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UNIQUENESS AND EXISTENCE OF
VISCOSITY SOLUTIONS OF GENERALIZED

MEAN CURVATURE FLOW EQUATIONS

YUN-GANG CHEN, YOSHIKAZU GIGA & SHUNΊCHI GOTO

1. Introduction

This paper treats degenerate parabolic equations of second order

(1.1) ut + F{Vu, V2w) = 0

related to differential geometry, where V stands for spatial derivatives of
u = u(t, x) in x eRn , and ut represents the partial derivative of u in
time t. We are especially interested in the case when (1.1) is regarded as
an evolution equation for level surfaces of u. It turns out that (1.1) has
such a property if F has a scaling invariance

(1.2) F { λ p , λ X + σ p ® p ) = λ F ( p , X ) , λ > 0 , σ e R ,

for a nonzero p e Rn and a real symmetric matrix X, where Θ denotes
a tensor product of vectors in Rn . We say (1.1) is geometric if F satisfies
(1.2). A typical example is

(1.3) ut - \Vu\div(Vw/|Vκ|) = 0,

where Vu is the (spatial) gradiant of u. Here VM/|VW| is a unit normal
to a level surface of u, so div(Vw/|Vw|) is its mean curvature unless Vu
vanishes on the surface. Since ut/\Vu\ is a normal velocity of the level
surface, (1.3) implies that a level surface of solution u of (1.3) moves by
its mean curvature unless Vu vanishes on the surface. We thus call (1.3)
the mean curvature flow equation in this paper.

The motion of a closed (hyper)surface in Rn by its mean curvature has
been studied by many authors [1], [3], [4], [8], [10], [12], [14], [15]. Such
a motion is also important in the singular perturbation theory related to

Received August 1, 1989 and, in revised form, March 5, 1990. The first author is on
leave from and was partially supported by Nankai Institute of Mathematics, Tianjin, China.
The second author was partially supported by the Japan Ministry of Education, Science and
Culture through grants No. 01740076 and 01540092 for scientific research.



750 Y.-G. CHEN, YOSHIKAZU GIGA & SHUNΊCHI GOTO

phase transition phenomena (see [13], [23] and references therein). How-
ever, so far whole unique evolution families of surfaces were only con-
structed under geometric restrictions on initial surfaces such as convexity
[10], [14], except n = 2 [3], [12]. When n = 2, M. Grayson [12] has
shown that any embedded curve moved by its curvature never becomes
singular unless it shrinks to a point. However, when n > 3 even em-
bedded surfaces may develop singularities before it shrinks to a point. A
barbell with a long, thin handle actually becomes singular in the middle in
short time.

Our goal is to construct whole unique evolution families of surfaces even
after the time when there appear singularities. Contrary to other authors
(except [4]) we avoid parametrization and rather understand surfaces as
level sets of solutions u of (1.3). We first study the initial value problem
for a geometric, degenerate parabolic equation (1.1) with

(1.4) u(0,x) = a(x)eCa(Rn)

for some constant α, where Ca(A) is the set of continuous functions a
in A such that a - a is compactly supported in A. Recently P. L. Lions
[22] introduced a class of weak solutions for degenerate elliptic equations
of second order so that a comparison principle holds. Such solutions are
called viscosity solutions, and a general theory is established by R. Jensen
[19] and H. Ishii [17] (see also [6] for simplification). For a large class of
geometric, degenerate parabolic equations including (1.3) we construct a
unique global viscosity solution ua in C Q ([0,Γ]xE w ) of (1.1) and (1.4)
for every T > 0. Since our F(p, X) is singular at p = 0, as is observed
in (1.3), even uniqueness of viscosity solutions does not follow directly
from results in [17], [19]. We are forced to extend their theory to our
situation. Existence of viscosity solutions is based on Perron's method
discussed in [16], [17]. We construct viscosity sub- and supersolutions of
(1.1) and (1.4) and obtain the viscosity solution ua .

We now turn to the study of level surfaces of a viscosity solution ua

of (1.1) and (1.4). Let Γ(ί) be the y-level surface of ua{t, •) and let
D{t) be the set of x e Rn such that ua{t,x) > γ, where γ > a. We
call ua(t, •) a defining function of (Γ(ή, D(ή). When (1.1) is geometric
and degenerate parabolic, using (1.2) we show that if u is a viscosity sub-
(super)solution of (1.1), so is θ(u) provided that θ is continuous and non-
decreasing. This is proved in §5 and the proof depends on Jensen's lemma
on semiconvex functions [19]. By this property of (1.1) we prove that the
family (Γ(ί), D(ή) (t > 0) is uniquely determined by (Γ(0), D(0)) and
is independent of a choice of the defining functions a of (Γ(0), D(0)).
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We call this evolution family (Γ(ί), D(ή) (t > 0) a solution family of
(1.1) with initial data (Γ(0), D{0)). If D(0) is a bounded open set and
Γ(0) (c Rn\D(0)) is a compact set containing the boundary dD(0), then,
evidently, there is a defining function a e Ca(Rn) of (Γ(0), D(0)). Ex-
istence of a viscosity solution ua of (1.1) and (1.4) now yields a unique
global solution family (Γ(t), D(t)) (t > 0) of (1.1) for a given initial data
(Γ(0), D(0)). In particular for the mean curvature flow equation (1.3) we
construct a whole unique evolution family Γ(t) moved by its mean curva-
ture. Since Γ(t) may not be regular, here its mean curvature is interpreted
in some weak sense. By our comparison it is also proved that (Γ(ί), D(ή)
becomes empty in finite time provided that it is a solution family of (1.3)
when n > 2. This extends a result of G. Huisken [14] because no geo-
metric assumption of Γ(0) is required in our approach. In [14] Huisken
proved that Γ(t) becomes extinct in finite time provided that Γ(0) is a
uniformly convex C 2 surface in Rn (n > 3) for n = 2, see [10]. We
also note that we need no regularity of Γ(0). In [4] K. A. Brakke tried
to construct a global evolution family T(t) moved by its mean curvature
by using geometric measure theory. However, his varifold solution is too
weak to be regarded as an evolution of subsets in Rn, and his solution
may not be unique.

Our analysis works for a large class of geometric, degenerate parabolic
equations (1.1) other than the mean curvature flow equation (1.3). Impor-
tant examples generalizing (1.3) are

(1.5) ut - \Vu\ div(Vκ/|Vw|) - i/|Vκ| = 0, v e R,

and its anisotropic version (cf. [13])

where H e C2(Rn\{0}) is convex, positively homogeneous of degree one
and β is continuous on a unit sphere in Rn . In (1.5) one observes that
the motion of T{t) by constant speed v is also considered as well as by
the mean curvature. When n = 2, a global evolution family of curves Γ(t)
(even not embedded) moved by (1.6) with β = 0 is essentially constructed
in [3] by a completely different method—parametrization of Γ(t). In [3]
strict convexity of H is also assumed. As is described in later sections our
analysis works even when F depends on t. However, the case where F
depends on x is not studied in the present paper.

This paper is organized as follows. §2 begins with the definition of vis-
cosity sub- and supersolutions and treats its basic properties. Most of the
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results in this section are more or less known to specialists. However, the
proof in our context is not explicitly written in the literature, and ideas
of the proof are scattered in various literature, so we include the proof
both for completeness and for the reader's convenience. In §3 we state a
parabolic version of Ishii's lemma [17], [18], which is a key to establish-
ing the comparison principle for viscosity solutions. Our results extend
Proposition IV. 1 in [18]. §4 establishes comparison results on viscosity
sub- and supersolutions of degenerate parabolic equations, including (1.1)
in a bounded domain even when F = F(p, X) may not be continuous
at p = 0. This extends the comparison results in [17], [18], where F is
assumed to be continuous. §5 begins with the definition of geometric equa-
tions, and there we show that geometric, degenerate elliptic equations are
invariant under an (orientation-preserving) change of a dependent variable
in the viscosity sense, as is mentioned in the fourth paragraph of the Intro-
duction. We use approximation and Jensen's lemma in [19] on semiconvex
functions to show this fact. In §§6 and 7 we consider the initial-value prob-
lem of the geometric, degenerate parabolic equation (1.1) with (1.4). §6
establishes the unique global existence of viscosity solutions for a large
class of (1.1) by Perron's method. Using results in §6, we construct a solu-
tion family (Γ(ή, D(ή) of (1.1) for an arbitrary initial data (Γ(0), D(0)).
The main body of this paper consists of §§4-7 preceded by preliminary
§§2 and 3. This paper is written so that no previous knowledge of viscosity
solutions in [16], [17], [18], [19], [22], [24] is required.

The results in this paper have been announced in [5].
After this work was completed, we were informed of a recent work of

L. C. Evans and J. Spruck [9] closely related to ours. They also proved the
existence of a unique viscosity solution and studied various properties of
the level surfaces Γ(/) of the solution, but only for the mean curvature
flow equation (1.3). They showed that Γ(t) is determined only by Γ(0),
which is not expected for general geometric equations having first-order
terms such as (1.5) with v φ 0. We also learned of works of S. Osher
and J. A. Sethian [25] and Sethian [26] giving numerical algorithms for
evolutions of surfaces with curvature-dependent speed. Their viewpoint
of an evolution of surfaces is the same as ours. They regarded them as
level surfaces of solutions of parabolic equations of second order.

We are grateful to Professor Hitoshi Ishii and Professor Robert Kohn
for informing us of several recent works related to ours. We are also
grateful to Professor L. Craig Evans for sending us his latest manuscript
with J. Spruck [9] before its publication.
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2. Basic properties of viscosity solutions

We recall the definition of a viscosity solution and collect some of its
properties here. This section is almost paralleled to §2 in [17], although
the situation is slightly different.

