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1. Introduction

A compact Riemannian #z-manifold with (normed) Ricci curvature
ric := Ric/(n — 1) > 1 has diameter < 7, and equality holds if and
only if M is isometric to the unit n-sphere (Cheng’s rigidity theorem,
cf. [4], [12], [5]). The aim of the present paper is to prove the following
theorem.

Theorem 1. Let M" be a compact Riemannian manifold with Ricci
curvature > 1. Let —k* be a lower bound of the sectional curvature of
M", and p a lower bound of the injectivity radius. Then we may compute
a number ¢ = ¢(n, p, k) > 0 such that M is homeomorphic to the n-
sphere whenever diam(M) > n —e¢.

More precisely, ¢ = v(d) /vol(S"'l) , where v(r) denotes the volume
of a ball of radius r in the unit n-sphere and

- cosh'l(cosh(kp)z)/(2k) for k >0,
Tl (1 =v2/2)p for k = 0.

For sectional curvature, a much stronger result is known:

Theorem 2 (Berger [3], Grove-Shiohama [8], [9]). Let M" be a com-
pact Riemannian manifold with sectional curvature K > 1 and diameter
D > n/2. Then M is homeomorphic to a sphere.

One may not expect such a theorem for Ricci curvature since, e.g., for
M =8™xS™ with ric=1 we have diam(M) = (1-1/2m—1))"*.z.
So the bound on the diameter must depend at least on the dimension.
A diameter pinching theorem for Ricci curvature in the diffeomorphism
category was first stated by Brittain [2] (whose proof used an incorrect
version of Gromov’s compactness theorem) and proved by Katsuda [11,
p. 13] using a result of Kasue [10]. However, the proof needs also an
upper curvature bound, and it would be hard to compute the ¢. We give a
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direct proof combining the methods of Grove and Shiohama [12], [8] with
the idea that large diameter implies small excess in the sense of Abresch
and Gromoll [1]. After this work was finished, Grove and Petersen [7]
investigated the excess in more generality and proved our theorem in this
context. In fact, using earlier work [6], they could replace the injectivity
radius bound with a lower volume bound.

2. Proofs

To prove the theorems, we consider points p, g € M of maximal dis-
tance in M and the functions r,(x) = d(p, x), r,(x) = d(q, x). For
any x € M let I (x) and I’ (x) be the sets containing the final tangent
vectors of all shortest unitary geodesics from p and g (resp.) to x. A
point x is called a regular point (in the sense of Grove-Shiohama and
Gromov) for the function r, —r, if there exists v € T, M with

(v,a-b)>0

forall a € Fp(x) and b € Fq(x). Such a vector v is called admissible.
The admissible vectors at x form an open convex cone. If an admissible
vector v at x is extended to a smooth vector field V', then V(y) is ad-
missible for all y close to x . Otherwise, there would be sequence y ;X
and a; € I',(y;), b; € T (y;) with (a; —b;, V(y;)) < 0. But subse-
quences of (a j) and (bj.) would converge to some a € Fp (x), be Fq(x)
for which we would also get (a — b, V(x)) < 0. This is a contradiction.

The following lemma (cf. [8], [9]) is basic for our proof.

Lemma. Ifall points of M\ {p, q} are regular points for r,=T. then
M is homeomorphic to the n-sphere.

Proof. Any x € M\{p, q} hasaneighborhood U, and a smooth vector
field ¥, on U, which is admissible. Further, we let Up and Uq be open
balls centered at p and g where the exponential maps have smooth inverse
maps, and put V, = V(r;) and V, = —V(r:). Then V, is admissible
outside p since I' (x) = {Vrp(x)} forany x € U, and Vr,(x) ¢ I' (x);
likewise, v, is admissible. By compactness, finitely many of the open sets
U,, xeM,cover M,say U,, -, U, with corresponding vector fields
Viseor s Wy If {¢j; j=1,---, N} is a corresponding decomposition
of unity, then V' =3 ¢V, is admissible outside {p, ¢} and extends the

vector fields V(rj) and —V(rj) near p and ¢. In particular, p and ¢
are the only zeros of V' . Thus by the flow of V' we get a diffeomorphism
of B (p) onto M \ B (q) for small enough r, which shows that M is
homeomorphic to a sphere. q.e.d.
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Thus it suffices to prove that r, —r, has only regular points if the di-
ameter bound ¢ is small enough. In the proof of the previous proposition
we saw that B (p) \ {p} and B,(q) \ {¢} contain only regular points if r
is smaller than the injectivity radius at p and g, in particular if r < p.

