oriented more toward Lie groups
that may have semisimple subgroups. One by M. Duflo [4] is that H μ0

should be closed in (g c)*, and one by B. Kostant [14] is that E μ0 should
be closed in Q* . In the case of a real polarization all these conditions imply
the original one of Pukanszky [17].

3.2. The structure of coadjoint orbits. We saw in the previous sub-
section that D is a closed subgroup of G and that ι>0 = ιζμ0 € 0* is
Coad^-invariant. We thus can apply symplectic induction from a point as
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explained in §2.3 with D as the closed subgroup H. In this case we have
J~\θ) 2 Jτ G(-v0) = Gx(// 0 +1>°), while the subset μQ+ e° c μ0 + D° is
also invariant under the D-action. Hence we can enlarge and simplify the
commutative diagram (2.3) to:

Gx(μo + e°) —

moάD

F -

—> Gx(μQ + 0°)

modi)

inc.

— Ϊ - . Gxi. 0 -

I -
> T*(G/D) -

p

P Γ s^i

I-
• >G/D

pr

with F — (Gx (μo-\-t°))/D. Since we apply symplectic induction from a
point, the maps P and P are diffeomorphisms. Moreover, each D-orbit
intersects {g} x (μQ + D°) in a single point and P is affine on it; hence we
can identify F as a subbundle of T*(G/D).

We now restrict the canonical symplectic form dϋG of T*G = G x g*
to the subspace G x (μ0 + e°). We leave it to the reader to verify that the
leaves of the characteristic foliation of this restricted 2-form are exactly
the orbits of DQ . It then follows that F can be identified as a symplectic
subbundle of (T*(G/D), dϋG,D+pr*β) the induced symplectic form ωF

on F being the restriction of dϋG/D + pr*β to F c T*(G/D).

Since the (left) action of G on f G obviously preserves G x (μ0 +
e°), we obtain an induced symplectic action of G on F its equivariant
momentum map JF is obtained from the momentum map / defined in
(2.1).

Proposition 3.9. The following four conditions on the polarization are
equivalent:

(i) Pukanszky's condition.
(ii) The momentum map JF: F -> Q* is onto &μ .

(iii) The symplectic action of G on F is transitive.
(iv) JF is a symplectomorphism between (F, ωF) and @μ .

Proof From the definitions of F and JF we deduce that

im(JF) = {g μ\geG, μeμo + t°}.

In particular, μ0 e im(JF), and thus (9 C im(/ F ) . The equivalence
(i) <Φ» (ii) now follows immediately from 3.7(i). Since the implications
(iv) =*• (iii) =*• (ii) are obvious, it suffices to show the implication (i) =>
(iv).
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To that end, consider (g, μ), (g, μ) e G x (μ0 + e°) that have the

same image under JF, i.e., g-μ = g-μ. From 3.7(ii) we deduce the

existence of d, d e D such that μ = d μ0, μ = d-μ0, and hence we

have d~ιg~ιgd e Gμ . Since G^ c D, it follows that </0 = g~ιg e D

and thus (#, μ) = Φ r ( ? (ύ? 0 )(£, μ) , i.e., (g, μ) and (£, μ) lie in the

same D-orbit. Together with (i) this shows that JF maps F bijectively

to <9μ . It is then standard to show that it is a symplectomorphism, and

thus we have shown the implication (i) => (iv).

Remark 3.10. If ί) is a real polarization, the two subalgebras D and

e are the same. In that case Pukanszky's condition states that (9 is iso-

morphic to the (full) modified cotangent bundle T*(G/D). At the other
extreme when ϊ) is purely complex, Pukanszky's condition is always satis-
fied and the above proposition reduces to the rather trivial statement that
(9 is symplectomorphic to the zero section of the modified cotangent

bundle T<9H.

Remark 3.11. If G is an exponential group, the orbit method proceeds
as follows. One assumes the polarization to be real and such that there ex-
ists a global character χ of D with dχ = π*μ0 . The representation of G
associated to the orbit (9 then is the representation obtained by unitary
induction from χ. Pukanszky [17] has shown that this representation is
irreducible if and only if the condition that bears his name is satisfied.

However, there is another representation of G we can associate to this
orbit, i.e., the one obtained by geometric quantization (using the given
real polarization). Combining Propositions 2.12 and 3.9 we see that these
two representations of G coincide if Pukanszky's condition is satisfied.
This last result thus provides an even stronger link between geometric
quantization and the orbit method.

Without additional assumptions not much more can be said about the
geometric implications of Pukanszky's condition. However, if the sub-
group E of G happens to be closed, we have the following proposition.

