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ALMOST CONVEX GROUPS, LIPSCHITZ COMBING,
AND π™ FOR UNIVERSAL COVERING SPACES

OF CLOSED 3-MANIFOLDS

V. POENARU

Abstract

If TΓjM3 is almost convex, then π^°M3 - 0 . Under a mild restriction,

the same conclusion holds if π{M
3 admits a Lipschitz combing in the

sense of Thurston.

1. Introduction

The main result of this paper is that if M3 is a closed 3-manifold such
that πχM is almost convex, then the universal covering space M is
simply-connected at infinity. We start by recalling what "almost convex"
means.

We consider a finitely generated group G and a specific finite set of
generators B = B~ι for G. To this, we can attach the Cayley graph
Γ = Γ(G, B). For each g e G, we will denote by \\g\\ the minimal
length of a word with letters in B expressing g. We also define d(g, h) =
\\g-χh\\ = \\h-χg\\.

For any positive integer, we can consider the ball of radius n in Γ,

(1.1) B(n) = {x € Γ such that ||JC|| < n},
def

and the sphere of radius n in Γ,

(1.2) S{n) = { X E Γ such that ||x|| = ή).
def

Following J. Cannon [3], we will say that the Cayley graph Γ = Γ(G, B)
is k-almost convex (for k e Z+) if there exists an iV = N(k) e Z + with
the property that for any n if x, y e S(n) are such that d(x, y) < k,
then x and y can be joined in B(n) by a path of length < N(k). If, for
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some B and all k, the Cayley graph Γ = Γ{G, B) is fc-almost convex,
we will say that the group G is almost convex.

We can state now our main result.

Theorem 1. Let M3 be a closed ^-manifold such that πχM
3 has a

finite system of generators B = B~ι, for which Γ = Γ(πιM
3, JB) is 3-

almost convex. Then, for any compact subset of the universal covering space

of M3, K c M3, we can find a simply-connected compact 3-dimensional

submanifold U c M such thatK c U . In other words, if πχM is

almost convex, thenπ^M3 = 0.

In more heuristic language, this means that if the "curvature" of the n-

sphere in the Cayley graph of πx M
3 is bounded from below, independently

of the radius n, then for the universal covering space M3 of M3, we

have π^M3 = 0. The methods by which this kind of connection between

the "Gromov geometry" [9], [10] of Γ and π^M3 is established in the

present paper are very similar to the ones which we have used in [17] for

connecting the π™ of an open simply-connected 3-manifold to issues in

infinite simple-homotopy theory.
Cannon's almost convexity is a fairly general metric property of groups.

It is satisfied, for instance, for small cancellation groups (at least if they are
C'( 1/6)) and more generally by hyperbolic groups in the sense of Gromov
([9], [10]). It is also satisfied by the groups occurring in the 3-dimensional
NIL geometries of Thurston and by any group which is the fundamental
group of some closed π-manifold with sectional curvature < k < 0.

It is an open question whether this property is 5-independent. But
in [5], it is shown that for any cocompact group based on solvgeometry
(i.e., coming from the 3-dimensional SOL geometries of Thurston), almost
convexity is violated for any choice of B = B~ι.

The second theorem in this paper concerns the groups which admit a
quasi-Lipschitz combing, in the sense of W. Thurson. We recall this notion.

For any finitely generated group G, with a given system of generators
A-A~ , a combing of G is, by definition, a choice, for each g e G of a
continuous (not necessarily geodesic) path of Γ(G, A), joining 1 to g. It

will be convenient to think of this path as a function Z + - 4 ( ? such that
sJO) = 1, d(s(t), sJt+l)) < 1, and, for all sufficiently large t, we have
sg(t) = g.

Abstracting from the properties of automatic groups [4], W. Thurston
calls a combing quasi-Lipschitz if there are constants C{, C2 such that,
for all g, h eG and t e Z + , we have

(1.3) d(sg(t)9sh(t))<Cιd(g9h) + C2.
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A group admitting a quasi-Lipschitz combing is said to be combable.
Following E. Ghys [8] (and also [2]), we summarize in Figure 1.1 the

various inclusions between some well-known classes of groups. We can
now state

Theorem 2. Let M3 be a closed 3-manifold such that πχM
3 has the

following properties:

(I) With respect to some finite system of generators A = A~ , πχM

admits a quasi-Lipschitz combing (1.3), i.e., πχM
3 is combable.

(II) There exist a system of generators B = B~ι and two constants C 3 ,

ε > 0, such that the following occur. In the Cayley graph Γ = Γ(πχM
3, B),

consider S(n) c B(n) c Γ defined by (1.1), (1.2). For any x,y eS(n)

with d(x 9y)<3, consider a path y = γ(x, y) c B(n) of minimal length

joining x to y. Then

(1.4) length(y) < C3n
l - ε

Under these two conditions, for any compact subset K c M , we can

find a simply-connected compact 3-dimensional submanίfold U c M

such that KcU3, i.e., π™M3 = 0.
Important remarks, (a) Condition (II) is a very mild restriction since

on one hand ε is allowed to be arbitrarily close to zero, and on the other
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hand, for an arbitrary group G and an arbitrary B = B~ι, we always
have

(1.5) length(y) < In,

this estimate being true for an arbitrary pair x, y e S(n).

(b) We can replace nι~ε in (1.4) by any function f(n) such that, for
any constant C, we have limn=oo(n - Cf(n)) = oo .

Theorems 1 and 2 are partial results concerning the very well-known
conjecture in 3-manifold topology which states that for any closed 3-mani-
fold with infinite fundamental group, one has π{M

3 = 0. In contrast with
this conjecture, Davis has shown that, in any dimension n > 4, there are
closed manifolds Mn such that Mn = K(πχM

n, 1) and at the same time
π™M3 φ 0 [6].

There are also some other partial results concerning the general con-
jecture mentioned above. McMillan and Thickstun [12] have shown that
contractible open 3-manifolds which are not universal covering spaces do
necessarily exist. More recently, Myers [14] showed for some very specific
open contractible 3-manifolds with π™ Φ 0 (namely for the genus one
Whitehead manifolds) that they are not universal covering spaces.

