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SOME SPACES OF HOLOMORPHIC MAPS
TO COMPLEX GRASSMANN MANIFOLDS

BENJAMIN M. MANN & R. JAMES MILGRAM

Abstract

In this paper we study the topology of the space of based holomor-
phic maps of degree -k from the Riemann sphere to complex Grass-
mann manifolds, which we denote by Rat^G^ n+m). We compute
H4ί(Ratk(Gnn+m)) for all k, n and m as well as the natural inclu-
sion i ( fc,n,m). :/ f . (Rat Λ (G l l i n + l f l ))- . i f . (Ω2(G I I i Π + w )) induced by
forgetting the complex structures. These results also give the geometry of
the moduli spaces of observable and controllable solutions to the linear
control equations.

1. Introduction

Let S2 = CP(1) denote the Riemann sphere and Gn n+m the Grass-

mannian of all complex n-dimensional planes through the origin in Cn+m .

Both spaces are naturally complex manifolds and have natural base points
(oo and C " x θ c Cn+m , respectively). Let Rat(Gn n+m) denote the space

of all based holomorphic maps from (S2, oo) to (Gn n+m , C" x 0) with
the compact open topology. It is well known that every such holomorphic
map is rational; that is, it is given by a series of zeros, poles, and residues,
hence the terminology "Rat" . In addition, associated to each element
/ G Rat(Gn n+m) is an integer c(f) = k, the total Chern number, given

by the topological degree of / : S2—+Gn n+m . Thus Rat(Grt n+m) breaks
into components and it is known [5] that each component Rat^(Gn n+m)
is a connected complex manifold of complex dimension (n + m)k .

By forgetting the complex structure one obtains based continuous
maps from S2 to Gn n+m that is, elements in the two-fold loop space

Ω2(Gn n+m) whose components are also indexed by the degree c{f). We
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denote these natural inclusions

(1.1) i(k,n,m) ^

where, for each fixed n and ra, Ώ,2

k(Gn n+m) is a well-understood infinite-
dimensional but locally finite CW complex (see §2), whose topology is
independent of k, whereas Rat Λ (G n ϊ / I + m ) is a finite-dimensional complex
manifold whose global topology obviously depends on k.

There is a natural anti-holomorphic equivalence between Gn n+m and

Gm n+m given by P •-• P1^ and thus, for notational convenience, we as-
sume 1 <n <m. When n = 1 Segal [22] obtained partial information
about Ratk(CF(m)) by showing i(k, 1, m) is a homotopy equivalence
through a range that increases as k increases. In joint work with F. Cohen
and R. Cohen [6], [7] we completed the topological analysis by determin-
ing the stable homotopy type of RatΛ(CP(m)) in terms of pieces of the
May-Milgram filtration of iterated loop spaces.

Specifically, we have a stable splitting (see 2.2)

where the D. ~ F(C, j)+ ΛΣ (Sι)U), F(C, j) is the space of -tuples of

distinct points in C, F(C, j) = {(z{, , z.) e CJ \ z{ φ zx for / φ 1},
and Σ. is the symmetric group on j letters acting by permutation on both

the coordinates of the points in F(C, j) and (S1)^ . Here X+ denotes
the one-point union of X with a disjoint basepoint + , Λ denotes the
smash product, and {Sιfj) is the Σ. equivariant j -fold smash product

of Sι.
For example D{ ~ S{, and D2 is the Thorn space of the bundle (ξ + c)

over Sι where ξ is the nontrivial (real) line bundle, and e is the trivial
one.

The homology structure of D. is known [17], [14]. In particular,
H^(Dj Z) is torsion for j > 1, and, if p > j is a prime, then Hφ(Dj ¥p)
= 0 as long as j Φ 1. With this notation, one of the main results of [6] is

Theorem [6]. Rat^CP(m)) ~ 5 \Jk

J=ι Σ{2m~2)jDj.
This is a special case of the situation we are interested in since CP(m) =

Gj ι+m. We now turn our attention to the general situation. Kirwan
[13] extended Segal's result by showing i(k, n, m) is always a homotopy
equivalence through a range that depends on k, n , and m . In this paper
we prove
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Theorem A. For all k, n, m, and any coefficient ring, A,

= 0//JΣ 2 W (Rat f c i (CP(m)) x ... x Rat^(CP(m)))+ A),
K

where K = (k{, . . . , kn) runs over all partitions of k, and t(K) = (n-l)k

- Σn

j=2U ~ l)kj Furthermore, the map

is an injection in homology for all coefficients.
The image of i(k, n, m) is the subgroup which, in an explicit (multi-

plicative) filtration of H^(Ωl(Gn n+m) A) consists of all elements having
filtration degree < k . We will explain the geometry behind this filtration
more precisely in the body of the text (see §§4-6). It is closely related to
the filtration of ΩU(n) studied in [20]. In the process of proving Theorem
A we construct a stratification of Rat^(Gn n+m) by open manifolds (each
with a trivial normal bundle, and each contained in the closure of higher
dimensional strata) whose homotopy types we understand. These strata
are then organized into a filtration, and the resulting spectral sequence is
shown to collapse.

The spaces Rat^(CP(m)) become more and more highly connected as
m increases until, in the limit, they become contractible. Moreover, the
natural inclusions CP(m) c CP(m + 1) induce inclusions of Rat^ spaces,
so the process of passing to a limit makes sense geometrically. Conse-
quently, in the limit over m ,

Σ2t{κ) (Ratfc (CP(m)) x x Rat^ (CP(m))) ~ Σ 2 ' ^ ^ 0 ) = S2t{K)

1 n / -)(-1

and the space l i m ^ ^ ^ Rat^(Gn n+m) has the same homology groups as a
wedge of even-dimensional spheres.

