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CONFORMALLY FLAT METRICS OF
CONSTANT POSITIVE SCALAR CURVATURE

ON SUBDOMAINS OF THE SPHERE

RAFE MAZZEO & NATHAN SMALE

Abstract

A basic problem has been to construct complete conformally flat metrics
of constant positive scalar curvature on the complement of arbitrary sets
Λ c Sn where Sn is an ^-sphere. A necessary condition for the ex-
istence of such a metric is that the Hausdorff dimension of Λ must be
less than or equal to (n - 2)/2 . Examples are known when Λ is any
finite collection of points, a subsphere, and also when Λ is the limit set
of certain Kleinian groups. Up until now no examples have been known
where Λ is a smooth (nonspherical) submanifold of positive dimension.
We prove here that there are many examples whenever Λ is a small per-
turbation of an equatorial subsphere. A local version of this result is also
proved. These theorems rely on an analysis of certain degenerate linear
elliptic operators, which is complicated by the fact that these operators
have infinite dimensional null-spaces. A fairly general construction of
pseudodifferential right-inverses for such operators is presented.

1. Introduction

Because of the resolution of the Yamabe problem by R. Schoen in 1984
[26] (see also [13]), it is possible to divide the conformal classes of Rieman-
nian metrics on an arbitrary compact manifold M of dimension n > 3
into three disjoint subsets containing respectively those classes which con-
tain a metric of constant positive, zero, or negative scalar curvature, ac-
cording to the sign of the first eigenvalue of the conformal Laplacian on
M. This sign is well-defined within a conformal class. On a given manifold
one or more of these subsets may be empty; for example, it is known that
the A genus is a topological obstruction governing the existence of metrics
of positive scalar curvature when the manifold is spin. When the manifold
is not assumed to be compact, these simple statements need modification.
In this setting it is geometrically and analytically natural to restrict atten-
tion to complete metrics; however, a conformal class always contains both
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complete and incomplete metrics. Thus, a possible way to generalize this
problem is to ask whether on a given noncompact Riemannian manifold
there exist complete metrics of constant scalar curvature and, if so, is the
sign of this constant well defined within the set of complete metrics within
a conformal class. Another possible question is whether starting with a
complete metric there exists another complete metric quasi-isometric to
the given one with constant scalar curvature. Only partial answers to these
questions are known, but even so it is clear that very different phenomena
occur than for compact manifolds.

In a series of papers [l]-[3], Aviles and McOwen have studied the ques-
tion of finding complete metrics which have constant negative scalar cur-
vature and which are conformal to a given one. They also consider more
general questions concerning prescribing scalar curvature. It is natural to
study these problems on noncompact manifolds with 'simple' structure,
for example those which arise by deleting a closed subset from a compact
Riemannian manifold. An example of this is a result proved by Aviles and
McOwen [2] to the effect that if M is an ^-dimensional compact Rieman-
nian manifold and if N is a k-dimensional submanifold, then there is a
complete metric conformal to the incomplete one on M\N with constant
negative scalar curvature if and only if k > (n - 2)/2. This generalizes
an older theorem due to Loewner and Nirenberg [ 14] which treats the case
when M is a sphere.

Just as in the compact setting, though, the hardest analysis is required
in questions concerning metrics of constant positive scalar curvature. Very
deep results have been obtained by Schoen and Yau [28] and Schoen [27]
in what is perhaps the most geometrically appealing instance of this prob-
lem, namely when the ambient manifold is the ^-sphere Sn . One of the
basic problems here is to determine which subdomains of the sphere carry
complete conformally flat metrics of constant positive scalar curvature. In
[28] this problem was approached through ideas of conformal geometry.
One of the theorems proved there is that if a subdomain Ω = Sn\A car-
ries a complete metric with scalar curvature bounded below by a positive
constant, then the Hausdorff dimension of Λ is < (n - 2)/2. On the
other hand, in [27] Schoen constructs many such domains Ω which carry
complete conformally flat metrics of constant positive scalar curvature. In
particular, he constructs such metrics on the complement of any finite set
of points of cardinality larger than one in the sphere.

These results lead to many more questions. For example, Schoen's con-
struction works only when the domain Ω c Sn has complement Λ of
a very special type. It is natural to conjecture from the results of [28]
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that the complement of any subset Λ of Sn with ^ ( " " 2 ) / 2 ( Λ ) < oo
(and of cardinality greater than one) supports a complete conformally flat
metric of constant positive scalar curvature on its complement. For ex-
ample, consider the simple situation when Λ is an equatorial /c-sphere
Λ = Sk . It is easy to find the required metric here. First stereographi-
cally project Sn from some point on Sk . Now Ω = Rn\R* with its flat
metric. Introduce coordinates y e Rk, and polar coordinates (r, θ) in
the orthogonal complement Rn~ . I n these coordinates the flat metric is
dχ2 = dr2 + r2dθ2 + dy2 . This is clearly conformal to

(U) i?_ _ y ^
But this is nothing order than the product metric on sn~k~ι x H f c + 1 . As
such it is certainly complete and has scalar curvature

(1.2) Rnk = (n-k- \){n - k - 2) - (k + l)(fc) = (n - 2k - 2)(n - 1).

Thus, Rn k > 0 precisely when n - 2k - 2 > 0, i.e., when k < (n - 2)/2
as expected.

A fundamental goal is to characterize those /c-dimensional submani-
folds AeSn with k < (n-2)/2 for which Ω = 5Π\Λ supports a complete
conformally flat metric of constant positive scalar curvature. No smooth
examples of positive dimension other than round S 's have been known.
On the other hand, it is possible to construct complete conformally flat
metrics of constant positive scalar curvature on subdomains of the sphere
by lifting solutions from compact manifolds which are constructed using
the solution of the Yamabe conjecture. In these constructions Λ is the
limit set of a Kleinian group, hence is either a round sphere or unrectifi-
able with Hausdorff dimension less than (n — 2)/2. We produce the first
nonround smooth examples here by analyzing perturbations of the product
metric £ 0 of (1.1) on Ω = Sn\Sk . We also study questions of uniqueness.
It is well known in the noncompact case that the same conformal class may
contain different complete metrics with constant scalar curvatures of dif-
ferent signs. Perhaps somewhat surprisingly though, we find very many
examples of complete, conformally flat constant positive scalar curvature
metrics on the complement of any fixed small perturbation of S . In §2
we prove the following theorem:

Theorem. Let g0 denote the product metric (1.1) on Sn\Sk above,
where k < (n-2)/2. Then for every C3a diffeomorphism τ of Sn close
to the identity, there is an infinite-dimensional family of positive functions
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u such that g = uίn~2~g is a complete metric on Sn\τ{Sk) and has scalar
curvature equal to Rn k where ~g is the usual round metric on Sn . These
solutions are parametrized by functions in a certain Holder class on the
sphere Sk with small norm.

See Theorem (2.21) for the complete statement. This changes the focus
of questions from those concerning existence of complete constant posi-
tive scalar curvature metrics to those concerning the variety of complete
metrics on a given domain with the same constant positive scalar curva-
ture. It is important to remark that our methods break down in all other
cases, i.e., when k > (n - 2)/2.

We also study the analogous question for arbitrary k -dimensional sub-
manifolds of Sn, still assuming k < (n - 2)/2. Although we do not
produce global examples in this generality, we can construct local ones.

Theorem. Let % be a tubular neighborhood of the submanifold N c
Sn . Then for every C2'a function φ on d% close to the identity there is a
complete metric g = w4/(/2~2)g0 on %f\N with scalar curvature Rn k and
such that u\d# = φ.

Again, see §3 for a more precise statement.
These theorems are proved by the implicit function theorem and the

technique of contraction mappings applied to the nonlinear PDE which
governs the change in scalar curvature under a conformal change of metric.
In either case one needs very good control of the linearized operator. This
linear operator turns out to be the Laplacian plus spectral parameter Δ + λ
on sn~k~ι x H^+ 1 in the first case and an operator essentially equal to
Δ + λ/r2 on the product of the ball in R" with some compact manifold
in the second; here r is the polar distance variable in the ball.

Degenerate operators such as these have been studied from several dif-
ferent perspectives. The path taken here is based on earlier work of the
first author [16]—[18]), which itself is an outgrowth of a general framework
for the treatment of a wide variety of degenerate operators due to Melrose
([23], [24]). Detailed analysis of operators with specific types of degen-
eracies using these ideas has been carried out in several cases. Beyond
the references above the sources [25], [6], [21] should also be mentioned.
The fourth section of this paper contains a fairly complete development
of the analysis of Δ+Λ(JC) on sn~k~ι x H ^ 1 and other related manifolds
acting between natural families of weighted Sobolev and Holder spaces.
Here λ(x) is a function converging to a constant along the set of degen-
eracies. In particular, we prove that A + λ(x) has closed range on these
spaces for all but a discrete set of the weight parameter. We say closed
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range because in general there is an infinite-dimensional kernel or coker-
nel. However, for certain values of the weight parameter this operator is
actually Fredholm. This is well known in the weight 0 case, since this is
just the usual L2 theory of the Laplacian. We are most interested in the
spaces for which the operator is actually surjective, since this is necessary
in the implicit function theorem and contraction mapping arguments. In
any case, we can characterize the spaces for which Δ + λ(x) is injective,
surjective, semi-Fredholm, or Fredholm. This should be compared to the
analogous case on conic spaces where the Laplacian is Fredholm for all but
a discrete set of weights [25], and the identical situation for the Laplacian
on R" (which is really a conic operator in disguise) [22].

