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IMAGES OF REAL HYPERSURFACES
UNDER HOLOMORPHIC MAPPINGS

M. S. BAOUENDI & LINDA PREISS ROTHSCHILD

0. Introduction

In this paper we consider two closely related questions. Given a germ of
a real analytic hypersurface M through 0 in Cn+ι and a germ H at 0 of
a holomorphic mapping of C*+1 into itself, under what conditions does
there exist some smooth or real analytic hypersurface Mf in C*+1 such
that H(M) c M' ? A complete answer to this question is given for the
case where M is essentially finite (see Theorems 1 and 2). Second, given
two hypersurfaces M and M1 in Cn+ι and a holomorphic mapping H
for which H(M) c M', what is the structure of H ?

A (germ of a) real analytic hypersurface in Cn+ι is a set of the form

(0.1) { Z e C * + 1 : / > ( Z , Z ) = 0},

where p is a (germ of a) real-valued real analytic function, p(0) = 0, and
dp(0) Φ 0. We may choose holomorphic coordinates (z, w) e Cn x C,
such that M is given by

(0.2) lmw = φ(z,1, s), with5 = Reti;,

where φ is real analytic and satisfies φ{0) = 0 and dφ(0) = 0. We may
also require that φ(z, 0,0) = 0. With this condition, the (z, w) are
called standard coordinates for M, and tί/ is called a transversal coordi-
nate. If // is a holomorphic map from Λf into Λf', we write H = (/, g)
if z' = / ( z , w) and it/ = g(z, w), where (z ; , ΐ//) are standard coor-
dinates for M'. Then # is called a transversal component of /f, and
(/> #) a re standard components of # .

Recall that a map H: C Λ + 1 -> C"+ 1 isjiflite (at 0) if the ideal (H(Z))
in the ring of formal power series C[[Z]] generated by all the components
Hj(Z), j= 1, , f l+1, is of finite codimension, i.e., dimcC[[Z]]/(H(Z))
= d is finite. We shall call rf the multiplicity of // at 0. In fact, d is
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the number of preimages of H, counted with multiplicity (see, e.g., [11]).
In order to obtain theorems on the nature of mappings, we shall restrict
ourselves to the case where M is essentially finite, as introduced in [4].
Recall that if M is given by (0.2) and

we say that M is essentially finite at 0 if the ideal (aa(z)) in the ring of
formal power series C[[z]] generated by all the aa(z) is of finite codimen-
sion, i.e., dimcC[[z]]/(aa(z)) = m is finite. We shall call m the essential
type of M at 0. Note that if M does not contain any germ of a nontrivial
complex analytic variety through 0, then M is essentially finite.

The problem of describing images of complex analytic manifolds and
varieties under finite maps is a classical one and well understood (see, e.g.,
[16], [12], [11], [17]). Less investigation has been devoted to the mixed
problem of studying the images of real manifolds under proper holomor-
phic mappings. Fundamental results have been obtained by D'Angelo [1],
[21, concerning the order of contact of complex analytic varieties with real
hypersurfaces, as well as the interpretation of these properties in the lan-
guage of commutative algebra. Interesting questions also have arisen in
studying holomorphic extension of Cauchy-Riemann mappings between
real hypersurfaces; we refer here to the joint work of the authors with Bell
[3] dealing with two complex dimensions, as well as [5]. In [6], the au-
thors proved several properties of holomorphic mappings which take one
real hypersurface into another. In particular, we showed that if the first
hypersurface is essentially finite, then either a transversal component of
the mapping is identically zero, or its first derivative is nonzero and the
mapping is finite. These results are essential for the theorems obtained
here. Images of hypersurfaces under nonfinite mappings are also studied
in this paper.