The present paper, as already stated is strongly connected with the meth-
ods used in[17] and also in [16], but we have tried to write it in such a way
that one can read it independently of the other two papers. We will use a
Dehn-type lemma, which we state in the next section, the proof of which is
contained in [17]. Most of the arguments used in the present paper make
sense in any dimension, except for the Dehn-type lemma. This makes our
results purely 3-dimensional, just as in [17]. Finally, we have a weakening
of the almost convexity condition: Consider first the 2-dimension complex
Z = Z(G, B,£?)D Γ(G, B) attached to the finitely presented group G,
to a finite system of generators (with B = B~ι), and to a finite system of
relations £%, via the following procedure. Every time there exists a closed
loop / c Γ(£, B) such that, for some x £ g, xlx~ι e &, we add to
Γ = T(G, B) a 2-cell along /. (In other words, Z is the universal cov-
ering space of the obvious finite 2-complex K with πχ = G, constructed
with the help of B and ^ . )

Next, we consider some k e Z + and an arbitrary pair x, y e S(n)
with d{x ,y) <k. We join x, y by a path yχ c Γ(G, B) of length < k
and by a path γ2 c B{ή). This gives us a closed loop Λ in Γ(G, B) c Z .

Consider a (singular) disk of minimal area (= minimal number of 2-
cells) D c Z with dD = A. If Γ(G, B) is fc-almost convex, then clearly
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(1.6) Area(D) < ~N(k)

for some N = N(k), independent of n . We will relax this condition by
asking that there are two positive numbers C = C(k) and ε = ε(k) with

(1.7) Area(D) < C(k)n~ε{k)

for all n e Z + . If (once B and & are given) this holds for some k,
we will say that G is k-weakly almost convex. A group which is k-weakly
almost convex for all the k 's is said to be weakly almost convex. With the
methods of this paper, we can also prove the following (mild) extension
of Theorem 1.

Theorem 3. Let M3 be a closed 3-manifold. Ifπ{M
3 is weakly almost

convex, then π^M1 = 0.

2. A Dehn-type lemma

If A —> B is any map, we will define M2(F) c A by

M2(F) = {xeA such that cardF~V(jt) > 1}.

One of the ingredients for Theorem 1 is the following.
Dehn-type Lemma. Let X and Y be two simply-connected 3-mani-

folds. We assume X to be compact, connected, with dX Φ 0 and Y to
be open. We are given a commutative diagram

K

where K is a compact connected set, g and f are embeddings, and F is
a smooth generic immersion. If the condition

(gK)ΠM2(F) =

is also fulfilled, then fK c Y is contained inside a compact simply con-
nected smooth 3-dimensional submanifold N c Y.

This is proved in [17]; the argument mimics the Shapiro-Whitehead [18]
(see also [7]) approach to the Dehn Lemma [15]. For the convenience of
the reader, we give an outline of the proof here.

Let Y be a compact, not necessarily connected 3-manifold with non-
empty boundary. We will say that Y has "Property 5"' if d Y is a union
of spheres. This class of manifolds is closed under the operations of adding
handles of index two, splitting along spheres, and splitting along properly
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embedded disks. In [18], it is shown that a compact 3-manifold with
nonempty boundary which does not possess 2-sheeted coverings has Prop-
erty (S).

Hence, if FX c M3 has no 2-sheeted coverings, then FX has Property
(S) and by Van Kampen π{ (FX) = 0, so we can take N3 = FX. If not,
we build a tower of 2-sheeted coverings starting with FX, as in [18]. This
tower has a last floor which has Property (S). In order to climb down the
tower, we need the following fact.

Proposition. Let V have Property (S) and let K c int V be a compact
connected subset. We consider a generic immersion of V into some other
3-manifold,

such that φ has no triple points and M2(φ) n K = 0 . ThenK can be en-
gulfed inside a bounded 3-dimensional submanifold of W, having Property
(S).

The proof follows by cutting and pasting.

3. A naive theory of universal covering spaces

We start by recalling some of the material presented in more detail in
§2 of [16]. We consider the very general situation of a nondegenerate

simplicial map X —• M3, where M3 is a closed 3-manifold and X is
a simplicial complex of dimension < 3 which is not necessarily locally
finite. We will denote by Sing(/) c X the set of points x e X such that
the restriction of / to the {Star of x} c X is not an immersion, i.e., the
set of x G X for which there exist distinct simplexes σ{, σ2 in X with
dim σ{ = dim σ2 , x e σχ Π σ2 , and fσχ = fσ2 (outside the subcomplex
Sing(/) c X, our X is locally finite).

There are two interesting equivalence relations connected with this sit-
uation: Ψ(/) c Φ(/) c X x X. The equivalence relation Φ(/) is the set
of pairs {x, y) e X x X with f(x) = f(y), while Ψ(/) is "the smallest
equivalence relation, compatible with / , which kills all the singularities."
This is supposed to mean that in the natural commutative diagram

X L >M3

X/Ψ{f)

the map fχ is an immersion (i.e., Sing(/j) = 0) and that no smaller
equivalence relation R % Ψ(/) does this job. In §2 of [16], it is shown that
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there is a unique, conceptually-defined Ψ(f) fulfilling these requirements.
We present an easy way to understand Ψ(/) .

Let x e Sing(/), with σχ, σ2 as above. We consider the quotient X1

of X obtained by identifying σχ to σ2 :

X
{*•*-) folding map σ^σ^v /f

X1

If Sing/ φ 0 , we consider x € Sing(/) and two distinct σ[, σ'2 c X'
of the same dimension, with x e σ[r\σf

2 and ffσ[ = fσ2 . We have now,
in lieu of (3.2), the commutative diagram

(3.3) folding map σ[=σ£\. /f"

V
etc. If X is finite, this process stops after n steps and Xy ] —• M is an
immersion. We then have X{n) = X/Ψ(/), / ( Λ ) = f{, and Ψ(/) is just
the equivalence relation induced by the n foldings.

If X is not finite, then we obtain, to begin with, from (3.2), (3.3), a
sequence of equivalence relations

(3.4) P l c p 2 c - c p n c pn=ι c c Φ(/)

we can consider pω = \J™ pn and start all over again with X^) =

X/pω -C M\ If Sing(/(ω)) φ 0 , this gives us a X{ω+X), etc. so we
get a transfinite sequence, continuing (3.4):

(3.5) Plcp2c~.cpnc p n = ι c ... c p ω c p ω + ι c ••• c Φ ( / ) .

The game stops when we reach an ordinal a such that Sing(/(α)) = 0
and the corresponding equivalence relation pa is Ψ ( / ) . In [16], it is
shown that:
/- 6x The Ψ(/) = pa so defined is intrinsic i.e., independent of

the various choices which we made.

If X is at most countable, then we can choose the succes-
(3.7) sion of folding maps so that already pω = Ψ ( / ) . So no

transfinite sequence (3.5) is needed, just (3.4).