There are mappings φn m: Ω2(GW n+m)—+Ω(U(n)), which, in the limit
over m , become a homotopy equivalence. The composite maps

now fit together, taking limits over both m and k to define the loop
group, and the image of Rat^G^ n+m), under this composite, i.e.

limm(_^oo Rat^(Gn n+m) is, in homology, precisely Mitchell's ktι filtering
space for ΩU(n) [20] (see Remark 6.11). <*

In general, Theorem A shows that the homology of Rat^G^ n+m) is

"tame" or taut inside of Ω2(Gn n+m) in that Rat^(Gn n+m) very efficiently
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builds Ω£(GΠ n+m) as k increases with classes appearing "exactly when
they should". This statement is made precise in the filtration arguments
of §6.

These spaces of holomorphic maps are of interest in linear control the-

ory because RaXk(Gn n+m) is exactly the moduli space of (McMillan) de-

gree ι k observable and controllable solutions of the linear control equa-

tions with n inputs and m outputs,

(1.2) *
κ J

 Y = ex.
In fact it was this connection which was the original impetus for the current
work.

Remark. The full control equations have the form

X = AX + BU,

Y = CX + DU.

The extra term D just serves to make the base point wander over the
interior of the Schubert cell which contains the original base point C"xO
i n Gn n+m - (See Remark 3.4 for a description of these cells.) Hence,
the full moduli space is a fibration over a contractible space with fiber the
based rational maps Rat^(Grt n+m), and consequently is homeomorphic

to the product Cnm x Rat^(G r t\n+m).
Preliminary results on the topology of Rat^(Gn n+m) include [3], [4],

[9], [11], and, of course, [22] and [13]. The more computational results
cited seem to concentrate on the torsion-free part of H^(Ratk(Gn n+m) Z)
for very small values of k with respect to m and n however, Theorem
A shows that in general H^(Rdtk(Gn π + m ) ; Z) is almost exclusively tor-
sion. Moreover, one cannot ignore torsion classes. If we are interpreting
the control theory literature correctly, then the measure of complexity of
the moduli spaces above which interests control theorists is (roughly) the
number of open cells necessary to construct the Rats. However, a torsion-
free class needs only one cell, but each torsion class requires at least two
cells.

Of course, it is the entire geometry of RatA:(Gλ2 n+m) that primarily
interests the control theorists, and not just the homology as computed in
Theorem A. In the body of this paper (§§3-5) we show that the geome-
try of Rat^(Gn n+m) is determined by a series of open submanifolds, each

1 The McMillan degree of a rational map / : S2—><&n n+m is exactly the absolute value

of the Chern number \(c{(ζ), [S2])\ where ζ = f*(γn), γn is the canonical «-plane bundle
over Gn n+m , and c,(C) is the first Chern class.
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given explicitly in terms of fixing a pattern of canonical forms for a matrix
in the control theorist's resolution of the Laplace transform of the control
equations (1.2). We show that each of these submanifolds is naturally an
iterate fibration, with each fiber a copy of Rat^ (CP(m)), the k( being
determined by the degrees of the diagonal elements in the canonical form.
To really understand the geometry of the moduli space, one must under-
stand how these submanifolds fit together, and this we do by describing the
normal bundle of each manifold in an appropriate filtration. Each of these
submanifolds is open and does not contribute directly to the homology of
Rat^(Gn n+m) rather, the Thorn spaces of the normal bundles to these
submanifolds carry the homology classes given in Theorem A. Of course,
if one compactifies Ratfc(Gn n+m), then Poincare duality implies that the
open manifolds themselves do contribute to the homology (the analog for
the case when n = 1 is made explicit in [6, §§5 and 6]). Finally, we believe
that the geometry of the normal bundles described here (see §4) should be
useful in a further understanding of certain geometric questions in control
theory, such as stability of a system.

This paper is organized as follows: in §2 we review preliminary ma-
terial, including the topology of symmetric products, Ratk(CF{m)) and
Ω2

k(Gn n+m). §3 then explains the normal forms which we use to begin to
decompose Ralk(Gn n+m). In §§4 and 5 we filter Rat(Gn n+m) into strata
which we are able to analyze using the fundamental results of [6]. Finally,
in §6 we reassemble the strata of Rat^G^ n+m) to complete the proof of
Theorem A.

We would like to thank R. Mazzeo and S. Bradlow for very helpful
discussions of the structure of holomorphic vector bundles and maps, and
S. Boyd for helpful discussions of the control equations and their moduli
spaces.

2. Topological preliminaries

In this section we recall known results on iterated loop spaces and sym-

metric products, as well as the homology of Ω2(Grt n+m) and Rat^CP")

which we will need in later sections to prove Theorem A. For further details

we encourage the reader to consult §§2-6 of [6].

The space of all unordered k-tuples of points in a CW complex X

is called the fc-fold symmetric product and is denoted SPk(X). SPk{X)

inherits the quotient (compactly generated) topology from the natural pro-

jection Xk ^ SPk(X), and there is a commutative pairing SPk{X) x

SPι{X)-+SPM(X). Once a base point * e X is chosen, the direct limit
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SP°°(X, *) is defined and easily seen to be a free commutative, associa-
tive iί-space with unit *. (Here the inclusion SPι{X) C SPι+1(X) is
given by (xγ χ.) »-• (x{ ••*.*).) The homology structure of SPk{X)
is well known [10], [24], [15] and there is a strong duality between the
topology of SP°°(X) and the topology of iterated loop spaces [16], [17].
In fact, Rat^CP(m)) embeds as an open submanifold in (SPk{S2))m+ι

and it was this duality that was exploited in [6] to compute the stable ho-
motopy type of Ratfc(CP(w)). To state the final result we need to recall
the May-Milgram model J2(X) for Ω2Σ2X [14], [17].

Definition 2.1.

J2(S2n~l, *) = fjF(C, 7) xΣ. (S2n~l)j/{equivalence},

7 = 1

where
(a) F(C, j) is the set of all ./-tuples of distinct points in C with the

natural free Σj action. The quotient F(C, j)/Σ. = ZλP(C) is called the
deleted symmetric product.

(b) The equivalence relation is given by

( Z j , , Zj , φ χ , . . . φ j ) ~ ( Z j , , Z ι , , Zj , φ χ , , φ t , , φ j )

exactly when φι = * , the base point in S2n~ι.

