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SINGULARITIES OF THE CURVE SHRINKING
FLOW FOR SPACE CURVES

STEVEN J. ALTSCHULER

Abstract

Singularities for space curves evolving by the curve shrinking flow are
studied. Asymptotic descriptions of regions of the curve where the cur-
vature is comparable to the maximum of the curvature are given.

PART I. OVERVIEW

1. Introduction. In this work, we will study singularity formation for
space curves evolving by the curve shortening flow

(l.i) §7 = * *
where γ : Sι x [0, ω) -> R3, γ(-, 0) is a smooth curve, and /c TV is the
curvature times the normal to the curve. N is not always defined, though
k - N always makes sense.

Although one has short time existence of solutions on a small open
interval in time [7], solutions do not exist for infinite time. In a previous
paper [2], it has been shown that solutions to the space curve flow exist until
the curvature becomes unbounded. In this work, we study the limiting
shape of the curve along forming singularities.

Space curves, in general, behave in a more complicated manner than
plane curves. For example, they may not remain embedded (see Figure
1) and inflection points may develop [2]. We prove the rather surprising
conjecture, due to Matt Grayson, that singularity formation is a planar
phenomenon. We then give asymptotic descriptions of the solution.

FIGURE 1. CURVES CAN CROSS
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dy
Assume that a solution to -^- = kN exists on the maximal time interval

ot
[0, ω). Our main results, briefly stated, are the following two theorems.

Theorem (Type-I Singularities). // lim p 2 ( , 0lloo(ω " 0 is bounded,

then γ is asymptotic to a planar solution which is moving by homothety.

These planar solutions are given by Abresch and Langer [1].

Theorem (Type-II Singularities). // I imp 2 ( , 0lloo(ω " 0 is un~

bounded, then there exists a sequence of points and times {pn, tn} on which

the curvature blows up such that:
(1) a reseating of the solution along this sequence converges in C°° to a

planar, convex limiting solution γ^
(2) γ^ is a solution which moves by translation called the Grim Reaper.
In §7, we will make precise the notion of rescaling the solution along

a sequence {(pn, tn)} . For now, let it suffice to say that we obtain new
solutions γn to the curve shortening flow from γ by translating tn ι-> 0,
γ (pn, tn) >-+ 0 e R3, and dilating the solution in space and time so that

The notion of planarity will be made precise in §2 by considering the
quantity τ/k where τ is the torsion of the curve. Another way of stating
the planarity result, without recourse to the language of rescalings, is that

Planar curves, which evolve under the curve shortening flow by homo-
thetically shrinking, were studied and classified by Abresch and Langer [1]
(see also [5]). Huisken [11] and Angenent [3] have shown that if a type-I
singularity develops on a planar curve, then the entire curve is asymptotic
to an Abresch-Langer solution. The most trivial case of a curve moving
by self-similarity is the circle shrinking down to a point. Another example
of an Abresch-Langer curve is given in Figure 2.

FIGURE 2. EXAMPLE OF A DEVELOPING TYPE-I SINGU-

LARITY
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FIGURE 3. EXAMPLE OF A DEVELOPING TYPE-II SINGU-
LARITY

FIGURE 4. PICTURE OF A GRIM REAPER

FIGURE 5. PICTURE OF THE YIN-YANG CURVE

A standard example for a type-II singularity is given by a loop pinching
off to a cusp (Figure 3). Angenent [3], in the case of convex-planar curves,
showed that these singularities are asymptotic to Grim Reaper curves, y =
-logcosx is known as the Grim Reaper (Figure 4) and moves setwise by
translation.

We mention one other noncompact curve (besides the straight line)
which moves in a self-similar manner. This is the nonconvex yin-yang
curve which spirals out to infinity (note that / \k\ds = oo). This curve
moves by rotation (Figure 5).

The work is organized as follows:
In Part I we will introduce the indicatrix of a space curve. From some

elementary computations, we will derive a precise notion of planarity.
In Part II we will prove some dilation-invariant estimates which will

bound derivatives of the tangent vector to the curve in terms of the maxi-
mum of the curvature a short time earlier. We will use these estimates to
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prove that the torsion and curvature cannot dissipate away from a region
too quickly. In addition, we will derive some dilation-invariant integral
estimates.