Proposition 3.12. If E is a closed subgroup of G, and if Pukanszky's
condition is satisfied, then there exists a commutative diagram

T*(G/D) ^ — @μ - ^ T\G/E)

I i ' I
G/D G/D > G/E

with the following properties:
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(i) (/, /) is the identification of @μ as a symplectic subbundle of

T*(G/D) according to Proposition 3.9, and
(ii) TE is a fiber bundle whose fibers, together with the restricted sym-

plectic form, are symplectomorphic to the pseudo-Kάhler space E/D.
Proof Define p0 = ι*μ0 e e*, and denote by (9 the orbit of p0 in e*

under the Coad^-action. We compute the isotropy subgroup of pQ in E

as follows, e e E lies in the isotropy subgroup of p0 iff e μ0 - μ0 € e° .
According to Pukanszky's condition this is equivalent to e μ0 e D μ0 .
Since Gμ c D c E we deduce that the isotropy subgroup is D.

We now consider symplectic induction from the subgroup E c G with

M = <9 . From Proposition 2.2 we deduce that Minά fibers over T*(G/E)

with symplectic fiber <9p = E/D. Since one can show (e.g., [14]) that

(9 = E/D admits a pseudo-Kahler structure, it thus only remains to show

that Minά is symplectomorphic to (9 and that the diagram containing

PE commutes.

To that end we investigate Jftl(0), which is given by

/-'(()) = {(p, g, μ) e e* x G x fl*|i> = pe @p)

(note that JM is the identity map for coadjoint orbits). Now if p e (9

then there exists e e E : p = ι*(e μ0) and thus we find the condition

μ - e μ0 e e° , or equivalently (using Pukanszky's condition) μ = ed - μ0

for some d e D. Since ΰ c £ we thus find

It then follows (with the same techniques as in the proof of 3.9) that

Jinά: Minά —• (9 is a symplectomorphism. The map PE now is the com-

position of JΓJ with the map Ύ from Proposition 2.2 for this induction.

Tracing diagram (2.3) for the two different symplectic inductions, one

finds that the projection f:F=<fμ -> G/D maps the element g'μo€&μ

t(> [g]D £ GfΏ and that π oΨE maps it to [g]E e G/E, and thus the
given diagram is commutative.

4. Pukanszky's condition and localization of massless particles

We tackle here, in purely geometric terms, the question of localization
of massless relativistic particles in the light of our interpretation of Pukan-
szky's condition.
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Let R 3 ' 1 = (R4, g) denote flat space-time whose metric g has the

Lorentz signature ( h). We also assume for convenience that R 3 ' ι

is oriented and time oriented as well. The group G of interest to us

is the neutral component of the Poincare group Isom(R 3 1 ) , i.e., G =

0(3, 1 ) O © R 3 > 1 . We will denote by ξ = (Λ, Γ) a typical element of

Q = 0(3, l)(s) R 3 ' 1 . Likewise, a point in 9* is a pair μ = (M, P)

with M G o(3, 1) and P e R3 '1—interpreted as the angular and linear

momentum respectively—where the pairing with 0 is given by (μ, ξ) =

According to the point of view espoused in [19], the coadjoint orbit
<9U representing the space of motions (or in other words, the classical
phase space) of a massless particle with helicity s e R\{0} is specified by
μo = (Mo,Po) with

(4.1) *(M0)PQ = sP0, Det MQ = 0, and Po future-pointing,

where the star "*" denotes the standard Hodge anti-involution of the
Lorentz Lie algebra 0(3, 1) identified with Λ 2 R 3 1 ^ Λ 2(R 3 ϊ 1)* by
(A Λ B)V = g{B, V)A - g{A, V)B. We note that the conditions (4.1)
imply

(4.2) g(P0,P0) = 0 and M 0 P 0 = 0.

The coadjoint action of G on g* is given by

Coad^L, C)(M, P) = (LML~l + C Λ (LP), LP),

and an elementary (but tedious) computation shows that the istropy sub-

group is given by Gμ ^ SO(2) x R 3 .

As a next step, we consider the seven-dimensional (real) subalgebra

(4.3) D

Its main interest is that f) = Dc is a real polarization. To prove this, we
first recall the fact that for Λ G 0(3, 1) the condition KP = 0 implies that
there exists F e R 3 ' 1 such that Λ = * ( F Λ P). Using this fact, one can
show that for ζ, ξ' e d there exists Q e R 3 ' ι such that [Λ, Λ'] = Po Λ Q,
and hence

(μ0 > K, £']> = - i Tr(Λ/0[Λ, Λ']) - g(PQ, ΛΓ; - Λ'Γ)

= - g(Q, M0P0) e (ΛP^Γ7) - g(A'P0,Γ) = 0

because of (4.2) and (4.3). As a notable feature, this polarization satisfies
Pukanszky's condition. To see this, note first that, since ί) is real, we have
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e = D, and, since Gμ is connected, we have D = DQ. Integrating the

subalgebra d yields the closed connected subgroup

D = {(L,C)€G\LPQ = P0}.