For a sequence of functions hk:L ~-> R (L cRd) (k = 1,2, ...) we

associate its Γ~-limit

lim* hk: L - > 1 = RU ί^0 0}

defined by

lim*Λ,(x)= lim inf inf h,(y) forxeT,
, _ ^ κ k->oc l>k \x-y\<ε

where L denotes the closure of L in Rd. When hk = h for all k, the

Γ~-limit lim*, h, is called the lower semicontinuous (l.s.c.) relaxation
AC—• OO fC

of h to Γ and is denoted by h^. It is easy to see

h (x) = lim inf h(y), x € L.

The wpp r̂ semicontinuous (u.s.c.) relaxation of Λ to L is defined by
A* = -(-Λ)* The concept of Γ~-limit and the relaxations was introduced
by E. De Giorgi [11] and it is important, for example in the calculus of
variation.

For A c RN we consider a dense subset W of J(A) = A xRxRN x
SNxN, where SNxN denotes the space of NxN real symmetric matrices.
Let E = E(y, s, q, Y) be a function from W to R. Since W is dense
in /(Λ), the relaxations E^ and £* are defined in J(A) with value in
S

Definition 2.1. A function w = u{y)\ A -> R is called a vwcô zYy .swfoί?-
/wί/0/7 (supersolution, respectively) of the equation

(2.1) E(y,u,Du,D2u) = 0 in A

if w* < oc (w+ > -oc, resp.) in A, and for each pair φ e C2(A) and
ye A satisfying max^(w* -φ) = (w* - 0)(y) (minA{u^ -φ) = (wφ -
resp.) it holds that

E^(y,u(y),Dφ(y),D2φ(y))<0

(E*(y, u.(y),Dφ(y),D2φ(y)) > 0, resp.).
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Here Du = (du/dy{, , du/dyN), and D2u denotes the Hessian ma-

trix of w. By φ e C2(A) we mean that φ has a C 2 extension φ in an

open neighborhood of A .
When u has the second differential at y e A it is easy to see that

E^(y,u(y),Du(y),D2u(y))<0

if u is a viscosity subsolution. A similar result holds for a viscosity su-
persolution. A function u = u(y) is called a viscosity solution of (2.1) if
it is both a viscosity sub- and supersolution of (2.1).

Our definition has a meaning for a wider class of E than in [7], [17],
since we do not assume W = J(A) here. We often suppress the word
"viscosity", except in statements of theorems, since all solutions in this
paper are considered in the viscosity sense.

In what follows we always assume that A is locally compact. We give
below three basic properties of subsolutions.

Proposition 2.2. Let S be a nonempty family of a subsolution 0/(2.1)
and let u be a function defined on A by

u(y) = s\xp{υ(y) υ € S} foryeA.

Suppose u*(y) < oc for y e A. Then u is a subsolution of (2.2).
Proposition 2.3 (Existence). Suppose that E is degenerate elliptic, i.e.,

E(y,s,q,Y)<E(y,s,q,Z) inWifY>Z.

Let f and g:A —• R be respectively a sub- and supersolution of (2Λ).
Suppose f < g in A. Then there exists a solution u of(2Λ) satisfying
f <u< g in A.

Proposition 2.4 (Stability). Let E, Ek:W ->R and uk be a subsolu-
tion of

Ek(y,uk,Duk,D
2uk) = 0 in A,

k = 1, 2, . Assume l i m * ^ ^ Ek > E^ and uk converges to a function
u:A->R uniformly in each compact subset of A. Then, u is a subsolution
o/(2.1) with this E.

When E is continuous in W = J(A), Propositions 2.2 and 2.3 are
studied in [17]. Existence of the solution (Proposition 2.3) is proved by
Perron's method as in [16]. Although the proof is actually written for
first order equations in [16], it still works in our situation with minor
modifications. However, we give proofs both of Propositions 2.2 and 2.3
for the reader's convenience and for completeness because the proof for
second order equations is not explicitly written in the literature.
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We also give the proof of Proposition 2.4. The stability is often proved
under stringent assumptions that Ek , E: J(A) —• R are continuous and
that Ek -> E uniformly on every compact subset of J(A) (cf. [22]).

Proof of Proposition 2.2. First, we choose a function φ € C2(A) and a
point y e A such that

max(u* - φ) = (u* - φ)(y),
A

and then fix φ and y. Here we can assume (u* -φ)(y) = 0 without loss of
generality, since the function φ(y) can be replaced by φ(y) + (w* - <£)(7).
Putting ^(y) = φ(y) + \y - y\4, we see that u - ψ attains its strict
maximum in A at y. Then

(«• - ¥000 + \y - y|4 = («• - φ)(y) < (u - φ)(y) = (u - ψ)(y) = 0

yields

(2.2) ( I | - ^ ( j , ) <_ | j ,_y | 4 forye^.

By the definition of u , there is a sequence {xk} c 4̂ such that xk ->
j7 (/c —• CXD) a n d

lim ak = (w* - ^)(y) = 0
> o o

with ak = (M - 0)(xΛ). Since κ(j ) = sup{ι;(y) \v e S}, there exists a
sequence {vfc} c S such that ^fc(xfc) > u(xk) - \/k (k = 1, 2, ). This
implies

Since ^ < w, by (2.2) we get

K -l^ - y\4 f o r

Since A is locally compact, there is a compact neighborhood of y which
we denote by B . Because the function {v*k - φ)(x) is u.s.c. and has an
upper bound, it attains its maximum in B at a point yk € B. We thus
conclude

(2.3) ak - Ilk < (v*k - ψ){xk) < ( < - ψ){yk) < -\yk - y|4.

This implies yk -• y (k -• oo). Indeed, if not, we would have

0 = lim (u - φ){xk) < limsup(l/fc - \yk-y\A) < 0,

which is a contradiction.
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By (2.3) we can see \imk_^oo(vl - ψ){yk) = 0, and hence

l i m t ; * ^ ) = l im ψ(yk) = ψ(y) = u{y).

Since vk is a subsolution we see

2 ) < 0.

Since E^ is l.s.c. and Dψ{y) = Dφ(y), D2ψ(y) = D2φ(y), this yields

E^y,u*(y),Dφ(y),D2φ(y))<0,

which implies that u is a subsolution. q.e.d.
The above proof is due to Ishii [16], where he used \y - y\2 instead of

\y -y\4 . The modification term \y -y\4 is convenient to study the second
order equations. The proof of Proposition 2.3 presented below is based
on Perron's method and is essentially found in [16]. We begin with

Lemma 2.5. Suppose that E is degenerate elliptic. Let g:A-+R be
a super solution of (2 Λ). Let S be the collection of all subsolutions v of
(2.1), satisfying v < g in A. If v e S is not a supersolution of(2Λ), then
there is a function w e S and a point z e A such that υ(z) <w(z).

Proof Since v is not a supersolution, there exist φ e C2(A) and
y e A such that

min(^ -φ) = ( ^ - φ)(y) = 0
A

and

E*(y, v,00, Dφ(y), D2φ(y)) = E*(y, φ(y), Dφ(y), D2φ(y)) < 0.

We may assume here

(2.4) {v^φ){y)>\y-y\4 for ye A,

because the function φ can be modified as φ + \y - y\4 if necessary.
Evidently, we have υm < g^ in A. We now obtain vφ(y) = φ(y) < g^(y),
since, otherwise, it would contradict the fact that g is a supersolution of
(2.1). Considering that E* is u.s.c. and φ e C2{A), for sufficiently small
δ > 0 we have

(2.5) E*(y, φ(y) + δ4/2,Dφ(y),D2φ(y)) < 0,

(2.6) 4

for y e B2δ = B Π B(y, 2δ), where B is a compact neighborhood of
y, and B(y, R) is the open ball of radius R centered at y. (Such B
exists since A is locally compact.) Since E is degenerate elliptic, the
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inequality (2.5) indicates that, by φ e C2{A), the function φ(y) + δ4/2 is
a subsolution in B2δ . Furthermore, by (2.4) we have

(2.7) v{y)>vSy)-δ*l2>φ{y) + δ*/2 on B2δ\Bδ.

We now define w(y) by

w ί max{φ(y) + δ*/2, v(y)}, yeBδ,

It follows from (2.7) that

w(y) = max{φ(y) + δ4/2, v(y)} forye B2δ.

According to Proposition 2.2, w is a subsolution of (2.1) over the whole
of A and, thus, w e S since (2.6) holds.

However, we have

0 = K " Φ)G0 = lim inf{(ι; " 0)00', y e A and\y-y\ < t}.

This implies that there is a point z e f i ^ such that υ(z) - φ(z) < δA/2,
which yields v(z) < w(z).

Proof of Proposition 2.3. We appeal to Perron's method. As in Lemma
2.5, we set S = {v v is a subsolution of (2.1) and v < g} . Since f e S,
we see 5 ^ 0 . We define

By Proposition 2.2, u is a subsolution of (2.1), so u e S since u < g.
Suppose that u were not a supersolution of (2.1). Then by Lemma 2.5
there would exist w e S such that u(z) < w(z) for some z eA. This is
contrary to the definition of u. We thus conclude that u is a solution of
(2.1) and f<u<g.

Proof of Proposition 2.4. Let φ e C2(A) and y e A satisfy

Since A is locally compact and u\ < oc, there is a compact neighborhood
B of y on which uk is bounded from above. Since u\ is u.s.c, one finds
yk e B (k = 1, 2, ) such that

Here, we may assume yk —• y (k —• do) because ŵ  —> u (k -> oo)
uniformly on 5 .
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Since lim*, Ek > EΛ implies lim*, Ek. > E , we have

E.(y,u(y),Dφ(y),D2φ(y))

(2.8) < lim* Ekm(y, u(y), ZJ0OO, D2φ{y))
k->oo

= l i m i n f i n f £ / % ( y , * , ? , F ) ,
l>k \z-z\<ε

()

where z = (y, 5, β, 7) and z = (y, w*(7), Dφ(y), D 20(y)). Since ι^

converges to w uniformly on B, for each ε > 0 we see \zι - Ί\ < ε

with zι = (yι, u*(yt), Dφ(yι), D1φ(yι)) for sufficiently large /. Hence,

the right-hand side of (2.8) is dominated by

lim inf Ek^(yk, uk[yk), Dφ(yk), D2φ(yk)),

so we obtain the desired inequality

E,<y9u*(y)9Dφ<y),D2φ(y))<0

which shows that u is a subsolution of (2.1), once we prove

(2.9) Ek^yk, uk(yk), Z t y ( j g , D2φ(yk)) < 0 for all k > 1.