In Part III we will prove that lim (τ/k) (pn, tn) -> 0. We will then

examine the sequence of rescaled solutions and prove convergence to a
limit solution along a subsequence of {(pn, tn)}. We will see that this
limit solution is a family of planar, convex curves. For the case of a type-
I singularity, we will use Huisken's monotonicity formula to prove that
the limit solution is one given by Abresch and Langer. In the case of
a type-II singularity, the limit of rescalings of the singularity is a Grim
Reaper solution. It is interesting to note that each result on singularities
follows from a dilation-invariant integral estimate together with a dilation-
invariant pointwise estimate.

It is with pleasure that I thank my thesis advisor, Richard Hamilton, and
Matthew Grayson for many enlightening and informative discussions; I
owe much of my insight to them. I also wish to express special appreciation
to Sigurd Angenent, Mike Gage and Lang-Fang Wu for their many useful
comments and to thank B. Chow, D.T.G., and Michael Freedman for their
encouragement.

This work forms a part of the author's doctoral dissertation for the
University of California at San Diego.

2. Terminology. For the remainder of the paper, we will assume that
our solution exists on the maximal time interval of [0, ω).

The following definitions will be useful:
Definitions 2.1.

(1) The maximum of the curvature squared will be denoted by Mt =

supfc2( , ί ) .
(2) {(/?„> O ) is a blow-up sequence if lim ί —• ω and

lim k2 (p t ) -• oo.

(3) {(pn, tn)} is an essential blow-up sequence if (i) {(pn, tn)} is a

blow-up sequence and (ii) 3p e R+ , independent of n, such that pMt <
k2{Pn^n) w h e n t<tn.
We will use the following dilation-invariant categorization of singularity
formation:

(4) type-l if lim Mt (ω- t) is bounded;

(5) type-Π if lim Mt-(ω- t) is unbounded.

It is not hard to see that an essential blow-up sequence always exists.
In order to fix notation, the Frenet matrix for a space curve y, with arc
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length parameter s, will be written as:

[T\ ( 0 k (T
(2.2) | - \N ) = \-k 0 T

dS\Bj Vθ -τ 0,
where T is the tangent vector, N is the normal vector, and B is the
binormal vector. Assume, temporarily, that the curve has no inflection
points (i.e., k Φ 0 everywhere).

Definition 2.3. The tangent indicatrix is the curve described on the
unit sphere given by Γ(s) = T(s).

Notice that the curve Γ(s) : Image(y) -• S2 is not itself parametrized
by arc length since

(2.4) j ^ = ^ = kN.

So we define:

P 5> h-τh "-*"•
Derivatives with respect to this operator give

We see now that the indicatrix curve Γ has T for its position vector,

N for its tangent vector, and -rB for its geodesic curvature times the

tangential component of its normal vector. The space curve is obviously

planar along an arc if the indicatrix of the arc lies on a great circle, that is,

if the tangent vectors to the arc on the space curve lie on the same plane.

Definition 2.7. A space curve is said to be planar at a point p if

£<P) = 0.
Observation 2.8. Note the following:
(1) Dilating the space curve leaves the indicatrix unchanged.
(2) During the evolution, the torsion may go to infinity in a region where

the curvature is blowing up, but all we are interested in is the ratio of τ/k.

PART II. MAIN ESTIMATES

3. Dilation invariant estimates. In a previous paper, we have shown:
Theorem (Long Time Existence [2]). Let γ be a solution to (1.1) on

the time interval [0, α). If k is bounded on [0, α), then 3e > 0 such
that C( , i) is a smooth solution on the time interval [0, a + e).
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dγ
Throughout this work, we will assume that we have solutions to — =

k - N on the maximal time interval [0, ω).
We will now derive estimates for derivatives of k and τ on short

time periods. These estimates will be dilation-invariant and depend only
upon the maximum of the curvature at the starting time. See [12, §7] for
analagous estimates on the Ricci-curvature flow.

Theorem 3.1 (Dilation-invariant estimates). Fix tne[0,ω). There
exist constants cι < oo independent of tn such that for t e

( ) we have

(3.2)
dιT

ds1

('-'„)
/-Γ

Proof Without loss of generality, we may assume tn = 0, and then
translate the estimates.