If M is given by the defining function p as in (0.1), we define the germ

j f of a complex hypersurface in c2*4"2 by

(0.3) JT = {(Z , C) € C2 Λ + 2 : p(Z , 0 = 0},
where p(Z, ζ) is the complex holomorphic function obtained from the
real analytic function p. If H is a holomorphic self-map of Crt+1 we
associate it to a self-mapping %? of C 2 Λ + 2 by

(0.4) _ βT(Z9ζ) = (H(Z)9Ή(ζ))9

where H is the holomorphic function obtained from H by conjugation
of the coefficients in its power series expansion. Note that if H is finite,
of multiplicity d, then %* is finite with multiplicity d2 . We note that the



IMAGES OF REAL HYPERSURFACES 77

complexification of a real analytic hypersurface as well as the complexifi-
cation of a holomorphic mapping given by (0.3) and (0.4) have long been
standard in this field since the work of Segre [18], and more recently that
of Chern [8], Faran [9]? Webster [19], and others.

The main results of this paper may now be stated.
Theorem 1. Let M be a {germ of an) essentially finite real analytic

hypersurface in C*4"1 through 0, and let H be a {germ at 0 of a) holo-

morphic mapping of Cn+ι into itself Then there exists a real analytic

hypersurface Mf such that H(M) c Mf if and only if one of the properties

(A) or (B) below is satisfied.

(A) H{Cn+ι) is contained in a {smooth) complex analytic hypersurface

o/Cn+ι.
(B) The following three conditions are satisfied:
(i) H is finite;
(ii) βr-\β?{J?))cJ?\and

(iii) there exists a holomorphic function J: Cn+ι -» C, J{0) = 0, such
that if {z ,w) are standard coordinates for M, then {J o H){zy w) =
wK{z, w), with K holomorphic and K{0) φ 0.

Moreover, suppose that (A) holds. Then for any real analytic hypersur-
face M" such that H{M) c M", all of H{Cf+ι) lies in M" as a proper
subset

If we are interested in the question of whether M maps into a hyper-
surface which is assumed only to be smooth rather than real analytic, then
we have the following results. We deal first with the criterion that H be
a mapping onto a smooth hypersurface.

Theorem 2 Let M be a {germ of an) essentially finite real analytic
hypersurface in Cn+ι through 0, and let H be a {germ at 0 of a) holo-
morphic mapping of C*+1 into itself Then H{M) is a {smooth) real
hypersurface in Cn+ι if and only if property (B) of Theorem 1 holds. In
addition, if (B) is satisfied, then H{M) is real analytic.

For the last result we need to impose an additional assumption on the
smooth target hypersurface Mf. Following DΆngelo [1] we say that a
smooth hypersurface Mr is of D-finite type at 0 if there is no nontrivial
complex analytic variety through 0 with infinite order of contact with M'
at 0. If M1 is real analytic, D-finiteness at 0 is equivalent to the property
that there is no nontrivial complex analytic variety through 0 contained in
λf' (see [2] and [14]). In C2 the notion of D-finite type agrees with the
definition of finite type introduced earlier by Kohn [13] using commutators
of Cauchy-Riemann vector fields and their conjugates.
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Theorem 3. If M is as in Theorems 1 and 2, and H is a holomorphic
self-map of C Λ + 1 such that H{M) c M*, where Mf is a smooth hyper-
surface of D-finite type, then either H is finite and H(M) = Mf with Mf

real analytic, or H = 0.

Theorem 3 was essentially proved in [3] in the simpler special case of
n = 1, i.e., M and M1 hypersurfaces in C 2 . (See also a generalization
of Theorem 3 given by Theorem 3' in §3.)

The plan of the present paper is the following. In § 1, we prove Theorem
2 in the case where M' is real analytic; examples and remarks are also
given. In §2, we prove a general result which states that if the image of
a real analytic manifold under a proper holomorphic mapping is smooth,
then it is real analytic. This is needed to complete the proof of Theorem 2
in the case where M' is merely smooth. Finally, §3 is devoted to the proofs
of Theorems 1 and 3, followed by further comments and open problems.

The authors wish to thank the referee for a number of useful comments
and in particular for suggesting the inclusion of a generalization of Theo-
rem 3.