J2{S2n~\ *) is homotopy equivalent to Ω 2 ! 2 ^ " 1 = Ω2S2n+ι [14],

[17], and the Snaith splitting theorem shows that stably Ω2S2n+ι splits

into a wedge product
Theorem 2.2 [23].

oo oo

J2{S2n-X) cs \/W(CJ)+ΛΣ(S2n-l)U) ^ VDjiS2"-1).
7=0 J j=0

We write D. for Dj{Sι) and recall
Theorem 2.3 [8].

Dj(S2n-1) ~ Σl2n'2)jDj(Sι) = Σ{2n-2)JDΓ

Remark. D- is the Thorn space of the vector bundle y..: F(C, j) x Σ

R7-^Z)P ;(C),and Z)P7(C) ~ A:(^ ;, 1) the Eilenberg-MacLane space for
Artin's braid group on /c-strings.

This is tied into the structure of the Rat^ spaces, because using the
duality hinted at above one can show
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Theorem 2.4 [6].

k

RayCP(m)) ~ 5 \ / Σ ( 2 m " 2 ) 7 Z ) ..

7 = 1

Thus, we have stable decompositions of Ω2S2n+ι in terms of suspension
of the Dj 's and can read off H^(Ω2S2n+ι A) from the known homology
of Dj [17], and this gives the homology structure of the first Rat^ spaces
as well. To explicitly describe the homology of the D. 's we examine the

Snaith splitting 2.2 for J2(Sl) more closely. First recall the definition of
a multi-graded algebra over the field F.

Definition 2.5. Let J^ be commutative monoid with unit, then the
F-algebra A is an ^-graded algebra if A = \}I£jr Aj as an additive
group, and Aj Aj c AI+J .

Also, if φ: J^—^Z is a monoid homomorphism, then A is said to be φ-
commutative if aJaι = (-l)^7 )* ( / )fl7 fl7 . An J" -graded F-algebra A is
said to be free ^-commutative if it is the tensor product of a polynomial
algebra on generators bj with φ(bj) even, and an exterior algebra on
generators e3 with φ{βj) odd, provided the characteristic of F is either
0 or odd. If the characteristic is 2, then A is simply the polynomial algebra
on the stated generators. The number φ(e) is usually called the dimension
of e.

The Snaith splitting implies we may write

(2.6) H m ( J 2 ( S ι ) ; ¥ ) i ι 1 1 1

and that

(2.7) H.(Dj F) = H^(Sl), / f 1 ^ 1 ) ί F)-

(2.6) makes H^(J2(Sι)\ F) into an algebra over the set Z+ x Z+ where
the first integer indexes the homological dimension and the second integer
indexes the splitting filtration.

The calculation for the homology of ^ ( S 1 ) (as a bigraded algebra over
Z + x Z + ) is given in [17] where it is shown to be the free commutative
algebra on the following generators:

(2.8) H^(J2(Sl) Z/2) = Z/2[6>(M),<7(3?2), , ί(2/+i_ l ί2/), ...]

for p = 2, while at odd primes

H m { J 2 ( S l ) \ Z / p ) = E [ e l l 9 l ) 9 . . . , e l 2 p l _ U p ι ) 9 . . . ]
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Here E means exterior algebra and ^(2p/_2 p/} is the homology Bochstein
o f V-i^V

Hence, the mod p homology groups of the spaces D. are given explic-
itly by the subgroups of (2.8) and (2.9) consisting of elements with second
grading degree exactly j .

Finally, as Kirwan [13] has shown

i(k, n, m)

is an equivalence through a range which grows with k, it is useful to recall
the structure of H^(Ω2

k(Gn n+m) A). As all the components of Ω2Gn n+m

are homotopy equivalent it suffices to consider the zero component.
Recall there is a fibration Vn n+m—+Gn n+m—*BU(n) which generalizes

theHopf fibration S2i+ι-+CF(i)-^BS1. Here Vnn+m = U ^ r ^ is the

Stiefel manifold of ^-frames in Cn+m . Looping down twice one obtains

(2-10) Ω 2 (F Λ ,„+„,)— ςil{Gnn+m)—>Ω2(BU(n)) ~ ΩQ(U(n)).

Lemma 2.11. For all coefficients A and n < m,

».(tf(

(2.13) H^Ω0(U(n)) A) = H^(Ω(S3) x • x Ω(S2n~ι) A).

Proof. (2.13) is direct from the well-known theorem of Bott-Samelson

that the loop space of a Lie group has torsion-free homology. However,

(2.12) is not quite so clear. The point is that there is a well-known

embedding μ: Σ[CF(n + m - l)/CP(m - 1)] c KΛ>II+W [18], [25], and

H*{Vnn+m Z) is an exterior algebra, generated by classes e2m+ι ,•••-,
e2m+2n-\ w ^ ^*(e2m+2/-i) e Q u a l t o Λe corresponding generator in

H2m+3j~ι(Σ[CΨ(n + m- l)/CP(m - 1)] Z).

But Σ[CP(n 4- m - l)/CP(m - 1)] is actually a 2-fold suspension since
n < m, so there is a space Y with Σ2Y = Σ[CP(Λ -f m - l)/CP(m - 1)].
From this it follows that the homology duals of the cohomology classes
above are in the image of the double suspension map

It follows from this that the Serre spectral sequence of the fibering
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collapses. Hence, E2 = E°°, and (2.12) follows by a simple induc-
tion, q.e.d.

Finally, we have
Theorem 2.14. For all coefficients A and n < m,

Proof. The homology Serre spectral sequence for (2.5) is multiplicative
where the base is a polynomial algebra on generators x2, . . . , x2n-2 °f
dimension 2, . . . , 2n-2. Since n < m, the lowest dimensional class on
the fiber is in dimension 2m - 1. Hence the generators on the base are
infinite cycles and the spectral sequence must collapse.

Corollary 2.15. For all coefficients A and n <m, the inclusion

induces an injection in homology.
Proof. There is an inclusion of the fibration sequence (2.10) for n - 1

into the fibration sequence for n . The corollary then follows from (2.14)
and the observation that the base and fiber both inject in homology.