(1) The operators — and — do not commute [7]. In fact:
C71 \J ι3

(3.3) d_d__d_d_
dtds ~ dsdt

dT_

ds

d_

ds'

Using the commutator for derivatives given above, we may derive the
evolution equation for the tangent vector

(3.4)
dT _ d T

dt ~ ds2

dT
ds

d2T

ds2

2

+ 4
dT

ds

and, from this, the evolution of curvature squared

/* x d (\dT 2\ d2 (\dT
(3.5) — — = — [ —

dt \\ ds J ds2 \\ ds

It follows from the maximum principle that Mt satisfies

Mt MQ
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If t< l/(8 M0),then

497

(3.7) Mt < 2M0.

We may choose c0 = 2.
(2) Our previous computations imply

(3.8)

d2T

ds2

2

+ 4
dT
ds

ds2

d2τ
ds2

dT
ds

>

d2T

ds2

d3T

ds'

dT
ds

d2τ
ds2

16ί

• * 1

ds2

ar
9ί

d2τ
ds2

— 8
dιT

ds2
+ 16

dT
ds

ds'
+ 4

dT
ds

(32M0t - 7)
ds1

64M:

Since 32Mot - 7 < 0 on this time interval, we have

(3-9) f-
d2τ
ds2 + 4

dT_
ds ds2

d2T

ds2

dT
~ds

Thus it follows that

(3.10)
d2τ
ds2

dT
<4M0 t < \2M0,
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and we may conclude on this time interval that

(3.11)
d2τ

ds1

l2Mn

So we may choose c, = 12.
(3) The evolution for the higher derivatives satisfy [2]:

a

(3.12)

1=1

where the coefficients N( represent inner products which have been pre-
viously bounded.

The induction hypothesis and repeated usage of the Peter-Paul inequal-
ity allow us to find constants at and A on our time interval such that:

i=\ ds1
<AMf o

Thus, as before, we obtain cι. q.e.d.
Note that these estimates also reprove the long time existence result

stated in [2]. That is, as long as the curvature remains bounded on an open
time interval [0, α), one can define a smooth limit for the tangent vectors
T at time α. Thus, by integrating the tangent vectors, one can obtain a
smooth limit curve. Short time existence allows us to find solutions for a
further time.
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Recall that

(3.13)

dT

d2τ
dsz

d4τ

£ +(*τΓ.

V a*; \ds2 ) V ds ds)

f.d2τ .dkdτ ,d2k .3 , 3Ϋ
= [k—τ + 3Έ-Έ- + 3— T τ-kτ-kτ

\ ds1 dsds ds2 )

( . . ί, dk dτ d2k}\
1- terms involving < A:, τ , •7—, 7—, — r >

V { ds ds dsz}J
We will often refer to the dilation-invariant estimates in the following

form.

Corollary 3.14. Let tn = ϊn + l/ (32MΪ ) for tne[0,ω). Assume that

pMt < Mt for t < tn. Then there exist constants c{, c2, c 3 , c 4 < oo,

depending only on p, such that for t e \tn, tn + 3p/ (β4Mt j we have

k2 < cM

(3.15) (kτ)2 < c2M
2

y ds2 dsds ds2 )

Proof. It is not hard to see that 3 {ίn} such that tn = tn + l/(32M{).

Define the time interval

(3.16) In = [tn,tn + 3p/(64Mt)] where tn = ίn + 1/ (32M f ) .
n \ n /
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Since Mt > pMϊ , In will be a subset of the region in time [tn, tn +

1/(8Λ/^)] on which our dilation-invariant estimates are useful and the

result follows easily. q.e.d.
The importance of this corollary is that the bounds on the right-hand

side are given in terms of M at the time tn instead of at the earlier time

4. Controlling the dissipation of curvature and torsion. Before we study
singularities of the flow, we will examine points on the curve where the
curvature is comparable to the maximum of the curvature. Estimates can
be made on the amount of curvature which can escape from a small region
in a short amount of time.