1. Mapping a hypersurface onto a hypersurface.

Proof of Theorem 2 and remarks

We shall now prove Theorem 2. Recall that Jf is the complex analytic

hypersurface in C2n+2 defined by (0.3) and %? is the holomorphic self-

mapping of C2n+1 defined by (0.4). Assume first that H{M) = M' is

a real analytic hypersurface in C Λ + 1 we shall show that property (B) of

Theorem 1 holds. By [6, Theorem 4], if g is a transversal component of

H, and w a transversal coordinate for M, then either g is identically
0 O Γ f&(°) ̂  0 a n d H is finite. We show first that g ± 0. Indeed, if

g = 0, then H{M) would be contained in a complex hypersurface which

is of real codimension 2 in C*+1 , and could not be a real hypersurface of

real codimension 1.

Hence we may assume H is finite and §§j{0) Φ 0. The latter condition

implies (iii) of (B) since g(z, w) is always of the form wgι (z ,w), with

g{ (z, w) holomorphic. It remains to show (ii). Let p\z ,w'9Ί
i, vf) = 0

be the defining equation for Mf, with standard coordinates {z , w) and

p real analytic. We define a holomorphic function r in C2n+2 by

( 1 . 1 ) r ( z , w , ζ , τ ) = p ( f ( z , w ) , g ( z , w ) )

z , C € C \ w, τeC,
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where / and g are standard components of H. Since p\z , w', 0, 0) =
aw', α(0) φ 0, and f£(0) ^ 0, it follows from (1.1) that J£(0) ^ 0.

Let *•#' be the complex hypersurface in c2n+2 associated to M* given
by (0.3) with p replaced by p . The real analyticity of p implies that
%?{<£) C ./# ' . We claim that r is a defining function for M. Indeed,
since H maps M into Λf', it follows from (1.1) that r(z,w,Ί,w)
vanishes on M. The claim follows since the differential of r does not
vanish. Now to prove (ii) of (B), we observe that if (z 0 , w0, ζ0, τ0) e Λf,
then r(zQ, w0, £ 0, τ0) = 0, and hence by (1.1), r(z, w , £, τ) = 0 for any
(z, w, C, τ) forwhich / ( z , tι;, £, τ) = ^ ( z 0 , ^ 0 , ζQ9 τ 0 ) . This proves
the necessity of conditions (i)-(iii).

For the converse, we assume that (i)-(iii) hold. We shall prove that the
image H(M) is a real analytic hypersurface in Cn+ι. For (z ;, £') small
in c2n+2, we define p\z\ ζ1) as follows. Since ^ is a finite map, for
each (z', C') there are d2 preimages in C2n+2, counted with multiplicity,
where d is the multiplicity of H. We set

(1.2) p'(Z',ζ')= Σ p(Zj,ζk),
l<j9k<d

where H(Zj) = Zf, ^(C*) = £, I < j , k < d. Since the right-hand
side of (1.2) is a symmetric function of the preimages under ?t?, it follows
that p is a holomorphic function (see, e.g., [11]).

We claim next that p{Zf, Z ) is real valued. Indeed, the reality of
p{Z, Z) implies that for any ( Z , £) € C"+1 we have

(1.3)

We also have

(1.4) ]Γ p{ZJ,ζk)=

since { z \ 1 < k < d} = H~l(Z'). The reality of p\Z\ Ί!) follows
by taking the complex conjugate of the right-hand side of (1.4) and using
(1.3).

We shall now show that dp'(0) Φ 0. After making holomorphic changes
of variables and using (iii), we may assume that

(1.5) H = {Hl9- ' , / / π + 1 ) , withtfΛ + 1(z,u;) = tι;,

and from now on we shall write H = (/J, , fn, g). We denote by
(z, w, C, τ) the new holomorphic coordinates in the source space, and
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by (zf, w' 9 ζ' 9 τ') those of the target space. Then (1.2) becomes

(1.6) p(z9w,ζ,τ)=
\<j,k<d

with f(zJ, w') = z , J(ζj, τ') = ζf. To compute (dp/dwf){0), it suf-
fices to take z — ζ' = 0 and τ ' = 0 in (1.6). Since

(1.7) / > ( z , t ι / , 0 , 0 )

W>0,p>2

with # and #α / ? constants, by (1.6) we have

\(1.8) //(0, tι/\ 0, 0) = rfW +

with fcα(u/) = rfEi<j<rf(^)e» where the zj are the rf solutions of

Note that the ka are holomorphic functions, since they are symmetric
functions of the preimages of (Q,w') under the map H. We also have
ka(0) = 0. Hence, by (1.8), (dp'/dw')(0) = d2a^0.