As a consequence of (3.7), the map X -• X/Ψ(f) (see
(3.1)) induces a surjection at the level of fundamental groups.

' * ^ (So contrary to X/Φ(f) which forgets any topological in-
formation, the quotient X/Ψ(f) has some memory.)
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Let us consider now a 3-manifold M3. We can always represent M3

as follows. We start with a polyhedral 3-ball Δ with triangulated <9Δ,
containing an even number of triangles hx, h2, , h2p . We are also
given a fixed-point free involution

and M is the quotient space Δ/p, where the equivalence relation p
identifies each hι to jhι, by an appropriate linear isomorphism.

We will consider the free monoid G generated by S and 1, and also
the space T obtained from the disjoined union ΣxeG

x^ ^ glueing, for
each x e G and hι e S, the fundamental domains xA and (JCAJ)Δ along
their respective hι and jhι faces, in a Cayley graph manner (see Figure
3.1). We do not restrict ourselves here to reduced words x, which makes
T quite complicated.

There is an obvious tautological map T -i M3 which sends each fun-
damental domain xA c T identically onto Δ —• M3. This map, which
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is represented very schematically in Figure 3.2 just unrolls indefinitely the
fundamental domain Δ —• M3, along its faces, like the developing map
([20], [19]). In [16, §2], we prove the following.

Lemma 3.1. The canonical map {see (3.1))

T/Ψ(f) ^ M3

is the universal covering space of M3.
Let us now look a little closer at the representation M3 = Δ/p, and

choose a fundamental domain {g{, , ~gp} c S for the action of j on

Γ. This fundamental domain induces a system of generators for πχM
3:

we choose as base-point the center * e Δ and we associate to each ~gt the

closed loop of M3 which, in Δ, joins the center of (fgj) to the center of

~g.. Call g. e πχM
3 = π{(M3, *) the corresponding element. This gives

a surjective morphism (in the category of semigroups)

where we note G 3 g -> g = χ{g) e πxM , which sends g( to gi and jgt

to g~x. A complete system of relations for these {gf1} , which generate

7Γj M3, can be obtained by going around each edge of Δ.

Lemma 3.2. For any finite system of elements {γfι, γfι, , γf1}

c nχM
3, we can choose a representation A/p = M such that for the
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f obtained by the construction above, we have

We consider a triangulation τ for M3 and the cellular decom-

position τ* dual to it. A general procedure for obtaining A/p = M3 is

to start by choosing a maximal tree θ c { l - skeleton of τ*} and get our

Δ by putting together the triangles of τ along the edges in θ. If (τ, τ*)

are fine enough, we can find based embedded loops γχ, γ2. ,γι in M3

such that the following hold:

(1) y, Π y7 = the base point and yf. c {1 - skeleton of τ*} .

(2) We can find a maximal tree θ such that for each γ. there is an edge

βt c yt with θ Π y. = y. - /ϊ. (see Figure 3.3). Of course, we have to allow
here the τ-"simplex" which contains the base point, to be a more general
3-cell with triangulated boundary.

The representation Δ/p = M3, obtained with this particular maximal
tree θ , will indeed have the desired property.

4. The main argument for Theorem 1

We will prove Theorem 1 in this section. We fix a system of gener-

ators B c π{M
3 such that the Cayley graph Γ = Γ(π{M

3, B) is 3-

almost convex. As in the previous section, we will represent M3 as

the quotient of some fundamental domain Δ. The set of triangles of
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dA is S = {hχ, h2, - - , h2p} and we choose a fundamental domain

{g\ > * * * , ~Sp} C S for the fixed-point free involution S -i S. As also

explained in the previous section, we can attach a ^ e πxΛf3 to g. (and

S^1 to ./£,•) Lemma 3.2 tells us that we can assume without any loss of

generality that B = {gfι, g2

ι, , gf1} for some q < p. We have a

canonical map

(4.0) B-+G,

which sends £f. into ~gt G 5 and g~ι into 7^. e S for i<q.

All the norms | |^| | for g e πχM
3, in the discussion which follows, will

be computed with respect to B, and not to the larger system of generators

We will choose once and for all a lift of Δ -» M 3 to M3:

(4.1) > 1 ,

Δ

The image of Δo will again be denoted by Δ so that Δ is now a funda-

mental domain for the action of πχM
3 on M3. Once Δ -3> M3 is fixed

by (4.1), we have an obvious commutative diagram, with (T, /) as in the

last section:

(4.2)

where JF sends gAcT onto gΔ -• Λί3, with g =
Lemma 4.1. Ψ(F) = Φ(F).
Proo/ Since π is a covering projection, the singularities of / and F

have to be killed by the same foldings (3.5), so that Ψ(/) = Ψ(F) c Φ(F).
We know, on the other hand, that T/Ψ(f) = M3, which is also equal to
T/Φ(F), and this implies our result, q.e.d.

We denote by Tn c T = U J C € G X Δ t h e P a r t o f τ o b t a i n e d bY keeping
only the xA % where |x| = d e f {the length of x as a word in h{, , Λ2/7}
< n . We use the notation

Ψ ^ Ψ ί J T O a n d ΦΛ = Φ(F|ΓII) = Φ(F)|Γ I I.

In general, we only have ΨΛ c Ψ(F)|Γn , but we also have the following.

Lemma 4.2. For each M e Z + , ίλere w an ~M = Ή(M) e Z+ with

M>Mf such that Ψ ^ | Γ M = ΦM.
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Proof. Lemma 4.1 tells us that Ψ(F)\TM = ΦM, which is the kind of
thing we want to prove, but with Ή = oo. On the other hand, Ψ(F)
can be exhausted by a sequence of folding maps modelled on the first
transfinite ordinal ω (see (3.7)). Since only finitely many of these folding
maps involve TM, we have our result, q.e.d.

For every | G G , there is a map T -^ T which sends each xA c T
onto ~gxA c T (this is clearly compatible with the incidence relations of
T). The map ~g is an isomorphism between T and ~gT c T. We also
have an obvious commutative diagram which connects it to the left action

3 3 3πχM
3 xM3 -+M3

Γ = F ( Δ ° ) 1
M • M

We now fix two positive integers R and M (specific conditions on
their sizes will be imposed later on). Depending on R and M, we will
construct a certain object Z°° = Z°°(R, M) which, like T, will be a
certain infinite, tree-like union of fundamental domains Δ.

