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CENTRALLY SYMMETRIC CONVEX BODIES
AND THE SPHERICAL RADON TRANSFORM

PAUL GOODEY & WOLFGANG WEIL

1. Introduction

This work comprises part of a study of the relationships between Radon
transforms and centrally symmetric convex bodies in ^-dimensional Eu-
clidean space E , d > 2. Here we will be concerned with spherical
Radon transforms. Radon transforms on higher order Grassmannians are
the subject of another paper [13]. The main reason for this division in the
program is the different injectivity properties of the various transforms.

The study of centrally symmetric convex bodies is closely connected

with the cosine transform T: C™(Sd~ι) -> C™(Sd~ι) on the infinitely

differentiate even functions on the unit sphere Sd~ι of E^. For / e

C™(Sd~ι), T is defined by

(1.1) (Tf)(u)= [ \(u,v)\f(υ)λ{dυ)9

Jsd~ι

where \(u, υ)\ denotes the absolute value of the scalar product of w,

v e S ~ι, and λ is the spherical (d - 1)-dimensional Lebesgue mea-

sure on Sd~ι. The total surface area measure, λ(Sd~ι), of S ^ 1 will be

denoted by ωd_{. Background information on the geometric aspects of

this transform can be found in the survey article by Schneider and Weil

[31]. One of our primary objectives in this work is to investigate and use

the relationship between the cosine transform and the Radon transform

R: C™(Sd~ι) -> C™{Sd-{) defined by

(1.2) (*/)(„) = —
ωd-2 Jsd

u~
2

where λu denotes the (d - 2)-dimensional spherical Lebesgue measure on

the great subsphere Sd~2 comprising the elements of Sd~ι orthogonal to

w.
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Both these transforms have been extensively studied, but their connec-
tions have only occasionally been investigated (see Blaschke [3], Petty [23],
and Schneider [27], [29]). The connection between R and T will enable
us to apply properties of the Radon transform to solve some geometric
problems. In the reverse direction we will use a result of Schneider and
Weil [30], about projections of convex bodies, to establish some new sup-
port properties for R.

The second section provides a comparison of the properties of the spher-
ical Radon transform and the cosine transform and will show the relevance
of these transforms to the study of centrally symmetric convex bodies. In
§3 we will use Radon transform techniques to give a short approach to
Berg's [2] solution of the Christoffel problem when restricted to the case
of centrally symmetric bodies. In §4 we will find smoothness conditions
which guarantee that a body is a generalized zonoid. This uses techniques
of Schneider [26] and enables us to give improved estimates for the de-
gree of the generating distribution of centrally of centrally symmetric bod-
ies. The paper concludes with our discussion of zonal characterizations
of zonoids and support properties of Radon transforms. Here we use the
support properties of the Radon transform to find a zonal characterization
of zonoids in the case of even dimensions; the same result was recently
obtained by Panina [22], using completely different techniques.

2. Centrally symmetric bodies and spherical transforms

Both the transforms R and T described in §1 satisfy certain duality
conditions. For / , g € C™(Sd~ι)

(2.1) f f(u)(Rg)(u)λ(du)= f (Rf)(u)g(u)λ(du)
Jsd~ι Jsd~i

and

(2.2) / f(u)(Tg)(u)λ(du) = ί (Tf)(u)g(u)λ(du).
Jsd~ι Jsd~ι

Equality (2.1) can be found in standard texts such as Helgason [15], [16],
whereas (2.2) is a simple consequence of Fubini's theorem. We shall de-
note by &e(Sd~ι) the space of even distributions on Sd~ι this is the dual
of the space C™(Sd~ι) endowed with the topology of uniform conver-
gence of all derivatives. Since R and T are continuous linear mappings
on C™(S ~ ι ) , their transposes R* and T* are linear mappings from
3fe(Sd'ϊ) to itself. (2.1) and (2.2) show that R* and Γ* are extensions
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of R and T, so we may think of R and T as mappings of 2e{Sd~x) to
itself.