Now let Mf be the hypersurface defined by p\z , w , z7

 9vf) = 0,
which is real analytic by construction. To prove that H(M) C Mf we
must use (1.2) together with condition (ii), which until this point has
not been used. Indeed, if ( Z , ζ) e Jf, i.e., p(Z, ζ) = 0, then by
(1.2) p'(H(Z),Ή(ζ)) = Σj,kP(Zj,Ck)> w h ^ r e //(Zy) = //(Z) and
//(£*) = //"(ί). Then (ii) implies that each term in the last sum is zero,
i.e., MT{Z ,ζ)€Jt'9 which means that H(M) c Mf.

It remains to prove that H(M) = M1. This is a consequence of the
following.

Lemma 1.9. Let H be a finite map in C Λ + 1 , and M and M' real
analytic hypersurfaces with H(M) c Mf. Then H(M) = Mf.

Proof. The conclusion follows from the study of multiplicities of finite
mappings in [6] but can also be easily proved directly as follows. Let
(z, w) and (z r , w1) be standard coordinates for M and M1 respectively,
and let Z r = (z , w') e M1, i.e., p(Zf, ~z!) = 0. Since any finite map is
surjective, there exists ZQ = (zQ9 wQ) € C Λ + 1 such that H(Z0) = Z ' . We
claim that Z o € M . For this, as in (1.1), let r(Z, Z) = p(H(Z), Ή(Z)).
Since ^ ( z ' , w', 0, 0) = αti/', α(0) ^ 0, and |^(0) ^ 0, it follows that
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0, i.e., r is a defining function for M. The lemma follows by
taking Z =ZQ. q.e.d.

We have now proved that (i)-(iϋ) of property (B) of Theorem 1 are nec-
essary and sufficient for H(M) to be a real analytic hypersurface. The-
orem 4 of §2 below shows that H(M) need not be assumed to be real
analytic; indeed, it is shown more generally that if the image of a smooth
real analytic manifold under a finite holomorphic map is smooth, then it
must also be real analytic. This will complete the proof of Theorem 2.

Remark 1.10. The smoothness assumption in Theorem 2 cannot be
weakened by assuming instead that M' is of class Cp for some finite
/>. Indeed, let M = {(z, w) e C2 : Imw = \z\2k} with k odd, Λf' =
{(z , w') e C2 : Imti/ = \z\k}, and let H = (z 2 , w). It is easy to check
that H(M) = M', and that M1 is not smooth, but is of class Cp if k is
large enough.

Remark 1.11. The above example also shows that condition (ii) of
property (B) cannot be replaced in Theorem 2 by the weaker condition

(ii') H'ι(H(M))cM.

Indeed, for K = 1, for instance, (i) and (iii) are obviously satisfied, and
H~{(z2,s + /|z|2) = ( ± z , s + j'|z|2) € M. Hence (ii;) is satisfied, but
H(M) is not a smooth hypersurface.

2. Image of a real analytic manifold under a finite map

We prove here the following result.
Theorem 4. Let H be a (germ at the origin of a) finite holomorphic

mapping from CN to itself with H(0) = 0. Let M be a (germ at the
origin of a) real analytic submanifold of CN. Assume that H(M) = Mf

is a smooth submanifold of CN. Then Mι is real analytic.
The theorem will follow from a seemingly more restrictive result:
Proposition 2.1. Let J be a (germ at the origin of a) finite holomorphic

mapping from Cn to itself with J(0) = 0 and J real i.e., J(Rn) c R".
Let M be a (germ at the origin of a) real analytic submanifold ofRn. If
J(M) = M' is a smooth submanifold of RΛ, then M1 is real analytic.