Construction of Z°° = Z°°(R, M). For any g e π{M , we consider
the various geodesic paths of the Cayley graph Γ = Γ(π{ M3, B) joining
1 e Γ to g e Γ. For a given g, there are only finitely many such paths.
We denote their number by p(g) and they take the general form

(4.3) <*,•(#) = (15 £,-(!) > gj^gjp) > '" > £/( i)£/(2) ' ' ' 8j(n) = ^) >

where n = \\g\\, gj{k) € B, and i = 1, 2, , ρ(g). By using the canon-

ical map B -^G (see (4.0)), we have a canonical lift of at(g) to G :

(4.4) a.(g) = ( 1 , £ . ( 1 ) , ~gj{x)gj{2), , lj{\)Ίj{2)' "~Zj(n) = f ̂ )

It should be emphasized here that the lift ~g of g, from πjM 3 to (7
given by (4.4), depends on the specific index i = 1, , p(g) in (4.3) and
(4.4).

We can associate a continuous path of fundamental domains in T to
(4.4):

(4.5) ά.(£)Δ = f l Δu gmA U gJWgj(2)A U - U g A c Γ .

We consider the quotient space Z™ of the disjoined union
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obtained by identifying all 1 Δ c a.(g)A together; so Zj50 is locally finite,
except at 1 Δ.

The fundamental domains ~gA c a.(g)A c Z™ which are end-points
of the corresponding paths a.(g)A will be, by definition, red fundamental
domains.

Let us consider now some positive integer r < \\g\\ : we will denote by
<*i(g)\r, a^g^r, and (α/(^)Δ)|r the obvious truncations of (4.3), (4.4),
and (4.5), respectively. We will also define a quotient space Z^° = Z%°(R)
of Zj00 as follows. For any gχ, g2 £ πχM

3, iχ < p(gχ), i2 < p(g2), and
an r<inf(R, \\gχ\\, \\g2\\) such that

we identify (a. (gχ)A)\r to (α (g2)A)\r in the obvious manner.

So Z^° is locally finite except along the sphere of radius R. A funda-
mental domain of Z^° which is the image of a red fundamental domain
of Zj00 will be, by definition, red.

So, we now have a family of red fundamental domain {gA} c Z^°
here the same ~g £ G can appear more than once. On the other hand,
every red fundamental domain ~gA c Z^° corresponds to a well-defined
g £ πχM

3 such that #QΠ = g. If n £ Z+ is given, there are only finitely
many red fundamental domains ^Δ c Z^° with ||g|| < n .

We are finally in a position to introduce the object Z°° = Z°°(R, M).
For fixed M, Lemma 4.2 provides us with an M = M(M) > M, and
with this we will set

(4.6) Z°°-Z 2

0 O ( J R)+
gA red

where we sum the ~gTjjys over all the red fundamental domains gΔ c
Z™(R), and each such ^Δ c Z™{R) is identified to ^Δ c ~gTΉ. The
red fundamental domains of Z^° c Z ° ° become, by definition, red fun-
damental domains of Z°° D Z^° .

Parenthetical remark. If I c r ( ^ M 3 , f i ) is a set of vertices and
g e B, then Xg c Γ is at distance one from X but quite unlike X,
while gX c Γ is isomorphic to X but quite far from X.

There is an obvious tautological map:

°°(4.7) G:Z

Remark. We can also consider the quotient Z^°(oo) of Z™ , where

for any gx,g2e πχM
3, ix < p{gx), and i2 < p{g2) if r < inf(\\gχ\\, | |g2 | |)
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is such that a^g^r = a^{g2)\r, we identify (a^gJA^r to (αf.2(£2)Δ)|r.
This is a quotient of our Z2°°(i?) and Z°°(R) -* Z°°/Ψ{G) factors through
Z^°(oc). All the fundamental domains of Z^°(oo) are red. We could have
worked with Z^°(oo) in lieu of Z%°(R), but the structure of the argument
is more transparent in the present version.

We will impose the following conditions on M and R.
Condition C.I. A certain fixed compact K c M3 appears in the state-

ment of Theorem 1. We will require that R be large enough so that, if
gA Π K φ 0 for some g e π{M

3, then \\g\\ < R.

Condition C.2. In Theorem 1, we have assumed that Γ(π{M
3, B) sat-

isfies Cannon's 3-almost convex condition. This means that if x, y € S(n)
are such that d(x, y) < 3, then we can join x to y by a path in B{n)
of length < JV(3). The first restriction we will impose on our M is that
M > N(3) + 3.

We will impose the following second lower bound on M. Remember
that we had

B = {gχ ,'~,gq }c{gχ ,~-,gp } = f ^ >

where 3§ corresponds to all the faces of the fundamental domain Δ (and
not only to the subset B for which almost convexity is verified). We will
require that

(4.8) M>

πχM\)

d e f

(Remember that all the norms || || are computed with respect to B c

There is finally a third lower bound we will impose on our M. Consider
TM = 1 TM c 1 T-Γ7 c Z°° and G(TM) c M3. Once R has been fixed

M M M v M'

by C.I, we will also require that M be large enough so that any gA c M3

with g e πχM
3 and such that \\g\\ < R be contained in G(TM) c M3.

This condition assures us that there is a lifting of K to TM/ΦM c
Tjf/ΨΉ. This ends condition C.2.

We will now investigate the canonical immersion

(4.9) Z°°/Ψ(G) ^ M3.

Lemma 4.3. (I) As an immediate consequence of Lemma 4.2, for any
red fundamental domain ~gA c Z°°, we have Ψ(G)[gTM = ΦM and the
map

gTM/Ψ(G) = g(TJΦM) I g(FTM) C M3

is an isomorphism, where ~gTM c Z°° .
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(2) Let xχA, x2Δ be two red fundamental domains of Z°° such that
x\ = X2 = x i n π\M3. Then the equivalence relation Ψ{G) identifies xχA
to x 2 Δ.

(3) Let xχA, x2A be two red fundamental domains of Z°° such that

x2 = xχgfX in πχM
3 with i < q {i.e., gfι e B). Then the requivalence

relation Ψ{G) identifies the gfl -face of x\A to the gJ-faceofx2A {we

write here gfx for g. or j"g( and gjι for j~gt or J.).

(3bis) {Generalization of (3) from B to 38) Let xχAf x2A be two red

fundamental domains of Z°° such that x2 = xχg^λ in πχM
3 with k <p.