3. Normal forms

In this section we establish a normal form for elements of Rat^(Gw π + m ) .
While such normal forms abound in control theory (e.g. [12], [21]), our
choice is governed by considerations of global geometry, and hence is
slightly nonstandard.

Recall from [12] that the holomorphic maps / : S2—>Grt n+m of Chern
degree -k arise from the matrices of rational functions (the so-called
transfer matrices)

(3.1) T(z) = C(zI-A)-lBeMztnχm(C(z)),

where T(z) is the Laplace transform of the first-order linear differential
system (1.2), and

(a) A is k x k .
(b) The system is observable and controllable; that is, {A, B, C) is a

minimal realization [12, p. 363].
(c) l i m ^ ^ ^ T(z) = 0 that is, T is strictly proper [12, p. 382].

It follows ([12, 6.2.3, pp. 367-371, and 6.5, pp. 439-469]) that we may
write

(3.2) T(z) = D-\z)N{z),
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where

(a) N(z) e Matn > w(C[z]) and D{z) e Matw n(C[z]) are both polyno-
mial matrices. (As is standard we denote by C[z] the ring of polynomials
in the field of rational functions C(z).)

(b) N(z) and D(z) are relatively prime; that is, there are matri-
ces A(z) e Matn f l I(C[z]), B(z) e MatWflI(C[z]) so that N(z)A(z) +
D(z)B(z) = I e Matπ Λ(C(z)). It follows that, for every z, the rectangu-
lar matrix of n + m-vectors [D(z), N(z)] has rank n , and hence defines
a unique w-plane in Cn+m , namely the span of the row vectors. This is
a point in the Grassmannian, and consequently we have defined a map
fτ S2-*Gn,n+m given by

(3.3) fτ(u) = [D, N](u).

(c) The condition that the total Chern class c(f) = -k equivalently,
that the McMillan degree is k, is given by degree (detD(z)) = k.

As z—>oo, T(z) = D~\z)N(z) ^0 and therefore T(z) has no poles
in a neighborhood of oo. Thus, T(z) ̂  [/, D~ιN] = [/, T(z)], and
lim z _ 0 0 fτ(z) = [/, 0] e Gnn+m , our chosen base point.

Remark 3.4. There is a standard decomposition of Gn n+m into Schu-

bert cells defined for example in [19]. If we fix a basis for Cn+m and look

at an «-plane W c Cn+m , there is a unique nonzero vector w{ e W with

its first j \ - 1 coordinates vanishing, where jχ is maximal and its jf

coordinate it;. = 1. Next, among the remaining vectors of W consider

those w which satisfy w. = 0, but which are otherwise nonzero. Among
h

these there is a unique one, w2, with its first j 2 - 1 coordinates vanish-
ing where j 2 is maximal and w. = 1. It is clearly independent of w{ .
The next set to look at is those vectors in the previous set with their j 2

coordinate equal to zero, and we continue the process obtaining a unique
basis for W. This produces an nxn + m matrix in reduced row echelon
form and pattern m-\-n>jι>j2>'">jn>l v/hen we look at the co-
ordinates of these basis vectors. Fixing the pattern and varying the terms
other than the leading coefficients in each row (always 1), except, leaving
the 0's in the column below each leading 1 alone, we obtain an open cell
in the Grassmannian. The closures of these cells are the Schubert cycles.

We are permitted to change the representation of fτ e Rat^(Gw n+m)
given in (3.3) by multiplying fτ on the left by unimodular polynomial
matrices. A unimodular matrix U is a polynomial valued matrix such
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t h a t d e t ( C 7 ) = c o n s t a n t Φ 0 . F o r e x a m p l e , l e t r { , r 2 , s { , s 2 b e p o l y -
( r r \

nomials, g = g.c.d{rχ, s{), and d = det I ι 2 I . There exist polyno-
1 S ί a b \

mials a, b, such that arχ + bsx = g. Then U = I _ . . I is

unimodular and ( ι 2 ) , when multiplied on the left by U, becomes
1

( 0 aYlή~l Sl I ' A f u Γ t h e r unimodular matrix of the form ί Q J can

now be used to reduce ί Γ l ^2 J to the form ί ^ ,, j where degree (ί)

< degree (d/g). In general, by multiplying on the left by a unitary matrix
U we can bring fτ to the following normal form:

( 3 5 )

fτ = U[D, N]

= [P, Q] -

Pll P\l ••• P\n
0 B,, ».,„

0 0

where

(a) P is upper triangular with monic diagonal terms;
(b) degree (p..) < degree (p..) = fc. for i<j\

(c) Σ?SBifcJ = ^ ( / ) = fc;
(d) degree (qnj) < degree (pΠII).

Conditions (a), (b), and (c) follow from applying U to D. Condition
(d) follows from the fact that (UD)~ιUN = D~ιN, so, whatever the
unitary matrix U, the resulting rational matrix (UD)~ιUN must go to
0 as z—>oo. In general, this means that each term ί may be written
as rij{z)/sij(z) for appropriate coprime polynomials r..(z) and sr(z),
which must satisfy degree (r j) < degree (j^.). Hence, the relations be-
tween the remaining q{. and the ptw , ^ . for / > /, while somewhat
involved, are inductively determined.

It is instructive to work out these conditions to understand the mean-
ing of Clark's proof [5] that the complex dimension of Rat^(Grt n+m) =
(n + m)k . It follows directly from (3.5a), (3.5b) and (3.5c), that, for fixed
degree k, the ith column of the upper triangular matrix P has ik{ de-
grees of freedom in the coefficients of the pt polynomials. Furthermore,
each of the m columns of the Q matrix then contributes precisely k
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more degrees of freedom as the p.. and qi+hJ terms uniquely fix the
higher order entries in q.. modulo the lowest k. coefficients.

Explicitly, assume [P, Q] given in 3.5 is in normal form. The inverse
of P is given by

(3.6)

n
0 e22 hn

0 0

where

(a) eu=p-1.