Since wfc is a subsolution of Ek(y,uk, Duk, D2uk) = 0 in 4̂ and
fc k k k k

£ - Φ) - (u*k - φ){yk), we have indeed (2.9) so the proof is now
complete.

3. Ishii's lemma on evolution equations

We are concerned with a special form of (2.1) called the evolution equa-
tion,

(3.1) ut + F(t,x,u,Vu9 V2u) = 0,

where V stands for spatial derivatives. Our goal in this section is to prove
a key lemma for our comparison theorem for (3.1) in §4. A similar result
is first proved by Ishii [17] for (2.1) of nonevolution type. We state our
main lemma.

Lemma 3.1. Let Ω be a domain in Rn and T > 0. Let u be a locally
bounded upper semicontinuous (u.s.c.) subsolution of

(3.2a) ut + F(t,x, u, Vw, V2u) = 0 in Ωτ = (0, T] x Ω ,

and let v be a locally bounded lower semicontinuous (l.s.c.) supersolution

of
(3.2b) vt + G(t, x, υ, Vv, V2v) = 0 inΩτ,
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where F, G: J = Ω Γ x R x Rn x Snxn -• I are l.s.c. and u.s.c, respectively,

and r *-+ F(t9 x, r,p, X) and r H-> G{t, JC, r9p, X) are nondecreasing

for all (t,x, r,p, X) e J. Let φ € C 2 ( (0 , T] x Ω x Ω) and U be a
subdomain of Ω x Ω. Let (Ί,x,y)eUτ be a point such that

(3.3a) u(Ί, x) - v(i, y) - φ(l, I , y) = sup(w - υ - φ),
uτ

where Uτ = (0, T] x U. Suppose that

u(t, •) andjv(t, •) are, for each t e [0, Γ], Lipschitz con-
tinuous on Ω αnd ίAere w α constant C > 0, independent

^ ' ^ o/ίΛ^ ίim^ variable t, 5wcΛ ίλtfί V2 w(ί, x) , - V ^ ( ί , y) >
- C / ZΛ Ω Γ {in the sense of distributions).

Then there are X, Y e Snxn such that

(3.4a) ~ C /

(3.4b) ^ ( 7 , 3 c , y) + FCt, *, u(Ί, x), Vxφ(Ί, x9 y), X)

- <?(7, y, v(l, y), -Vy0(7, x , y), - 7 ) < 0,

where I is the identity matrix.
We first prove a weaker version of Lemma 3.1 which is essentially Propo-

sition IV. 1 of [18].
Proposition 3.2. Suppose that u, υ , F, and G are as in Lemma 3.1.

If the maximum point (i,x,y) is in int Uτ = (0, Γ) x U, then the con-
clusion of Lemma 3.1 holds.

The idea of proof is given in [18]. However the proof is not explicitly
stated. We give it here for completeness and the reader's convenience. The
crucial tool is Jensen's lemma on semiconvex functions.

Lemma 3.3 [19, Lemma 3.10]. Let D be a bounded domain in Rd and
let w be a Lipschitz continuous function in D. For δ > 0, define

&δ = {z € Z) for some p e Rd with \p\<δ,

w(ζ) < w(z)+p. (C - z) for all ζ e D).

Assume that there is a constant Ko > 0 such that D2w > -K0I in D (in

the sense of distributions). If w has an interior maximum (> τnaxdD w),

then there are constants Co > 0 and δ0 > 0 such that meas(^) > CQδd

for all δ <δ0.
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As is observed in [17, Lemma 5.2], Lemma 3.3 yields the following re-
sult since a convex function is almost everywhere differentiable by Alexan-
drofFs theorem [2].

Lemma 3.4. Suppose that w is as in Lemma 3.3. Let z e D be a
maximum point of w . Then there are sequences {zk} c D (k = 1,2, --)
satisfying zk -• z as k -• oc and {pk} c Rd satisfying \pk\ < \jk for all
k such that the functions z H-> w(z)+pk- z attain a maximum at zk and
have the second differential at zk .

To prove Proposition 3.2 we approximate u and v by its sup and inf
convolutions as in [18], [20]. We recall properties of these convolutions.

Lemma 3.5 [21]. Let D be a bounded domain in RN and f,g:D->R
be bounded u.s.c. and l.s.c. functions, respectively. For ε > 0, we define

f(y) = sup{f(z)-ε- ι\y-z\2} foryeD,
z€D

ε {g() + ε" 1 |y-z | 2 } foryeD,

and call f , gε sup and inf convolutions, respectively. Then f (gε resp.)
is Lipschitz continuous on D and semiconvex (semiconcave resp.) on D.
More precisely, fε{y)Jtε~x\y]^ is convex on D (gε(y)-ε~ι\y\2 is concave on
D resp.). In the definitions of sup (inf resp.) convolution the z's may be
restrictedby \y-z\ < λoy/ε, where λ0 = (2suP / ) | / | ) 1 / 2 (λQ = (2suP / ) | # | ) 1 / 2

resp.).

Lemma 3.6 [18], [20]. Suppose that f, g, and D are as in Lemma
3.5. Let E:D xRxRN x SNxN -> 1 be an l.s.c. (u.s.c. resp.) function
and s »-• E(y, s, q,Y) be nondecreasing. If f (g resp.) is a sub- (super-
resp.) solution of

E(y, u,Du,D2u) = 0 in D,

then f (gε resp.) is a sub- (super- resp.) solution of

Eε(y,u,Du,D2u) = 0 in Dε

Eε(y ,u,Du, D2u) = 0 in Dε resp.

Here Dε = {y € D ά(y, 3D) > λ0y/ε} and

Eε(y,s,q, Y) = min{E(z,s,q, Y); \y-z\<λoy/ε, z e D}

Eε(y,s,q, Y) = max{E(z,s,q, Y); \y-z\<λoy/e, zeD}resp.,

where d(y, ΘD) denotes the distance between y and 3D.
These lemmas follow directly from definitions.
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Proof of Proposition 3.2. Replacing φ by

(t, x, y) ^ φ(t, x, y) + |ί - 7|2 + |x - x | 4 + |y - y| 4

if necessary, we may assume that u(t, x) -υ(t, y) - φ(t, x, y) attains a
strict maximum over ΊT^ at (7, ~x, y). Hence, we may assume that Uτ

is bounded and u, v are bounded there since they are locally bounded.
Let uε and υe be, respectively, sup and inf convolutions in time of u

and v, i.e.,

uε(t,x)= sup {u(s9x)-e~\t-s)2}9se[0,τ]

Since uε-vε[u-v in Uτ, a, similar argument to [17, p. 29, 2nd
paragraph; see also Proof of Theorem 4.1 in this paper] implies that
uε(t, x) - vε(t, y) - φ{t, x, y) also has an interior (strict) maximum over
TJ^ if ε > 0 is sufficiently small and that the maximum point (tε, xε, yε)
tends to (7, x , y) as ε I 0. By Lemma 3.5 we see uε and vβ are Lipschitz

continuous on Ω Γ and

in intΩ Γ

in the sense of distributions. We now apply Lemma 3.4 and observe that

there are (tε

k, xε

k, yε

k) e int Uτ satisfying (tε

k, xε

k, yε

k) -+ (tε, xε, y e) as

ik -+ ex) and (/*, pε

k, ^ ) G R 2 n + 1 satisfying \lε

k\ + |p*| + \qe

k\ < l/k such

that

{t, x, y) ^ u{t, x) - vε{t, y) - φ{t, x, y) - lε

kt - pε

k - x + qε

k - y

attains a maximum at {te

k9x
e

k9y
e

k) and has second differential at (te

k9x
e

k9y
e

k).
These yield

and by Lemma 3.6

^ ( 4 , x ) + F, (ί , 4, w

ε ( 4 , 4 ) . v, w

ε (4, ^ ) , vjii1 (ί , x )) < o,

o.
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Setting Xε

k = V2

χu
ε(tε

k, xε

k) and Yε = -V2

yvε{tε

k, yε

k), we have

(3.5a) -CI(X £ ) <

dφ, e ε Cx ,ε

(3.5b) +Fε(tε

k>4,uε(tε

k,x
ε

k),Vxφ(tε

k,4,/k)+pε

k>X
ε

k)

~ Gε(te

k, ye

k, ve(tε

k, yε

k), -Vyφ(tε

k, xε

k, y
ε

k) + q\, -Yε) < 0.

Since V^ yφ{fk, xε

k, y
e

k) is bounded from above uniformly in ε and k,
by compactness (see Lemma 5.3 in [17]) (3.5a) implies that there is an
increasing sequence {£.}, a decreasing sequence {e.} , and X, Y e Snxn

such that X. = X*.J - X and Y. = Yε,j -+ Y as j -> oo.
J Kj J Kj

Let si be a maximum point of u(s, xε

k) - (tε

k - s)2/ε over [0, T]. We

observe that |7 - j ^ | < |7 - fk\ + A0Vβ —^0 as ε | 0 , A: —• oo and

where λ0 = max((2sup|w|)^2, (2sup l^l)1^2). Since u is u.s.c, we have

limsup u{fk, xε

k) < limsupw(4, x*k) < u(l9 x).
ejO ε|0

k—•oo k—•oo

By definition of Fε there is s^. G (0, T] satisfying \fk - 3^| < λoy/ε such
that

^ / . ε ε ε / . ε βv _ i / ( . e ε ε λ ε ^ x

F ε(ί f c ,xk,u(tk,xk), Vχφ(tk, xk, yk) + pk, Xk)
= F ( ^ , x k , u ( t k , xk), V χ 0(^, xk, y j + p Λ , ^ ) .