Operators with this type of degeneracy have been studied by others.
The theory developed here was actually undertaken by Melrose and Men-
doza after their work in [25], although this work was never completed.
Nonetheless, their work would certainly have followed a similar path to
that developed here. Rempel-Schulze and Schulze [29] have developed a
very complete operator calculus paralleling the one here. We have not
used their approach due to the specific requirements of the problems con-
sidered. The work of Graham and Lee [7] should also be mentioned. They
use the theory of "uniformly degenerate operators" developed in [17] in
a nonlinear problem concerning Einstein metrics. These operators corre-
spond to the one under consideration if there is no spherical factor. Other
approaches to such operators have been taken in [4] and [15]. Concerning
this last we shall say more. In that paper it is proved that if h is a smooth
metric on the compact ^-dimensional manifold M, and if p is a nonneg-
ative function which vanishes only on the fc-dimensional submanifold N
which equals the distance to TV in a tubular neighborhood, then the Lapla-
cian for the metric g = p~2h is Fredholm on certain weighted Sobolev
spaces for a narrow range of weights. These types of metrics generalize
those considered in [17], [2]. The connection with the present work is that
this Laplacian exhibits exactly the same sorts of degeneracies as Δ + λ on
ςn-k-ι χ jjfc+i j n faĉ  t j i e r jnethod j s t 0 first a n a i y Z e a model operator

on the product manifold R+ xsn~k~ { x N, just as we do in §4. In fact, our
methods work equally well in this more general situation. We develop our
theory in §4 in this setting and extend their results to prove the following:

Theorem. Let P = Δ + λ(x), where Δ is the Laplacian on M\N with
respect to the metric g described above and λ(x) is any smooth function
on M\N which tends to a constant value along N. Then P: r H +2 ->
rδHk is semi-Fredholm for δ £ Λ, where the Sobolev spaces rδHk are
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defined precisely in (4.4) and Λ is a discrete set which is described in
(4.16). Furthermore there is a {possibly empty) interval (-δ0, δ0) in which
P: rδHk+1 -• rδHk is actually Fredholm of index 0. There is an analogous
assertion for P acting between weighted Holder spaces.

Thus, we not only generalize their results to the full range of weights,
which is important in certain applications such as the ones in this paper,
but we also extend all results to Holder spaces.

The first author would like to thank Marc Burger for many helpful dis-
cussions and both authors wish to thank Richard Schoen for his interest
in this work.

2. A global result

In this section we investigate the existence and variety of complete met-
rics on Sn\τ(Sk) conformal to the standard metric and having constant
positive scalar curvature; here τ is an embedding of Sk into Sn close to
the identity. As noted above, it follows from [28] that for such a metric to
exist, we must have k < (n - 2)/2, and in fact we will assume in the rest of
this section that k <{n- 2)/2. Let ~g denote the standard metric on Sn .
As shown in the introduction, (Sn\Sk, ~g) is conformally equivalent to
the complete metric (Sn\S , g0), where g0 is the product metric which
has scalar curvature R(g0) = Rn k > 0. We will show by a perturbation

argument that for every C 3 α embedding τ of Sk in Sn close to the
equator map there is an infinite-dimensional family of complete confor-
mal metrics on Sn\τ(Sk) of scalar curvature equal to Rn k . In fact, we
will show that the set of such metrics in a neighborhood of g0 has a nice
manifold structure parametrized by its tangent space, which may be iden-
tified with the product of an infinite-dimensional space of eigenfunctions
for the Laplacian on Hk+ι with the tangent space of the Banach manifold
of embeddings τ: Sk —> Sn as above.

If u is a positive function on a manifold M with metric #0 and scalar

curvature R(g0), and g = u4^n~2^g0 is a conformally related metric with
scalar curvature R(g), then it is standard (see [13]) that u satisfies the
differential equation

on M, where Δ = Δ is the (negative definite) Laplace operator acting
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on functions on M. The operator

T Λ n-2

is known as the conformal Laplacian because it satisfies the transformation
rule

(2.2) L (uφ) = u L (φ).

We shall set up the problem of finding a complete metric on Sn\τ(Sk)
conformal to £ with scalar curvature Rn k by reducing it to solving a

PDE on Sn\Sk which is a special instance of (2.1). To do this, first
assume that τ is extended to be a diffeomorphism close to the identity of
all of Sn to itself. We shall be more specific about its regularity and other
properties later. We seek a function ϋ on Sn\τ(Sk) such that

and such that f)4//(/ί~2)g is complete. Transfer this equation from Sn\τ(Sk)

back to Sn\Sk by applying τ* to both sides. We use the fact that by the

naturality of the conformal Laplacian, τ*(Lgw) = L^τ*g>)(τ*w) for any

metric g and any function w . Setting υ = τ*ϋ we get

/ v I n " 2 R v{n+2)/{n~2) - 0

Next, apply the transformation rule (2.2) with u the function on Sn\Sk

such that w4/(n~2)^ equals the product metric g0 of (1.1) and with v =

u(l+w). The result is that

Here g(τ) is the metric u4/(n~2)τ*J on Sn\Sk.
Clearly the process described above is reversible. Any metric on

Sn\τ(Sk) conformal to the standard one must correspond to a pair (τ,w),
the uniqueness of which we shall examine later. Let

(2.6) H(τ, w) = L, ( t )(l + «/)

for « J 6 C 2 ' a i " ( s V ) a n d T a C 3 ' a diffeomorphism of S" (the Holder

spaces ck'a'v will be defined in (2.9)). We shall determine all solutions

of H(τ, w) = 0 close to the known solution (/, 0) by using the implicit
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function theorem. To do this, we must first calculate the linearization of
H, then set up appropriate function spaces on which this linearization is
surjective. Then an application of the (soft) implicit function theorem will
complete the result.

Let us first compute the linearization. Although we only need to estab-
lish surjectivity at (/, 0) and only in certain directions, it is also necessary
to show that this derivative has continuous dependence on (τ, w) in a
neighborhood of (/, 0) in the uniform operator topology. This will be
established later. At a given τ the derivative of H in w is computed as

d\wH(τ, w)φ = ̂ H(τ9 w + tφ)\t=Q

= L(τ, w)φ.

Note that

(2.7') L(I,0)φ = (A + (n-2k-2))φ.

For convenience, we will often denote L(1, 0) by L. On the other hand,
to compute the derivative of H in τ at a point (τ,w) let τ(ε) denote a
path of diffeomorphisms such that τ(0) is equal to the fixed map τ . Then

'"» f.ε=0 ε=0

The operator on the right in this formula is some second-order operator
acting on 1 + w .

Finding solutions of (2.1) will involve studying the linearized operators
(2.7) and (2.8). In order to do this we must first defined the appropri-
ate function spaces in which we will work. In H ^ 1 we will often use
coordinates and metrics given by the Poincare model; that is, we iden-
tity H / c + 1 with BM , the unit ball in R*+ 1, endowed with the metric

g.. = 4(1 - s2)~2dxidxj, where s = \x\, s e [0, 1), and x e Bk+ι . Let

z = { s 9 θ , y ) 9 5 > 0 , 0 < E S n ~ k ~ ι , y e S k . W e a l s o d e f i n e t h e c o o r d i -

n a t e f u n c t i o n r = r(s) = 1 - s 2 . F o r i/ e R , & e N = { 0 , ! , • • • } , a n d
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a e (0, 1) we define the weighted Holder space

(9 0)

= {ueCl0C (S x H ) : | M | f c > β > I / < o o } ,

where | \k a v is the norm

(2.10)

Here V7w denotes the yth covariant derivative of u on sn~k~ι x H f c + 1 ,
and z = (r, 0, y), z' = {r , #', y) note that we might equally well have
used the vector fields rdr, rdy, dθ in place of V near r = 0. Note

also that u e Ck'a'v iff u = rvv , t; G C * ' " ' 0 . It is trivial that C*' a > 1 /

is a Banach space and that for k' > k, v > v, and a > a we have
£,* ,α ,1/ Qck>a>" m These spaces have been used in other nonlinear prob-
lems involving degenerate or singular PDE (see [30], [7], [12] for example).

We will now discuss for which Jacobi fields φ (i.e., for which solutions
of Lφ — 0), φ G C2'a'u with \φ\2 small, and with appropriate values
of v , one expects a corresponding solution of (2.1). We first give a brief
discussion of those Jacobi fields for this problem which are in C 2 ' a ' v . We
note that there is a Poisson integral formula which represents these Jacobi
fields (which are eigenfunctions of the Laplacian on sn~k~ι x Hk+ι) in
terms of their boundary values [8]. However, we shall analyze them briefly
using separation of variables so as to see explicitly how they fit into the
Holder framework. First let us record the form of the operator L in the
polar coordinates (s, θ), s e [0, 1], y e Sk for the ball Bk+ι, and
θeSn'k'1:

As
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Now let 0 = μ\ < μ\ < μ\ < be the eigenvalues for -Ask with corre-

sponding orthonormal eigenfunctions <p0, φχ, , Ayφt = -μ'iφi, i € N .
Similarly, we let 0 = λ\ < λ] < and ψ0, ψx, be the eigenvalues

and orthonormal eigenfunctions for -Aθ on Sn ι . If u(s, y, θ) =

Σj ιaj ι(s)<Pj(y)Ψι{θ), t h e n f r o m ( 2 . 1 1 ) L u = 0 i m p l i e s t h a t L ι a i l =

0, where

(2-12)
2 2

The eigenvalues Â  and μj are nonnegative integers:

μ) q{q + k-\) for some ί € N ,

A7 = ^(^ + n - k - 2) for some q e N.

L̂ . 7 is an operator on [0,1] for which both endpoints are regular
singular points. The indicial roots at s = 0 are

(2.14)

where we have used (2.13). It follows from this that there is a unique solu-
tion a. ι to Lj {a. ι = 0 such that u. ι = a. ι(s)φj(y)ψι(θ) is regular at
s = 0. To calculate the indicial roots at s — 1 we shall use the expression
for Lj ι in terms of the coordinates (r, θ, y), r = 1 - s2 :

L. 7

(2.15)

From this it is easily seen that the indicial roots at r = 0 (i.e., 5 = 1 ) are

(2.16) yf = τ =

Let D/ = ( | ) 2 + ^ - ( « - 2 f c - 2 ) . By (2.13) Z^ = ( |

for some ^ e N . If Dι > 0, then y^ are both real and distinct and the two

approximate solutions of L.a = 0 are rΊι . Furthermore, yj < | < γ~}~

so near r = 0 only rγ' is in L2{r~k~x drdy). This implies that the
solution of Lj ιa], ι = 0 which is regular at Λ1 = 0 must have leading
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term rΊι in its series expansion near r = 0, for otherwise the function

Uj(r, y) = cij(r)<Pj(y) would have leading term rΊι in its expansion near

r = 0, hence would be an L2 eigenfunction for the Laplacian on Hk+ι

such an eigenfunction is known not to exist. On the other hand, we are

interested only in bounded solutions, which necessitates yj > 0. By the

expression for Dι recorded after (2.16) this happens only when q = 0,

i.e., / = 0, in which case we even have γ^ > 0. The corresponding

eigenfunction is rotationally symmetric with respect to the θ variables,

hence is an eigenfunction for the Laplacian on hyperbolic space. If Dι = 0,

then the two approximate solutions are rk/1 and rkl2 log r. It may be

shown that the solution regular at s = 0 behaves like r ' log r, but this

is unimportant for us. Finally, if Dι < 0, then yf are both complex with

real part | . This happens for at most finitely many values of /. Thus,

in all cases the unique function u. ^s, y, θ) = a. ι{s)φj{y)ψι{θ) which

solves LUj ι = 0, is bounded as s —• 1, and is regular at s = 0 satisfies:

0 < v < \ , Dχ < 0.

