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L"/2-CURVATURE PINCHING

L. ZHIYONG GAO

The famous sphere theroem states that a complete, simply connected
1/4-pinched manifold is homeomorphic to the standard sphere [2], [22],
[26]. It is also known that the homeomorphism theorem can be sharpened
to a diffeomorphism theorem, if a more restrictive pinching condition is
imposed [12], [27], [28], [20].

On the other hand, Gromov proved the negative pinching theorem pro-
vide the pinching constant also depending on the diameter of the manifold
[14], [17].

In this paper we prove pinching theorems for Ln/1 -curvature bounded
Riemannian manifolds. We denote the norm of the curvature tensor
Rm(g) of the metric g by |Rm(g) | . Our main results may now be
stated as follows.

Theorem A. For any i0 > 0, H > 0, and integer n > 4, there ex-
ists a constant μ = μ(H, iQ9 n) > 0, such that if (M, g) is a complete
Riemannian manifold with diam M = n > 4, and

(a) Ric{g)>-Hg,

(b) inj(£)>/Of

(c)

max/ \Rm(g)\n/2dg<H,

(d)

max

then M is homotopic to a Riemannian manifold M of positive constant

sectional curvature, in particular, M is compact. Furthermore, M is cov-

ered by a topological sphere.

Theorem B. For each H > 0, z o > O , d > 0, and integer n>4, there

exists a small constant μ = μ(H, iQ, d, n) > 0, such that if (M, g) is a
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compact Riemannian manifold with dim M = n > 4, and
(a) *ic{g)>-Hg,
(b) inj(s)>i o>O,
(c)

max/ \Rm(g)\n/2dg<H,

(d)

max / \R(g)ijkl -

where Δ = — 1 or 0.

(e) diam(#) < df

then M is homotopic to a manifold with constant sectional curvature A =
-1 or 0.

Using the results of Kervaire and Milnor in [21], we have
Corollary C. If (M, g) is as in Theorem A, and if n < 6, then M is

covered by a diffeomorphism sphere.
If inj(Λf, g) > i0 > 0, we can consider the metric on a geodesic ball

Bj (JC) in polar coordinate {r, θ} on Bt (x),
t (

g = dr2 + g{r),

where g(r) are metrics on the sphere Sn~ι = {x e Rn , \x\ = 1} .
As a consequence of the proof, we have the following interesting result

(see §2).
Theorem D. Let (M, g) be a complete Riemannian manifold with

dim M = n > 2, such that
(a) Ric(s) > - / / £ ,
(b) inj(g) > /0 > 0,

and for any x e M,

(c)

BiQ(x)

Then there exist constants

C{ = C{(H, K, i 0 , ή) > 0, C2 = C2(H, K, /0, ri) > 0,

and a diffeomorphism φ: Sn~ι —• Sn~ι, such that

0 < e~CJr dθ2 < φ*g{r) < eC{ dθ2,

where dθ2 is the standard metric on Sn~ι.
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For the proofs of the main theorems it is worth noticing that there is
no evolution equation method available as in the case of

| R m | p / 2 < i ί : < o o , p>n.

as given in 36. Instead, we develop a series of estimates on the metric
which are based on integral bounds on curvature, but are not consequences
of the Rauch comparison theorem. Ln/1 curvature pinching is much more
interesting and far more difficult than Lp/2 curvature pinching, p > n.
The difficulty is caused by the facts that the power n/2 of Ln^2 curvature
pinching is the same as the critical power of Sobolev inequality and that
the LΛ/ -norm of curvature is a scale invariant.

Remark 0.1. In some sense, the bound on the scale invariant Ln/1-
norm of curvature is necessary. In fact, M. Gromov pointed out that
any compact manifold M carries Riemannian metrics of volume 1 with
L^-norm of curvature as small as you like for p < n/2.

Remark 0.2. The constant μ(H, z0, n) is not estimated explicitly here,
although an estimation may be possible, but would be very complicated.
We use a noneffective argument.

The proofs of the theorems will be given in the remaining sections which
are organized as follows.

1. First order estimate on geodesic balls.
2. Zero order estimate on geodesic balls.
3. The diameter estimate of small geodesic sphere.

4. L"/2-curvature pinching estimates.

5. Ln/2-curvature pinching theorems.
6. Miscellaneous results.

In §1, we first prove a metric comparison result of concentrated geodesic
spheres by using the lower bounds of Ricci curvature and injectivity radius.
We then use it to derive the Ln estimate of the second fundamental form
of small geodesic spheres. Thus, combined with the Gauss equations, this
result implies an estimate on the L^-norm of curvature tensor of [n -1 )-
dimensional geodesic spheres with controlled radius.