It is well known that R and T are injective when thought of as map-
pings of C™(Sd~ι) to itself. For d = 3, the injectivity of R is due
to Minkowski [20] and is also proved in Funk [12] and Bonnesen and
Fenchel [7]. In the case d > 3, Helgason [14] gives inversion formulas
for R proofs of the injectivity of R can also be found in Petty [23]
and Schneider [27]. Blaschke [3] gives proofs of the injectivity of T in
case d = 3. The general case is a consequence of a result of Alexan-
drov [1]; he established the injectivity of T on the space of measures. If
μ e Jt{'(Sd~ι), the space of even signed measures on Sd~ι, with

(2.3) f \(u,υ)\μ(dυ) = 0 for all u e Sd~
Jsd-1

then μ = 0. Further proofs can be found in Choquet [8], [9], Math-
eron [18], [19], Petty [23], Rickert [24], [25], and, in a more general set-
ting, Schneider [28]. In fact R and T are both continuous bijections of
C™(Sd~ι) to itself. This result, for R, can be found in Helgason [16],
for example; for T it is a consequence of a result of Schneider [26]. Now
C™(Sd~ι) is complete and metrizable, and so the Open Mapping Theo-
rem shows that R~ι and T~{ are continuous mappings of C™(S ~ι) to
itself. From this we deduce that R and T are continuous bijections of
2Je{βd~x) to itself, when 2e{Sd~ι) is given the strong topology. These
injectivity properties of R are the ones to which we alluded in the intro-
duction.

The relationship between R and T involves the Laplacian Δ on Sd~x.
In order to see this we recall from Berg [2] that if K is a convex body with
support function h(K\ •) and first surface area measure Sλ(K\ •), then

(2.4) ((d-l)-lA+l)h(K; ) = Sy(K', )

as distributions; the reader is referred to Bonnesen and Fenchel [7] or
Leichtweiss [17] for information on standard notions in the study of con-
vex bodies. For convenience we will put D = (Δ + d - l)/2ω ί /_2 . This
enables us to prove the following proposition which, in case d = 3, was
observed by Blaschke [3].

Proposition 2.1. If R is the spherical Radon transform and T is the
cosine transform, then

(2.5) ΠT = R.
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Proof, The result follows immediately from the observation that if K

is the line segment with endpoints ±u e Sd~ι, then (1.2) and (2.4) give

(2.6) (D(|(κ, )|))(/) = (Rf)(u), feC™(Sd~ι). q.e.d.

The intertwining properties of R and (2.5) allow us to deduce that

There are inversion formulas for R which, in the case of even dimensions,
involve polynomial expressions in Δ. Helgason [14] shows that, for even
d, there is a polynomial pd of degree d/2 such that for / e C^°(Sd~ι)

(2.7) f = pd(A)R2f.

In the case of odd dimensions, some formulations of the inversion for-
mulas involve Δ1' . We will investigate these more thoroughly in §4. For
the present, we note that for even values of d the inversion formula (2.7)
gives

d/2

(2.8) T-lf = cl[(A-(2i-l)(d-2i-l))Tf, feC™(Sd~l),
i=0

where c is a constant dependent only on d.
The above observations play an important role in connection with inte-

gral representations for support functions of centrally symmetric convex
bodies. In order to see this, we recall that a zonotope is a vector sum of
line segments. The support function of a zonotope K, with center at the
origin, is therefore of the form

(2.9) h(K; u) = Σ\(u, vjlpxiυ.), u e Sd ~l

where, for / = 1, , n, the υ. are unit vectors, and the p^v^ are
positive numbers. We will denote by ^ the class of centered convex
bodies, that is, those centrally symmetric bodies with center at the origin.
Zonoids are limits of zonotopes and, for these bodies, (2.9) is replaced by
the integral representation

(2.10) h(K;u)= f \(u,υ)\pκ(dυ), u e Sd~\

where pκ is a positive even measure on S " , called the generating mea-
sure of K. Alexandrov's uniqueness result (2.3) shows that the generating
measure is uniquely determined by the body K.
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Zonotopes are highly symmetric and are characterized by the fact that
all their two-dimensional faces are centrally symmetric. It is therefore not
surprising to learn that zonoids also exhibit a very high degree of symmetry
and so are not dense among centrally symmetric bodies. There are convex
bodies K whose support functions have the integral representation (2.10)
with a signed measure pκ these bodies, together with their translates are
called generalized zonoids. Specific examples of generalized zonoids which
are not zonoids are given in Schneider [28]. The existence of these bodies
demonstrates the lack of denseness of zonoids in ^ , although this is
also a consequence of an earlier result of Shephard [33]. The generalized
zonoids are dense among centrally symmetric convex bodies (see Schneider
[26]). This denseness led Weil [36] to show that each centrally symmetric
convex bodies has a generating distribution. In fact the surjectivity of
T: 2fe{Sd~x) -> 2)e{βd~x) allows us to define the generating distribution
ρκ of K e3?0 to be T~\h(K\ •)). So pκ satisfies

(2.11) pκ(f) = f h(K; u)(T-lf)(u)λ(du), f

Clearly the domain of pκ can be extended to include any function / of
the form

for some p^ € J?e(S>~1). For such a function / we have

Pκ(f)= !_χh{K;u)pf{du);
J s

in particular, as Weil [36] showed, we have the following analogue of (2.10)
for arbitrary K e ^ :

(2.12) pκ{\(u,.)\) = h{K;u).