Then the equivalence relation Ψ{G) identifies the g^ι-face ofx{A to the

g^ι-faceofx2A.
(4) As an immediate consequence of (2) and (3bis), the subset <9ί c

Z°°I^{G) defined by

{the union of the red fundamental domains of Z°°}/Ψ{G) c Z°°/Ψ(G)

is isomorphic to M3, via Gχ.
Proof We will consider "Statement 2°{ή) " obtained by restriction to

xχ, x2 such that \\xχ\\, ||x2 | | < n , and similarly for 3° . We will prove, to
begin with, the implication

{Statements 2°{n - 1) and 3°{n - 1)} => {Statement 2°{n)}.

Let x e πχM
3 be such that ||x|| = n, and, as in (4.3), consider

aχ{x), a2{x) (see (4.3)) such that our xχA, x2Δ are the endpoints of
the corresponding aχ{x)A,a2{x)A. So, in Z°° we have a continuous
path ά 1(x)Δu 1 Δ α 2 (x)Δ with endpoints ΊκχA9 x 2 Δ, and what we want to
show is that Ψ(G) forces this path to close.

We will consider the elements jc(β) e πχM
3 (with ε = 1, 2) which are

the last ones in a£{x) before x so ||jc(β)|| = n - 1. For x{ε), there is
in Γ a geodesic path a{x{ε)) isomorphic to aε{x)\{n- 1). Clearly, Ψ(G)
forces the identification of α(jc(ε))Δ to (ae(x)A)\(n - 1).

Now d{x{l), x{2)) < 2 so that, by the 2-almost convexity of Γ =
Γ{πχM

3, B), we can join x{\) to x{2) by a path γ of length < N{2) <
N{3) in the ball of radius {n - 1), B{n - 1) c Γ. This path γ is repre-
sented as a fat polygonal line in Figure 4.1 (next page). Each of the straight
lines we see in Figure 4.1, joining 1 respectively to x{l),yl9y2r-9 ym-\ >
x{2) is a geodesic of Γ.

In Figure 4.1, we also see a closed path λ c Γ of length < N{2) + 2,

namely {x, x{\), yx, y2, , ym_x, x{2), x). Since every directed edge

of λ corresponds canonically to a generator gfι e B, by (4.0) λ defines
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I I = the (w-l)-ball
B(n-\) czΓ

= Ί

x(2)

FIGURE 4.1. THIS FIGURE REPRESENTS, SYMBOLICALLY,

A PIECE OF THE CAYLEY GRAPH Γ . THE FAT POINTS

REPRESENT ELEMENTS OF πχM
3 . THE NUMBER ΪYΪ IS <

N(2) , WHERE N(2) IS THE CONSTANT FROM CANNON'S

2-ALMOST CONVEXITY

a continuous path of fundamental domains in T, starting at 1 Δ, which

we will denote by ~λA C T.
To each vertex v e πχM

3 of λ (with the two endpoints x counting as
distinct vertices), we will attach a red fundamental domain in Z°°/Ψ(G),
which we will denote by v Δ in the following manner.

(i) For the endpoints, we take simply the images of xχA, x2A c Z°°

in Z°°/Ψ(G).
(ii) As far as the other points y. e B{n - 1) are concerned, we will

use the fact that the inductive hypothesis 2°(n) implies that for
any w e B(n - I) c π{M

3, there is a unique red representative
in Z°°/Ψ(G), which we will denote by wA3 c Z°°/Ψ(G). (Cau-
tion. Here w is not umambiguously defined as an element in the
monoid G it is only the red fundamental domain ΪZ7Δ3 which is
well defined in Z°°/Ψ(G).)

As we have already remarked, if υι_ι and vι are two consecutive
vertices of A, t h e n l ^ j , υt] corresponds to a well-defined element in
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S c G, which we will denote by h[υι_ι ,vι]. With this, we claim that in
Z°°/Ψ(G), the h[υι_χ, vz]-face of vl-xA is identified to the j(h[vι_ι, vz])-
face of t77Δ, the glueing pattern being exactly the same as for the path
λAc T. For the extremal edges [x, x(l)] and [x(2), x], our claim fol-
lows directly from the way in which aε(x) and a(x(ε)) were constructed.
For all the other edges, the triangle (vι_χ ,υn 1) (see Figure 4.1) is com-
pletely contained in the ball B(n - 1), and out claim follows from the
inductive hypothesis 3°(n - 1).

So, we get a continuous path Λ of fundamental domains in Z°°/Ψ(G),
isomorphic to AΔ, joining xχA to x2A. We have length(Λ) < JV(2) + 2,
which by the first part of our condition C.2 imposed on M is certainly
less than M > N(3) + 3 > N(2) + 2.

Now, in Z°° , the red fundamental domains lcχA and x2Δ come from
Z^°, but Z°° also contains a piece ~xχTj^ D ^cχTM whose own CjΔ is
glued (in Z°°) to our original red ~xχA. If we consider the obvious com-
mutative diagram

°/Ψ(G)

(*)

we can make the following remarks. Our Λ which is of length < M
corresponds canonically to a piece of x x TM c x x T-^, and at the level of
Z°°/Ψ(G) the two corresponding C-images have t0 be identified to each
other. Point (1) of our lemma tells us, on the other hand, that Gx \ζ(x{ TM)
is injective. This means that in Z°°/Ψ(G) the image ζ(A) is a closed path.

This proves the implication

{Statements 2°(n - 1) and 3°{n - 1)} => {Statement 2°(n)},

and the same line of argument can be used to prove that

{Statements 2°(n - 1) and 3°(/ι - 1)} => {Statement 3°(«)},

(The analog of Λ will have now a length < 7V(3) + 3.)

We leave it to the reader to complete the proof of (3) following this line
of argument. We show now how (2) and (3) together imply (3bis).

So we consider the red fundamental domains xχA, x2A c Z ° ° with
x i = x\8k (* < k - P) i n π i ^ 3 N o t i c e t h a t a t t h e l e v e l o f M*' t h e

fundamental domains Gx(xxA) and G{(x2A) touch along their respective

gk- and g'ζ1 -faces. We want to show that Ψ(G) forces them actually to
be glued together at that site, at the level of Z°° /Ψ(G), source of the map
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FIGURE 4.2. A CONTINUOUS PATH OF FUNDAMENTAL

DOMAINS, WHICH PROJECTS ONTO THE PATH Λ ' OF

Z°°/Ψ(G). H E R E X2 = xλgk AND gk = yιy2y?>yAy5.