Now suppose that x € M is a nonregular (critical) point of r,— Iy
We claim that there exist a € I',(x) and b € I’ (x) with

(%) (a,b)20.

Otherwise, I' (x) would be contained in the open convex cone C = {v €
T.M; (v,b) <0 forany b eI (x)},and C would contain a vector ¢
with (¢, v) >0 forall ve C. Hence (c,a—b)>0 forany a €I, (x),
be Fq (x), and ¢ would be an admissible vector, which is impossible.

It is now easy to finish the proof of Theorem 2. Namely, we find a
geodesic triangle with vertices x, p, ¢ and angle < n/2 at x. By To-
ponogov’s comparison theorem, a triangle (x,, p,, ¢,) With the same side

lengths in the unit sphere S? also has angle < 7/2 at x,. But such a
triangle cannot exist if the largest side p,g, has length > #/2. Namely,
either the length a of, say, g,x, also exceeds n/2, in which case p, lies
in the convex ball B,_, (—g,) whose boundary intersects g,x, orthogo-
nally at x,, so the angle at x, is larger than /2, or both sides p x, and
qoX, have lengths < /2. The length of p,gq, is certainly not larger than
the diameter of the triangle (p,, g, X,) . If the angle at x, is < #/2, this
triangle is contained in a triangle of side lengths and angles equal to 7/2,
i.e., a quarter half-sphere. This has diameter #/2, so the length of p,q,
cannot exceed m/2. Thus there are no such triangles and hence M\{p, ¢}
contains only regular points, which proves Theorem 2. q.e.d.

To prove Theorem 1, let o and S be the shortest geodesics from p
and ¢ to x with final vectors a and b satisfying (x). Now we consider
the excess function (cf. [1])

e=5+Q—D,

where D = d(p, q) = diam(M). By the triangle comparison theorem,
e(x) is bounded from below by the excess

€ = d(po > xo) + d(qo > xo) - d(Poa qO)

of a triangle (p,, q,, X,) in the hyperbolic plane of curvature —k? with
d(xg, Py) = r,(x), d(xy,qy) = r,(x) where the angle at x, equals the
angle between o and g, which by (x) is at most n/2. This hyperbolic
excess is decreasing if we make the angle at x, larger and the side lengths
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d(xy, py) and d(x,, q,) shorter. Since x is a critical point, we have

and, therefore, e(x) is bounded from below by the excess e, of a hy-
perbolic triangle (p,, ¢,, x,) with angle n/2 at x; and sides lengths
d(x,,p,) =d(x,, q,) = p. By the cosine law we have

e(x)>e =2p-— cosh_l(cosh(kp)z)/k.
Let us put 6 = ¢,/2. Then we have
rp(x)2r+5, rq(x)zD—r+5
for some r > 0. In other words,
By;(x) C P:= M\ (B,(p) UBp_,(9)).

If v(t) denotes the volume of a ball of radius ¢ in the unit n-sphere S”,
we have the Bishop-Gromov inequality (e.g., cf. [5, 4.3]), applied to balls
with radii 6 and D,

(1) vol(P) > vol(B,(x)) > v() - vol(M)/ vol(S").

On the other hand, the Bishop-Gromov inequality also gives an upper
bound for vol(P). Namely,

vol(B,(p)) + vol(B,_,(q)) > (v(r) +v(D —r)) -vol(M)/vol(S") ,

and vol(S")— (v(r)+v(D—-r)) is the volume of a tubular neighborhood of
radius (7 — D)/2 around a small sphere of spherical radius r + %(n -D).
By Cavallieri’s principle, this volume gets larger if we replace the small
sphere by a great sphere, and therefore

vol(S™) — (v(r) + v(D = r)) < (m — D) - vol(S" ).
Hence
vol(B,(p) U B,_,(q)) > vol(M) — (n — D) - vol(S"~") - vol(M)/ vol(S™),
which shows
(2) vol(P) < (r — D) - vol(S"™ " - vol(M)/ vol(S™).
Now (1) and (2) cannot hold together if
n—-D<e:=v(d) vol(S"™).
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So, in this case, the function I, has only regular points, which finishes
the proof.
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