Since F is l.s.c. and r »-• F( ί , x, r, p, X) is nondecreasing, we now
have

liminfF(4 , *•, M

£(4 ,χε

k), Vχφ{ζ ,4,ye

k)+pε

k, X,)

>F(t,x,u(i,x),Vχφ(J,x,y),X), ε = εJt

Similarly,

limsupGε{tε

k, y\, vε(tε

k,/k), -Vyφ(tε

k, x[, yε

k) + <je

k,-Y

<GCt,y,υ(l,y),-VyφCt,x,y),-Y), e = ejt

We now conclude from (3.5a) and (3.5b) that
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and

^ ( 7 , x , y) + F(7, x , w(7, x) , V ^ ( 7 , x , y), X)

- G(7, y, v(7,50, - V / ( 7 , x, y), - 7 ) < 0,

which is the same as (3.4a) and (3.4b).
Remark 3.7. In Lemmas 3.1 and 3.6 the assumption that r »->

F(t, x, r, p, X) is nondecreasing is for simplicity only. Assertions in
both Lemmas 3.1 and 3.6 hold without this assumption.

Proof of Lemma 3.1. Again we may assume that

Φ(t,x,y) = u(t, x) - υ(t,y) - φ{t,x,y)

attains its strict maximum over Uτ at (7,3c, y).. By Proposition 3.2 we
may assume 7 = T.

We first construct a "barrier" near T. Since Φ is u.s.c, there is a
continuous nondecreasing function ra:[0, oc) —• [0, oo) with m(0) = 0
such that

Φ ( Γ , 3 c , 5 0 - Φ ( 7 , 3 c , 5 0 < m ( Γ - O for all t, 0<t<T.

We take a continuous nondecreasing function M:[0, oc) -• [0, oc) such
that Af (0) = 0 and m(σ) < M(σ) for σ > 0 and that M(σ) is C 2 for
σ > 0. We now set

φa(t,x,y) = φ(t,x9y)- aM(T - t),

Φβ(ί, x, y) = iι(ί, x) - v(t,y) - φa(t,x,y),

Since Φ is u.s.c, the set Σ of all maximum points of Φ over Uτ

is closed. We set

ta = s u p { t \ { t , x , y ) e Σ a f o r s o m e { x , y ) e U } .

Since Σa is closed, there is (xa9ya) e t/ such that {ta,xa,ya) G Σ α .
We set

Λ = { α € [ 0 , l ] ; ί β < Γ }

and observe that Λ is an open set in [0, 1]. Since

Φ ^ Γ , x , 50 = Φ(Γ, x , y) < Φ(ί, x , 50 + M(T - t)

= Φ1(ί,3c,50 for all ί < Γ

by the definition of M, we see 1 e Λ. Since 7 = T, we see 0 £ Λ which
implies Λ ^ [0, 1]. Let β be a boundary point of Ac = {β e [0, 1] tβ =
Γ}. If rQ = Γ



764 Y.-G. CHEN, YOSHIKAZU GIGA & SHUNΊCHI GOTO

holds, so we have (xa,ya) = (x,y). We thus observe that there is a

sequence {α ;} in Λ such that α ; —• /? as ./' —> oo and

(% > x

aj > y a ) = ( 0 , X j , y j ) ^ { T , x , y ) a s -f oo.
aj

By tj < T and Proposition 3.2 there are X}, Yj € Snxn such that

(3.6a) -CIK^J £ ) < V2

XtyΦa.(tj, Xj,yβ,

(3.6b) -Qf-itj, Xj, yβ + F(tj, Xj, u(tj, xβ, VxΦa(tj, Xj, yβ, Xβ

- G(tj, yj, υ(tj, yβ, -VyΦaj(tj, Xj, yβ, -Yβ < 0.

Since

is bounded from above uniformly in j , (3.6a) implies there is a sequence
(still denoted Xp Yβ and X, Y e Snxn such that X} -» X and Y} -» Y
as j —» oo. We also see

since Vφa = Vφ and M is nondecreasing. Since F and G are, respec-

tively, l.s.c. and u.s.c, letting j -• oc in (3.6a, b) yields (3.4a,b) with

1=T provided that

(3.7) lim u{trχ.) = κ(Γ, x), Urn v(t.,y.) = v(Γ, y).
7—>oo y 7 7"-*oo ^ J

It remains to prove (3.7). Suppose that (3.7) were false. Since u and
v are u.s.c. and l.s.c, respectively, then either

liminfw(/ , JC.) < u(T, x) or limsupτ;(ί,, yλ > v(T, y)

will hold. This would imply

l i m i n f Φ α ( ί j 9 x j 9 y . ) < Φ ( T 9 x , y ) .
j—>oc aj J J J

Since ΦQ attains its maximum at (r , x., y.), we see

Φ α . ( Γ , x 9 y ) = Φ ( 7 \ x 9 y ) < Φaj(t., x . , y . ) ,

which leads to a contradiction.
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4. Parabolic comparison theorem

We consider an evolution equation

(4.1) ut + F(t9 u, Vw, V2W) = 0

of degenerate parabolic type, i.e., F is degenerate elliptic. In other words

F(t9r9p9X+Y)<F{t9r9p9X) for all Y>0, Y e Snxn

holds where F is defined. Our goal in this section is to show a compari-
son theorem on viscosity solutions of (4.1) in a bounded domain, even if
F(t9 r9p9 X) may not be continuous at p = 0. A comparison theorem
on viscosity solutions was first proved by P. L. Lions [22] for some special
degenerate elliptic equations. Later his results were extended in [19], [17]
for general degenerate elliptic equations E(u(y), Du{y), D2u{y)) = 0,
where E is assumed to be continuous in its variables (see also [6], [20]).
A parabolic comparison theorem is also discussed in [24], [18], where
F = F{t9 r, p, X) is still assumed to be continuous in p .

Let Ω be a bounded domain in Rn and T > 0. We assume that F
satisfies

(4.2a) F : / 0 = ( 0 J ] x l x (Rπ\{0}) x Snxn -> R is continuous,

(4.2b) F is degenerate elliptic on Jo,

for all M > 0, there is a constant cQ = co(n, T, M)
(4.2c) such that r »-• F(t, r, p, X) + cQr is nondecreasing for

all (t9r9p9X)eJ0 with \r\<M9

(4.2d) - oo < Fφ(t9 r9 0, O) = F*(t, r9 0, O) < oo

for a l l / € [0, T]9 r e i

We now state our main comparison result.
Theorem 4.1. Let u and v be, respectively, sub- and supersolutions

o/(4.1) in Ω Γ . Suppose that F satisfies (4.2a)-(4.2d). // u < v^ on
dpΩτ = {0} x Ω U [0, T] x dΩ, then u < v^ on Ω Γ .

Remark 4.2. We may assume that (4.1) has a form

(4.3) ut + u + F{t, u9 VM, V2w) = 0

with

(4.2c') r H-> F(t, r, /?, X) is nondecreasing for all (ί, r, p, X) G /0

if we replace u (v resp.) by eλtu (eλtv resp.) with sufficiently large λ.
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The crucial step to prove Theorem 4.1 is the following property on
viscosity solutions.

Lemma 4.3. Let u and v be, respectively, u.s.c. sub- and l.s.c. superso-
lutions of'(4.3) in Ωτ, where F satisfies (4.2a), (4.2b), (4.2c'), and (4.2d).
Assume that u and v are locally bounded in Ωτ. Let φ e C2(Rn) such
that

(4.4a) Vφ(x) = 0 if and only if x = 0,

(4.4b) φ{x) = φ{-x),

(4 4c) ^ e r e is a c o n s t a n t c\ > ° su°h that |0Ot)-0(O)| < Cx\x\
for sufficiently small \x\

{this actually follows from (4.4a) and φ e C2{Rn)),

(4.4d) 0 ( O ) < 0 ( J C ) forallxeRn.

Define ψ{x, y) = φ{x - y) and Qτ = (0, T] x Ω x Ω. Assume that

u{t, -) and υ(t, ) are Lipschitz continuous on Ω for each

(4.5a)
t e [0, T] and there is a constant C2 > 0 {independent of

t) such that Vχu(t,x), -\yυ{t,y) > -C2I on ΩΓ {in
the sense of distributions),

(4.5b) (7, x, y) e Qτ is a point such that

u{l, x) - υ(i, y) - ψ(x, y) = sup(w -v-ψ)
QT

> max(w -v-ψ),
d

PQτ

where dpQτ = { 0 } x Ω x Ω u [ 0 , T]xd{ΩxΩ). Then u{Ί,x)-v(t,y) < 0 .

Proof We divide the proof into several cases depending on x and y.
We first discuss the case JC φy.

Case 1 (x φ y). Since "x Φ y implies Vφ(x - y) Φ 0, the proof
parallels the argument found in [17, pp. 29-30]. By Lemma 3.1 and
dψ/dt = 0, there are X, Y € Snxn such that
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(4.6b) κ(7, x) + Fβ, w(7, x),Vxψ(x, y)9X)

- v(7, y)-F*(i9 v(Ί, y), -Vyψ{x, y)9 -Y) < 0.

The second inequality in (4.6a) is equivalent to

Xp p + Yq - q < V2φ{x-y)p-p - 2V2φ(x-y)p q

+ V2φ(x -y)q-q for all p, q e RΛ.

This yields X < -Y by taking p = q. Since F^=F* =F on / 0 , and

Vχψ(x, y) = - V ^ ( x , y) = Vφ(x - y)

and V0(JC-7) Φ 0, applying (4.2b) and (4.2c') in (4.6b) with X < -Y
we obtain

u(Ί,x)-v(Ί,y)<0.

Case 2 (x = y). We set

and observe that w-ψ attains its maximum over Qτ at (7, x, x), where

iϋ(ί, x, y) = w(ί, x)-v( ί , y).

For η eRn we set

Φ ί̂, x, y) = n;(ί, x, y) -φ(x-y-η)- (t-tf

and divide the situation into the following Case 2a and its negation Case
2b.