(b) e i M =PUιPM9i+ιpiίM=eiieMίi+ιpitM

(c) In general, for / < j ,

— 1 — 1 , - 1 - 1 - 1

~=. P P T) ~ t i t 6 6 ' ' ' β Ό Ό ' ' ' Ό
11 JJ ιJ ' * " it / + 1 , / + 1 jj i, i+l^i+i, ι+2 ^j—\,j>

where the intermediate terms all involve one more eu term than mixed
term p{ h , and only the last term contains the maximal number of occur-
rences (j - i + 1) of eu type terms.

Now, applying the condition that P~~ιQ goes to zero as z—+00 we
obtain, for all 1 < j < m ,

(3.8) enn9nj=Pnn9nj^°

as z—+00 and thus qnj has degree less than kn . This is precisely condition
(3.5.d).

Next we have

(3.9) — 6
n

0

is

€ 1 i£7 * — 6 β , ΛΌ 1 Q
Λ — 1 , i —1^/1—1,7 nn n—\ ,n—\^n—\ ,n*

as z—^oc. Observe that every term in this equation except qn_χ .
determined in our previous calculations (3.5), (3.6) or (3.8). We do not
claim that degree {qn_x j) < kn_χ in fact, in general it is not. However,
and this is the key point, the limiting behavior as z tends to infinity and
the inductive knowledge of all the remaining terms, (3.5), (3.6), (3.8) and
(3.9), imply that qn_χ . is completely determined modulo a polynomial
of degree less than kn_χ.

In the general case for 1 < / < n we have

(3.10)
i,j nn n—\,n — \^n — \,n^nj

+ .. . ± papi+ιj+ι " ' * p

nnPij+\Pi+ιj+2 '
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tends to zero as z—•oo. Again observe that every polynomial in (3.10)
except the q. . polynomial appearing in the lowest term is determined by
the previous calculations (3.5), (3.6), (3.8), (3.9) and iterates of (3.10) for
larger values of /). Once more, although degree (q. ; ) is not, in general,
less than kt, the limiting behavior and the inductive knowledge of all
the remaining terms imply that qtj is completely determined modulo a
polynomial of degree less than k .

The freedom to choose the lowest k coefficients in each qtj as derived
in equations (3.7), (3.8), (3.9) and (3.10) thus fill out the local manifold
coordinates as desired. We shall refer to this choice of coordinates as the
"normal" coordinates for Rat^(Gn n+m).

4. The Decomposition of Rat f c(GΠ ί Π + m)

We now use the normal form constructed in the last section in order
to decompose Ratfc(Gπ n+m) into smooth strata. Let K = (k{, , kn)
be a partition of k. That is, each k. > 0 and Σ " = 1 k- = k. We lexico-
graphically order the partitions of k by setting L = (lχ, , ln) < K =
(k{9- , kn) if ln < kn or, if /. = fc. for / > j then /. < k..

Definition 4.1. For each partition of k let

,kn)

The normal form of T = [P, Q] λ

satisfies J
Proposition 4.2. X{K) = X[kx, , kn) is a complex submanifold of

Rditk(Gn,n+m) ofcomplex dimension (m + \)k + Σ " = 2 0 ' ~ ι)kj
Proof. The local coordinates are determined by the free coefficients

of the polynomials in the normal form described in §3. The degrees of
freedom for these coefficients are also given at the end of §3 where it
is observed that each of the m columns of Q contributes k complex
dimensions and each column of the P matrix contributes another ik{.
That X(K) is a regularly embedded submanifold now follows from the
proof of Proposition 4.4 below, q.e.d.

The only stratum of complex dimension k(n + m) is X(Q, , 0, k),
and, as the last coefficient decreases, the dimension gets smaller. Moreover,
each of X(0 , , l , 0 , , 0 , f c - l ) with the 1 in the ith position is in
the closure of ΛΓ(O, , 0, k). Similarly, each of X(0 ,••• , 2 , 0 , , 0 ,
k-T) with the 2 in the ith position, as well as

... > 1,0, ••• , 1,0, ••• ,fc-2)
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with 1 's in the / and j position is in the closure of X(0, , 1, 0, , 0,

k - 1) with the 1 in the ith position. There are similar closure properties

as the partitions become more complex.
In fact, associated to k, there is a filtration of RatJG,, n+m) by open

manifolds,

To reassemble Ratfc(GΛ n+m) from this stratification we will need to know
the structure of the natural inclusions

( 4 . 3 ) i ( k x , ••• , k n )

o r , m o r e p r e c i s e l y , t h e n o r m a l b u n d l e o f X{kχ, - , k n ) i n

Proposition 4.4. The normal bundle u(i(k{, , kn)) is trivial.
Proof. We begin by considering normal coordinates. Let T e

X(kx, ••• ,kn) be given by

(4.5) T =

Pn Pn ••' Pin
0 p ^ z?~

L 0 0 •- Pnn Qnl '- Qnt_

To compute the normal bundle we must infinitesimally perturb

and analyze the first order effect on the tangent level. However, if one is not
sufficiently careful when choosing S, one may leave the degree k compo-
nent (which is given by the region where the n x n minors all have degree
< k except for the minor P itself). The proposition actually follows from
the fact that we can vary the coordinates of P by small polynomials in the
lower triangular region, taking care to keep the degrees sufficiently under
control that T + tS remains of degree exactly k, and, having done that,
checking that all the coordinates in the new Q are uniquely determined,
modulo the tangent direction to X{K), by this procedure.

More precisely, let S = (L, R) where L = (l.j) is an n by n strictly
lower triangular polynomial matrix (l{. φ 0 only if i > j) and R is an
m by n polynomial matrix. Generically, if degree (//;) > degree (p..)+ 1
for some j < i then the resulting determinant of T + eS has degree > k .
Consequently, if we are to stay in the tangent space to RatA:(GAI n+m) we
must generically have degree (l j) < degree (p..) + 1 for all j < ϊ. In fact,
more is true and we shall see that every perturbation by S agrees, modulo
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tangents to X(K), to a perturbation given by (L, R) where degree (/,-.)
< degree (p..).