Let v0 equal either the minimum of the positive values of yj for those /

for which Dι > 0, or | if whenever Dι > 0 the corresponding γj~ < 0.

Also set

/ ( α 5 ί / ) = { M f C 2 ' M : L w = 0}

for 0 < v < uQ, 0 < α < 1. We have proved the following:

(2.18) Lemma. For 0 < a < 1 and v < v0, the set <f{a, v) is the

closure in c 2 ' " ' " of the set of finite linear combinations of the functions

a- 0(s)ψj(y), and hence is infinite dimensional.
We now must examine the map H of (2.6) and its linearization (2.7)

and (2.8) more closely. In particular, we must show that H is bounded
between the Holder spaces (2.9) and that its derivative is a continuous
map uniformly in (τ, w). This is not true for arbitrary diffeomorphisms
τ close to the identity, but requires an extra hypothesis. Let p be the
"defining function" for the equator Sk c Sn given by u2/{2~n), where

M4/(Λ-2) i s t h e c o n f o r m a i fa ctor relating the product metric g0 and the

round metric ~g on Sn\S .

(2.19) Proposition. The metric g{τ) = u4/{n~2)τ*~g = p~2τ*~g has scalar
curvature R(g(τ)) = Rn k + O(p) as p -> 0 if the metric τ*~g has unit

normal v along Sk agreeing with the unit normal V for ~g.
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Proof. This is very similar to a computation in [16]. In fact, we prove
the following general fact. Let M be a compact manifold and N a com-
pact submanifold. Let p be smooth on M away from N and suppose
that in Fermi polar coordinates around TV, p is a smooth nonvanishing
multiple of the polar distance function r (with respect to h) to TV. Define
a new singular metric g = p~2h. Choose now a full coordinate system
(r,y, θ), where y is a coordinate along TV and θ is the coordinate in
the polar sphere sn~k~ι. Then the sectional curvature of g evaluated on
any family of two-planes P(t) in Tγ{ί), where γ(t) is a path converging
to TV, has an asymptotic development in nonnegative powers of p, and
it converges to the constant term in this expansion. In two-planes in the
r, y directions it converges to -|V/?|2 , in two-planes in the θ directions
it converges to +|V/?|2 , and for two-planes in the mixed (r9y), θ direc-
tions it converges to 0. This is proved by a straightforward but lengthy
computation. Now sum over all two-planes to obtain the scalar curvature.
Clearly, R(g) ^ Rnk\Vp\2 as />->0.

To apply this to our situation, we need only compute \Vp\2 along S
with respect to the metric τ * ^ . But this equals 1 if the unit normal for
this metric v equals V. q.e.d.

To prove continuity properties of H we first introduce the space in
which the diffeomorphisms τ live. Because of the previous proposition
we shall require that the unit normal of τ*~g along Sk agrees with the
unit normal of "g. This is ensured for example by requiring that the
differential of τ is an isometry between the tangent spaces TzS

n and

Tτ^z)S
n for z e Sk. This is not a restriction, because all we care about

is the image τ(Sk). Let % be the set of C 3 ' α embeddings of Sk in
Sn with its natural structure as a Banach manifold. In a neighborhood
of the standard equator map in % choose a fixed extension operator,
which extends an embedding τ to a diffeomorphism of the whole sphere
Sn close to the identity which has the normalization condition specified
above. Then we regard this neighborhood of the equator map in I? as a
Banach submanifold of the group of all C 3 ' α diffeomorphisms of Sn we
shall still call this submanifold ί? .

(2.20) Corollary. The map H of (2.6) is a C°° map from a neighbor-
hood V of (1,0) in gχC2>a>u(Sn-k-ιxHk+ι) to C0>a>u(Sn-k-lxHk+l)
for v < vχ = m i n ( ^ 0 , 1).

Proof We first check that H: <M -> C 0 ' ^ . Because τ e C 3 ' α and
w e C 2 ' a ' " it is clear that H(τ, w) e. c £ ; α . To show that it has the
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correct decay properties we write H(τ, w) = H(τ, w) - H(1, 0). In
this difference, we collect the terms Δ . Jl+w)-A 1, cR(g(τ))(l+w)

- cR(g0), and cR(g(τ))(l + w) ( / 2 + 2 ) / ( / I-2 ) - cR(g0). The first of these
obviously lies in c°'a'u . The second and the third may be estimated
using Proposition (2.19). The point here is that R(g(τ)) = Rn k + O(p).
Using this in conjunction with Taylor's formula in the nonlinear expression
in w shows that H(τ, w) is in c ° ' α ' ί y . The proof that it is a smooth
map is very similar. For example, its first Frechet derivative is computed
in (2.7) and (2.8). The differential in w is obviously bounded between
these Holder spaces, and that its differential in τ is also bounded requires
an argument nearly identical to the one above. Note that the restriction
vχ < 1 follows from the fact that R(g(τ)) deviates from Rn k by a term
which is O(p). Finally, the estimates for all higher derivatives follow
similarly, q.e.d.

Finally we come to our main theorem:
(2.21) Theorem. Let 0 < v < vχ. There is a splitting of C2'a>lJ into

closed subspaces WθJ'ia, v) and a smooth map Φ from the intersection
^ n ( ? x /{a, v)) to W such that H(τ9 wχ, Φ(τ, wχ)) = 0. Here we
have written w = (w{, w2) in terms of its f(a,v) and W components.
Furthermore, all solutions of H(τ, w) in %ί are obtained this way. The
graph of Φ in & x C2'a'u x C°'a'u is a smooth Banach submanifold.

Proof This is proved using the implicit function theorem in the form
presented, for example, in [11]. In fact, we have already shown that H is
a smooth mapping from the domain into the range. It remains to identify
the splitting C 2 ' α ) 1 / = / ( α , i / ) θ ^ and to show that the differential of
H in the subspace W is an isomorphism onto c 0 ' " ' ^ . This is proved in
§4. In particular, this is the content of Theorem (4.55).

3. A local result

In this section we prove the rather general result that, at least locally,
there is no obstruction to finding complete, conformally flat metrics of
constant positive scalar curvature on Sn\A, where Λ is a /^-dimensional
submanifold of Sn with k < (n - 2)/2. For such a Λ and for σ> 0 let
N(σ, Λ) denote the σ-tubular neighborhood of Λ in Sn and N(σ, Λ)
its closure.

(3.1) Theorem. Let k < (n - 2)/2, 0 < a < 1, and let A c Sn be a

C2'a embedded k-dimension submanifold. Then there exists a σ > 0 such
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that ~N(σ, Λ)\Λ admits an infinite-dimensional family of complete metrics
conformal to the round metric ~g on Sn with scalar curvature identically
equal to Rn k>0.

Remarks. The proof of the theorem does not really require Λ to be
a submanifold of Sn but merely a submanifold of a Riemannian mani-
fold of constant positive scalar curvature. Also, the infinite dimensionality
of the space of solutions in the theorem will be made more precise later.
The boundary values of the conformal factor on N(σ, Λ)\Λ can be pre-
scribed as any sufficiently small C 2 ' α perturbation of a fixed function
Ψ0eC2'a(dN(σ,A)).

We now commence the proof of Theorem (3.1). In order to simplify
some of the later calculations we stereographically project Sn\A onto
Rn\Γ from some point P φ A and note that it suffices to prove the
theorem with RΛ\Γ in place of Sn\A and with the flat metric g0 on Rn

in place of the round metric ~g on Sn since stereographic projection is
conformal away from P. N(σ, Γ) now denotes the σ-tubular neighbor-
hood of Γ in Rn.

Let Ω be an open set in Rn . If u is a positive C 2 function on Ω such
that the metric g = u4^n~2^g0 on Ω has scalar curvature R(g) = n(n-l),
then it follows from (2.1) that u must satisfy the equation

/o ->\ A n(n ~ 2) (n+2)/(/ι-2) r, r,

(3.2) Δ w - h — κ — — L w )n = 0 , u>0,

on Ω, where Δ is the Euclidean Laplacian on R" . Thus to prove Theorem
(3.1), we must exhibit an infinite-dimensional family of positive solutions
of (3.2) with Ω = N(σ, Γ) that blow up fact enough near Γ to guarantee
completeness of the metric g.

For x e ~N(σ, Γ), σ > 0, let r = r(x) = dist(x, Γ). We will consider
r as a coordinate function on N(σ, Γ). We will also need to calculate the
local form of Δ on N(σ, Γ). First, fix σ small enough so that ~N(σ, Γ)
is identified with the disc bundle of radius σ in the normal bundle to Γ
in Rn that is,

where Ny(σ,Γ) is the ball of radius σ in the fiber of the normal bundle
to Γ at y .

Let y o e Γ . Then there is a neighborhood ^ of y0 in Γ such that

Ίf(σ, Γ) |^ = ~N%{σ, Γ) is equivalent to the trivial bundle Bn~k(σ) x ^ ,

where Bn~k(σ) is the ball of radius σ centered at 0 in Rn~k . Let us
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denote by F this bundle map:

F is a diffeomorphism and a linear isometry from N {σ, Γ) to Bn (σ) x

{y}, y e %. Thus, F gives us a local coordinate system for ~N{σ, Γ)

near y 0 .

Using polar coordinates (r, 0) on i?""^ as in §2 so that (r, θ, y) are
coordinates on Bn~k x Γ, we may define Holder spaces Ck'a'u(N(σ, Γ))
exactly as in (2.9). However, we shall use a slightly different, although
equivalent, formulation of the norms (2.10) for these spaces. Thus, we set

where the norm on the right is the C ' α ' norm restricted to the set
{(r, θ, y: s < r < 2s)} with respect to the underlying metric.

(3.3) Proposition. Let (x, y) e Bn~ (σ)x^f be the induced coordinates

for JV(σ, Γ) near y0. Then, for u e C2'a(N{σ, Γ)),

Au = A^-kU + A^ + e^ u + e2Vu

on Bn~k(σ)x%, where V2 and V denote the Hessian and gradient, respec-
tively, on N(σ, Γ) and e{ and e2 are C°'a sections of (Sym2 N(σ, Γ))*
and TN{σ, Γ) such that

for some constant Co independent of x, y, or σ and for any a, 0 < a <
1.