Proof. Since ¥ c R " and is real analytic, after a local holomorphic
change in Cn , we may assume that M={x{9--> , xn_k, 0, - , 0), with
the usual notation z = x + iy. Let W = {z € Cn : \z\ < ε} and
U = J~l(W). If ε is sufficiently small, then the map J: U -+ W is
a proper surjective map (see, e.g., [11], [17]). Let A be the subvariety of
U given by U n {zn_k+1 = = zn = 0} and B = J(A) c W. Note that
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M Π {JC e Rn : \x\ < ε} = A n R* . By Remmert's Proper Mapping The-
orem [16], B is a subvariety of W. Hence BnRn is a real analytic set
containing Mf.

We wish to apply the following theorem due to Malgrange [15]: Let Xo

be the germ of a real analytic set in Rn through 0 containing a germ MQ

of a smooth manifold. If dim Xo = dim Mo, then Mo is real analytic.

We take here Xo = BnRn and Mo = J(M) = M'. In order to apply
Malgrange's theorem, we need only check that

(2.2) dimΛ Mr = dimR B π R " .

First, by considering points of maximal rank on M, we see that dimR Mf

= dimR M = n-k. Indeed, a holomoφhic map at points of maximal rank
is either injective or not proper. Similarly, we have dim c B = n- k . For
Mf we note first that by the inclusion M' c B n Rw , we have dim M' <
dimR 5ΠR" . Finally, we observe that dimR BnRn < dim c B. This proves
(2.2), which shows that Malgrange's theorem can be applied to yield the
proof of Proposition 2.1. q.e.d.

We shall now prove Theorem 4. We first identify M as a submanifold
of Rn , n = 2N,by the usual identification of C^ with R2N M is then
a real analytic submanifold of Rn . The map H can then be identified
with a real analytic mapping / : Rn -> Rn given by
(2.3)

J(x, y) = ( j [ # ( * 4- iy) 4- S(JC - iy)], 1 [/Γ(JC 4- iy) - ^ ( x

Since J{M) = Λί' can be regarded as a smooth submanifold of Rn, we
may apply Proposition 2.1 if we can show that / extends to Cn as a
finite holomoφhic map. To do this, we first complexify / by taking x,
y in C2N in (2.3). To prove that the resulting holomoφhic map, which
we again denote by / , is finite, it suffices to prove that the components of
/ have no common zeros near the origin, other than the origin itself. The
latter follows immediately from the finiteness of the map H and (2.3).
This proves Theorem 4.

Remark 2.4. Note that without the assumption that Mf is smooth,
one cannot even conclude that J(M) is a real analytic set, as is shown by
the example of Remark 1.10.

3. Holomorphic mappings into a hypersurface. Proof of Theorems 1 and 3

In this section we shall prove Theorems 1 and 3. We recall the following
result from [6]: Let M and H be as in the assumption of Theorem 1,
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with Mf a real analytic hypersurface for which H(M) c M1. We write
H = (/> g) > where g is a transversal component for //. If t/; is a
transversal coordinate for M, then either g = 0 or f^(0) ^ 0 and H is
finite.

Assume now that H(M) c M' as in Theorem 1. If g φ 0, then by the
above H is finite and hence, by Lemma 1.9, H(M) = M1. Therefore, we
are done by Theorem 2. In order to prove the theorem we may assume
g = 0. It is clear that property (A) of Theorem 1 holds since then H(Cn+1)
is contained in the complex hyperplane wf = 0. To complete the proof of
Theorem 1, we must show that if g = 0, then H(Cn+ι) is a proper subset
of M \

We denote by vkcH
l{Z) the rank of the holomorphic map H at Z ,

regarded as a map from C"+ 1 into itself. Similarly, for Z e M we denote

by τkMHf(Z) the rank of H at Z considered as a map from M into

C*+1 (identified with R 2 * + 2 ) .