Recall, as z—^oo, we must have Te(z) = [P + eL]~ι{z)[Q + eR](z)^O

in order to stay in Ratfc(Gn n+m) as we vary e . Computing ^ at e = 0
we obtain the relation

(4.6) P~\LP~1Q-R)-*0

as Z—+OC. Of Course, if L = 0 and P~ιR—+0 as z—+oo we remain in
the tangent direction to X{K) and [0,R] satisfies (4.6).

First consider the case when L satisfies

(4.7) degree(/0 ) < degree^.)

for all i> j . In this case an inductive calculation similar to the one at the
end of §3 shows there exists an R depending on P , Q, and L satisfying
(4.6). Notice that if Rχ and R2 both satisfy (4.6) for the same P, Q
and L, then P~ι(Rχ - R2)—+0 as z—>oo and thus i? is unique up to
changes in the directions tangent to X(K). Therefore, for each such L
we have an element of

(4.8) T ( R a t k ( G n n + m ) ) / T ( X ( K ) ) £ v { i ( k x , ••• , * „ ) ) .

Next, we consider L's that do not satisfy (4.7) but still satisfy the
critical condition that the degree of the perturbed determinant is k. The
simplest case not satisfying (4.7) occurs when degree(/ ; ) < degree(p .)
for all / > j and degree(/^) = degree(p^^) for some a and b . But then
we can use a unimodular matrix U to write T + e(L, R) as

(4.9) T + €{Lx + Vl9Rx)9

where

(a) L{ is strictly lower triangular and satisfies 4.7.
(b) Vχ is upper triangular with degree(^/;) < degree (p.j) for all /, j .
(c) Rχ is the m by n matrix obtained from R by applying U.

Since transformation by unimodular matrices preserves our determi-
nantal conditions we have that T + e(Lχ + Vχ, R{) is a perturbation in
Rat^(Grt n+m) if and only if T+c{L, R) is also. But on the tangent space
level the tangent vector vχ associated to the perturbation (4.9) is the sum
of the tangent vectors associated to the following two perturbations:

(1) T + e(Lj, Rχ) with tangent vector v2

(2) T + e(Vχ, 0) with tangent vector v3 which is manifestly tangent
to X{K).
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Thus, v{ = v2 + v3 and vx and υ2 have the same image in the nor-
mal bundle (4.8). In the same manner, by induction, we may reduce any
perturbation of T by (L, R), which stays in Rat^(Gn n+m) with tangent
vector vχ, to a perturbation of the form (L{ + Vχ, Rχ) where L{ satisfies
(4.7) with tangent vector υ2. Again, by induction, the deviation terms
will construct a tangent vector υ3, which is actually tangent to X{K), so
that vχ = υ2 + v3. Thus, in general, v{ and v2 have the same image in
the normal bundle (4.8).

Finally, if L is not identically zero and satisfies (4.7) then the Eu-
clidean algorithm shows that T + e(L, R) lies in higher strata for all
e Φ 0. Furthermore, the assignment L ι-+ ^ in (4.8) is linear. These
facts, along with a simple dimension count and the reduction argument de-
scribed above, imply that the strictly lower triangular matrices L, which
satisfy (4.7), precisely fill out the normal directions. Hence, the coeffi-
cients of all L satisfying (4.7) give a trivialization of the normal bundle
as required, q.e.d.

As noted above in the proof of (4.4), Euclidean algorithm implies that
when T+eS is written in normal form [D, N], we must have degree (du)
> degree (pu) for the largest value of / where the degrees of the diago-
nal entries disagree. This implies that the normal directions for X{K)
in Rat^(GΛ n+m) lie in the union of the higher dimensional strata X(L)
where K < L in the lexicographic ordering given above. We shall make
use of this observation in §6.

5. The Decomposition of X(k{, , kn)

We now analyse the geometry of the individual strata X(k{, , kn).
Proposition 5.1. There is a sequence of fibrations:

Rat,(CP(m)) — X{kx,... ,kn)

R a t * ( C P ( w ) ) — X ( k 2 , . . . , k n )

u
(5.2) i

y ) ) -=- X{kn).

Proof. By induction on n. (5.1) is trivially true when n = 1 as X{kχ)
is precisely Rat̂ . (G, 1 + m ) = Rat̂ . (CP(/n)). Now assume that Proposition



TOPOLOGY OF SPACES 317

5.1 holds for

(5.3)

R a t * 2

R a v
Rat,

(CP(m))

(CP(m))

(CP(m))

— X(k2,... ,kn

U

U-2
—" X{kn_x,kn)

and consider πχ: X(/cj, .. . , kn)—+X(k2, . . . , fcπ). 7Γj is defined by writ-
ing each element of X(kχ, . . . , kn) in normal form and forgetting the
first row. It is therefore a smooth submersion onto X(k2, . . . , kn). Of
course, if πχ were a proper map, then it would immediately follow that
πχ is also a locally trivial fibration. While the fibers are not compact, it is
possible to modify X(kχ, . . . ,/c f l), without changing its homotopy type,
so as to verify that πχ is a fibration. We proceed as follows:

First embed X(kχ, . . . , kn) as an open submanifold in a product of
symmetric products of the two-sphere

(5.4) X(kχ,... , kn) ^]\SPl*b(C) ^l[SPl°b(S2).

Here the last space is a closed, compact, smooth manifold [1] (in fact,
in this case, a product of complex projective spaces) and the first em-
bedding catalogs the normal manifold coordinates for the elements of
X(kχ, . . . , kn) as described in §3, To see this is an open embedding notice
that the composite inclusion exhibits X(kχ, . . . , kn) as the complement
of a closed subspace, namely the union of the "singular set" given by nor-
mal coordinates for those holomorphic maps from S2 into Matn n + m (C)
that drop rank at some point and the "set at infinity" where at least one
of the entries in the symmetric product is o o e S 2 . The "singular set"
is closed because it is the union of a finite number of varieties given by
the zeros of various determinants while the "set at infinity" is manifestly
closed.