Proof Let y - (yχ, , yk) be coordinates for Γ in %, and let g.j

and gιj denote the coefficients of the metric on N(σ, Γ) relative to the
coordinates (JC , y) induced by F . For convenience, concatenate the in-
dices of x and y , so that the coordinates of x are x , 1 < i < n - k ,
and those of y are y., n-k+l<i<n. Then, a straightforward
computation shows that

ϊfj, i,j<n-k,

ϊu={ 0{r), i<n-k,j>n-k,

if. + O(r), i, j > n-k,

>B + *^( r)' *> J ^n~-k,

l[r), i<n-k,j>n-k,

£ + O(r), i,j>n-k,
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where #* , gj. and gιj , g^f denote the coefficient of the metric tensor

and its inverse for Bn~k and Γ, respectively. Now from the standard
formulas for Δ, V2 , and V in local coordinates, the required estimates
follow easily, q.e.d.

Since we will be finding exact solutions to (3.2) using a contraction
mapping argument, we must first have an approximate solution to this
equation on "N(σ, Γ)\Γ with which to start the argument. Let uQ denote
the function

where cn k = {(n-2k-2)/n){n~2)μ . Let H(u) denote the quantity on the
left-hand side of (3.2). Then u0 is an approximate solution to H(u) — 0
in the following sense.

(3.4) Proposition. Let 0 < a < 1 and (2 - n)/2 < v < (4 - n)/2.
Then there is a constant Cχ independent of a, v, and σ such that

i 2 r τ / λ l . ~ (4—n)/2—v

V #K)l < Cσ

Proof. Let y o e Γ and choose coordinates {x, y) as in Proposition

».3) near y. I

computes that
(3.3) near y. Using polar coordinates (r, θ) for x e Bn k(σ) one easily

λ(n+2)/(n-2)

and therefore, by Proposition (3.3), we obtain

\r2H(u0)\r-u < r2-v\eχ\ \V2u0\ + r2~v\e2\ |V«0|

< C2r
{A-n)l2-y < C2a

{"-n)l2-v

as r < σ . Similarly, one can have

which completes the proof.
Now, (wo)

4/("~2)go is easily seen to be a complete metric (near Γ) and
u0 is an approximate solution to (3.2) in the sense made precise above, so
the strategy is to look for solutions of (3.2) which are obtained by adding
to u0 a lower order term. Hence we linearize H about u0, and make a
Taylor expansion to get

(3.5) H(u + u0) = H(u0) + Lu + Q{u), u e C2'a>u(N(σ, Γ)),
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where v€((2- n)/2, (4 - n)/2) and

_ d

(3.6)

(n + 2)(n-2k-2) 2,
A r u,

rι d2

Q(U) = / ^ ^ ( l l o
^o dt

Let Lo be the differential operator Lo = r L. We see that H(u0 + u) = 0

for ueC2'a'v(N{σ,Y)) if and only if

(3.7) Lou = -r2H(u0) - r2Q(u).

We will look for solutions of (3.7) by inverting. Lo on an appropriate

C°'a'v and using the contraction mapping method to solve (3.7) as a

fixed point problem. Before we study the operator Lo we first estimate

r2Q{u) in C°'a'v.

(3.8) Proposition. For a e (0,1), v e ((2 - « ) / 2 , (4 - « ) / 2 ) ,
2

where C3 is independent of a, v , σ .
Proof From (3.6) it follows that

and we easily compute that

(3.9) r

2^H(u0 + tu) =

and so, setting p = p(v) = v — (2 — n)/2,

Similarly, one can check that

j2

0,a,u

2 n-2-2p . ^ i ι/,2

thus completing the proof

Thus, for u e C 2 ' " ' ^ , v e ((2 - Λ)/2, (4 - 2)/2), the right-hand side

of (3.7) is in C 0 ' " ' " and we can estimate it from Propositions (3.4) and
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(3.8). We must then understand Lo as an operator on C 2 ' α ' " . From
(3.6) it is clear that

is a bounded operator for any v e R, where C 0 ' β ϊ I / is the set {we

C2>β>I/(JV(σ, Γ)): M Ξ O on dΉ{σ, Γ)} . To understand asymptotics of

solutions to Lou = f we introduce eigenfunction expansions on S

and Γ. Thus, let (φ.(y), μ2.) and (^(0) , λj), 7 , / = 1, 2, , be or-

thonormal sequences of unit eigenfunctions

n-k-l ψι =

By Proposition (3.3) we can regard Lo near any point y0 e Γ as an

operator on Bn~k(σ) x Γ. Let u = Σ~/=i Uji(r)<Pj(y)Ψι(θ) Then by the
same procedure as in §2, we see that

where

/-3 m\ r id a Ί da i i i

(3.10) Ljja = r ~Tϊ + ̂ n~k~ l^~^ + ^λ~λι ~r ^ )

The indicial roots of L 7 at the regular singular point r = 0 are

Let D = D(n, k) denote the value of the discriminant in this radical when

1 = 0, i.e., when Λ,2 = 0, and define

-(n-k-2)/2, D<0,

VQ, D>0.

We note that when D < 0 and v < vn ,

has an infinite-dimensional kernel, for in this case for every j the equation
LjOa = 0 on the interval 0 < r < σ has a nontrivial solution a(r) such
that a(σ) = 0 and which blows up like ru° as r -> 0 furthermore,
this function is rotationally invariant on »Sn~fc~1, so it exists globally on
iV(σ, Γ). However, as in §2, we can still find a right inverse to LQ on the
appropriate Holder spaces. This is the subject of §4, where we prove that
there exists a bounded map G: C O α ί / -^ C 0

2 α ι / such that LQG = I on
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C 0 ' α ' I / (see Theorem (4.55)). Furthermore, given this map, it is easy to
solve the Dirichlet problem.

( 3 . 1 1 ) P r o p o s i t i o n . // 0 < α < 1, 0 < v < u Q ) φ e C 2 ' α ( < 9 7 V ( σ , Γ ) ) ,

and f e C°'a'u, then there exists a solution u = Gφf e C2'a'u to

the problem LQu = f on ~N(σ,Γ)\Γ, u = h on dN(σ, Γ) such that

, , , , ,
Proof. Choose a fixed bounded extension operator E from C2'a(d~N)

to compactly supported C 2 ' α functions on ~N(σ, Γ)\Γ and set G (/) =
Eφ + Gf - G(L0Eφ). The boundedness of G implies the necessary esti-
mate, q.e.d.

The following result implies Theorem (3.1).

(3.12) Theorem. Fix ae(0,l) and ue{(2~n)/2, min((4-/i)/2,i/0)).

Then there exists a number ~o — 7τ(n, a, v, Γ) > 0 such that for all

σ < σ, and h e C2'a(d~N(σ, Γ)) with \h\2a < σ, there is a solution

u e C2'a^(N{σ,Y)) of equation (3.7) with u = h on dN(σ,Γ) and

\u\2 a v < C4σ^~n)l2~v for some constant C4 independent of σ or v .

Proof First we note that this does imply Theorem (3.1). For given the

solution u provided by this theorem the function u + uQ satisfies (3.2) on

N(σ, Γ)\Γ and for σ sufficiently small, u+u0 > 0. Also, u is dominated

by u0 so that (u + wo)
4/(n~2)go is still complete.

Let K > 0 be a number to be chosen later, and let σ be small enough
that σ{"-n)l2-vK < 1. Let Bσ κ = {u e C 2 ' α ^ : |ιι |2 > α > | / < a^-n)i2-vK} .
For u e Bσ κ let T(u) denote the solution of

L0v = -r2H(u0)-r2Q(u) on]V(σ,Γ)\Γ,

v = h on dlV(σ, Γ)

given by Proposition (3.11). Then T(u) e C 2 ' " ' " and by Propositions
3.4 and 3.8 we have

\nu)\2^ < C 5 ( σ

( 4 - ) / 2 -" + \u\latV + σ) < C ^

since |M|0 < 1. Therefore, fixing K = C6 = Cβ(n, Γ, a), we see
that T: B ' -> B v . Of course B v is a closed ball in the Banach

space C 2 ' a > 1 / , and hence is a complete metric space. Therefore, if T is
a contraction, then it has a unique fixed point u, and this fixed point
satisfies (3.7) and the other requirements of the theorem. So it suffices to
show that T: B v —• B ^ i s a contraction if σ is sufficiently small.
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Let v{,v2e Bσ κ and let w = T(v{) - T(υ2). Thus,

L0w = r2Q(vx)-r2Q(v2) onN(σ,Γ)\Γ,

w = 0 on dN(σ, Γ),

and w = G{r2{Q{υ{) - Q(υ2))). By the boundedness of G

and so by the mean value theorem (cf. [11])
-1

It therefore suffices to show that the quantity

can be made arbitrarily small if σ is small.
Let vt = v2 + t(υι - v2). Then from (3.6) and (3.9)

TtQ{v<)= Io ^ 2 c 7 ( ^ ,

where vt - jι^t- Now, using the fact that \υt\ < C9r
v and l '̂l < C9r

v ,
we get

id tr -τ-(

r'v < (2n-4)/2+2ί/

„ (

< C10r
(n-2)l2+v

The last two inequalities use that v > (2 - «)/2 and r < oo. One can also
derive the Holder estimate similarly. Thus,

<Cnσ*

which finishes the proof of Theorem (3.12).

4. Linear estimates

Because of the degenerate nature of the linearized operators (2.7), (2.8),
and (3.6), the relevant surjectivity properties and estimates that we require
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of them for the arguments of §2,3 are not standard. In this section we
derive these properties in as straightforward a manner as possible.

As discussed in the introduction, there is a general framework for treat-
ing degenerate operators such as the Laplacian on Sp x H^ which devel-
oped out of the ideas in Melrose's paper [23] and his later paper with
Mendoza [25] concerning elliptic operators on compact spaces with conic
singularities. In this latter paper it is shown that such operators, which
are called totally characteristic, are Fredholm on certain weighted Sobolev
spaces for all but a discrete set of the weight parameter. We prove anal-
ogous results for the operators considered here, but as these operators
frequently have infinite dimensional kernels or cokernels, the best we may
hope to prove in general is that these operators, when acting between the
weighted Sobolev or Holder spaces introduced earlier, have closed range
for all but a discrete set of the weights. In particular cases, either the
kernel or cokernel may degenerate to a finite-dimensional space, in which
case the operator is semi-Fredholm or even Fredholm.