Case 2a. For some K > 0 there is (t , xη, y ) e Q-t with χη-yη = η
such that

(4-7) Φ,(ί,,χ,,y,)
= sup{Φ,(ί, x, y) x, y e Ω, \x - y\ < K , t € (0, t]}

for all ηeΈ." with \η\<κ.
We discuss Case 2a. We set

/ ( ι j ) = s u p { w ( t η , x , y ) - ( t - t η ) 2 ; x , y e Ω , x - y = η } .

By (4.7) we have

w(t, x, y) - (1 - tf < φ(x - y - η) + w(tη, xη, yη) - (7 - tηf - φ(0)

for all x, y e Ω with \x-y\<κ, t e (0, T]. This, in particular, yields

f(ξ)<Φ(ξ-η)
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by taking x - y = ξ and t = tζ. From (4.4b) it now follows that

- φ ( ξ - η ) + 0 ( 0 ) < / ( { ) - f ( η ) < φ(ξ - η ) - 0 ( 0 )

which together with (4.4c) implies that / is differentiate in η, \η\ < K ,
and that V/ identically equals zero. Hence, f(η) is a constant for \η\ <
K . This implies

(4.8) s u p {w{t• , x 9 y ) - ( i - t ) 2 } ••
\x—y\<κ x6Ω

We shall show that

)2(4.9) sup {w(t9x9y) - (7- t)2} = w(t, x9 x).
\x-y\<κ,te{0,l]

Property (4.7) with η = 0 yields

s u p { w ( t , x , y ) - ( ~ t - ή 2 - φ(x - y ) } = w ( t 9 x , x ) ~ φ(0),
\x-y\<κ,te(0,Ί]

from which we deduce

w(Ί,x,x)-φ(0) >w(i, JC, x)-φ(0) for all x e Ω.

We thus conclude

(4.10) suptί;(7, x,x) = w(Ί, x, x).
xeΩ

Observe that

(4.11) sup {w(t,x,y)-Ct-t)2}<w(tη,xη,yη)-(Ί-tη)
2,

x-y=η,te(0,l)

\η\<κ,

by taking x -y = η in (4.7). Applying (4.8) and (4.10) to (4.11) yields

sup {w(t,x9y) - (t-t)2} < w(t9 x9 x).
\x-y\<κ,te(0,Ί]

The converse inequality is trivial, so we now obtain (4.9).

By (4.9) we now apply Lemma 3.1 with φ = (i - t)2 and

U = {(x,y)eΩxΩ;\x-y\<κ},

and observe that there are X, Y e Snxn such that

(4.12a) (5 °γ)<0,

u(Ί, x ) + F.(t, u(l, χ ) , 0 , X ) - υ ( i , x )

(4.12b) -F*(t,v(l,x),0,-Y)<0.
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The estimate (4.12a) yields X < O < -Y. By (4.2b) we now have

Fφ(t, r, 0, X) > F^t, r, 0, O), F*(t9 r, 0, -Y) < F*(t, r, 0, O).

Applying these with (4.2c') and (4.2d) to (4.12b) gives

u(t,x)-υ(t9x)<09

and the proof of Case 2a is now complete. The assumption (4.2d) is only
invoked here.

It remains to discuss the following Case 2b. In this case there is a
sequence {ί/J in R" with \η.\ < 1// and (ti9 x 9 y() e Q-t with x..-y. φ
r\i (i = 1, 2, . . .) such that (4.7) holds. Since Vφ(xi - y. - η.) φ 0, the
same argument in Case 1 shows that

(4.13) ^ . , x / ) - < ; ( ί / , y / ) < 0 .

There is a convergent subsequence (still denoted {(ίz, x 9 y^}) in Qτ.
Since the maximum of Φ o is not attained for t < 1, its limit is expressed
as (Ί,^,f) e Qτ by (4.5b). The limit (7, J , f) is a maximum point of
Φ o since Φ o is u.s.c. Letting / —• oc in (4.13) yields

(4.14) uCt,^)-v{Ί,f) <0

provided that

(4.15) lim u(ti, x.) = u(Ί, f ) , lim v{ti, yt) = υ(Ί, f).
i—KX) /—» oo ' ι

By (4.4d) it follows from (4.14) that

u(Ί, x)-v(t, x) < 0.

It remains to prove (4.15) to complete the proof of Case 2. The idea
is similar to the proof of (3.7). Suppose that (4.15) were false. Then we
would have

(4.16) f / |

since u and v are u.s.c. and l.s.c, respectively. However, since Φ^ at-

tains its maximum at (ti, x{, yt) and Φ o attains its maximum at (l,x,x)

and (t, T, J), we see

Φηi(ti9xi9yi) > Φηi(t9 x9 y) = w(Ί, x, x) - φ(η.)

by (4.4b) and (4.4c). This leads to a contradiction to (4.16), so we obtain

(4.15). q.e.d.
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Lemma 4.3 plays a crucial role in the proof of Theorem 4.1. The re-
maining part of the proof of Theorem 4.1 parallels the argument in [17,
pp. 29-30] as is described below.

Proof of Theorem 4.1. By Remark 4.2 we may assume that the equation
has the form (4.3). By the definition of sub- (super- resp.) solution and
the boundedness of Ω Γ , replacing u (υ resp.) by

{max{u(t, x), -M)γ ({min{v(t, x), M)}^ resp.)

for sufficiently large M we may assume that u (v resp.) is bounded u.s.c.
(l.s.c. resp.) on Ω Γ = Ω Γ U dpΩτ. The assumption u < v^ implies
there is a modulus function m (i.e., m:[0, oo) -• [0, oc) is continuous,
nondecreasing, concave and m(0) = 0) such that

u(t,x)-v(t,y)<m(\x-y\) ondpQτ,

where

<2Γ = (0, T] x Ω x Ω and dpQτ = {0} x Ω x Ω u [ 0 , T] x <9(Ω x Ω).

We choose {aλ}λ€A and {bλ}λeA as positive numbers, with A a suitable
index set, such that

For fixed λe A and δ > 0 define φ, ψ by

φ{z) = aλ{\z\2 + δ)ιll + bk and ψ(x,y) = φ{x-y).

We set w(t, x,y) = u(t, x) — υ(t, y) and want to prove w < ψ on
Qτ, which obviously ensures our assertion. To do this, we suppose that
supQ (w - ψ) > 0, and then get a contradiction. Set

we(t, x,y) = u(t, x)-vε(t,y) fore > 0,

where uε (vε resp.) is the sup (inf resp.) convolution in x (y resp.). We

know that wε | w on Qτ as ε | 0, and wε and w are u.s.c. on
As ε I 0 we see

{(wε-φ)(t9x,y)-max(w-φ)\ | 0 for (ί, x, (2
r ,

where / ( z ) + = max(/(z), 0). By Dini's theorem this convergence is
uniform on dpQτ. Note also that maxd Q (w - φ) < 0 < supQ (w - φ).

Thus we find that wε-φ attains a maximum over Qτ at a point (7, x, y)
of β£ if ε > 0 and σ > 0 are sufficiently small, where β£ = (σ, Γ] x
Ωσ xΩ σ and Ωσ = {x e Ω d(jc, dΩ) > σ} . We get, for sufficiently small
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σ > 0,

(wε - ψ)(Ί, x , y ) = sup(i<; e -ψ)> m a x ( w ε - ψ).
Qσ

τ »&

Since uε (ve resp.) is a sub- (super- resp.) solution of (4.3) in Ω^ by

Lemma 3.6, and since uε(t, •) (vβ(t, •) resp.) by Lipschitz continuous on

Ω for each te[09T] and

V2

χu{t, x), -V2vε(t, y) > - l ε " 1 / in Ω Γ (in the sense of distributions)

by Lemma 3.5, applying Lemma 4.3 with uε and υε yields wε(i, x,y)<
0. Hence, we have

wε{t,x,y)-ψ{x,y)<0 in QT,

which is a contradiction. Therefore, supg (w — φ) <0, i.e.,

iι(ί, x) - v(t, y) < aλ(\x - y\2 + δ)ι/2 + 6A on β Γ .

Letting 5—^0 and taking the infimum for λ e A, we find u(t, x) -
v(t, y) < m(\x - y\) on Qτ holds. We now conclude that u < v on Ω Γ

and this completes the proof, q.e.d.
As in [17], Theorem 4.1 yields uniqueness and existence of solutions by

Perron's method.
Theorem 4.4. Suppose Ω is a bounded domain in Rn, and F is as in

Theorem 4.1. For given data g e C(dpΩτ) there is at most one viscosity
solution u of the initial boundary value problem 0/(4.1) in Ω Γ , with
u =u^ = g on dpΩτ.

This follows directly from Theorem 4.1 by comparison.
Theorem 4.5. Suppose Ω is a bounded domain in Rn, and F is as in

Theorem 4.1. Suppose that there is a subsolution f and a supersolution g
o/(4.1) in Ω Γ satisfying f < g on Ωτ and f% = g* on dpΩτ. Then
there is a viscosity solution u 0/(4.1) satisfying u e C(ΩT) and f <u< g
on Ω^, where Ω^ = dpΩτ U Ω Γ .

Proof By Proposition 2.3 there is a viscosity solution u of (4.1) in
Ωτ satisfying f <u < g on Ω Γ . Assumption /% = g* on dpΩτ implies
w* < w+ on dpΩτ, which leads to u* < u^ on Ω Γ by Theorem 4.1.
Hence, we have u = i^ , i.e., u e C(ΩT).

Remark 4.6. Our method also yields a comparison theorem for elliptic
equations u + F(u, Vu, V2u) = 0. In fact Theorem 3.1 in [17] can be
extended even when F is not continuous at p = 0 provided (4.2d) holds.
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5. Geometric parabolic equations

In this section we prove that geometric, degenerate parabolic equations
are invariant under an (orientation-preserving) change of a dependent vari-
able even in the viscosity sense. Our main tools are an approximation of
solutions by sup (inf) convolution in Lemma 3.5, Jensen's lemma (Lem-
mas 3.3 and 3.4), and stability (Proposition 2.4). We begin by discussing
geometric equations of nonevolution type.