A "forward" space-time cylinder around a point on the curve will be
defined as follows:

Definition 4.1. For d £ R+ and (pn, tn) e Sι x [0, ώ) define:

N ( p n , tn, d) = l(p,t)eSιχ[tn,ω)\ dist{pn,p}

(4.2) l

Note that k ~ distance ι and t ~ distance2 so the neighborhood
makes dimensional sense. Also note that we are defining the neighborhood
in terms of a time-independent metric dist{ , •} where distjwj, u2} =

Theorem 4.3. Let {(pn, tn)} be an essential blow-up sequence. Then
there exist constants dQ9 dχ9d2 € R+ depending only on p so that the
following hold:

(1) The temporal loss of k(pn, •) is bounded from below:

(4.4) \k{Pn,t)\>±\k(pn,tn)\ forίe[tn,tn + ^-].

(2) The spatial loss of k( , t) is bounded from below.

\k{p,t)\ >±\k(pn,t)\ fordist{p,pn} < J ϊ ;
T n

(4-5) tε[tn,tn + 4-].
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(3) Hence,

(4.6) \k{p,t)\>\\k{pn,tn)\ for{p,t)

Proof. As in Corollary (3.14), we will consider the time interval [t ,tn+
3p/{64Mt)].

First we bound the temporal loss of k.
From Corollary (3.14) there exists a constant ax, depending only on

p, such that

< aχMt

3/2

away from where the curvature vanishes. This, in addition to the fact that
k2{pn,tn)>p-Mt imply

(4.8)

where a2 is a constant depending only on p.
Hence, we define

(4.9)

Next, we bound the spatial loss of k.
Again, from Corollary (3.14) there exists a constant a3, depending only

on p such that

(4.10)

As above, we may conclude that there exists a constant α 4 , depending
only on p, such that

(4.11) Ikip^y^fd whendist{p,pπ}<-
V2 ^

Define

(4.12) d2 = mm{dx,a4}.

Notice that the second assertion of the theorem is a statement concern-

ing a changing metric dist {•, •} . Our definition of neighborhood, how-

ever, utilizes a metric dist{ , •} which has been frozen at time tn . Since
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distances decrease under the curve shortening flow, this claim follows from
the previous two. q.e.d.

In [2] we found that inflection points (k = 0) could develop for an
evolving space curve. Where the curvature becomes zero, the torsion be-
comes unbounded. Of course, the Frenet frame is not even defined at such
a point. One result of [2] (or alternately, the dilation-invariant estimates
of this work) is that the flow ignores these types of singularities in the
torsion. Let us now discuss the behavior of torsion near a point where the
curvature is nonzero.

We showed above that the curvature could not dissipate away too quickly
from a region of nonzero curvature. Here we will state, without proof, the
analogous result for torsion. One uses the evolution equation for τ ([2])
and constants c3, c4 from Corollary 3.16. Otherwise, the proof is essen-
tially the same as the one for curvature.

Theorem 4.13. Let {(pn,tn)} be an essential blow-up sequence.

Assume that 3μ > 0 a constant such that V« we have τ2 (pn, tn) >

μk2 (pn, tn). Then there exist constants d3, d4, d5 e R+ depending only

on μ and p such that the following hold:

(1) The temporal loss of τ(pn, •) is bounded from below:

(4.14) \τ{Pn,t)\>±=\τ(pn,tn)\ forte[tH,tH + j±}.

(2) The spatial change of τ( , t) is bounded from below.

(4.15)

\τ(p,ή\>±\τ(pn,ή\ fordist{p,pn}<J]f; t ϊ[tn,tn+-^-].
i n n

(3) Hence

(4.16) \τ(p, t)\ >±\τ(pH,tn)\ for(p9 t) eN(pn, tn, d3).

5. The integral f\k\ds. The dilation-invariant integral f\k\ds turns
out to be a very useful quantity to study. In the case of a general space
curve, we will show that j-t f \k\ds < - f τ2\k\ds. This estimate will be
used to prove that singularities are asymptotically planar.

Theorem 5.1. For a solution γ to the curve shortening flow we have

(5.2)
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Proof. From

we may derive

r\ rri 2

A technical difficulty of this theorem is that for space curves k2 = -7Γ-
as

is a more natural function to study than k. In the special case of a planar
curve, by choosing a consistent normal field one may define an "inside"
and an "outside". Then k > 0 or k < 0 makes sense.