A bit more generally, our interest in this paper is with operators of the
form A + λ(x) on the manifold ^n\N . Here λ(x) is a smooth function
on Jt\N which tends to a constant value λ on TV and the metric g
on ΛΓ\N is of the form p~ h, where the metric h is smooth on all of

Jt and p is a smooth function on Jt\N which vanishes on N and
for which Vhp = 1 along N. Significant special cases of this are when
k = 0 or when k = n - 1. The former case corresponds to manifold with
isolated conic points which was studied in [25] and the latter corresponds
to a manifold with a "conformally compact metric" [16], of which the
hyperbolic space H" is a special case. Of course the prototype of the
more general situation is Sn\S with the metric (1.1). It is possible to
develop a quite general theory for elliptic operators of arbitrary order with
degeneracies of the type exhibited by Δ + λ(x). This will be taken up in
[19]. Here we develop a simple version of this theory which is applicable in
the special geometric situation described above. These operators warrant
interest because of the many geometric and physical problems in which
they arise.

Introduce coordinates (r, θ, y) on a neighborhood of TV in Jί, where
(r, θ) are Riemannian polar coordinates with respect to h around TV and
y is a local coordinate chart in TV. Introduce also the manifold M which
is obtained by taking the union of Jί\N with the spherical normal bundle
of N with the unique minimal C°° structure for which the lifts of smooth
functions from Jΐ and the polar coordinates above are smooth. Note that
M has a single boundary on which r = 0. It is straightforward to calculate
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(see [16], [15]) that

(4.1) A + λ(x) = L + E,

where

(4.2) L = r1d1

r + (1 - k)rdr + Δfl + r2AN + λ

will serve as a local model near r = 0 and

(4.3) E = r £ a . α , / ^ θ> y)(rdr)
sd^rdy)

β

j+\a\ + \β\<2

is an error term that we will eventually show is negligible. In (4.2) Δ^ = Ay

is the Laplacian on N with respect to the metric induced by h and Aθ

is the Laplacian with respect to the standard metric on sn~k~ι. (It is
the special dependence of L on y that makes the analysis of this section
simpler than in the general case [19].)

The ultimate goal in this section is to show that Δ 4- λ(x) is surjective
on certain of the weighted Holder spaces (2.10). However, it is much
easier to approach this operator through L2 methods. Thus, initially our
discussion will concern the behavior of Δ + λ(x) on the weighted Sobolev
spaces
(4.4)
rδHk{M)

= {u: (rdr)
j(rdj)a(d/u e rδL2{r-k~X drdθ dy), j + |α| + \β\ < k}.

Only later will we return to the Holder framework. The basic strategy is to
first analyze the operator L, which we regard as an operator on the space
R+ x Sn~k~ι xiV.We will prove that

(4.5) L:rδHk+2->rδHk

has closed range for all but a discrete set of values of the weight δ . This
is accomplished by constructing a generalized inverse G for L which is
bounded as a map

(4.6)

and such

(4.7)

that

LG

G:

= 1

rδHk
-+r*H

GL

where Pχ, P2 are orthogonal projections onto the cokernel and kernel of

L in rδHk and rδHk+1. G depends on δ and k, G = G(δ, k), and

does not exist (or is not bounded) when δ e Λ, Λ a discrete set described
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below. We then show that each G(δ, k) is bounded on the Holder spaces

(4.8) G : C * α ' I ' - > C * + 2 β l \

where v depends on δ . Finally we show that the error E is negligible on
these spaces, and so we may use G as a boundary parametrix for
on M. In conjunction with an interior parametrix, this shows that

A + λ(x):r H ^r H ,

has closed range for all but a discrete set of the values δ, v. Then it may
be determined for which of these values this map is surjective, Fredholm,
etc.

Introduce eigenfunction expansions in (θ, y). If

(4.10) Ayφj, = -μ)φj , Aθψ, = -λ*ψ,,

then on the (j, I) eigenspace, L is reduced by the Fuchsian operator

LJ,l = r2dr + (1 " k>dr ~ rlέj ~ λ) + λ-

As recorded earlier, its indicial roots are arranged in two families:

k
(4.11) s{(l) =

The importance of these exponents is that it may be proved that an arbi-
trary (locally defined) temperate solution of (A+λ)u = 0 has an asymptotic
expansion as r —> 0 with terms / / ( ' ( logr) p and distributional coefficients
in (θ, y). This is proved in the extreme cases k = 0 in [25] and k = n-1
in [18], and the general case appears in [19].

However, it is precisely the difficulty of establishing mapping properties
for Lj t which are uniform in both j , / that makes the analysis of L
subtle. This approach is used in [4] and [15], but the central difficulty is
that one requires knowledge of the asymptotics of Bessel functions of large
argument and order, and this, as Watson puts it, is "a problem of a more
recondite nature" [31]. Instead we consider the reduction of L only in
the variable y . Thus, let

(4.12) Lj = r2d2 + (1 - k)rdr + Aθ - r2μ) + λ.

This may be rescaled to a j-independent operator on the cylinder C =

R+ x Sn~k~ι by the substitution R = rμj :

(4.13) Lo = R2d2

R + (1 - k)RdR + Aθ-R2+λ.
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We first construct an inverse for LQ, rescale to obtain an inverse for L ,
and then sum to obtain an inverse for L.

The operator Lo is of totally characteristic type [23], but the presence
of -R , as in a Bessel equation of imaginary argument, drastically affects
its global behavior on C. We couple its known behavior near 0 from [25]
with an obvious extension of an ODE argument which appears in [24] to
describe this global behavior. Introduce the space

(4.14) &k's'p = {u: φ{R)u e R~δHk

b{C), (1 - φ(R))u e R'pHk{C)},

where φ e C0°°(RJ , φ = 1 near R = 0,

(4.15) Hk(C) = {u: (RdR)jd°u e L2(R~k~l dRdθ), j + |α| < k),

and H (C) is the usual Sobolev space based on differentiations by dR,

dθ and with respect to the measure R~k~ι dRdθ .

(4.16) Lemma. LQ: j^k+2>δ>P _> #Ί<>*>P-* isFredholmprovided δ £

A, where A = {±V\yJk2/4 + λ] - λ}.

Remark. If δ e A, then RSi{l) just fails to lie in R~δL2(R~k~{ dR dθ)
near R = 0 for some s^l) in the list (4.10). It is easy to prove that Lo

does not have closed range then.
Proof. LQ is bounded between these spaces regardless of the value of δ .

So it will suffice to construct parametrices Hx, H2 for which Hr. β>fk>δ>p+2

-> %rk+2>δ>P i s bounded and such that both errors Qχ = I - LQHχ and
Q2 = I - H2L0 are compact on β^k>δ>p for every k, p. The H{ are
obtained by joining together local parametrices near R = 0 and R — oo .
The existence of local parametrices in any bounded neighborhood of 0
is the principal result of [25] (cf. also [24]), and this step requires that
δ £ A. We note however that the construction of such local parametri-
ces is fairly easy on a "true" cone such as C, i.e., one which is a warped
product. For example, in this situation it is now feasible to introduce a
Fourier decomposition in θ and construct a parametrix for the family
of ODE's which are induced on the eigenspaces. The reason this works is
that the homogeneous solutions to these ordinary differential equations are
modified Bessel functions in which the spectral parameter appears only in
the order but not in the argument, so that uniform asymptotics are easily
obtained. Constructions of this type appear in [5]. More sophisicated ar-
guments using the Mellin transform in [25] seem to be required to prove
the refined regularity results for totally characteristic operators which we
need later.
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For the other case we slightly modify an argument from [24]. Consider
the partial principal symbol of Lo in R:

(4.17) σ(L0)=Aθ-R2(\ζ\2 + l).

As an operator on L2(Sn~k~ι), σ(L0) < -R2 , hence \\σ{L0)~ι\\ < l/R2 .
So we define a parametrix for Lo near infinity by

(4.18) H^f) = JeiRξσ(Lo)-lf(ξ, θ)dξ.

Clearly

is bounded, and furthermore

is compact for any A:, p . This last assertion rests on the fact that K is

a finite sum of terms, each of which is both smoothing of order at least

one and decaying at least like l/R. Thus, K: J?>k>δ>p _> ̂ k+ι,s,P+ι ^

^ k i δ ' p

 9 and the latter inclusion is compact. The same construction gives

a left parametrix. Finally, cut-off functions may be used in the usual way

to combine these local parametrices to get a global parametrix on all of

C. But the existence of bounded left and right parametrices with compact

error terms implies that LQ is Fredholm.

(4.19) Corollary. If u e βfk+2>δ>p« far some k,po,δ £ Λ, and

Lou = f, where f e ^ k ' δ ' p for every p, then u e J^k+2>δ>p far ev-

ery p. If f e β?k>δ>p» far every k, then u e βrk>δ>p«+2 far every k.

Proof Apply the parametrix H2 to Lou = f to conclude that

Since Q2: J^k'δ'p - ; r * + 1 ' * ' * + 1 and H2: ; r * + 2 * * + 2 , the result fol-
lows.

Because LQ is Fredholm independently of p, the index of LQ is in-
dependent of p. Hence by this corollary, since the kernel of LQ is in-
dependent of p, so is the cokernel. (This may also be seen by using the
argument of the corollary for the adjoint problem.) However, the index
does change as δ crosses over elements of the excluded set Λ.

Standard arguments now imply the existence of a generalized inverse
Go for Lo, i.e., an operator satisfying

(4.20) GQL0 = I-Pl9 L0G0 = I-P2
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between any particular choice of the weighted Sobolev spaces %f ' 'p~2 ->
^k+2,δ,P ^ g £ A H e r e p^ a n d p^ a r e the orthogonal projections in
^k+2j>p a n d 2,k,δ9p-2 o n t o t h e k e m e l a n d c o k e r n e l o f L Q N o t e t h a t

although GQ does not depend on k , it does depend on p , if only through
the spaces on which the Pt are orthogonal projectors, and of course it also
depends on δ. We shall regard Go as an integral kernel:

(4.21) Gof(R, θ) = JGO(R, Θ9R9 θ)f(R9 θ)R-k~l dRdθ,

with similar expressions for Pχ and P2 . Note that the identity / is rep-
resented by the Schwartz kernel Rk+ιδ(R - R)δ(θ - θ), the factor Rk+ι

being included to compensate for the R in the measure. Because GQ

is an inverse for the totally characteristic operator LQ , it has very regular
behavior as either R, R —• 0. This structure is described in great detail
in [23], [24], [25] (cf. also [9, §18.3]. Thus, we merely quote results which
we shall require later.