Definition 5.1. Let E: W -> R, where W c J{RN) ^ ^ x l x / x

SNxN. We say the equation E = 0 is geometric in W if E satisfies

(5.1a) E = E(y, s, q, Y) is independent of s,

and for λ > 0 and μ e R there is Cz = C,.(A, μ) > 0 (/ = 1, 2) such that

(5.ib)

holds whenever each term is well defined. Here <g> denotes a tensor product
of vectors in RN . It is easy to see that the equations E^ = 0 and E* = 0
are geometric in W if £ = 0 is geometric in W.

The following is our main result for geometric, degenerate elliptic equa-
tions in this section.

Theorem 5.2. Let A be an open set in RN, and W be a dense subset
of J(A). Let u be a locally bounded viscosity sub- {super- resp.) solution
of

(5.2) E{y,u,Du,D2u) = 0 in A.

If E is degenerate elliptic and E = 0 is geometric, then θ(u) is a viscosity
sub- {super- resp.) solution whenever Θ:R —• R is a continuous nondecreas-
ing function.

We first prove Theorem 5.2 assuming more regularity on θ and u so
that Jensen's lemma is applicable.

Lemma 5.3. Let A, W, u, and E be as in Theorem 5.2. Suppose that
A is bounded and that u is semiconvex {concave resp.) in A andLipschitz
continuous on A. If θ is an increasing function in C2(R) with θ' > 0,
then θ{u) is a sub- {super- resp.) solution of {5.2).

Proof. We only prove the case where u is a subsolution since the other
case can be proved similarly. Since u is semiconvex in A and Lipschitz
continuous on a compact set A, we see

D2{θ o u) = {θ" o u)Du ® Du + {θf o u)D2u > -CI in A

(in the sense of distribution) with some C independent of y, where
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(f° g)(y) = f(g(y)) - This implies that θ o u is also semiconvex in 4 .
We also observe that θ ou is Lipschitz continuous in A.

Suppose that φ e C2(A) and y e A satisfy

max(0 oU-φ) = θ(u{y)) - φ{y).

(Here we may assume φ € C2(A) by modifying φ away from y.) Apply-
ing Lemma 3.4 to 0 o u - φ, we see there are sequences {^} in A and
{^} in RN such that

( 5 . 3 ) >>£ —• y a n d ^ —• 0 a s /c —• CXD ,

(5.4) max(l9 ou-φ-qk-y) = θ(u(yk)) - φ{yk) -qk-yk,
A

(5.5) θ ou has second differential at yk.

Thus

(5.6) E^yk,D(θou)(yk),D2(θou)(yk)) < C2Em(yk9 Du(yk), D2u(yk)),

since E^ = 0 is geometric in /(^4), and (5.5) implies

D(θou)(yk) = θ'(u(yk))Du(yk),

D\θ O u)(yk) = θ'\u{yk))Du{yk) 0 Z)w(^) + θ\u(yk))D2u{yk)

with 0 / (w(^))>O. (5.6) yields

(5.7) E^yk, Λ(β o u)(yk), Z?2(0 o W )(^)) < 0,

since u is a subsolution of (5.2) and the right-hand side of (5.6) is non-
positive; notice that u(y) has second differential at y = yk by (5.5) since
θ e C2(R) with θf > 0 implies that the inverse θ~ι e C 2(R).

By (5.4) we have

D(θ o u)(yk) = Dφ(yk) + qk, £>2(0 o u)(yk) < D2φ(yk).

Since ^ is degenerate elliptic, (5.7) gives

(5.8) Em{yk, Dφ(yk) + qk, Z)2(/>(^)) < 0.

Since E^ is l.s.c, letting k -> oo in (5.8) and noting (5.3), we obtain

which shows that θ ou- θ(u) is a subsolution of (5.2) in A. q.e.d.

We need to approximate θ e C(R) by C 2 functions.
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Lemma 5.4. Suppose that Θ:R -> R is a continuous nondecreasing
function. Then there is a sequence {θk} in C2(R) of increasing functions
with θ'k > 0 such that θk -> θ uniformly in R as k —• oo.

Proof 1 °. We approximate θ by nondecreasing piecewise linear func-
tions. For an integer j and positive integer k we set

Since θ is a continuous nondecreasing function, we see the sequence
{ t f f^-oo in R = R u {±00} has no accumulation points in R and

a{jk) < af+x (unless both are infinite with the same sign). We now define

a continuous nondecreasing piecewise linear function θk such that it is

linear except at a^ and agrees with θ at a^ e R. It is easy to see that

θk —• θ uniformly in R as k —> 00.
2 °. We approximate a nondecreasing piecewise linear function θk by a

nondecreasing C 2 function. This is easy because all we need is to mollify
θk near nondifferentiable points a^ . We still denote C 2 approximation
o f ^ b y θ , .

3 °. We approximate the nondecreasing C function θk by a C func-
tion whose derivative is always positive. Let β € C2(R) be a bounded C2

function with βf > 0. If we set

then this 0^ converges to θ uniformly in R as k —• 00. Since 0^ is a

C 2 increasing function with 0^ > 0, this completes the proof.
Proof of Theorem 5.2. We may assume that A is bounded and u is

bounded in A since our problem is local. Let uε be the sup convolution
of u* in Lemma 3.5. By Lemmas 3.5 and 3.6 we see uε is semiconvex in
A and Lipschitz continuous on H, and is a subsolution of

(5.9) Eε{y,u,Du,D2u) = 0 in A\

Let θk be an approximation of θ in Lemma 5.4. By Lemma 5.3 we
observe that θk(uε) is also a subsolution of (5.9). Since the convergence
uε I u* is monotone and u* is u.s.c, applying Dini's theorem we see uε

converges to u uniformly in A. This implies that θk(uε) converges to
θ(u*) uniformly in A. We now apply the stability Proposition 2.4 and
conclude that θ(u*) is a subsolution of (5.2) since lim*eiOl?e > E#. Since
θ{uγ = θ(u*), it follows that θ(u) is a subsolution of (5.2). q.e.d.

We now give a version of Theorem 5.2 for a parabolic equation

(5.10) E(y9 u,Du,D2u) = ut + F(t, x, M, VM, V2U) = 0,
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where y = (t, x), D = (dt, V), and F:(0, T] x W -> R with W c
J(Rn). It turns out that the word "geometric" is consistently used in both
the Introduction and Definition 5.2.

Proposition 5.5. Suppose that E is expressed as in (5.10). Then the
equation E - 0 is geometric if (and only if) F satisfies

(5.1 la) F = F(t, x, r, p, X) is independent ofr,

and

(5.11b) F(t, x, λp, λX + σp ® p) = λF(t, x, p, X)

for λ > 0 and σ eR, whenever each term is well defined.
If F satisfies (5.11a) and (5.11b), we say F is geometric as in the

Introduction.
The proof is straightforward from the definitions and is thus omitted.
Theorem 5.6 (Parabolic version). Let Ω be an open set in Rn and

T>0. Let W be a dense subset of /(Ω) = Ω x R x E % Snxn . Suppose
that F is degenerate elliptic and geometric in (0, T]xW. If u is a locally
bounded viscosity sub- (super-) solution of (5.10) in Ω Γ = (0, T] x Ω, then
so is θ(u) whenever 0:R-»R is a continuous nondecreasing function.

Proof. Let E be as in (5.10). By assumptions of F we see E is
degenerate elliptic and E = 0 is geometric. Applying Theorem 5.2 with
A = intΩ Γ shows that θ(u) is a sub- (super- resp.) solution of (5.10) in
int Ω Γ = (0, Γ ) x Ω . This together with the next lemma implies that θ(u)
is a sub- (super- resp.) solution of (5.10) in Ω Γ .

Lemma 5.7. If u is a subsolution in (0, T) x Ω o/(5.10), then u is a
subsolution in Ω Γ = ( 0 J ] x Ω 0/(5.10).

Proof. The proof is similar to that of Lemma 3.1 (admitting Proposi-
tion 3.2). We may assume that u - φ attains its maximum over Ω Γ at
(Γ, 3c), Ϊ G Ω , where φ e C 2 ( Ω Γ ) . As in the proof of Lemma 3.1 we
shift φ by φa, and find a sequence (ta, xa) e intΩ Γ such that u - φa

attains its maximum at (ta, xa) and that (ta, xa) —• (T, x). Since u is
a subsolution of (5.10) in i n t Ω Γ , passing to the limit in

E.(ya, u(ya),Dφ(ya),D2φ(ya)) < 0, ya = (ta,xa),

yields

Em(y, u(y),Dφ(y),D2φ(y)) < 0, y = (T, x).
Remark 5.8. In [24, Proposition 2.2] there is a proof of Lemma 5.7.

Our proof is different from that in [24].
We conclude this section by listing examples of geometric, degenerate

parabolic equations. We shall suppress the word "degenerate" (because all
geometric equations are degenerate).



776 Y.-G. CHEN, YOSHIKAZU GIGA & SHUNΊCHI GOTO

Example 5.9. The mean curvature flow equation as well as its general-
ization

(5.12) ut - |VM| div(Vκ/|Vw|) - v\Vu\ = 0, v e R,

is a geometric parabolic equation. Indeed, (5.12) is expressed as

(5.13) ut + F{Vu, V2u) = 0

with

F(p,X) = -

A calculation shows

F(λp, λX + σp ®p) = -trace((/-/?

= λF{p ,X)-σ trace((7 -p®p)p®p).

Since (p <8> p){p <8> p) = p ® p, the last term disappears so F satisfies
(5.11a,b). By Proposition 5.5 we see (5.12) is geometric. Since

- t r a c e ( ( / - p ®p)Y) < 0 f o r 7 > O ,

we see F is degenerate elliptic, i.e.,

F(p, X + y) < F(p, ΛΓ) for Y > O.