By thickening the closed complement of X{kχ, ... , kn) in Π ^ W s 2 )
we see that X(kχ,... , kn) deformation retracts onto a subspace
{M(kχ, . . . , kn), dM(kχ, ... , kn)) that is a compact manifold pair. No-
tice that πχ restricts to a map

( M ( k l 9 . . . , k n ) , d M ( k l 9 . . . , k n ) )
(5.5) U

X ( k 2 , . . . 9 k n ) .
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πχ clearly restricts to a submersion on the interior of M(kχ, . . . , kn).
Furthermore, as dM(kχ, . . . , kn) has real codimension 1 in M(kχ, . . . ,
kn) whereas πχ must drop real rank by at least 2 where it fails to be a
submersion, it follows that πx restricted to dM(kχ, . . . , kn) is also a
smooth submersion. This implies that (5.5) is a fibration and hence, up to
homotopy, our original πχ is a locally trivial fibration.

It remains to identify the homotopy fiber which can be done by analyz-
ing π " 1 above any point we choose. We work with normal coordinates.
First consider the case where k2 through kn are all strictly greater than
zero and take the point

(5.6) x = [P,Q] = [P, ,/ B , , 0 n l B f „,,]

in X(k2, . . . , kn) where

(a) P = Pχ is the diagonal n - 1 x n - 1 matrix

z - φ 0 .. 0
0 (z-φ .-. 0

0 0 ••• ( z - l f

(b) Q is the block sum of the n - l x n - 1 identity matrix [/n-1]

and the n - 1 x m - n + 1 zero matrix [0A2_1 m _ π + 1 ]

Let ( P π , / ? 1 2 , . . . , P l π , ? π , . . . , qlm) be the first row in yeπ~\x).
For all zeC,

(5.7) ( P π ^ i 2 » ••• ,sln,09... , 0 , ί l π , . . . , ί l w )

is a nontrivial line through the origin that does not lie in the plane deter-
mined by x(z). Here

(5.8) slj=plJ-(z-l)\J_l

for 2 < j < n. Furthermore, using the Euclidean algorithm, there are
unique r. 's such that degree (r ) < kχ and sχj = tjPχχ + r;.. But for these

(5.9) ( P n , r 2 , . . . , ^ , 0 , . . . , 0 , ^ , . . . , O

represents a nontrivial line through the origin that does not lie in the
plane determined by x(z) for all z e C if and only if the same is true
for the line given by (5.7). Notice that the space of elements of the form

(5.9) satisfying the rank condition is precisely a copy of Rat^ (CP(ra)) in

normal form. Therefore, the embedding

(5.10) Ratk(CF(m))^n;l(x)
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given by

(5.11) ^ n ' r i 2 > ••• > ri«>4i«' ••• Ό

is the desired homotopy equivalence.
Finally, if some k. = 0, then replace the (j - l)st row of x in (5.6) by

(0, . . . , 0, 1,0,. . . , 0), the vector with a 1 in the (j - l)st coordinate
and 0 in all the others. The proof then proceeds as before.

Remarks.

(1) It is possible to see directly that π^\x) is homotopy equiva-
lent to Rat^ (CP(ra)) for every x as follows: There is a natural map

π~ι(x)—+SPkι(C) given by projecting onto the roots of pn , the first en-

try in the first row of y e π^ι(x). But up to homotopy this is pre-

cisely the projection Rat^ (CF(m))-+SPkι(C) constructed in [6, §§3 and

5]. One observes that both total spaces are filtered over the same strata

Fr(SPkι{C)) with both fibers homotopy equivalent to (slm~ι)kλ~r over

Fr(SPkϊ(C)) - Fr+ι(SPkι{C)) and by induction over the strata one can

construct a homotopy equivalence π~[ι(x) ~ Rat^ (CP(ra)). This fact can

be used to give an alternate proof of Proposition (5.1) as πχ is thus seen

to be a smooth submersion with homotopy equivalent simply connected

fibers.

(2) The proof of Theorem A given in the next section will also imply
that the sequence of fibrations given in (5.2) is homologically a product.

6. The proof of Theorem A

Having decomposed Ratfc(Gπ n+m) into smooth strata X(K), each hav-
ing a trivial normal bundle in the total space, we are ready to reassemble
Rat^(GΛ n+m) and compute its homology. This we do by a spectral se-
quence comparison argument, using the known results for H^(Ω2

k(Gn n+m))
and the known stable behavior of Hίtι(Ratk(Gn n+m)) given by Kirwan's
result.

Recall the lexicographical order on the nonnegative partitions of k
g i v e n b y s e t t i n g ( l x , - - , l n ) < ( k l 9 ••• , k n ) i f ln < k n o r i f /. = fc.
for / > j and /. < k..

Definition 6.1.

U
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Then the Y{k{,
where

, kn) yield an decreasing filtration of RatA:(G/2 n+m)

(6.2) YJYL+ι = Σ2t{L)(YL-YL+ι) = Σ2t{L)X(L).

Here L = (l{, , ln) runs over the partitions of k, t(L) = (« - l)/c -
Σw=2( /- l )^ ι > ^ + 1 is the smallest partition greater than L in the lexico-
graphical order, and we have used the fact that the tubular neighborhood
of X{K) in RatΛ(GΛ f l l + l l l) is trivial and lies in Y(K) (recall (4.4)). It
will be necessary to distinguish two types of partitions of k those where
kn = 0 and those where kn > 0, called type 1 and type 2, respectively.