With these ingredients we now compute

μQ + D° = {(M, Po) e β Ί * ( Λ / - M0)PQ = 0}

= {(M, Po) e g*|3C e R 3 ' 1 : M = Mo + C Λ Po} c D .μQ,

and thus μo + D° = D-μ0.
We thus may apply Proposition 3.9 to conclude that (9 is symplecto-

morphic to the (modified) cotangent bundle of the forward light-cone of

R 3 ' 1 :

the projection π. G ^ & being given by P = π((L, C)) = L P 0 . The
base manifold if = R3\{0} is physically interpreted as the space of linear
momentum and energy of the massless particle, whereas the typical fiber
of the phase space Γ * ? = f x R3 may be identified with the configura-
tion space where our massless particle dwells. Such an identification thus
assigns to each point of the classical phase space of the massless parti-
cle a position in our three-dimensional space, i.e., it becomes "localized."
However, we must emphasize that this localization procedure relies on a
specific noncanonical choice for the connection a on the principal bundle
G —• G/D used to define the modified symplectic structure dϋG,D + pr*/?
of T*&. The fact that there does not exist a preferred G-invariant con-
nection is due to the nonexistence of a reductive splitting g = ί θ s with
P>,«]Cs.

A straightforward calculation shows that to each future-pointing unit

vector / G R 3 ' ι , we can associate a connection α 7 = (Λ, f) on G —• W

by

A L-ι

g{I,LPQ)

dLPo ~ g{dLPo > C)

g(I,LPQ)

These expressions all make sense because g(I, LP0) > 0 for all L €
0(3 , l ) 0 .
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More effort is needed to find out the modified symplectic structure on
* , which turns out to be given by

where P G ? and pr denotes the projection Γ * ^ —• W. We have denoted
by Vol(/, P) the 2-form on & obtained by contracting the prescribed
volume form Vol of space-time with the vectors / and P. Note also
that we have interchanged the traditional roles of the symbols P and
Q: P denotes the coordinates in the base manifold and Q denotes the
coordinates into the fiber.

By using the ^-orthogonal decomposition P = p + \\p\\Ί 9 with p e
/~L\{0} = R3\{0} and q e R3 (our three-dimensional space), i.e., in a
Lorentz frame adapted to the "observer" / , we get

ω = -d(q dp)-s

Ml
where vol stands for the canonical volume element of R 3 . Following a
completely different route, we thus recover the symplectic structure which
is derived in [19] by means of another localization procedure.

We finish this discussion by noting that any connection a will pro-

vide us with an identification of 0 with Γ * ^ equipped with a modi-
fied symplectic structure ωa - dϋG,D + pf*/J. However, because of the
invariance of ιζμ0 e D*, there will exist a 1-form ψ on Ψ such that
ωa = a)j+d(pf*ψ). This implies that, modulo a redefinition of the canon-
ical 1-form of T*W—a "gauge transformation" which reveals the affine
structure of our three-dimensional space—the localization procedure we
have spelled out in terms of Pukanszky's condition merely reduces to the
choice of an otherwise arbitrary observer / in space-time.

Remark 4.5. For completeness, we recall that the massless coadjoint
orbit with s = 0 corresponds to the choice of origin μQ = (0, Po), where
PQ is null and future-pointing. In this case, the polarization is still given
by (4.3) and all previous results hold except that our localization is now
"canonical" since this orbit is symplectomorphic with T*& endowed with
its canonical symplectic structure.

Remark 4.6. It is worth mentioning that the position observables we
have defined above do not Poisson-commute since for u, v eΈL we have:
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We can easily single out the prequantizable massless orbits (9t as those
satisfying 2s e Z, and to these we can apply the geometric quantization
procedure using the previously introduced real polarization, which is (of
course) the vertical polarization of ( Γ * ? , ^ ) . In doing so, we can eas-
ily quantize the three position observables (they preserve the (/-invariant
polarization) and end up with noncommutίng position operators in the
case of nonzero helicity. In this way we recover results already known to
physicists (e.g., [2], [11]).

5. Appendix: Some notations and sign conventions

Notation 5.1. If α is any (real) vector space, we denote by α* its

dual space. If α is a linear subspace of a vector space g, we denote the

canonical injection by ιa: α —> 9. Dual to the canonical injection we have

the projection ι*a: g* —> α*, and we denote by α° the annihilator of α in

0* : α° = ker(O = {μe 0*|VX e α : μ(X) = 0} .
Sign convention 5.2. Let Φ be a (left) action of a Lie group G on a

symplectic manifold (M, ω), i.e., Φ: G —> Diff(M) is a group homomor-
phism. For X e 9 (g the Lie algebra of G) we define the fundamental
vector field XM on M as the vector field whose flow is Φ(exp(Xt)). The
map X »-* XM so defined is a Lie algebra anti-homomorphism.

A momentum map (if it exists) is a map / : M —• 9* satisfying ι(XM)ω
+ d(J*X) = 0 for all l e g . It is called an equivariant momentum map
if it is equivariant for the given action of G on M and the coadjoint
action of G on 9*.
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