Alexandrov's result (2.3) shows that this extension of pκ is well defined.
So the generating distribution pκ can be extended to a much wider class
of functions. We will investigate this extension in more detail in §4. For
the moment, we will just note that we now have a heirarchy of centrally
symmetric bodies corresponding to the nature of the generating distribu-
tion. Zonotopes are those bodies for which the generating distribution is
an atomic measure, zonoids are those for which it is a positive measure,
and generalized zonoids are those for which it is a signed measure. In fact
this heirarchy can also be seen from a slightly different point of view. If
K e JT0 , then (2.4), (2.6), and (2.12) show that

(2.13) (d - l)S{(K; •) =2ωd_2Uh{K\ •) = 2ωd_2Rpκ.



680 PAUL GOODEY & WOLFGANG WEIL

So we see from (2.13) that zonoids (respectively, generalized zonoids) are
the bodies whose first surface area measures are Radon transforms of pos-
itive (respectively, signed) measures. Results of the form (2.13) appeared
in Weil [35].

3. The Christoffel problem for centrally symmetric bodies

The Christoffel problem asks for conditions on a measure μ on S
which guarantee that it is the first surface area measure of a convex body.
This problem was solved independently by Berg [2] and Firey [10], [11].
Here we want to give a short approach to Berg's solution in the case of
centrally symmetric bodies. So we seek conditions on μ e^e(Sd~ι) which
ensure that there is a K e <% with μ = Sι(K; •).

We notice that if it were possible to find a function fd e Lι(Sd~ι) with

(3.1)

for fixed u e S ~ι, then fd must be rotationally symmetric in the sense

that there is a gd e Lι([0, 1]) with fd = gd(\(u, ) |) . Thus, formally,

(2.12), (2.13), and (3.1) would imply that

I
Js

I gd{\(.9v)\)Sx{K 9dv)9

sd~
and therefore, because of the injectivity of R, we could deduce that

2ωd_2h(K', •) = (</- 1) / gd{\(., t ; ) ! ) ^ * ; dv).
J s

This motivates our proof of the following result of Berg [2].

Theorem 3.1. The measures μ e A' (Sd~ι) for which

is a convex function (of u) are precisely those which are first order surface
area measures of centrally symmetric convex bodies.

Proof We assume that μ e J?e(Sd~ι) and that there is a K e ^ with

(3.2) j s d χ gd(\(u, v)\)μ(dv) = ̂ zfh(K; u)

for all u e Sd~ι, and we aim to show that μ = S{{K •). To this end let

g e C™{Sd~ι) then there is an / e C™{Sd~ι) such that g = Tf. It



CENTRALLY SYMMETRIC CONVEX BODIES AND RADON TRANSFORMS 681

follows from (1.1), (2.1), and (3.1) that

g(u)μ(du)= (, \Tf){u)μ{u)

\(u,v)\f(v)λ(dv)μ(du)
sd-'

(\(u, )\mv)f(υ)λ(dυ)μ(du)

u,v)\)(Rf)(υ)λ(dυ)μ(du).

Now we can use the fact that gd is an l) function to apply Fubini's
theorem which, together with (2.5) and (3.2), gives

(rf-1) /", ,g(u)μ(du) = 2ωd_2 [j χh{K;υ){aRf){υ)λ{dv)

h(K;v)(DTf)(v)λ(dv)
sd-χ

= 2 ω r f _ 2 ( D Λ ( * ;•))(*)

= (d-l)fj_ιg(υ)Sι(K;dυ).

Since g was an arbitrary member of C™(S ~l), it follows that μ =
Sχ(K',') as required, q.e.d.

In order to find the required function fd , or gd , we investigate the ac-
tion of R on rotationally symmetric functions. It is clear that if / is such
a function, then so is Rf and therefore there is a function R: L1 ([0, 1 ]) ->
Lι([0, 1]) associated with R.