The most important property of the distribution Go on C = C x C
is that it is the pushforward of a simpler distribution on a slightly more
complicated manifold. This manifold is the manifold with corners Cb

obtained by "blowing up" C 2 along its corner {R = R = 0} . Invariantly,
this process consists of replacing this corner by its interior normal bundle,
which is a quarter circle bundle over dCxdC, and endowing this set with
the unique minimal differentiable structure for which polar coordinates
in the variables R, R are smooth. c\ is again a manifold with three
hypersurface boundary faces: the lifts of the faces defined by R = 0 and
R = 0 on C 2 and the new front face (the spherical normal bundle). Let
the lifts of {R = 0} , {R = 0} be called the left and right faces and have
defining functions px, p2, and let the front face have defining function
Pff. C\ also has two corners (codimension two boundary faces) defined
as the intersections of the left and front faces, and of the right and front
faces. We shall encounter a similar construction for the full parametrix
later when the variable y is reintroduced.

It is proved in [25] and [24] that the local parametrices Hχ and H2

for Lo near R = 0 used earlier may be described as the pushforward
under the natural "blow-down" map C 2 -• C 2 of distributions, which we
also call Hi, which have classical conormal expansions at the lift of the
diagonal {R = R, θ = θ} to C% and along the boundary faces {pχ = 0} ,
{p2 = 0}. They are smooth up to the front face away from the diagonal
and are extendible across the front face near the diagonal. For information
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about distributions with classical conormal expansions, see [9, § 18.2]; these
are often also called polyhomogeneous distributions, and their expansions
are called polyhomogeneous. We shall frequently use these distributions
here. Near a boundary with defining function p these expansions have
the form

P{Sj)

&{Sj)^κx> p=0

where z is a coordinate chart in the boundary, and all coefficient functions

are smooth. We shall denote by ^ ^ the subclass where the exponent

s0 of lowest order equals v . We shall also use the notation s/K = srf"h'°
to denote the space of such distibutions with no log factors in the term
of lowest order. The most important consequence of the fact that the
inverting kernels live in these spaces is that they have definite rates of
decay at all boundary faces. We shall deduce this structure for all the
operators with which we are concerned here.

Before we proceed further, it will be useful to have the explicit for-

mulas for the transposes L*o , GQ of the operators Lo, Go . Of course,

the transpose is taken in a particular one of the weighted L spaces.

Rather than determine the transpose on an arbitrary one of these spaces,

we shall restrict attention to only those spaces ^k'δ>p for which p =

δ - 2k for k G N . In particular, our fixed L2 space will be JΓ0'*'3 =

R~δL2(R~k~ι dRdθ). Because Lo is symmetric when δ = 0, the adjoint

of Lo in R~δL2 is

(4.22) L[ = R-2δL,R2δ.

On the other hand, using the expression (4.21), the adjoint of Go on this
space is

(4.23) G [ { R , Θ , R , Θ ) = R ~ 2 δ G 0 ( R , Θ9R, θ ) R 2 δ .

Of course, Pχ, P2 are orthogonal projections in R~δL2 , so that

(4.24) Pl(R,θ,R9 θ) = P+R, Θ,R9Θ), i = 1, 2.

Now we turn to the determination of the exact behavior of Go at infinity
and at the boundary faces.

(4.25) Lemma. PftR, θ,tR,θ) and GQ{tR, θ,tR,θ) are rapidly

decreasing as t —• oo locally uniformly in (R, θ, R, θ) for Go this is

only true if (R, θ)φ{R, θ ) .
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Proof Since the P. are finite rank projections onto the kernel and

cokernel of LQ, their rapid decrease is guaranteed by Corollary (4.19)

applied to both Lo and L*o . To deal with GQ, fix R Φ R and con-

sider the funct ion F(t,θ,θ) = GQ(tR9 θ,tR,θ). T h e n , since L[G[ =

R~2δL0G0(Rj, θ)R2δ = I-P2 so t h a t

(4.26) L R Θ ° O ( R , Θ , R , Θ ) = I - R 2 δ P 2 ( R 9 Θ , R , θ ) R ~ 2 δ ,

where L ~ 0 9 L — represents L Q act ing in ei ther (R,θ) or (R,θ), it
follows t h a t

(t2d2 + (1 - k)tdt+ AΘ+A~+ 2λ - t2R2 - t2R2)F{t, θ, θ)

= (LRΘG0)(tR ,θ,tR,θ) + (L~~G0){tR ,θ,tR,θ)

= -Pχ(tR,θ,tR,θ)- R2δR~2δP2(tR,θ,tR,θ)9

the delta functions, which represent the identity, are zero because (R, θ) Φ
(R,θ). But for fixed R, R this is an equation of the form LfF = G,
with G e / ' ' for every k, M. The proof of Lemma (4.16), hence
also of Corollary (4.19), work perfectly well for the operator L1 and so F
is rapidly decreasing in t.

(4.27) Lemma. P.(R9 Θ,R,Θ) and G0{R, Θ9R9Θ) are rapidly de-
creasing as i? —• oo locally uniformly in (θ, R,θ), R>0, and as R-+ oo
locally uniformly in (R, θ, θ ) , R>0. Furthermore, the coefficient func-
tions in the asymptotic expansions for the P( and Go as R —• 0 are rapidly
decreasing as R -> oo, and vice versa.

Proof Both assertions are obvious for the P. from Corollary (4.19)
and, using this, the proof for Go is very similar to that in the previous
lemma.

We shall wait to determine the leading exponents in these asymptotic
expansions.

The next step is to rescale Go back to a generalized inverse for L., and
thus obtain the full inverse for L. Recall that L. is obtained from Lo

by the substitution R = rμ^ . Since from (4.20) and (4.21)

L 0 G 0 = R M δ ( R - R ) δ ( θ - θ ) - P χ ( R 9 Θ 9 R 9 Θ ) 9

this rescaling transforms this equation into

L.G^rμ., θ, fμ., θ) = μk/+xδ(r - f)δ(θ -Θ)-Pχ(rμj, θ, fμj , θ)
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here we have used that δ(R - R) is homogeneous of degree - 1 . This
forces the definition

(4.28) Gj(r,θ9ϊ9θ) = μJkG0(rμj, θ, rμ., θ),

so that Gj satisfies

(4 29) LjGj = rk+ιδ(r-r)δ(θ-θ)-Plj(r9θ,r9θ)9

GJLJ = r

k+lδ(r-r)δ(θ - Θ)-P2j(r9 Θ9f9θ)9

where

P u { r 9 Θ 9 f 9 θ ) = μ ^ P f r μ . 9 θ 9 f μ j 9 θ ) 9 i = 1 , 2 .

Finally, we define the full inverse for L to be

(4.30) G{r9θ9y9r9θ99)

with similar definitions for the projectors P.(r, θ, y, r, θ, y) in other

words G = {-Ay)~ x GQ(J-Ayr, θ, J-Ayr, θ). It remains to prove

that G is actually bounded between the weighted Sobolev spaces (4.4).
/? 9 A ^^ 9

(4.31) Proposition. G: r L —» r H is bounded provided δ fi Λ.

Proo/ It suffices to prove that G is bounded between rδL2(r~k~~ιdrdθ)
and {u:urdru, r2d2u, dθu, d2u, rμ.u, r2μ2u e r~δL2} = r~δH2 uni-
formly in j . It is easy to check that the rescaling transformation

f(R, θ) -> f(r, θ) = μδ-k/2f(μjr, θ)

is an isometry between R L and r~ L . Then, a change of variables

in (4.20) shows that G-f — Gof, so with all norms in either RΓδL2 or

rδL2:

(4.32) \\Gjf\\ = \\GJ\\ = \\Gof\\ < C\\f\\ = C\\f\\,

with C the norm of Go: R~δL2 —• R~δL2 , hence independent of j . The

same argument can be applied to rdrGj , r2d2G , djJGj, rμ2Gj, r2μ2Gjy

since all of these operators are simply the rescalings of RdRGQ, , R2G0,

all of which are bounded on R~δL2 since Go: &°>δ-δ -> ̂ 2 5 < M ~ 2 . This

sort of argument is taken from [16]. q.e.d.

An identical argument shows that Pχ, P2 are also bounded on rδ L2 in

fact, using Corollary (4.19), P.: rδL2 -• /^°° . In addition, by a change

of variables, PijoPij = Ptj , i = 1, 2 for all , so that P{, P2 are still pro-

jectors. Notice also that unless Pt(R, θ, R, θ) = 0, P.(r, θ, y, r, θ, j>)

has infinite rank.
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We have now proved that

(4.33) LG = I-P{, GL = I-P2.

By commuting derivatives through the argument of (4.31) we obtain that

(4.34) L: rδHk+2 -> rδ Hk, G: rδ Hk -> rδ Hk+2, P.: rδHk - / ί / * + /

are all bounded for every k , I. In particular, L has closed range whenever
δ $ A.

The distributions G, P( naturally live on a "blown up" version of the
product T xT, where T = C x N. This is defined in a manner analogous
to that used earlier in defining M and C^ . The product T is a manifold
with a corner, and its corner has a natural submanifold which is defined
by S = {r = f = 0, y = y}. We define Γπ

2 to be the union of T\S
and the spherical normal bundle of S in T , endowed with the minimal
differential structure for which the lifts of smooth functions on T2 and the
polar coordinate functions about S are smooth. In fact it is convenient
to use these polar coordinates from time to time. Thus, let

r2 + \y-y\2, ω = (r, y - y, f)/pff = (ω 0 , ω , ωk+ι).

A full set of coordinates near S are {Pff, ω, y, θ, θ). Γ 2 has three
bounding hypersurfaces which are defined by {ω0 = 0}, {ωk+ι = 0},
and {pff = 0} in analogy with c\ we shall let px = ω0 and p2 =
cok+ι. Because of the rapid decrease of Go, Pi proved in Lemma (4.25),
the distributions G, P. are smooth in all variables in the interior of T2

(although G still has a singularity along the diagonal) because of the rapid
convergence of the sum (4.30). Also, G and the P. still have asymptotic
expansions as pχ —> 0 and p2 —• 0 because of Lemma (4.27). There
are more general arguments which would guarantee the existence of these
asymptotic expansions [24], but the existence of these expansions is not
subtle in the present circumstances. Because we know the boundedness
properties (4.34) we can determine the exponents in the leading terms of
these expansions.