Now, in πχM
3, we can write gk = hιh2, ••• , hc with h. e B a n d

c < γ (see (4.8)). T h e hx,h2, ••- , hc lift v ia (4.0) to \ , Jh2, , /*c G

5 c G .
We consider in π{M

3 the sequence of e lements

It follows from (2) that, for each j = 0, , c, there is a unique red
fundamental domain y Δ in Z°°/Ψ(G). For 7 = 0 and j = c, the cor-
responding j^Δ are exactly our original xχΔ9 x2A (actually their images
in Z°°/Ψ(G)).

It follows from (3) that we can define in Z°°/Ψ(G) a continuous path
of fundamental domains

Λ' = 5cjΔ U yχΔ U y2Δ U U yc_χΔ U x2Δ,

with yι_χΔ and ytΔ glued together along their respective (Λz, 7'Λ^-faces;
this path is suggested in Figure 4.2.

Now, by (4.8), we have length(Λ') < γ < M and we can consider the
obvious commutative diagram, analogous to (*) above:

An analysis which is completely similar to our treatment of (*) shows
that C'(Λ') c Z°°/Ψ(G) is a closed path, and this finishes the proof, q.e.d.

As a consequence of Lemma 4.3, we now have

Lemma 4.4. For Z°°, we have ^(G) = Φ(G), and hence Gχ {see

(4.9)) is an isomorphism between Z°°/Ψ(G) and M3.
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Proof. We consider the commutative diagram

(*)

where i is the obvious inclusion map. It suffices to show that i is surjec-

tive. If not, we could find a fundamental domain Δ c Z°°/Ψ(G) such that

(intΔ) Him / = 0 . But Z°° is connected and hence so is Z°°/Ψ(G). This

means that we could also find a Δ with (intΔ) n Im / = 0 Φ (dA) n im /.

But since 31 —• M3 is a homeomorphism, any x e (dA) n Im i would be

a singularity for Gχ, which is absurd, q.e.d.

Consider now an arbitrary riemannian metric on M3 and lift it to M3.

It follows from [13] that for fixed x e M3, we have

(4.10) lim d(x, gx) = oo.
ll*IH°o

This estimate is uniform as long as x moves inside a compact subset of

M3, since

d(y,gy)>d(x,gx)-2d(x,y).

For fixed n, there are only finitely many red fundamental domains
JΔ c Z2°° c Z°° such that \\g\\ < n estimate (4.10) then tells us that only
finitely many of the "gTjj appearing in (4.6) are such that G(gTjj)Γ\K Φ
0 . On the other hand, condition C. 1 which we have imposed on R tells
us also that there are only finitely many fundamental domains (red or not)
Δ c Z f c Z 0 0 such that G(A)nKφ0.

All these things having been said, the proof of Theorem 1 proceeds now
as follows.

Step I. Consider any exhaustion of Z°° by collapsible finite unions of
fundamental domains

γχ cr 2 c cz°°.

According to our previous discussion, there is a Yn such that

G(z°° -Yn)nκ = 0.

Without any loss of generality, we can assume n large enough so that

1 TM c Z°° lives already in Yn . Condition C.2 then implies that K lifts

to YJΦ(G\Yn).
Step II. It follows from Lemma 4.4 that we can find an m > n such

that
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Once we know that Ψ(G) = Φ(G), this fact can be proved exactly as in
Lemma 4.2 (where we made use of Ψ(F) = Ψ(F) in a similar context).

Step III. We consider the inclusion map

KcYJΦ(G\Yn)cYJΨ(G\Ym)

and the commutative diagram

\ -

M3

This diagram has the following properties:
III. 1 Ym/Ψ(G\Ym) is a simply-connected finite 3-dimensional polyhe-

dron (see (3.8)).
111.2 The map g is an immersion.
111.3 If we denote by M2{g) c YJΨ(G\Ym) the double points of g,

then

KDM2(g) =

If we replace Ym/xί0(G\ Ym) with a very thin 3-dimensional regular neigh-
borhood, compatible with g, we are exactly in the conditions of our Dehn-
type lemma, at least if K is connected.

So the Dehn-type lemma tells us that any compact connected K c M3

can be engulfed by a compact, simply-connected 3-dimensional submani-
fold N3 cM3. _

Since any compact subset of M3 is contained inside a compact con-
nected subset, Theorem 1 follows.

5. The proof of Theorem 2

We now have two systems of generators for πχM
3, namely A = {a^

and B = {bj} . If g e πχM
3, then

(5.1) C-\\g\\B<\\g\\A<C\\g\\B

for some universal constant C.

If x = x(u), u G Z + , is some continuous path in the Cayley graph

T(π{M
3, A) (with x(u) e nχM

3, d{x(u), x(u + 1))^ < 1), we denote

(5.2) \\x\\A = supd(x(tι),x(t2))A,

and a similar notation \\y\\B will be used for a continuous path y = y(υ)

of Γ(πχM
3,5).
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For typographical convenience, our given quasi-Lipschitz combing will

be denoted by s(g) instead of s . The current point on the curve s(g)

will be denoted by s(g, t) with t e Z+ . Without any loss of generality,

as a consequence of the obvious estimate

d(s(g, 0 ) , s(g, t))A = d(l,s(g, t))A < d(s(l, 0 , s(g, t))A + \\s{\)\\A,

there are constants Cχ, C2 such that, for all g, h e πχM
3 and all t, we

have

(5.3)

and also

(5.4)

d(s(g, t) ,s(h,ι

\\s(8)\\A

'))A<C,d{g,h)

<Cx\\g\\A + C2.

A priori the curves s(g, t) e πχM
3 are defined for t = n e Z + . We

will define new curves σ(g, t) e πχM
3, which are continuous polygonal

paths, when considered in Γ(πχM
3, B), by the following procedure.

(5.a) Our σ(g, t) is defined for all t = n e Z + and then σ(g, ή) =
s(g > ft) ? but also for some nonintegral values, intermediate between each
n and n + 1 .

(5.b) More precisely, let s(g, n+1) = ^(g, «) <z, with a = a(g, ή) e A\
we consider a minimal word expressing α in terms of ΰ-generators a =
b{b2' ba, a n d w e def ine σ(g, n + I/a) = s(g, n) bχ, σ(g, n + 2/a) =
s{g, n)-bχb2, e t c .

Clearly a < C and hence

(5.5) \\σ(g)\\B < C\\s(g)\\A.

Exactly as in §§3 and 4 above, for our given system B = B~ι, we
construct a representation Λf3 = A/p with 5 = {hχ, ••• , Λ2p}' ^ c

3§ & S, etc.; in particular we have the Γ form §4. By analogy with
Z°° = Z°°(R, M), we will construct now another infinite, tree-like union
of fundamental domains Δ, which will be denoted by Y°° , which Y°°
will depend on two given nonnegative integers R, Mχ.