We thus conclude (5.12) is a geometric parabolic equation.
Example 5.10 (An anisotropic version of (5.12)). We consider

where // E C2(R"\{0}) is convex and positively homogeneous of degree
1, i.e.,

H(λp) = λH(p) for λ > 0, pe R"\{0}.

If H(p) = \p\ and £ = ι/, (5.14) is the same as (5.12). (5.14) is a
geometric parabolic equation. Indeed, (5.14) is expressed as (5.13) with

(5.15) F(p,X) = -tmce(A(p)(I-P®p)X) - β(p)\P\

and n x n matrix

As in Example 5.9 we easily observe that F is geometric. The convexity
of H yields A{p) > 0 which implies that F is degenerate elliptic. We
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thus conclude that (5.14) is a geometric parabolic equation. We remark
that (5.15) is also expressed as

(5.16) F(p,X) = -tτacc(A(p)X) - β(p)\p\

Indeed, the homogeneity of H implies

Differentiating this identity in p., we easily see A(p)p <g>p = 0.
The anisotropic version of (5.12) is important in studying anisotropic

phase transition phenomena such as crystal growth. We refer to [13] for
its background.

6. Existence and uniqueness of solutions

In this section, as applications of results in §4 we construct a unique
continuous viscosity solution of the initial value problem for a geometric
parabolic equation

(6.1) ut + F(t, VM, V2W) = 0 inR^ = (0, Γ] x R \

(6.2) u{0,x) = a(x)

for a e Ca(Rn), i.e., a - a is continuous with compact support in Rn ,
where a e R. We also establish a comparison theorem as well as unique-
ness of solutions. Since R^ is unbounded, we shall reduce our problem to
the case where the domain is bounded by using "barriers" so that the results
in §4 are applicable. To show the existence of solutions we construct sub-
and supersolutions of the initial value problem (6.1)—(6.2). This leads to
the existence of solutions of (6.1)—(6.2) by Perron's method as in Theorem
4.5.

We begin by constructing sub- and supersolutions of (6.1). In what
follows we shall always assume that F = F(t ,x,p9X) is continuous and
degenerate elliptic in ( 0 J ] x i " x (R"\{0}) x Snxn .

Lemma 6.1. Suppose that F is geometric and that

(6.3J F.{t,x,p9-I)<c_{\p\)y

(6.3+) F*(t,x,p,I)>-c+(\p\)

for some c±(σ) € Cι[0, oo) and c±(σ) > c0 > 0 with some constant c0.
We set

(6.4) u±(t,x) = ±(t + w±(p)), p=\x\, wiίhw±(p)= —r^dσ.
JO ί>±\v)

Then vΓ (w+ resp.) is a C2 sub- (super- resp.) solution of"(6.1) in R x R " .
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Proof. We only show that u~ is a subsolution of (6.1) when (6.3_)

holds, since the proof for u+ is parallel. By definition (6.4), u = u~ e

C 2 ( I x R " ) . Since F^ is geometric and

V/? + w'_(p)V2p,

V2/? = y9~1(/- V/?Θ Vp)

with w'_{p) > 0, a calculation yields

Fφ(ί, x, Vw, V2W) = Ft(t,x9 -w'jp)Vp9 -w'_{p)p~Ί)

which together with (6.4) gives

ut + F^t9x9 Vu, V2u) = -1 +/^(ί, x, -x9 -I)/cJp)9

since /?V/? = x . Thus the assumption (6.3_) implies

wr + / ; ( / , x , Vw, V 2 w)<0,

which means that u = u_ is a subsolution of (6.1).
Example 6.2. If F{t, x , /?, X) is of degree one in X and independent

of t and x , then F has a form

If F is geometric and continuous in p e R"\{0}, we see easily that F
satisfies (6.3±) by taking

c±{p) = sup traceΛ(p) + p sup \B(p)\.
|p|=l |p|=l

In particular, (5.12) and (5.14) in Examples 5.9 and 5.10 satisfy (6.3±).
When (6.1) is the mean curvature flow equation (5.12) with v - 0,

p=p/\p\,

we have

u±(t,x) = ±(t + \x\2/2(n-l)).

Moreover, w± is a solution of (5.12) with v = 0.

Lemma 6.3. Suppose that F is geometric and that (6.3_) ((6.3+) resp.)

= h(u±(t,x-ξ)), ξeR",

holds. For w± we set
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where u^ is defined in Lemma 6.1, and h is a continuous nondecreasing

function in R. Then U^h (U£h resp.) is a sub- {super- resp.) solution of

(6.1) in I x R " .
Proof By a translation of the variable x, Lemma 6.1 implies that

u~{t, x-ξ) is a subsolution of (6.1). Since F is geometric, by Theorem
5.6

Uξ-h = h(u-(t,x-ξ))

is again a subsolution of (6.1). The proof for U^h is parallel so is omitted.
Proposition 6.4. Suppose that F is geometric and that (6.3_) ((6.3+)

resp.) holds. Then for every aeC{Rn) there is a lower {upper resp.) semi-
continuous sub-{super-resp.) solution v~ {υ+ resp.) of{6Λ) in [0, oo)xRΛ

satisfying

υ~~<a<v+ fort>0 and υ =a att = O.

Proof. We construct only a subsolution v~ of (6.1)—(6.2) by using U^h

since a supersolution v+ of (6.1)—(6.2) is constructed parallelly from U^h .

Since u~{t, x) is decreasing in |x| and t, for each ξ e Rn the continuity
of a guarantees that there is a continuous nondecreasing function h =
hξ:R-+R with h{0) = a{ξ) such that U~h{t, x) < a{x) for t > 0. Since
Uξh is a subsolution of (6.1) in RxR", by Proposition 2.2 the function

ι Γ ( ί , x) = s u p { C / ^ ( ί , x ) ; h = hξ, ξ € Rn} < a{x)

is again a subsolution of (6.1) in [0, oc) x Rn . Since hΛQi) = a{ξ) and

{7^(0, x) < a{x) with h = hξ, we observe that ^ " (0 , x) = a{x) so v~

satisfies (6.2). The continuity of U^h implies that υ~ is l.s.c.

We next introduce "barriers" to handle the unbounded domain Rn .
Lemma 6.5. For ω > 0 we set

(6.5) Ψ(t,x) ί
[ 0 otherwise.

Suppose that F is degenerate elliptic and satisfies

(6.6 J F.(t9x,p,O)<v_\p\9

(6.6+) F*(t,x9p,O)>-u+\p\

with v± > 0 independent of t, x, and p. Then ψ~ {ψ* resp.) is a C2

sub- {super- resp.) solution of{6Λ) in RxR" provided that ω>u_{ω>u+

resp.).
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Proof. Again we only show that ψ~ is a subsolution of (6.1). Clearly,
" is C 2 . Since

(6.6_) we obtain
ψ is C 2 . Since ψ = ψ is convex and F is degenerate elliptic, by

, Vψ9 vV) < F,(t,x, Vψ9 O) < v_\Vψ\.

> v_ ,A calculation shows that ψ = ψ~ solves ψt + ω|V^| = 0. If ω > v
this yields

ψt + Fm(t,x,Vψ, v V ) <ψt + v_\Vψ\ < 0.

Proposition 6.6. Suppose that F is geometric and degenerate elliptic
and satisfies (6.3_) ((6.3+) resp.). Then F satisfies (6.6_) ((6.6+) resp.)
with v± = c ± ( l ) .

Proof. If F is degenerate elliptic, (6.3_) implies F(t, x, p, O) <
c_(|/7|). Since F is geometric, we see

F(t,x,p,O) = \p\F(t,x,p,O)<\p\cJl), P=p/\p\,

which yields (6.6_) with v_ = c _ ( l ) . The estimate (6.6+) is parallelly
proved, q.e.d.

We now state the uniqueness and comparison of viscosity solutions of
(6.1)-(6.2) in Rn

τ. By f e Ca{A) we mean that feC(A) and / - α has
a compact support in A, where α G l .

Theorem 6.7 (Uniqueness and comparison). Let T > 0. Assume that
F(t,p,X) is continuous in (0, T] x (R*\{0}) x Snxn and is geometric
and degenerate elliptic, and that F satisfies (6.6±) and

(6.7) -oo < F^(t9 0, O) = F*(t9 0, O) < oo.

Then for a e Ca(Rn) there is at most one viscosity solution ua e

Cα([0, T] x Rn) of (6.1) - (6.2). Moreover, ifb>a with b e Cβ(Rn) for

some β > a, then ub > ua in R^.

Proof We may assume a = 0 < β . For ψ± in (6.5) we set

(6.8) fR = min(yΓ - R4, 0), gR = max(^+ + i? 4, β),

where ω>v± and R > 0. We take R large enough so that fR< a(x) <

b(x) < gR holds at ί = 0. By Lemma 6.5, ψ~ and ψ* are, respectively,

sub- and supersolutions of (6.1) inR^. Since F is geometric and the

functions

θ_{σ) = min(σ - R4, 0), θ+{σ) = max(σ + R4, β)

are continuous nondecreasing functions, by Theorem 5.6 we conclude that
fR = θ_(ψ~) and gR = θ+(ψ+) are, respectively, sub- and supersolutions
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of (6.1) in R^. Take Rx such that ua,ub- β, fR, gR - β are sup-
ported in [0, T] x B(R{), where B(R{) denotes the open ball of radius
R{ centered at the origin. Applying the comparison Theorem 4.1 with
Ω = B(RX) yields ub>ua. This in particular deduces the uniqueness of
ua for a given a e Ca(Rn).

Theorem 6.8 (Global existence). Let T > 0. Assume that F{t,p, X)
is continuous in (0, T] x (Rn\{0}) xSnxn and is geometric and degenerate
elliptic, and that F satisfies (6.3±) and (6.7). Then for a e Ca{Rn) there
is a (unique) viscosity solution ua e Cα([0, T] x Rn) of (6Λ)-(6.2).