Hence, following a suggestion of R. Hamilton, we will make use of the
function Vk2 -he . For simplicity, denote K€ = Vk2 -he where e > 0.
The derived equation for this quantity is

2 l \ d j K

t
Since k < Kf for all e > 0, we have
(5.6)

d

ds

The result follows from letting e -> 0. q.e.d.
Using this we obtain the following dilation-invariant integral estimate.
Corollary 5.7. 3C > 0 such that

(5.8) Γ ίτ2\k\dsdt<C.
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Proof. We have already shown that

(5.9) £tf\k\ds<0.
y

Note that if the flow is defined on the time interval [0, ω), then the
integral f\k\ds is defined on [ 0 , ω ] ; a limit at time ω exists and is

y.
unique, since the integral is bounded from below and is monotonically
decreasing. Hence, we have

(5.10) J\k\ds(ω)<J\k\ds(O),
y y

and therefore

(5.11) Γ ίτ2\k\dsdt< ί \k\ds(O) - ί \k\ds(ω) < ί \k\ds(O).
y y y y

q.e.d.
We will use the following formulation of this result.
Corollary 5.12. Ve , 30 such that

ω

(5.13) ί ίτ2\k\dsdt<e.
ω-θ y

For a planar curve, the decreasing integral f\k\ds measures the total
change in angle. An estimate on how this integral evolves will be used to
show that the limit of the rescaled solutions is convex. In the special case
of convex planar curves, f\k\ds = f kds measures the winding number
of the curve and is an invariant of the flow (until a singularity develops).

Theorem 5.14. For a planar solution γ to the curve shortening flow we
have

Proof. Use

(5.16) ί \k\ds = ί kds - ί kds,
k>0 k<0
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differentiate with respect to time, and then integrate by parts. See [8] (§1,
§2) for details and justification.

PART III. SINGULARITY FORMATION

6. Forming singularities become planar. In this section, we shall see

that lim -r (pn, tn) -> 0 along an essential blow-up sequence. We will

prove this fact first without using the language of rescalings because this
was the formulation of the conjecture first posed to the author. In the next
section, we will see that this fact simply implies that the limit of rescalings
is a planar solution to the curve shortening flow.

Theorem 6.1. If {(pn, tn)} is an essential blow-up sequence, then

(6.2)

Proof of Planarity. To obtain a contradiction, we will assume that on a

subsequence of points and times ipn , tn } c {pn, tn} , 3μ, 0 < μ < oo

such that Vw we have

(6.3)

That is, on this sequence the limit of (τ/k) (pn, tn) is not zero. For ease
of notation, we will drop the subscript j and assume that we are working
with the subsequence.

As before, it is not hard to see that 3{tn} where tn = tn + ^M~ (for

n large). We need this sequence only because of the time-delay necessary
for the dilation-invariant estimates.

Our work concerning the dissipation of curvature and torsion in §4
implies that 3d, where d = d(μ, p), such that

k(p,t)>U(pn,tn)]
(6.4) J I fOr ( p 9 t ) e N ( p n , t n , d ) .

}
Next, we will see that distances do not decrease "too quickly" on short

time intervals. That is, assume tn<t<tn + l/ (%Mt ) and uχ, u2 e Sι

are two points given in a time-independent parametrization u. Recall that

we may write ds = vdu, from which it follows that — = -k2du. Using

fU2

dist {u{, u2} = ds
1 Jux
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we obtain

( t 5 ) ("

= -2Mt dist {uλ, uΛ.

Here, we have used the fact that k2(-,t) < Mt< 2Mt . Integrating this

inequality yields

(6.6) dist {uχ, u2} > dist {uχ, u2) e~2Mtn^~tn\
* n

Of course, t-tn< 1/(8AΓ, ) so

(6.7) dist [uχ, u2) > dist {uχ, w2} e~ .

Thus we see that distance does not change drastically on time intervals
of the order M~ι. Therefore, there exists a constant C = C(μ, />, d)
independent of n , such that

(6.8) (n in ίτ2\k\dsdt> ίί τ2\k\dsdt>C.

In the preceding section we saw that Ve , 3Θ such that

2\k\dsdt<e.

ω-θ y

Choose e < C and an n large enough that tn > ω - θ. Thus

(6.9) c < / " "'" [τ2\k\dsdt< f fτ2\k\dsdt<e
Jtn J J Jγ

y ω-θ

yields a contradiction.
7. The limit of the rescaled solutions. In this section, we will prove

some basic facts about limits of rescaled solutions along an essential blow-
up sequence. We will show first that a limit γ^ exists, and then that γ^
is a family of planar, convex curves.