Construction of Y°° = Y°°{R, Mχ). We start with some preliminaries

concerning the Cayley graph Γ(πχM
3, B). Let JC(1), x(2) e πχM

3 be

such that | |JΓ(1)| |J = \\x(2)\\B =p and d(x(\), x(2))B < 3. We consider

an arc λ = λ(x(l), x(2)) of length < 3 joining x(l) to x{2) and another

arc γ = γ(x(l),x(2)) c {ball of radius p} c Γ(πχM
3, B) joining x{\)

to x(2) it is assumed that γ is of minimal length. Let γχ be the closed

path of Γ(πχM
3, B) which is built from γ and 2. We parametrize it by

(5.5.1) γ (0)=x,
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where x is some fixed vertex belonging to λ. Starting at this x = yχ (0),
we will comb γ{ by the arcs

(5.6) τ(γ{(u))=fx σ(χ-l.γι(u)),

where u = 1, , N - 1. The current point on the path τ(γ{(u)) cor-
responding to t (where t assumes some values in Q+) will be denoted
by τ(u, t) = τ(γJu), t). In Figure 5.1, we see this combing; we fix our

def

attention there on integral values t e Z+, like m, m + 1.
Condition (II) from Theorem 2 tells us that

(5.7) Wγ^^c^ + i,

and it is not hard to find a C4 such that for the combing arc τ{yχ(u)), we
have

(5.8) l | τ ( 1 U 4 1 ^ 4

independently of u e Z + .
By the same method used to change a^g) (see (4.3)) into a^g) (see

(4.4)) starting at 1 e G, we can change τ(γι(u)) into τ(γ{(u)) c G,
starting at some x e χ~ι(x). This allows us to define a continuous path
of fundamental domains τ(γχ(u))A c T starting at xA. It is assumed
that both τ(γχ(u)) and τ(γχ(u))A are finite, i.e., they stop when τ(u, t)
starts becoming constant.

In Figure 5.1, we see a closed curve μ = μ(x(l), x(2), u, m) bounding
the hatched area; we will parametrize it by

.' , μ(r) = μ(0).

It is not hard to find a uniform bound β (independent of p, x( 1), x(2),
u, m) such that, for all μ's, we have

(5.9) \\μ\\B < β.

All this having been said, our first intermediary step towards Y°° is to

consider again Z2°°(i?) from the last section. Next, for each red funda-

mental domain xA c Z™(R), we consider χ(x) = x e π{M
3, and denote

n = \\x\\B. For each y e π{M
3 such that d(x, y)B < C3n

ι~ε + 3 (see

(5.7)), we consider the combing arc τ(y) = d e f xσ{x~ιy) and the contin-

uous path of fundamental domains τ(y)Δ c T, starting at x c T. We

consider next

(5.10) Z3

OO = Z 2

O O + £ τ(y)A,
RED3cΔ
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S(p)3x(\) λ x(2)eS(p)
γ = γ + λ

125

the path

FIGURE 5.1. COMBING; THE ACTION DESCRIBED HERE

TAKES PLACE IN Γ(π{M
3, B). THE FAT LINE IS γ =

y(jc(l), x{2)). THE PARAMETERS u, m BELONG TO Z +

AND THE ARCS (τ(u , ΪYϊ) , %(u + 1 , YYϊ)) , (τ(u + 1 , YYi) ,

τ(u + 1 , W + 1 ) ) ARE GEODESIC.

where each RED JtΔ c Z^° is identified to the initial fundamental domain

3cΔ of each of the corresponding τ(y)A. Forgiven xΔ, all the y € nχ with

d{x, y) < C3n
1~ε + 3 are supposed to appear in (5.10). The path τ(y)A is

made out of fundamental domains τ(y, t)A, where the parameter t takes

not only (finitely many) integral values t = m, but also some intermediary

rational values m+l/a, m+2/a, . For each τ(u, m)A with m e Z* ,

we consider τ(w, m ) ^ c Γ, where Mχ is such that, via Lemma 4.2,

we have Ψ ĝ | Γ M = ΦM . Here Mj is the quantity appearing in our

definition of V°°!

Finally, we define

(5.11) Mχ) = τΈ, + Σ STΈ
τ(y, m) RED £Δ

where, for each τ(y, m), we identify τ(y, m)Δ c Z^° to the initial

τ(y, m)Δ c τ(y, w)Γ^ and for each redgΔ c Z^°, we identify this

~gA c Z^° to the initial ^Δ c ~gTjj (just as we did for Z°° in formula

(4.6)).
By analogy to (4.7), we have an obvious tautological map

(5.12) Y°°ΪM\

which induces the immersion

(5.13) Y°°/Ψ(H) ^ M\
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The quantity R will be subjected, as in the proceeding section, to con-
dition C.I (with respect to the compact K c M3 from Theorem 2), while
Mχ will be sufficiently large so that it verifies the following condition.

Condition C.3. If β is as in (5.9), any path of length < β of T,
starting at 1 Δ, is contained in TM . Also, in complete analogy with C.2,
we have

(5.14) Mχ>

and any gA c M3, with g e πχM
3 such that ||g|| < R, is contained in

ι

Exactly as in the proceeding section, only finitely many gT^ appearing

in (5.11) are such that H(~gTjj ) n K φ 0 . We also have

Lemma 5.1. (1) Let us consider x e πχM with \\x\\B = n and any

y e πχM
3 with d(x,y)B < C3n

ι~ε + 3. For any parameter value t

which makes sense, we consider the corresponding point on the combing arc
ι= xσ(x~ιy), i.e.,

= τ(y,t)e %χM
3.

There is a constant C5 such that

(5.15) B 5

(2) As a consequence of (5.15), there are only finitely many τ(y)A c
Z3°° appearing in (5.10) such that H(τ(y)A) Π K / 0 , and hence only
finitely many τ(y, m)Tjj c Y™ (appearing in formula (5.11)) such that
H(τ(y,m)TΈι)nKφ01.

Proof Using the estimates (5.7) and (5.8), we can find a C5 such that

d(x, g)B < C5(n ~ε + 1), from which (5.15) follows immediately, q.e.d.
We also have the analogue of Lemma 4.3, but for the map Hχ (given

by (5.13)).
Lemma 5.2. (1) For any red fundamental domain gA c Z^° c Y°

we have Ψ(Hχ)[gTM =ΦM and the map

rΓMχΓV{Hγ) = g(TMJΦMι) 5 g(FTMi) C M3

is an isomorphism. The same kind of thing is true for the pieces τ(y, m) Tjj

appearing in (5.11), and these pieces use the fundamental domains

τ(y, m)Δ c Z3°° c 7°°, in lieu of the red gA.