In §2, we study the geodesic spheres with L"/2-norm of curvature bound-
ed. We are able to use the evolution equation [19] to deform the metrics
on such spheres. Since the exponent n/2 of the L"/2-norm of curva-
ture is greater than the critical exponent (n - l)/2 of the scale invariant
£(«-i)/2_n o r m Qf c u r v a t U r e of geodesic spheres, the evolution equation is
well behaved. Here, the lower bound of the injectivity radius is used to
obtain a Sobolev inequality on small geodesic balls ([7], [6] and [5]), which
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then implies a weaker but more suitable version of the Sobolev inequality
on geodesic spheres.

In §3, we use the precompactness theorem of Gromov to give a diameter
estimate of small geodesic spheres, which is needed in §2 to estimate the
metric of the geodesic sphere of fixed radius.

In §4, we estimate the second fundamental form of small geodesic
spheres. We do this by bounding the L1 distance of the second fundamen-
tal form and b(r)g(r) of the geodesic sphere with metric g(r) and radius
r by using integral estimate on Jacobi fields (see §4 for the definition of
b{r)). This is used to estimate the iΛnorm of scalar curvature free part
of curvature tensor. Due to the nature of Lp estimates, the estimates are
somewhat complicated.

In §5, we prove the theorems by contradiction. We start with a sequence
of Riemannian manifolds with the bounds as in Theorems A and B. We
show that the geodesic spheres of fixed radius converge to the standard
geodesic sphere of space form of the same radius, and the metric tensor
converges to the standard metric tensor of space form in L"/2-norm. These
are used to show that the limit manifold is a space form. We then prove
that many manifolds of the given sequence are homotopic to the limit
manifold; this part of the argument is taken from [18].

We refer to [13], [4], [17], [19], and [20] for basic tools and results in
Riemannian geometry, which will be used freely.

1. First order estimate on geodesic balls

Let us consider an n-dimensional (n > 4) compact Riemannian mani-
fold M with metric g, and denote by Rm(g) and Ric(g) the Riemann
curvature tensor and Ricci curvature tensor of the metric g respectively.
We denote the injectivity radius of g by inj(g). Throughout this section
we shall make the following hypothesis.

Assumption 1.1. There exist constants H > 0 and /0 > 0, such that

(a) Ric(g)>-Hg.

(b) in j te)>i o >θ, io<π/2.

We fix a point x0 e M. Let Bp(xQ) = {x e M: d(xQ, x) < p} be
the geodesic ball of M at x0 with radius p < /0 here d is the in-
duced distance function on M. We consider any geodesic polar coordinate
{r, xι, , xn~{} on B (x0). By identifying B (xQ) with the Euclidean



L"/2-CURVATURE PINCHING 717

ball Bp = {veRn \v\ < p} , we have

α Λ\ J 2 \ ^ / \ 1 ϊ Ί j

/ I Q — Π Y A- \ 0" I Y Y Π V Π V

y^) κirrj- ldr2
gij+ A ^ g dr8ikdrgJ1'

where f(x) = d(x, x0), and {xι, , x72"1} is any coordinate on the

unit sphere Sn~ι = {v E Rn , |v| = 1} . (1.3) implies that

(1.4)

where

TrS

yfgdω = yjdεt(gij) dxx Λ Λ dxn \

for the standard volume form dω of S{ = 5" " 1 C Rn , and

- 2sg 8 ~drgiJ~drgjl'

It is an interesting and important fact that J ^ . . can be estimated by
the constants in Assumption 1.1. The next few paragraphs are devoted to
the proof of such estimates.

Proposition 1.5. For p < ji0, we have

> 2

/ '
./O

drι dr< Cχ(H, n)p.

Proof. Taking φ to be a piecewise smooth function of r with φ(p) =
0, noting that

using (1.4), and integrating by parts, we have

e
ΊΓr8

dr

(1.6)

1 f d . 2 ,2v d
= 2j0 d-rirφ)ΊΓr

1 Γ 2,2 d
dr

2 ,2

r φ
d
dr8 dr.
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The Cauchy inequality gives

ίrln8

and, therefore,

r φ Rrr dr < I rφ v
Jo Jo I

<•An

GΓTΪ

Φ2

- a
dr8

?

g

a
a?8

a
a?8

+ r2φ\φ'\\/n~^ϊ

dr.

Applying the Cauchy inequality 2αb < εα2 + \b2 to the first and second
terms on the right-hand side, we obtain
(1.7)

f r2φ2Rndr<1- Γ (X-r2φ\n-\) + εr2φ2

Jo 1 Jo \ ε

d

dr8

Un-\)φ2

G dr8 dr

*2

" 7 rΦ
d

dr8

2 ,2

dr

d_

dr8 dr (« " 1) f , 2 j . 2
2ε / ' (r φ +φ)dr

(1.8)

a
Trgdr

dr

and hence

(HP
< ^ Γ(r2φ'2 + φ2)dr- Γr2φ2Rrr

*ε Jo Jo

Taking ε = 1/8 and φ = p-r in (1.8), we get

d

Tr8 (p-r)2)dr

fP 2

H r2(p-
Jo

rfdr

<C(H,n)pi)

and, therefore,

L 2 2 a
a?8 dr<

1 fp

(fr
/ r (p - r)
Jo

a
a?8 dr<l-CΛH,n)p.
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This completes the proof of Proposition 1.5.
Proposition 1.9. For r < ji0, we have

d ,
<C2(H,i0,n).