Proposition 3.2. For g e Lι{[0, 1]) and r e [0, 1] we have

(ωA Λ 2 Z±*±Ά / V ^ 7 «/-4)

(3.3) (Rg)(r) = 2 -£=5- ( 1 - r ) 2 / g(^)(l-r-/) 2 Λ,
\ωd-2J Jθ

for d>3>, and

(3.4) (Rg)(r) = £((1 - r2) )

ford = 2.
Proof We recall that if « is the north pole of Sd~ι {d > 3) and Sd~ι

is parametrized by cylindrical coordinates u(t,v), where t e[-l, 1] and

v e Sd

n~
2 , then

λ(du) = (I - t2f'mdtλn(dv).
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So

(
2x1/2

which gives the required result in case d > 3. The case rf = 2 is
trivial, q.e.d.

From (3.1) and (3.4) it follows that

For d > 3, (3.3) shows that we require a solution ^ of the integral

equation

^)/
ωd-2

A simple change of variable yields that this is equivalent to the integral
equation

d-2

This is a Fredholm integral equation which, in case d = 3, has a singular
kernel. Integration by parts gives that

rlγ'\sg'd(s) + {d - 2 Y^
ωd

= (d -

and so we obtain the following recurrence relation, which is valid for
ί / > 3 :

W Γ ) = JZr\Sd{r) + gd(r).

Thus we are able to give a specific formulation of all the gd, which are
essentially the even part of Berg's [2] functions. In order to facilitate
comparisons with his functions, we list the results for small dimensions:

gs(r) = 1(2 - 3r2)(l - r2fι + % loge
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4. Smooth centrally symmetric bodies

We mentioned in §2 that the generalized zonoids are dense in the class

of centrally symmetric bodies. This follows from a result of Schneider [26]

which states that for h(K; •) e C^(Sd~ι), the space of /c-times continu-

ously differentiable even functions on Sd~ι, K is a generalized zonoid if

k = d + 2 when d is even and k = d + 3 when d is odd. In fact his

result shows that for such a body K, the generating distribution pκ is

not only a measure but a continuous function. In this section we will use

his techniques [26] to find conditions which force pκ to be an L func-

tion. We recall that / e L2(Sd~ι) if and only if its spherical harmonic

expansion Σ™=ofn satisfies

/l=0

where each fn is an eigenvector of the Laplacian with

(4.1) Afn = -n(n + d-2)fn;

see Mϋller [21] for more details. We will work with the spaces L2(Sd~ι),
s > 0, of those functions / for which the spherical harmonic expansion
satisfies

n=0

These are precisely the functions / on S with derivations up to order

s in L2(Sd~ι), and so the L2

s(Sd~ι), s > 0, are the Sobolev spaces on

Sd~~ι. Strichartz [34] analyzes the action of the Radon transform on these

spaces by using the fact that the spherical harmonics are also eigenvalues

of R to show that

R:

is a bijection. He also proves that there is a constant b such that

for all / e L2

s(Sd~ι). From (2.5) and (4.1) it follows that

(4.2) T:L2

s(Sd-l)^L2

s+{d+2)/2(Sd-1)

is a bijection and that there is a constant c such that
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Now by (2.12) we have pκ = T~ιh(K; •) for K e JF0. So any

for which h(K; -) £ tfd+iyifi*'1) must be a generalized zonoid having

a generating measure which is an L2 function. But if / e Ce (S )

has spherical harmonic expansion Σ™=ofn, then, by (4.1), Ak/2f has

spherical harmonic expansion

(4.4)

Since this is a continuous function, we deduce that / e L2

k{Sd~x). So

Ck(Sd~ι) c L2

k(Sd~~x) for k even. An analogous argument shows that

Ck(Sd~ι) c L2

k_{(Sd~ι) for k odd. Hence we have the following result.

Theorem 4.1. IfKeJ^ with h{K •) e Ck

e{Sd~λ)y then K is a gen-
eralized zonoid for each of the following cases:

(i) k = {d + A)/I in case d = 0 mod (4),
(ii) k = {d + 3)/2 in case d = 1 mod (4),

(iii) k = (d + 2)/2 in case d = 2 mod (4), and
(iv) k = (d + 5)/2 m cα^e rf = 3 mod (4).

We recall that since Sd~ι is compact, every distribution on Sd~ι is
a sum of derivatives of finite orders of measures of S ~1 see Schwartz
[32]. The maximum order of these derivatives is called the degree of the
distribution. As explained by Weil [36], we can use the results above to
find a bound for the degree of the generating distribution of an arbitrary
body KeJί0.

Theorem 4.2. If K eJfQf then pκ has degree at most (d + 5)/2.
Proof We let k be an even number with (d + 2)/2 < k < {d + 5)/2.