The following will be used in the proof of Theorem 1.
Proposition 3.1. If H is a holomorphic mapping from Cn+ι into Cp,

and M is a smooth hypersurface in Cn+ι, then, for every Z € M,

(3.2) rkc/f'ίZ) = ^(τkMH'(Z) + 1)] ,

where [k] denotes the greatest integer less than or equal to k.
Proof Without loss of generality we may assume Z = 0. We choose

standard coordinates (z, w) for M. We may assume that M is given by
(0.2), and use (z, z, s) as coordinates on M, with z e Cn , s e R, and
s = Re w . By identifying Cp with R2p by the correspondence Cp 3 £ »->
( ί , { ) , the map H: M ->CP is then given by
(3.3)

( z , z , 5 ) ι-> Λ Γ ( z , Z9S) = {H(Z , 5 + i " 0 ( z 9 z , s ) ) 9 H z , s - i φ ( z , z ,

Since </<£(0) = 0, the rank of K at 0 is the rank of the matrix

fHz(0) _ 0
(3.4) Jac(tf) = HJO) H_w(0)

0 HΊ(0)

where //r(0) is the p x « Jacobian matrix of # with respect to z , and
Hw(0) is the /? x 1 derivative of H with respect to w .

We now consider the two cases corresponding to whether rkMH'(0) is
even or odd. In the first case, rk(Jac(AΓ)) = 2rk{Hz), and the row Hw
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is in the span of the rows of Hz . Thus rkc//'(0) = τk(Hz)(0). In the
second case, rk(Jac(ΛΓ)) = 2τk(H2) + 1 and rkc7/'(0) = rk(HΣ)(0) + 1.
Hence equality (3.2) is proved.

Corollary 3.5. Let H be as in Proposition 3.1. If the restriction of H
to M has maximal rank at m0 e M, then H has maximal rank at MQ

as a complex holomorphic mapping.
Proof The proof is immediate from (3.2), since rk c // '(Z) is deter-

mined by τkMH'(Z). Note that the converse is false. For example, let
M be the Lewy hypersurface in C 2 given by {(z, w) : Imw = \z\ },
and H(z,w) = (w, 0). Then rkc7/'(0) = 1, which is maximal, but
rkM //'(O) = 1, while rk M H\Z) = 2 for Z φ 0. q.e.d.

We may now return to the proof of Theorem 1. As noted above, we
may assume g = 0. Let r be the largest integer such that for every
neighborhood U of 0 in M there is a point Z e U with τkM Hf{Z) = r .
Let m 0 e M be any point sufficiently close to 0 at which τkM H'(m0) = r.

Suppose first that r is even, i.e., r = 2p . By Corollary 3.5, rk c H'(m0)
is also maximal, and is equal to p by (3.2). It follows that H(M) =
H(Cn+ι) = V near ra0, where V is a smooth complex holomorphic sub-
manifold of dimension p. We claim that H(Cn+]) c Λ/' near 0 also.
Indeed, let // be a defining function for Mf. Since p(H(Z), /7(Z)) is
real analytic in a neighborhood of 0 and vanishes identically for Z in a
complex neighborhood of m0 , we conclude that it vanishes identically in
a complex neighborhood of 0 in C Λ + 1 also, which proves the claim. By
dimension, it is clear that the inclusion must be proper.

We shall show that r is in fact always even. For this, suppose by
contradiction that r is odd, i.e., r = 2p + 1. By (3.2), rkς H'(m0) =
p + 1, and MQ is a point of maximal rank. Note that p < n since
g = 0. Hence near Mo, H(M) is a hypersurface M" in H(Cn+ι) = F ,
where K is a (/? + l)-dimensional smooth complex submanifold of C" .
After holomorphic changes of coordinates, we may make V — Cp+ι, and
may assume that Mo = 0 and that H(Z) = (Z 1 ? ••• , Z x) near 0.
Let p" be a defining function for Mn. We conclude that p\Zx, •• ,
Z p + 1 , Z j , , Z p + 1 ) is also a defining function for Λf. Since p < n, //'
is independent of the variables Zp+2, , Z Λ + 1 . This implies that M is
not essentially finite at m0 . Since essential finiteness is an open condition
[6], and m 0 may be chosen arbitrarily close to 0, this contradicts the
assumption that M is essentially finite at 0. Therefore r cannot be an
odd number.
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We conclude from the above that r is necessarily even and H(Cn+ι) c
M'. Also, since dimM' = In + 1 is odd, H(M) Φ M1. Hence the proof
of Theorem 1 is complete.