The proof of Theorem A now proceeds by induction on n . The case
when n = 1 is Theorem 1.5 of [6]. There is a spectral sequence associated
to filtration (6.2) with ί:2-term given by H^ (l?t{L)X(L)\ which converges
to H^(Ratk(Gn n+m)). First notice that the union of strata of type 1 is
precisely a copy of RaXk(Gn_{ n_ι+m) - It embeds as a submanifold of
R( ) with trivial normal bundle. Hence the E2 term contains

n+m)

(6.3) (CP(m)) x ... x

where the sum runs over partitions K = (K*, 0) of type 1.
Next, let ΓRat^G^ n+m) denote the subset Rat^(Grt n+m) given by

the union of the strata indexed by partitions of type 2. Using a collaring
technique similar to that in [S] one can construct inclusions

(6.4) TK&Xk(Qnn+m) c Γ R a t , + 1 ( G n i W + w ) C Rat , + I (G n > n + m )

which preserve the filtration above. More precisely, for x e X{kx, . . . ,

K-\>kn) given by

(6.5) x =

Pu Pn
0 pn

0 0

Pu
Pin

4\,

then define x* [ 1 ] e X(k{, . . . , kn_{, kn +1) by multiplying the pnn entry
by (z - N) and leaving all other entries alone. That is,

(6.6)

Pn Pn
0 P22

0 0

u
021

Inl
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where we need to explain our choice of N. Recall from §5 that there is
a compact manifold pair (M(K), dM(K)) contained, as a deformation
retract, in each strata X{K). Proposition 4.4 and the discussion preceding
(5.5) imply that there is a compact manifold pair (M, dM) contained,
as a deformation retract, in ΓRat^G^ n+m). Next, consider the set B
of N G C such that for x e {M, dM) the row rank of x * [1] drops for
some point z e C. Since (M, 3Af) is compact and the rank condition
is governed by the vanishing of various determinants it follows that B is
bounded. Hence, there is a choice of N outside of B for which the com-
position TRatk(Gntn+m)-+(M9dM)-+TRaXk+ι{GntΛ+m) is the required
inclusion.

Remarks.

(1) There is an embedding of Ratik(GIIf II+III) c Rat^+ 1(Gn n+m) given
in ([9, pp. 350-352]) which is distinct from ours and does not appear to
respect the same filtration.2

(2) There is a similar inclusion on the strata of type 1 into strata of
the form K = (Kf, 1). However, the inclusions from the strata indexed
by the two types of partitions do not glue together well and so we have
used the inductive hypothesis to handle the classes in the image of this
first inclusion.

In particular, this implies we have the following composite of inclusions:

. ^ ^ J ^ ^ H,(Ratk+ι(Gn,n+m))
(6.7) I i{k+\,n,m)

2

By Kirwan's theorem the vertical map is an equivalence through a range
that increases with k .

Lemma 6.8. j(k, n, m) is an inclusion.
Proof. Proposition 5.1 shows that, in every dimension *,

E2(H^{TRatk(Gn n+m))) is bounded above by

(6-9) 0 ^ ( Σ 2 W ( R a t , (CP(m)) x . . . x Rat, (CP(m)))+),

2 We believe that Delchamps' embedding is closely connected with the loop space multi-
plication in Ω2(Gn j Λ + w ) However, our filtration is definitely distinct from the ujual loop
space type of splitting. We think that the two structures together, ours and the C(2) operad
structure of a second loop space, homologically decompose the space Rat i t(G / I t / l + / π) into

pieces which look like suspensions of products Σ2LDi Λ Λ Z)( .
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where the sum runs over all type 2 partitions. For any partition K =
(kx, ... , kn) of k let K + (1) = (k{, ... ,kn + l) be the associated parti-
tion of k +1 obtained by increasing the last coordinate by one. Then t(K)
= t(K + (l)) and, since //JRaty(CP(m))) injects in H+(Ratj+ι(CF(m)))
for all j and ra, it follows that the assignment K »-• K + (1) in-
dexes the inclusion of £2(if1 ((ΓRat i t(G/ I w + m ))) into a summand of
£ 2 (// + (Rat^ + 1 (G n > π + w ))) . However, by inspection of (2.11), (2.14), (6.3)
and (6.9) one sees that, for each k, the total dimension of
E2(H^(Ratk(Gn n+m)\Z/p)) is never larger, as a Z/p vector space,

than the corresponding dimension for //#(Ω^(GΠ n+m)m

9Z/p). Conse-
quently, by letting k tend to oc, naturality and Kirwan's theorem imply
that the nontrivial elements given in (6.9) have nontrivial image in
H,(Q2

k+ι(Gntn+m)) for sufficiently large /. q.e.d.

Thus, we have shown that the E2 term for the filtration given in (6.2)
contains two summands: one, given by (6.9), which must, by Lemma (6.8),
survive to E^ in its entirety; and the other, given by (6.3). Specifically,
the union of the type 1 partitions is precisely the image of the inclusion
RaXk(Gn_{ n+m_{) <-• Rat^(Gn n+m), and from the inductive hypothesis
the spectral sequence for the filtered image collapses. However, the spec-
tral sequence for Ratfc(GΛ n+m) does not see the filtered image directly,
but rather, the Thorn space of the normal bundle to this image. This
normal bundle is the trivial bundle, so the terms appearing in the spectral
sequence for Rat^(Gw n+m) are actually the 2/c-fold suspension of the pre-
vious terms, and none of the previous differentials are changed. So, since
they were previously trivial they continue to be trivial, and any nontrivial
differentials on the classes in (6.3) must land on classes in the summand
given by formula (6.9).

Finally, we have seen that these classes are all infinite cycles. There-
fore, there cannot be any nontrivial differentials in the spectral sequence
associated to filtration (6.2) of Rat^(Gn n+m). This also implies that the
sequences of fibrations given in Proposition 5.1 are always homologically
products and that

(6.10) *φH,(Σ2t{K)(RAtk(CV(m)) x ... x Rat* (CP(m)))+)
K

which establishes Theorem A.
Remark 6.11. For fixed n and k , consider the sequence of inclusions

(6.12) 2 l
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As mentioned in the Introduction, Mitchell [20] has constructed a filtration
¥Λtk of Ω(SU(n))9 and we note that, for fixed n and k as m—+oc, it
is precisely the pure suspension homology classes given in (6.10) which
map via the composite (6.12) onto H4t(¥n k) to fill out the homology
of the Mitchell filtration. It is also very interesting to note that, again,
in homology, both the Mitchell filtration and the pure suspension classes
given in (6.10) fill out the homology of Ω(SU(n)) in precisely the same
manner as in the original computation of H^(Ω(SU(n))) given by Bott
and Samelson [2].
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