First, we will give a precise definition of what we mean by rescaling a
solution.

Definition 7.1. We define the rescaled solutions γn of γ along a blow-

up sequence {(pn, tn)} , (pn, tn) e Sι x [0, ω), to be as follows: let
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γn : Sι x [-λ2

ntn, λ2

n(ω - tn)) -• I?3 be a solution to the curve shortening
flow defined by

( 7 2 ) yΛ{ 9ϊ) = λH(AHy( 9t) + BH) 9 Ϊ=λ2

n(t-tn),

where λn e i? + , An e 50(3), BneR3 are chosen such that (i) γn(pn, 0) =
0 € i ? \ (ii) the unit-length tangent vector Γπ(pπ, 0) = (1 ,0 , 0) and
(iii) kn - Nn(pn, 0) = (0, 1,0). The subscript n will be used to denote
quantities on γn.

It is clear that rotating and translating a solution give another solution.
If one dilates space and time, scaling time as space squared, then one also
obtains another solution to the curve shortening flow. We must now prove
that a limit of rescalings along an essential blow-up sequence exists.

Theorem 7.3. Assume {(pn, tn)} is an essential blow-up sequence.
Then, there exists a subsequence of {(pn, tn)} along which the rescaled
solutions converge to a smooth, nontrivial limit γ^ . The solution γ^ ex-
ists at least on the time interval [-oo, 0].

Proof. If we denote an — -λ2

ntn and ωn = λ2

n(ω - tn), it follows from
the fact that M' —• oo that lim an —• -oo. Note that lim ωn is finite if

a type-I singularity occurs. In the case of a type-II singularity, an essential
blow-up sequence will be chosen such that ωn —• oo.

A limit solution, if it exists, may be a family of noncompact curves in
space. It will be more convenient, when considering questions of conver-
gence, to think of our solutions as a family of periodic curves in space
γn : Rι x [-an, ωn) -* R3 such that γ{0, •) = γn(pn, •). We will then
parametrize the curves by arclength from the origin 0 e i? 1 .

Now define the operator

< 7 4 > ί = §i+WTs
dώ 7where -p1 = k~ . Then
ds "

ri. A i - i . A d d d d dφ"d ώ d d

[δt' ds*~ dtds Φndsds dsdt ds ds φ"dsds

(7.5) _ ^ J L _ t 2 J L
~ nds nds
= 0.

φn is chosen in such a way as to make -=- = 0. We are essentially finding

a good coordinate system on the space-time solution.
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Since {(pn, tn)} is an essential blow-up sequence, Vyw and t < 0

we have the property that p supΛ;̂ ( , t) < 1. The invariance of our

estimates under the rescaling procedure implies that there exist constants

{ct} independent of n such that

(7.6)
dlTm

dsι
<ct

for t < 0.

A simple computation shows that this gives bounds on all of the higher

time derivatives
dιτn

2

dtι
for t < 0. The fact that φ(s) = /o

s k2

nds + C <

2

- 1p s + C, for some constant C, yields bounds on
διτ

δtι
Therefore,

for a given compact set in R x [an, ωn), we have bounds, independent

δjdkT
of n, on all mixed derivatives —:—r-2-

The Ascoli-Arzela theorem then implies that there exists a subseqence
of {(pn, £π)} on which the tangent vectors Tn(s, t) converge uniformly
on compact sets of Rι x [-00, ω^) to a smooth limit T^s, t). We may
thus recover a smooth solution γ^ by integrating the tangent vectors. We
will denote by γ^ one period, possibly infinite, of γ^ .

The process of rescaling does not allow the limit solution to be trivial,
i.e., a straight line. This is of course because the construction of γ^
enforces the condition Λ^(o,θ) = 1.

Theorem 7.7. γ^ is a family of convex planar curves.
Proof The integral estimate of the previous section implies

0

2
(7.8) If*-
which shows that τ ^ = 0 wherever k^φQ. There are examples of C°°
curves which do not lie on one plane yet still satisfy this condition. We
appeal, however, to the fact that our solutions are analytic [8] and may
thus conclude that our limit solution is globally planar.