Remark 3.6. If property (A) of Theorem 1 holds so that H(M) c Mf

for some real analytic hypersurface M1, then it is still possible that H(M)
is a proper subset of H{Cn+ι) (which is a proper subset of Mf by Theorem
1). For instance, suppose that M is the Lewy hypersurface in C2 given
by Imiu = \z\2 and H = ( tu,0) . Here M1 is the flat hypersurface
Im w' = 0. Then H(C2) = C x 0, while H{M) = C + x 0, where C + is
the upper half plane of C.

The proof of Theorem 3 is obtained as a modification of the proof of
Theorem 1. For this, we recall some terminology from [6]. If Mf is a
smooth hypersurface in C π + ι through 0 and j is a positive integer, then
holomorphic coordinates (z', w') are called standard oforder j if Mf is
given by

(3.7) Im w = ψ(z , ~z , s), with 5' = Re it/,

with ^ smooth and ψ(z\ 0, 0) = 0 up to order j + 1 in this case w' is
called a transversal coordinate of order j . By a formal transversal coordi-
nate (of order 00) we shall mean a holomorphic formal power series such
that for every finite j there is a transversal coordinate of order j whose
Taylor expansion agrees with that of the formal series up to order j . Sim-
ilarly, we may define formal standard components or standard components
of order j , and formal transversal components or transversal components
of order j for a holomorphic mapping H: M -> M1.

We shall need the following lemma.

Lemma 3-8. Let M and M1 be smooth hypersurfaces in C n + 1 and
H:Cn+ι -> C"+ 1 holomorphic and mapping M into Mr. If a formal
transversal component of H vanishes identically, then detJac(//) = 0.

Proo/ Assume by contradiction that detJac(//) ψ 0, so that there
exists a finite integer /: with detJac(/f) vanishing of order exactly k at
0. After a holomorphic transformation in the target space, we can write
H — (/, g), with g a transversal component of order k 4- 1. Then by
the hypothesis, det Jac(//) in these coordinates vanishes of order at least
k + 1. Since the order of vanishing of the determinant is an invariant
under holomorphic change of coordinates, we reach a contradiction, and
the lemma is thus proved, q.e.d.

In order to reduce to the case where a formal transversal component
of H vanishes identically, we need the following strengthening of Lemma
1.9.
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Lemma 3.9 Let H be a finite map in C*+1, and M and Mf smooth
hypersurfaces with H{M) cMf). Then H(M) = M!.

The proof of Lemma 3.9 is almost identical to that of Lemma 1.9, in
which both M and M1 are assumed to be real analytic, except that one
takes standard coordinates (z, w) and [z , w') of order one, and takes
g to be a transversal component of order one.

We may now complete the proof of Theorem 3. If a formal transversal
component of H does not vanish identically, then, since M is essen-
tially finite, by [6, Theorem 4], H is finite. By Lemma 3.9, we conclude
that H(M) = M*, and we are in the situation of Theorem 2, so there is
nothing more to prove. Therefore we may assume that a formal transver-
sal component g of H vanishes identically, and hence by Lemma 3.8,
det Jac(i/) = 0. We must use the D-finiteness of Mf to show that H = 0.
As in the proof of Theorem 1, we let r be the maximal rank of the restric-
tion of H to M. Let m0 € M be any point sufficiently close to 0 at which
τkMH'(mQ) = r. Since detJac(//) = 0, (3.2) implies that r < In + 1.
The essential finiteness of M thus yields that r must be even by the same
argument as used in Theorem 1. We claim that r must be 0. Assume that
r = 2p. By Corollary 3.5, τkcH