°°
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(2) Let xχA, x2A be two red fundamental domains of Y°° such that

xχ = x2 = x in πχM
3. Then the equivalence relation Ψ(H) identifies xχA

to x2A.

(3) Let XjΔ, x2A be two red fundamental domains of Y°° such that

x2 = xχgfl in πχM
3 with gf"1 e B. The equivalence relation Ψ(H)

identifies the gfι-face of lcχA to the gj-face of x2A.

(3bis) The analogue of (3) is true for all g^1 e& D B.
Proof We will show the implication

{Statements 2°(n - 1) and 3°(n - 1)} => {Statement 2°(«)},

trying to imitate the similar step in the proof of Lemma 4.3. As in Figure
4.1, we consider | | x( l) | | 5 = | |x(2)| |5 = n - 1 which are to be seen also in
Figure 5.1 (we take p = n - 1). The fat polygonal line from Figure 4.1 is
to be replaced now by our γ c B(n - 1), and γ is no longer of bounded
length (i.e., the fat polygonal line from Figure 5.1).

Exactly on the same lines as we constructed the path Λ c T in the
proof of Lemma 4.3, we construct here a continuous path of fundamental
domains of Y°°/Ψ(H) going from xχA to x2A, and we continue to call
it Λ of course the inductive hypotheses 2°(n - 1) and 3°(n - 1) have to
be used here. To be explicit, Λ takes the form

(5.16) Λ = y 1 ( 0 ) Δ u y i ( l ) Δ u ..uy i(7V)Δ,

with γχ(0) = xl9 γχ(N) = x2, and χ{γx(u)) = yx{u) for each u (see

Figure 5.1).
We have to show that actually Ψ(H) forces A to close.
Now, for our red x{A, formula (5.10) gives us various combing arcs

τA c o r r e s p o n d i n g t o y = γ { ( l ) , y = γ { { 2 ) , ••• , y = γ χ ( N - 1 ) ( s e e
(5.1)). Notice that the norms of the extreme arcs, namely | |τ(y1(l))Δ||5 ,
\\τ(γι (N-l))A\\B , are smaller than a certain uniform bound, which without
any loss of generality we can assume < β (see condition C.3).

For u = 1, , N-1, each τ(γ{ (u))A goes from JCjΔ to some endpoint
which we denote by ~g{u)A c Γ°° . A priori, ~g(u)A Φ yχ{u)A (see (5.16)).
The situation is schematized in Figure 5.2.

Unlike Figure 5.1 which lives in Y{πχM
ι, B), Figure 5.2 supposedly

lives in Y°°.
Claim. The equivalence relation Ψ(i/) forces all the identifications

g ( u ) A = γ χ ( u ) A f o r w = l , , N - l .
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We will proceed by induction on u, the case u = 1 being taken care of
by the inequality ||τ(y1(l))Δ|| jB < β .

In Figure 5.2, the straight lines starting at τ(u, m), τ(u, m + 1) and
not quite making it to τ(u + 1, m), τ(u + 1, m + 1) are Γ-lifts of the
corresponding geodetic arcs from Figure 5.1. We will assume inductively
that the identification of yx(u)A to ~g(u)A has already been forced by
Ψ(H).

In Figure 5.1, the triangle (x, τ(u, 1), τ(u+1, 1)) and then the rectan-
gles (τ(u, m), τ(u, m + 1), τ(u + 1, m + 1), τ(u + 1, m), τ(u, m)) are
all of length < β . In view of (the first part of) condition C.3, this means
that inductively (induction on m this time), the corresponding paths of
fundamental domains are forced to close, by Ψ(//). When we reach the
last rectangle, resting on (jγ(u), yx{u+ 1)) (see Figure 5.2), this forces the
identification of yx(u+ 1)Δ to ~g(u + 1). All this part of the argument
uses the pieces τ(y, m)7Jg c F°° .

So, the claim is proved, and this means in particular that Ψ(H) forces
the identification of J{N-l)A to ^ ( N - l ) . Since l l τ^TV-l^ΔI^ < β ,
it also forces the identification of x{A to x 2 Δ, which proves 2°(n).

x2e {RED}

YjOO γ / M + l J e {RED}

FIGURE 5.2. WE SEE HERE Λ AND THE VARIOUS COMB-

ING PATHS (OF FUNDAMENTAL DOMAINS), STARTING AT

x { . THIS SYMBOLICAL FIGURE IS SUPPOSED TO LIVE IN
yOO
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The rest of the proof of Lemma 5.2 follows exactly on the same lines as
the proof of Lemma 4.3; the proof of (3bis) uses the piece Σ~gTjg C ^°°
(see (5.11) and (5.14)). q.e.d.

Also, once we have Lemmas 5.1 and 5.2, we can finish the proof of
Theorem 2 on the same lines as for Theorem 1.

Theorem 3 can be proved by arguments similar to the ones which we
just used for Theorem 2; we leave this to the reader.

Final comments, (a) It is not a priori clear what happens to the quasi-
Lipschitz estimate (1.3) when we change our system of generators A = A~ι

to another one. So we propose to weaken (1.3) by passing from the uniform
distance to the Hausdorff distance. So we will think from now on of a

combing as being a continuous map [0, 1] -Λ Γ(G, A) defined for each
g e G and such that sg(0) = 1, sg(l) = g. The combing will be said to
be Hausdorff if for given g, h e G, we can find an orientation preserving
homeomorphism [0, 1] _-> [0,1] such that for all t e [0, 1] we have

(5.17) d{sg(u(t)),sh{t)) < cλd(g, h) + C2.

Clearly Hausdorff combing (5.17) is implied by quasi-Lipschitz combing
(1.3). On the other hand, Hausdorff combing is an invariant notion (i.e., it
is independent of the choice of A). We can also substitute it in Theorem
2 instead of the quasi-Lipschitz combing, and get the same conclusion.
This will be the object of a subsequent paper.

(b) Very loosely speaking, the classification given in Figure 1.1 corre-
sponds to increasing price, in terms of relators, for killing a word of given
length; typically this price is high for groups with unsolvable word problem
[11]. _

(c) Any effective estimate about the growth rate of the function M =
~M(M), from Lemma 4.2, would be quite valuable.
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