(4.35) Proposition. P{, P2, and G are polyhomogeneous on all faces of
T2 . These distributions are smooth in the normal variable pff to the front

face and Pχ, P2 are smooth in all variables there. At the side faces these
distributions have polyhomogeneous expansions, which may be described as
follows: Pχ e $/phg at both side faces with leading coefficient an eigenfunc-
tionfor Δ^, or Δ^, and with s one of the indicial roots in the list (4.10),
9i(s) > I + δ P2e Λfphg23 with leading coefficient again an eigenfunction
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in θ, θ and with 9\(s) > \ + 3δ, s α« indicial root; on the left face either

G e srf*hg) K(s) >\-δ or Ge ^ , 9t(j) > § + <J, and on the right

face either G e sfp

s

hg, 1Λ(s) > \ + δ or G e s/*^, 9ΐ(ί) > \ + 3δ in

each of these cases the leading coefficient is an eigenfunction in either θ, θ

and s is an indicial root. Here we have used the variables r, f instead of

pχ, p2 as defining functions for these side faces for simplicity.

Proof The existence of these expansions and the smoothness of the co-

efficients was commented on earlier. The leading term in any one of these

expansions solves the relevant equation to first order, so the coefficient of

either r or f is an eigenfunction in either θ or θ with the exponent

related to that eigenvalue. It remains only to determine the precise values

this leading exponent may take. First of all, since Pχ, P2 are projectors

on r L their integral kernels are symmetric; hence for them it suffices

to determine their leading terms only on the left face. Since LPχ = 0

and LιP2 = 0, the leading exponent in each of these operators must be

an indicial root for L or Z/ = r~ Lr , respectively. Hence for P{ the

leading exponent is some indicial root in the list (4.10), and for P2 it is

s - 2δ , s as in (4.10). But now we must use their boundedness on rδL2 :

it is proved in [16] (see also [17], [24]), that in the case where there are

no 0-variables, an operator of this type which is in fl^/' a t ^

and Afp

b

h'f
r at the right face are bounded on rδI? provided

(4.36) 9t(α) + δ > I , j

The presence of the additional θ variables does not alter this criterion.
Applying this to Pχ we see that the indicial root must satisfy fΆ(s) > | +δ ,
and for P2, 9ΐ(ί) = M(s) - 2δ > \ + δ => 9t(j) > \ + 3δ. Then, since
by (4.33) LrθyG = -Pχ and L^G = -r~2δr2δP2 near the two side faces,
either the leading terms of G at these faces must be annihilated by L,
in which case the leading exponent is an indicial root and there are no
logarithms in the terms of lowest order or L applied to the leading term
must match the leading term of either -Pχ or -r~2δr2δP2, so that the
leading exponent must be the same and the lowest order terms for G
would require a logarithmic factor. Finally, using (4.36) again gives lower
bounds on these leading exponents. This proves the proposition in all
cases.

We come now to the Holder estimates for L. First we prove an a
priori estimate for an arbitrary solution of Lu = f. In this the ck+2'ayl/

norm of u is estimated in terms of the ck'a'u norm of Lu and, for
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example, the C 0 ' 0 ' " norm of u. This estimate is quite simple and uses
only the scale-invariant nature of the Holder spaces (2.5) and the scale-
invariance of L. Such estimates appear also in [7]. We should note that
it is impossible to prove an a priori estimate which would imply that for
a fixed / an arbitrary solution u to Lu = / decays at the same rate as
/ . In fact, it is possible to find solutions to Lu = 0 for which u has
arbitrarily bad growth in some thin set which converges to the boundary.
However, from the theory developed earlier in this section, if u G rδ L1

and Lu — 0 then u e rδHk for any k. A scaling argument involving
the Sobolev embedding theorem now shows that u e Ck'a'δ for any k.
The second step in dealing with the properties of L on Holder spaces is
to decide for which f e ck'a'u there exists some solution to Lu-f for
which u e C + α z / . Of course the natural choice for a solution were it
to exist is the solution u = Gf, where G is the generalized inverse of
L with respect to a particular δ. However, first we prove the a priori
estimate.

(4.37) Proposition. Given any k,a,u if Lu = f, where u e Ck+2'α'",

so that feCk'a'v, then

Proof. Use the usual local coordinates (r, θ, y). Partition T up into
boxes B. which have the property that they approximately equal the sets
{dJ2 < r < 2di, \y - yo\ < dt} , and choose slightly larger boxes E D Bi

which have dimensions in r and y larger than B by a fixed factor 1 + ε .
For each / choose an affine map f. (relative to these coordinates) which
carries a fixed box E = {^ < r < 3, \y\ < 2}, say, to E . Now it is
easy to calculate that f*Lu = Lf*u for any u, and furthermore if u is
a function on E, then

Now by standard elliptic

(4.39)

Use the notation ui =

theory

M / c + 2 a,v

δ"\fiU\k,a = \U\k,

u\E , and υt = u\

^ = S U P \Ui\k+2, a,u

= supd'f\f*ui\k+2

(4.40) '

which is the desired inequality.
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To accomplish the second step in the analysis of the behavior of L
on Holder spaces, as discussed earlier, it will suffice to prove that the
generalized inverse G and the projectors P. are bounded on these spaces.

(4.41) Proposition. For any δ φ Λ, the corresponding operators G,
Pi are bounded between Ck'a'u - Ck+2'a'u and Ck'a'u -+ CUa*υ for
any k, a, I, and for v - | -δ. Thus, the set Λ' of omitted weights is
precisely the set of real parts of the indicial roots (4.10).

Proof We give a proof only for G, the proof for the Pi being even
simpler. First write G = Gf + G" , where G' is supported in the set

(4.42) {±<r/r<2,\y-y\<pff},

hence contains the singularities of G along the diagonal, and Gn is smooth
on the interior of 7^ and carries the conormal singularities of G along
the sides given by (4.35). The proof that G' has the correct boundedness
properties is very similar to the argument in the previous proposition.

To see this we must first represent the action of G'u as an integral. For

this it is most convenient to use projective coordinates (r, θ, y, t, θ, w)

on Tπ , where t = f/r and w = (y — y)/r. It is easy to see that these are

smooth in the interior of T% and up to the front face and the side face

pχ = 0, but are singular at the other side face. The fact that G! is the

pushf orward of a distribution on 7^ means that there exists a distribution

g'(r,θ,y,t,θ,w) such that g is supported in

(4.43) {\ <t<2, \w\< 1}

and

(4.44) G'U= ί g'(r, θ9y,t, θ, w)u(tr, y - wr, θ)Γk~l dtdw.

In this formula we have used the fact that r = tr and y = y - rw . Now,
use the same partitions of T into boxes Et and Bt and the same affine
maps fi as in Proposition (4.37). The same reasoning as in (4.40) may
be used. Thus

(4.45)

< supC,.<|^M| t j , < supC.-lKl* B,
i i '

The first inequality holds because each f?Gf is a pseudodifferential op-

erator of order - 2 , hence is bounded between C ' α -> C + ' α on the
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fixed box E. The desired estimate will hold if we show that the Cλ are
independent of /. But this is true because the family of pseudodifferential
operators f*G' on E is uniformly bounded in Ψ~ (E), which in turn is
a consequence of the smoothness of G in the parameter p^.

For G" we argue in two steps. First we need to show that G"u is
defined for any u e <g?k>a'1/. Using the integral representation (4.44) it is
clear that we only need check that if u = / then the integration there is
well defined. Since the kernel of G ~ f as f -> 0 (i.e., on approach to the
face {p2 = 0}), with s an indicial root, s > § +δ by (4.35), i.e., G" ~ ts

as t -• 0, we need to check that /J j s + I / - f c - 1 dt < oo. But j + z/ - fc > 0,
so this is true.

The second step is to prove that if ueCk'a'u , then G"u e ck+2'a'ι/.
First note that it will suffice to merely prove that G"u € C°'°'v , because
in fact any number of the derivatives rdr, rd , dθ , etc. may be applied
to Gπ and the resulting operator will always have the same form as G"
with the same asymptotics at all boundaries. Thus, we will actually have
G"ueCl'β'v for any l,β,v. Now | fG"u\ < J \G"\ \U\ . Since |(?" | is

either itself polyhomogeneous (which is the case if G" does not change
signs near the boundary) or in any case is always dominated by a new
kernel G which is polyhomogeneous with the same leading exponent, and
since \u\ < Crv , it is clearly enough to show that | / Grv\ < Crv . For this
we appeal to a general proposition in the appendix to [5]. This states that
if u is polyhomogeneous and if the integration in / Gu is defined, then
/ Gu is polyhomogeneous. Furthermore, the exponent in its leading term
may be computed from the leading exponent in the expansion for u and
the leading exponents in the expansions for G at the faces {p{ = 0} and
{Pff} = 0. Rather than state this proposition in full generality, we shall
just record its implications in the present circumstances. Here G e sfp

s

hg

with fΛ(s) > f - δ = v on the side face, G e ^p°h on the front face, and
u = rv , so this proposition implies that / ~G? e ^ n ( ί / ' 5 ) = s/^hg . We
remark that if v £ Λ', then it might occur that v = s and this proposition
would then imply that / Gf e srfph^ . This would not be enough to guar-
antee Holder boundedness. We have proved that G": Ck'a'u -> C°'°'"
is bounded.

Throughout this proof we have been only thinking of the behavior of
G near zero, but this boundedness statement also incorporates behavior
near oo. From (4.24), (4.26), and (4.30) it is clear that Gu decreases
exponentially as r —> oo . Thus there are no problems here.
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Finally, putting these steps together we arrive at the conclusion G:
ck,a,v ^ ck+2,a,u ^ ^ c o m p j e t e s Λ e a r g u m e n t .

(4.47) Corollary. If v £ A' and f e s/^hg is in the range of L on

C2'a'u, then there exists a solution to Lu = f, where u e srfv

h .

(4.48) Corollary. If δ £ A and v $. Af, then since Pχ and P2 are
bounded on both the Sobolev and Holder spaces, there are closed subspaces
V, Vχy W, Wχ for which

rδHk+2 = Vθ(ker LΠrδHk+2),

)

Ck'a'" = Wιe(cokerLnCk'a'")

and such that L\V-+Vχ and L.W —• Wχ are both isomorphisms.
We may finally return to the original problem.
(4.50) Theorem. The maps

A + λ(x): r H —> r H ,

+ λ(x): C -* C

on M have closed range iff δ £ A and v £ A'.
Proof A suitable sequence of truncations of u = rv provides a coun-

terexample to closed range in either case if v e A'.