Proof We may assume α = 0. Since (6.3±) implies (6.6±) by Propo-
sition 6.6, fR and gR in (6.8) with β = 0 are, respectively, sub- and
supersolution of (6.1) in R^. We take R large so that fR < a(x) < gR

at t = 0. Let v± be sub- and supersolutions of (6.1)—(6.2) constructed in
Proposition 6.4, and set

/ = max(ϊΓ ,fR), g = min(t;+, gR).

Then, by Proposition 2.2, / and g are, respectively, sub- and superso-
lutions of (6.1)-(6.2) in Rn

τ and are supported in [0, T] x B{RX) for
sufficiently large R{. Since / and g are, respectively, lower and upper
semicontinuous, we now apply the existence Theorem 4.5 with Ω = B(R{)
to get a solution ua of (6.1)—(6.2) satisfying f < ua< g supported in
[0, T] x B{R{). This ua solves (6.1)-(6.2) in R^ by extending zero out-
side B{R{), and satisfies ua e Cα([0, T] x Rn).

Remark 6.9. Condition (6.7) follows from (6.6±) if (t,X) ^
F(t, p9 X) is equicontinuous for small p . In particular, if F(t, p, X)
is of degree one in X and independent of t as in Example 6.2, all as-
sumptions on F in Theorems 6.7 and 6.8 are fulfilled provided that F
is geometric and degenerate elliptic. We thus observe that our Theorems
6.7 and 6.8 are applicable to equations in Examples 5.9 and 5.10. In [5]
Theorem 6.7 and a weaker version of Theorem 6.8 are stated.

7. Evolution of level surfaces

We now study the y-level set T(t) of the solution ua of (6.1)—(6.2) in
Theorems 6.7 and 6.8. Our goal is to show that the y-level set

(7.1)

and the open set surrounded by Γ(t),

(7.2) D(t) = { ^ l " ; ua(t,
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are uniquely determined by (Γ(0), D(0)) and do not depend on a choice of
the defining functions a of (Γ(0), D(0)). In other words, (6.1) can be re-
garded as an evolution equation of (Γ(ί), D(t)). By the existence Theorem
6.8 we see that there is a unique global evolution family (Γ(ί), D(t)) (t >
0) for (6.1) with initial data (Γ(0), Z>(0)). No regularity of Γ(0) is as-
sumed. It turns out that all we need to obtain (Γ(t), D(t)) is for D(0)
to be a bounded open set and for Γ(0) (c RπγD(0)) to be a compact set
containing dD(0). In particular, when (6.1) is the mean curvature flow
equation (1.3) we construct a whole unique evolution family Γ(ί) moved
by its mean curvature. Since Γ(ί) may be singular, the mean curvature
here is understood in some weak sense. By the comparison Theorem 4.1
we shall also show that Γ(t) becomes extinct in finite time provided that
n > 2. This extends a result of Huisken [14] where he proved this fact
when Γ(0) is a uniformly convex C 2 hypersurface in Rn (n > 3) (see
[10] for n = 2).

Theorem 7.1 (Uniqueness). Suppose that F and ua are as in Theorem
6.7 with a e Ca(Rn). Let T{t) and D(t) be defined by (7.1)-(7.2). If γ >
a, then the evolution family (T(t), D(ή) for t>0 is uniquely determined
by (Γ(0), D{0)) and is independent of a, a, and γ. We call (Γ(ί), D(t))
a solution family 0/(6.1) with initial data (Γ(0), Z)(0)).

To prove Theorem 7.1 we prepare an elementary lemma on the com-
parison of continuous functions.

Lemma 7.2. Suppose that a, b e C(D) are positive in D and vanish
on dD, where D is an open set in Rn . Then there exists a continuous
{strictly) increasing function Θ:R -+ R such that a(x) < θ{b(x)) in D
with 0(0) = 0 provided that either

(i) D is bounded, or
(ii) D is an exterior domain, i.e., Rn\D is a nonempty compact set

and a{x), b{x) € Ca(D) for some a > 0.

Proof. We prove only that case (i) holds. The proof of case (ii) is
similar so is omitted. We set

ax (r) = sup{a{x) ,xeD,d(x, dD) < r},

b{(r) = inf{b(x) x e D, d(jc, dD) > r}

for r, 0 < r < R, where R = sup{d(x, dD) x e D} and d(;c, dD)
denotes the distance between x and dD. Since ax and bχ are nonde-
creasing continuous functions with a{(0) = b{(0) = 0 and a{(r) > 0,
bx(r)>0 for 0 < r < R, we see that

ax(r) + r9 b(r) = bχ(r)r/R
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are both continuous increasing functions on [0, R] and satisfy

(7.3) a(r) > 0, b(r) > 0 for 0 < r < R, a(0) = 6(0) = 0.

By the definition of a and b we observe that

(7.4) 0 < α(jc) < a{r), 0<b(r)<b(x) with r = d(x, a/)).

Since b is continuous and increasing, so is its inverse function b . We
now set θ = ao~b and find 0 is continuous and increasing in [0, b(R)].
We extend 0 outside [0,b(R)] so that 0 is a continuous increasing func-
tion on R. Evidently, by (7.3) we obtain 0(0) = 0. Since a(r) = θ(b(r)),
0 < r < R, it follows from (7.4) that

a{x) < a(r) = θ(b(r)) < θ{b(x)) for all x e D.

Proof of Theorem 7.1. Suppose b e Cβ(Rn) and ub e Cβ{[0, T] x Rn)

solves (6.1) with initial data b. We set

= {xeRH;ub{x9t) = γ}9

D\ή = {xeRn;ub(x,ή>γ'}, γ > β.

It suffices to prove

(7.5) (1^(0, Z>'(0) = (Γ(0, 0(0) f o r a l l ί > 0

provided that

(7.6) (Γ/(0),Z)/(0)) = (Γ(0),Z)(0)).

Since F is geometric, applying Theorem 5.6 we may assume γ = γ = 0
and α = /? < 0 by a translation and dilation of the dependent variable.
By (7.6) we apply Lemma 7.2 and conclude that there are continuous
increasing functions θχ, θ2: R —• R such that

fl(x) < 0i(6(*)), *(JC) < Θ2(a(x)) for x e l "

with 0^0) = 02(O) = γ = 0. Since F is geometric, by Theorem 5.6
θχ(ub) and Θ2{ua) are solutions of (6.1) with initial data θ{(b) and Θ2(a)
respectively. Our comparison Theorem 6.7 now yields

ua<θx(ub)9 ub<θ2(ua) inR^.

This implies (7.5) which completes the proof.
Theorem 7.3 (Existence). Suppose that F is as in Theorem 6.8 for all

T > 0, and that D(0) is a bounded open set and Γ(0) (c Rn\D(0)) is a
compact set containing dD(0). Then there exists a unique solution family
(Γ(r), D(ή) for all t>0 of(6Λ) with initial data (Γ(0), D(0)).
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Proof. By the assumptions on (Γ(0), D(0)), there is a defining func-
tion aeCa(Rn)9 α < 0 such that

Γ(0) = {x e Rn a{x) = 0}, D(0) = {xeRn\ a(x) > 0}.

Such a(x) is constructed, for example, by

r d(*,Γ(0)) ifχeD(0),
U[X) I max(- d(jc, Γ(0)), α) if x i D(0).

By Theorem 6.8 there is a unique solution ua of (6.1)—(6.2). We now find
a solution family (Γ(ί), D{t)) of (6.1) defined by (7.1)-(7.2) with γ = 0.
Its uniqueness follows from Theorem 7.1.

Corollary 7.4. Lέtf F <zm/ (Γ(0), D(0)) be as in Theorem 7.3, and
(Γ(0, Z>(0) te **e solution family o/(6.1) with initial data (Γ(0), Z)(0)).
7/1 F satisfies

(7.7) F'(ί,ίr/)>c>0

w/ίA ^orne constant c independent of t > 0 αm/ p G R"\{0}, then Γ{ή
and D(t) become empty infinite time.

Proof As in the proof of Lemma 6.1, a calculation shows that

(7.8) g(t9x) = -(t + p2/2c), p = \x\,

is a supersolution of (6.1) since (7.7) holds. For (Γ(0), D(0)) we take
a defining function a e Cα(RΛ) with α < 0 as in the proof of Theo-
rem 7.3. If M > 0 is sufficiently large, then a(x) < h(g(0, x)), where
h(τ) = max(τ + M9 a). Since h is continuous and nondecreasing, apply-
ing Theorem 5.6 we observe that h(g(t,x)) is a supersolution of (6.1)
in R^ for every T > 0. Since ua e CQ([0, T] x R π ), definition (7.8)
implies that both wΛ - a and λ(g) - α are supported in [0, T] x B(R)
for sufficiently large R. We now apply the comparison Theorem 4.1 with
Ω = B(R), and find ua < h(g) in R^ for all T > 0. Definition (7.8)
shows that h(g) - a = 0 for sufficiently large t, say t>T'. This implies
that wα(;c, ί) < α for t > Tf. In particular, Γ(t) and Z)(ί) become empty
for t > T'.

Corollary 7.5. Lei (Γ(0), D(0)) be as in Theorem 7.3, and (Γ(ί), D(ί))
Z>e /Λ̂  solution family of {5.14) vW/Λ zΛ/ί/fl/ rfΛ^ (Γ(0), Z)(0)). Assume that
H and β in (5.14) satisfy

(7.9) inf trace A(p) > 0 Λ«rf sup β(p) < 0,
IPI=I l/7|=i

where A = V2H. 77ze« Γ(ί) απί/ D(/) become extinct infinite time. In
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particular, / /(5.14) is the mean curvature flow equation (1.3), then T{t)
and D(t) become extinct infinite time provided that n>2.

Proof. By (5.16), assumption (7.9) implies (7.7). We also observe that
(7.9) holds for the mean curvature equation when n > 2. Thus applying
Corollary 7.4 completes the proof.
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