Since we know that our sequence of rescaled solutions is converging in
C°° to a planar, limit solution γ , it follows that

(7.9)
υ

/ Σ
-OO {PftooiP't.

ds
dt = O.
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Therefore, any inflection point for the limit curve must be degenerate (i.e.,
dk

k^ = -T-2^ = 0 ) . Results of Angenent [4] imply that if a solution has

degenerate inflection points for any interval in time, the solution must be
a line. Since γ^ is not trivial, the family of curves must have no inflection
points, and therefore must all be convex.

8. Type-I and Type-II blow-up sequences. In this section we will at-
tempt to understand the limiting shapes of rescaled solutions along essen-
tial blow-up sequences.

Type-I Singularities. In this section, we will not need the assumption
that a blow-up sequence is essential. We will, in fact, prove convergence to
Abresch-Langer solutions along a subsequence of any blow-up sequence.

The proof is an argument of Huisken [11] in which he uses a backwards
heat kernel in Rn+ι to prove this result for hypersurfaces moving by the
mean curvature flow. For the sake of completeness, we will outline the
proof, but we refer the reader to his paper for details. In the case of
convex planar curves, Angenent [3] also has a proof of this result.

It is convenient, in the study of type-I singularities, to consider a mod-
ification of the original solution γ defined by:

(8.1) γ(s, t) = (2(ω - ί)Γ* 7{s, t) where t = ~\o%{ω - t).

This leads us to define the following scale-invariant operators

(8.2) £-(2 («-,))£; £ = (2(«-0)*£.
The modified flow satisfies the evolution equation

The curvature for the modified solution is

(8.4) k(s, t) = ( 2 ( ω - *))**(*, O

Since we are assuming that the forming singularity is of type-I, we have
k2 < C for some constant C < oo on the entire modified curve for
V? e [t0, oo). Here, ϊ0 = -\ log(ω - t0).

Following Huisken, we define the backwards heat kernel.
Definition 8.5. Define p(x, t) to be the backwards heat kernel flowing

out of the point in space-time: (6, ω) e R3 x [0, ω ] . More precisely, let

(8.6) p(x,t)= u ) .e-M/*-'), t<ω.
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The modified kernel will be then be as follows.
Definition 8.7. Define p(x ,ϊ) to be the modified backwards heat ker-

nel given by

(8.8) p(x, t) = e~M xeR3.

(Note that this kernel is independent of time.)
We may now state the monotonicity formula.
Theorem 8.9 (Huisken [11]).

(1) For γ, when t e [0, ώ), we have:

(8.10)
d2y 1

y y

(2) For γ^, when t e [t0, oo), we have:

ds.

(8.11)
ds2

ds.

Here, γ1 = γ - γτ, and γτ is the tangential component of the position
vector.

Proof of Monotonicity Formula. We will only show the formula in the
case of the modified flow.

Ί 2

ds2

-I-
(8.12)

= / -p

= -J p
?

ds2

ds2

ds2

ΊΓs)ds

ds.

We have made use of the computation — c
OS ds2

l\ds,

integration by parts, and the fact that ( — £ , p τ ) = 0. q.e.d.
\ds2 /
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Therefore, integrating the monotonicity formula in time gives the fol-
lowing corollary:

Corollary 8.13. Ve > 0, 3a < oc such that

(S.14) / / , * + dsdt < e.

Therefore, for the unmodified solution we have
Theorem 8.15. Let {pn,tn} be any blow-up sequence. Then a rescaling

of γ converges along a subsequence of {pn, tn} to a solution γ^ moving
by homothety. Furthermore, each γ^ is planar and has the same winding
number.

Proof Note that for a type-I singularity, all blow-up sequences are essen-
tial. The proof that the rescaled modified solutions converge along some
subsequence of {pn, tn) is essentially the same as for the unmodified so-
lutions. This is, of course, due to the fact that our estimates are dilation
invariant and the fact that the modified curvature is bounded for all time.
As in [11], the monotonicity formula implies that γ^ must be moving by
homothety.

Our comments in §2 imply that the entire solution is planar. Further-
more, since the limit of the scale-invariant integral / \k\ds = / \k\ds is

7

unique and represents the total change in angle of a planar curve, we know
that the curve cannot converge to an Abresch-Langer solution with in-
finitely many loops. In fact, any two limiting solutions obtained by rescal-
ing along different subsequences of {(pn, tn)} differ only by dilation and
a rigid motion.