It suffices to show that there is a constant α such that

(4.5) l^ωi^αl lΔ^/IL

for all / G Ck(Sd~λ). We know from the above discussion that / e

L2

k{Sd~x), and so there is a g e L2(Sd~ι) with / = Tg, in consequence

of (4.2). Thus by (2.11) and (4.3), there is a constant cx such that

\pκ(f)\ < \\h(K; .)\\2\\g\\2 < Cι\\h{K; ) I I 2 , M nL(d+2)/2

But (4.4) implies that there are constants c2 and c3 such that
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11/11 w - B 1 + «2)(rf+2)/2H/Jl2 < ̂ Σ"2"ll/JI2

w=0 n=0

n=0

Inequality (4.5) now follows from the fact that Sd~ι is compact, and so

the L norm is dominated by the supremum norm.
It would be interesting to know if there is an upper bound for the degree

of pκ independent of the dimension d.

5. Zonal characterization of zonoids

Our aim in this section is to give a partial verification of a conjecture of
Weil [37]. To be precise, we will show that, in even dimensions, there is
a zonal characterization of zonoids. This result has also been established
by Panina [22] using completely different techniques. We shall obtain the
result as a consequence of certain support properties of Radon transforms
and prove that such support properties are not valid in the case of odd
dimensions.

First we will give some of the background to the problem. Blaschke [4]

(see also Blaschke and Reidemeister [5]) and Bolker [6] asked for a local

characterization of zonoids. Such a characterization would imply that any

K e3f0 with the property that for each u e Sd~ι there is a neighborhood

U, c S ~ι of u and a zonoid Z, with

(5.1) h{K;.) = h(Zu;.) on Uu

must itself be a zonoid. Weil [37] showed this is false, constructing coun-

terexamples for all dimensions d > 3. He went on to ask whether a zonal

characterization is possible, that is, whether (5.1) characterizes zonoids, if,

instead of a neighborhood Uu of u, a neighborhood Eu of the equator

MX is considered. Such a neighborhood is called an equatorial zone.

Theorem 5.1. Assume d is even. IfKeJ^ has the property that for

every equator u1', u € Sd~ι, there is an equatorial zone Eu c Sd~ι and

a zonoid Zu = Z(EU) such that

(5.2) h{K;-) = h(Zu 9.) onEu,

then K is a zonoid.
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Proof. It suffices to show that the generating distribution pκ is a

positive distribution (see, for example, Schwartz [32]). So we choose

g e C™(Sd~ι) with g > 0 and aim to show that pκ(g) > 0. Let Uu be

the (symmetric) cap comprising all unit vectors orthogonal to some vector

in Eu. These caps cover Sd~ι, and a partition of unity argument shows

that we can assume that g is supported on Uu for some u e S ~ . We

note from (2.5) and (2.7) that there is a polynomial pd such that

which is equivalent to (2.8). Now Rg is clearly supported on Eu and so

the same must be true of T~ιg. Therefore (2.11) and (5.2) give

pκ(g)= f h(K',v)(T-ιg)(v)λ(dv)= ί h(K;v)(T-lg)(v)λ(dv)
Jsd-χ JEU

Hence pκ is a positive distribution, and the proof is complete, q.e.d.
We note that in the above proof, the important step was the following

support property of R, which is a consequence of (2.7).

Proposition 5.2. Let d be even and let g e C™(Sd~{). If Rg is
supported on a {symmetric) cap C, then the support of g is contained in
the orthogonal zone C1". Equivalentlyy if Rg = 0 on C± for some cap
C, then g = 0 on C.

We conclude this work by showing that this result is not true in odd
dimensions. To see this we first recall a result of Schneider and Weil [30].

Proposition 5.3. Let d be odd and let f e C™(Sd~ι). // / = 0 on a

cap C and Tf = 0 on C^, then f = 0 on Sd~ι.

If d is odd and Rg = 0 on C± , then (2.5) yields that the same must
be true of TΠg. If we could conclude that g = 0 on C then, of course,
D# = 0 on C . So Proposition 5.3 shows that Πg = 0 on Sd~ι, which
implies g = 0 on Sd~ι (see Berg [2]). But this is impossible since the
surjectivity of R: C™(Sd~ι) -> C™(Sd~ι) shows that there are nontrivial
functions whose Radon transforms vanish on an equatorial zone.

Schneider and Weil [30] proved, by means of a counterexample, that
Proposition 5.3 is false in even dimensions. We now see that the latter
observation is also a consequence of Proposition 5.2.
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