f(mQ) is also maximal, and is equal to p
by (3.2). It follows H(M) = H(Cn+x) = V c Mf near w 0 , where V is
a smooth complex holomorphic submanifold of dimension p . Since m 0

is arbitrarily close to 0, the germ of the variety Λ(CW+1) at 0 has infinite
order of contact with M1. Indeed, if p is a smooth defining function
for M1, we have p{H(Z), H{Z)) = 0 in a complex neighborhood of
m0 and hence p'(H(Z), H{Z)) vanishes of infinite order at the origin in
Cn+ι. This would contradict the D-finiteness of Mf unless r = 0. The
claim is now proved and the proof of Theorem 3 is complete, q.e.d.

A smooth hypersurface Mf is of q D-finite type at 0, where q is
a positive integer, if there is no complex analytic variety of dimension
greater than or equal to q through 0 with infinite order of contact with
Mr at 0. Hence M1 is of D-finite type if and only if it is of 1 D-finite
type. The proof of Theorem 3 above can be easily modified to yield the
following generalization.

Theorem 3 ' . If M is as in Theorems 1 and 2, and H is a holo-
morphic self-map of Cn+ι such that H(M) c Mf, where M1 is a smooth
hypersurface of q D-finite type, q being a positive integer, then either H
is finite and H(M) = M1 with M1 real analytic, or the generic rank of
H is less than or equal to q - \ in a neighborhood of 0 and the variety
H{Cn+ι) has infinite order of contact with Mr.

Remark 3.10. Suppose that H{M) c M1, with M real analytic and
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essentially finite and with M1 smooth but H not finite. If Mf is either
smooth of D-finite type or real analytic, then it follows from Theorems 1
and 3 that H(Cn+ι) c Mι. This inclusion need not hold in general, as
shown by the following example. As in Remark 3.6, let M be the Lewy
hypersurface and H = (w, 0). Let M1 be the hypersurface in C 2 given
by Im w = φ(lm z), where φ(t) is a smooth function of one real variable
vanishing for t > 0 and nonvanishing in any neighborhood of 0. Then
H(M) c M', and H(C2) = C x 0 is not a subset of M' but is only tangent
of infinite order to M1 at 0.

Remark 3.11. Suppose that H(M) c Mf, with M real analytic and
essentially finite and with Mf smooth but H not finite. Here again if
M1 is real analytic, it follows from Theorem 1 that a transversal com-
ponent g of H vanishes identically, and hence //(C r t+1) is contained
in a smooth holomorphic hypersurface V of C n + 1 . We do not know
whether or not the same conclusion holds if the real analyticity of M1 is
dropped, although in this case a formal transversal component necessarily
vanishes identically. The existence of such V is equivalent to a nonde-
generate holomorphic relation between the components of H. When M'
is smooth, the vanishing of a formal transversal component of H yields
a nondegenerate formal holomorphic relation between the components of
H. In general, such a relation between convergent power series does not
imply the existence of a convergent holomorphic relation, as was shown
by an example of Gabrielov [10]. We thank T. T. Moh for showing us this
reference.

Remark 3.12. If M is not assumed to be essentially finite in Theorem
2, then property (B) of Theorem 1 need not hold. In particular, a holo-
morphic mapping H of a hypersurface M onto a hypersurface M1 can
be finite but with vanishing differential at 0. For this, take M = M1 in C2

given by Im w = 0 and H(z, w) = (z 2 , w3). Also, one can have a map-
ping H which is onto in the sense of germs but not finite. For this, take
M = M' in C3 given by Imw = 0, and H(z, w) = (fx(z), / 2 (z), w),
where f(z) = (/j(z), f2(z)) is any surjective mapping of C 2 onto itself,
in the sense of germs, but which is not finite. For instance, we can take
fχ{z) = z χ z \ a n d / 2 ( z ) = z2{z2 - z x ) .
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