Type-II Singularities. We will now assume a type-II singularity is form-
ing at time ω. Recall that our model for this type of behavior is a cusp
forming. The author wishes to acknowledge many useful comments and
suggestions from S. Angenent in this final section. The arguments are
generalizations of the arguments given in [10].

Theorem 8.16. There exists an essential blow-up sequence {(pn, tn)}
such that a limit of rescalings along {(pn, tn)} converges to the Grim
Reaper.

Proof Our theorem in the previous section implies that any limit curve
of an essential blow-up sequence γ^ exists since t = - o c . We must also
insure the fact that the curve lasts until time +oo. R. Hamilton brought
the following argument to our attention.

Lemma. For a type-II singularity, there exists an essential blow-up se-
quence along which the rescaled solutions converge to a solution whose cur-
vature is bounded on [-00, +oo].
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Proof of Lemma. Let δ > 0, and set

(8.17) σδ{t) = m i n { < 7 e [t, ω ) : M σ = ( l + δ ) M t } .

Define the set of " /^-essential times" to be

(8.18) E = {t<ω:pMϊ<Mt for We [0, t]}.

It is clear that t e E implies σδ{t) e E. So pick t = toeE and define

The lemma follows from the assertion:

(8.19) N= sup M t ( 0 , ( 0 - 0 = +oo.
n—κx> Λ

Now Λf, = (1 +δ)n Mt . Clearly tn -> ω (or else a singularity would

have to be occurring before time ω). Therefore tn - tn_x < M~λ_χN =

(1 + δ)x~nM~ιN. Hence

and the assertion is proved. Thus, when the solution is rescaled to keep
Mt = 1, it follows σδ(tn) —• oc. This a priori control on the curvature is
enough to conclude that the γ^ exists on [-oo, +oo] and has the max-
imum of the curvature bounded by 1 + δ for all time. (In fact, it is not
difficult to show that δ can be made to go to zero.) q.e.d.

This limiting curve is planar and convex. The solution does not cross
itself or else a loop would pinch and the curvature would not be bounded
for all time in the future. By [6], the curve must turn at least π or else
the curve would not be ancient (that is, it could not exist since t = -oo).
Thus the curve must turn exactly π and is embedded.

In order to show that the curve is actually the Grim Reaper, we must
modify the arguments of R. Hamilton [10] used on planar, compact, con-
vex curves. The dilation-invariant estimates, in addition to the fact that
/ kds = π, imply that the curvature goes to zero at the ends of the curve.
It is not hard to show that all of the derivatives of k must also decay to
zero near the ends.

It will be convenient to compute using (θ, t) coordinates (see [7]).

Consider the quantity g = k where — is the time derivative that fixes
τ ox

angles. Note that [ — , ^ ] = 0 and kτ = k2kθθ + k3. Then

(8.20) gτ = (k\θ + k3\ = k2 (gθθ + g) + 2-^--



SINGULARITIES OF THE CURVE SHRINKING FLOW FOR SPACE CURVES 513

Letting h = 2tg + k, we obtain

(8.21)

hτ = 2tk2gθθ + 2tk2g + ̂ f- + 2g + k2kθθ + k3

(*•¥)*•
For any compact convex curve it is easily seen that the maximum prin-

ciple implies kτ > -γt. This follows from the fact that h > 0 at t = 0.
One may apply this estimate to the noncompact curve by closing up γ^ a
large distance away from the point of maximum curvature in such a way
as to give an embedded convex curve. As the curves better approximate
γ^ , they enclose more area and exist for longer and longer times. These
new solutions converge in C°° to γ^ , and by sending their starting times
back to -oo, we obtain kτ > 0 for γ^ .

Let Γ be a planar, compact, convex curve with / dθ = 2π. For Z =
r

f(\ogk)τdθ, we have
r

( 8 ' 2 2 ) rk>
= 2 / -±dθ > 2Z2/ / dθ > Z2/π.

r r
Thus, on the interval [0, T), we have Z(t) < π/(T-t). So, again we may
approximate γ^ by curves which last for longer and longer times into the
future. We may conclude that Z = 0 for γ^ .

It is now clear that kχ = 0 on γ^. Such a curve is the Grim Reaper.
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