Thus, suppose δ £ A and let v = | - δ £ A'. Let G be the gener-

alized inverse for L corresponding to this choice of δ . We first note the

following fact. For any ε > 0, let ck'a'u denote the closed subspace of

functions in ck'a'v with support in r < ε . Then

by unique continuation. Also, it is an easy exercise to check that the gap
between ck+2'a'v and kerL in the sense of [10] is positive. From this it
is easy to check that L\rk+2.a.» has closed range. In particular,

* Oί . I

and by a scaling argument C is independent of ε . A similar fact is true
in the Sobolev setting.

To prove that A+λ(x) has closed range, it suffices to show that A+λ(x)
restricted to functions supported close to the boundary has closed range,
for standard elliptic theory ensures that this property holds for functions
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supported in a compact set of the interior. But functions supported in
{r < ε) may be regarded as living on the space T, so that the spaces

ck+2,a,v a n d t h e o p e r a t o r L m a k e s e n s e B y ( 4 j ) ? A + λ(χ) = L + E,

so using (4.51) we have

for ε small enough, u e ck+2'a'u , and using (4.3). Absorbing the second
factor on the right into the left side of the equation gives an estimate
which guarantees that Δ + Λ, has closed range on c*+ 2»α ' I /

 ? a n d hence on

ck+2,a,v τ h e a r g u m e n t i n r

δHk+2 is identical, q.e.d.

Just as after Lemma (4.16), we may now conclude that there exist gen-
eralized inverses for Δ + Λ,(JC) either from rδH2 -> rδL2 , δ φ Λ, or from
C 2 ' " ' " _> ζθ,a,v ^ ^ ^ ^/ j n p a r t j c u i a r ? for a n y sucγί § ^ v there are

projectors onto the kernel or cokernel of Δ + λ{x) in r H , C ' α ' ^ , or

/ L 2 , C ° ' α ' " , respectively.
Fix δ £ A and set v = <J + | . Let ^ denote the generalized inverse for

Δ + A(x) on r H , and ^ . the two projectors. Although these projectors
depend on both k and δ, by elliptic regularity if 9ΰ

i vanishes for a
particular value of δ and k then it vanishes for that δ and for every k .
We shall now show that these operators have a structure identical to that
of the operators G and P., which correspond to L. It is far simpler to
determine the injectivity and surjectivity properties of Δ + λ(x) on the
Sobolev spaces. But once we know that this operator is surjective, say,
on a particular Sobolev space, then the projector on the cokernel, ^ ,
must vanish. Since L& = I and 9 is also bounded on the appropriately
weighted Holder space, we can then conclude that Δ + λ(x) is surjective
on this Holder space.

As might be expected, 9 and the 3^i are pushforwards of distributions

with good regularity properties on M2, the blow-up of M x M around

the submanifold S = {r = r = 0,y = y} in its corner. M2 has three

boundary faces with defining functions px, p2, Pj j- as usual.

(4.52) Proposition. The distributions & and 3ΰ

i are pushforwards of

distributions (with the same names) on Mπ . & is smooth away from the

side faces and the lift of the diagonal and has polyhomogeneous expansions

at these submanifolds. The 3ϋ

i are smooth in the interior of Mπ and

have polyhomogeneous expansions near the side faces. The expansions for

all of these distributions are exactly the same as for the operators G and
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Pi corresponding to L which were obtained in Proposition (4.35). In

particular, if these operators are bounded on r H , then they are bounded

on Ck'a'" for v = δ + \.
Proof. Although it is possible to give an argument based on the fact that

Δ + λ(x) is very close to the operator L near r = 0, we shall appeal to
a more general line of reasoning which will be discussed at length in [19].
It is first necessary to argue that 9 and the ^ have the stated regular-
ity properties. These properties in the interior and along the diagonal are
obvious; the only issue of course is whether they are polyhomogeneous
along the side faces. This may be proved by combining the Mellin trans-
form arguments of [18], [24] with the polyhomogeneous behavior of the
operators G and P corresponding to L. Once this is known, the rest
of the argument is arithmetic: the exponent of the leading term in the
expansions at any one of these faces is an indicial root for either Δ + λ(x)
or its adjoint. Since the indicial roots for Δ + λ(x) are exactly the same
as for L, this computation is the same as in (4.35). The boundedness
criteria (4.36) may then be applied to narrow the possibilities. Finally, the
fact that these operators are bounded on the appropriate Holder spaces is
proved exactly as in Proposition (4.41). q.e.d.

It is not possible to give a completely general argument concerning
whether either one of the projectors &. vanishes for a particular value
of δ . However, if for a particular δ the projector Pi corresponding to L
equals zero, then it may be shown that the projector &. corresponding to
Δ + λ(x) is at most of finite rank. For example, if Pχ = 0 so that LG = / ,
then G may be used as a right parametrix for Δ+λ(x) near the boundary,
hence Δ + λ(x) has at most a finite-dimensional cokernel. However, it is
very difficult to rule out finite rank eigenvalues at 0. We shall not concen-
trate on this general question here. Instead we present complete results
for the special cases which we required earlier in the paper.

Let us first consider the case where the operator is Δ + λ on the hyper-

bolic space H * + 1 . Here there are only two indicial roots:

k\2

 3

If λ < k2/4 then s{, s2 are both real and s{ > s2. If λ > k2/4 then

sx, s2 both have real part | . Thus Λ = {±yk2/4 - λ} in the first case

and Λ = {0} in the second. Setting δ0 = ίHy (/c/2)2 - λ we also define

Λ' = { | ± δQ} for convenience we set vQ = | ± <J0 .
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(4.53) Proposition. Δ + λ is injective on rδ L2 when δ > -δQ and

surjective when δ <δ0, δ Φ -δQ . Similarly, it is injective on C 2 ' α ' " when

v > I/Q and surjective when v <v^, v Φ v~ . In particular, A + λ is an

isomorphism rδH2 - rδL2 when -δQ < δ < δQ and C2'a'v - C 0 ' " ' "

when I/Q" < v < v^ .

Proof. A + λ is injective on r i when δ > -δ0. This follows from

the parametrix construction of [17] and the Mellin transform arguments

of [18]. In fact, if (Δ + λ)u = 0, u e rδL2 , then u e rδ°L2 if δ > -δQ

and u G rδ L2 for all δ if δ > δ0. In either case we conclude that

u G L (H ) and hence u = 0 by the well-known assertion that the

Laplacian on hyperbolic space has no point spectrum. Hence έP2 = 0

when δ > -δ0 , and so &(A + λ) = I, where 9 is bounded on rδHk for

any k . But for v - δ + | these operators are also bounded on C2'a'u ,

and since Δ + λ has a bounded left inverse, it must be injective. Now the

dual of Δ + λ (as an unbounded operator) on rδL2 is Δ + λ on r~δL2 .

Δ + λ is surjective on r L precisely when it has closed range and its dual

has no kernel. Therefore, 9°x is trivial if δ < δ0 and {A+λ)& = I, where

& is bounded on rδL2 . This 9 is bounded on c 0 ' " ' ^ , hence Δ + λ is

surjective when z/ < i/J", v φv~ . q.e.d.

An identical argument works also for Δ + A on sn~k~ι x H ^ + 1 . The
main fact that needs to be established is that Δ has no point spectrum
when acting on L2(Sn~k~ι x H^ + 1 ) . Thus, for the same values of δ0 and
v^ we have

(4.54) Theorem. Δ + λ is injective on r L when δ > —δ0 and on

C2'a'v when v > v~. It is surjective on rδL2 when δ < δ0 and on

C ' α ' ^ when v < v^. Here v0 and δ0 assume the same values as in

(4.52).
Finally, we come to the last case of interest in this paper. This is the

situation which arose in the analysis of §3. Changing notation slightly,
the linear operator L of (3.6) is the sum of a Laplacian on a tubular
neighborhood ^ of the submanifold N c Sn and a singular term of
order zero, λ/r2 . Here r is the polar distance function from N. Write
Δ in polar coordinates as described there, and multiply the operator L by
r2 . The resulting operator Lo may be expressed as

Λs
(Λ + 2)(n-2fc-2)
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where E is of the form (4.3), hence is of lower order in our calculus. The
indicial roots for Lo are

± 2 + k-n . Uk + 2^2

where as usual λι are the eigenvalues of —Asn-k-ι . Let δι be the real part

of the square root in the expression for sf , and set vf = 9\sf .

(4.55) Theorem. Let the operator Lo act on functions on the geodesic

tubular neighbourhood %σ of radius σ around the submanifold N c Sn

which vanish on d%σ. Then for σ sufficiently small, LQ is injective on

r L when δ > —δ0 and on C 'α > z / when v > v^, and is surjective on

rδL2 when δ < δQ, δ Φ -δι and on C2'a'v when v < v^, v φ vJ .

Proof By standard elliptic theory and the results of this section, we

know that Lo has closed range on rδ I? and ck'a'v when δ Φ ±δt,

v φvf . Thus, by the duality arguments above, all of the conclusions of the

theorem will hold provided we known that LQ is injective on rδl? when

δ > —δ0 . For this we argue as follows. First we reduce to the case where

Lo is equal to the operator L = r2d2 + (n-k-l)rdr + r2AN + Aθ + λ. This
is accomplished by simply noting that if L is injective, then by standard

perturbation theory LQ will also be injective if σ is small. Note that

L may be regarded as the Laplacian on the normal bundle of TV in the

sphere with respect to a metric on the total space of this bundle which is

euclidean along the fibers. Next introduce an eigenfunction expansion in

the variable θ e sn~k~ι. This makes sense globally on V since Aθ is
σ

rotationally invariant. The eigenfunctions of Aθ on %σ are those which

are invariant under the transition maps of the normal bundle. Hence the

list of eigenvalues are a subset of those which occur for Δ^ without this

extra invariance condition. Now, for each /, L induces an operator Lι

on the eigenspace corresponding to λ2 . Lι is an operator on the flat vector

bundle over (0, σ]x N with sections the invariant eigenfunctions of Δ^ .

For each fixed r e (0, σ] the operator Δ^ acting on sections of this

bundle has discrete spectrum {μ2(l)} which depends on /. We still have

μ2(l) > 0. Let LΊ denote the operator on the eigenspace corresponding

to μ2(l). This operator has the usual form

Finally then, we need only check that there is no function u such that
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LΊu = 0 such that u e L2(rn~k~ιdr) and u = 0 when r = σ. But this
fact is true for σ sufficiently small as is easy to check since the solutions
are functions of Bessel-type, and may be calculated explicitly.

Added in proof. Recently the first author [20] has established the precise
regularity of the solutions found in §2 and §3.
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