Proof. Using (1.4) again, and integrating by parts, we have
(1.10)

I r R dr = -^r I r —jlngdr- -\ t
Jo 2Jo dr 4y0

l 2 a
r

l d

drg

-\ίr

dr

d
dr.

Combining (1.10) and Proposition 1.5 with the Cauchy inequality yields

2 X 1 / 2

r2t\ I/2

d_
drg

1/2

dr 1/2

<C(H, i Q , n ) r + \fn^\Cx{H, n ) ' r<C2{H, ι o , / ι ) r ,

which is just Proposition 1.9.
Remark. One should note that Proposition 1.9 does not imply that

\§ϊ\/g\ < C . In the case of bounded sectional curvature, the Rauch com-
parison theorem gives that \§-ry/g\ < C.

As a consequence of Proposition 1.5, we can compare the induced met-

rics g(r) = Σgjjir, x) dxι dxj on the geodesic spheres Sr(x0) = {x e M,

d(x, x0) = r} for r < jiQ.

Proposition 1.11. There exists a constant C2(H, n) > 0, such that

for 0<r, <r 2 <£/ 0 .
Proof. From Proposition 1.5 it follows that

(1.12)
d

drg dr<
Θ

o~rg

1/2

dr i/2 < C\'2r

for r < ji0. Taking a fixed vector v = (v() e TS{, and letting h[r) =

g(r)(v, v) = Σgu(r9 x)vιvJ, we have

dr =
9 i j

d-rg'JV V
< d

drg
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d

d?g

Thus, combining this with (1.12), we obtain

h(r2)
In

h{r.) r\ JO ΊΓr8 dr

and hence

Since v is any vector of TSχ, this implies Proposition 1.11.
Proposition 1.11 gives the ratio estimate of the metrics g(r) on Sr(x0).

Our first main goal is to estimate g(r). To this end, we need to control
the L"/2-norm of the Riemann curvature tensor Rm(r) = Rm(|(r)) of
g(r) on Sr(xQ). The next few paragraphs are devoted to such estimates.

We make the following hypothesis.
Assumption 1.13. Let p = i0 > 0. There exists a constant K > 0,

such that for any xQe M

\Rm\n/2 dg<K.

Theorem 1.14. For any p < /0/4, there exists rp > 0 such that p/2 <

r < p, and

ί \Rm(rp)\"J2dg<C^

for a constant C4 = C4{H, K, iQ, n) > 0.
Remark 1.14(a). In general, for any 0 < r < io/4, we have

\Rm(g)\l/2dg<C(H,K,io,n,r).!

First we recall a well-known volume estimate of Bishop [3].

Lemma 1.15. For r < i0, there is a constant C5 = C5(H, /0, n), such

that ^g<C5r"-{.
We start with several lemmas.
Lemma 1.16. Given a geodesic γ with length I < io/2, and a Jacobi

field Y on γ, such that Y(γ(0)) = 0 and (Y(γ{l)), γ(l)) = 0, we have

for 0 < rχ < r2< I, and C 3 in Proposition 1.11.
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Proof. Since / < /0/2 and γ is a minimal geodesic, we take xQ = y{o)

and choose the polar geodesic coordinate {r, xι, , JC"" 1 } on B[(x0)

such that a/^x 1 = Y(γ(l)) at y(/). Thus d/dxι = Y on γ, and Propo-

sition 1.11 implies the lemma.
Lemma 1.17. Given α geodesic γ with length I < /0/4, and a Jacobi

vector field Y on γ such that Y(γ(0)) = 0 and (Y(γ(l))9 /(/)) = 0, there
exists a constant C6 = C6(H, /0, n) > 0, such that

\Y(γ(t))\<C6\Y(γ(l))\

for 0<t<l.
Proof Let γ be an extension of γ defined as follows:

ί 7(0, 0 < ί < / ?

Ά ) I ex P y ( 0 ) (ί/(0)), - / < ί < 0 .

Then γ has length 2/ < iQ/2, and y is a minimal geodesic. There exists
a unique Jacobi vector field Y along y, such that Ύ(y{l)) = Y(γ{l)), and
"^(P(~0) = 0. Applying Lemma 1.16 to T and y in turn, we obtain

(1.18) \7(γ(t))\2 < e2Cψ(γ(l))\2 = e2C>\Y(γ(l))\2 for t > 0,

(1.19) \Y(γ(t))\2<e2Ci\Y(γ(l))\2 for t> 1/2.

On the other hand, letting Z = Y - Y on 7, we have (Z, / ) = 0, and
Z(y(/)) = 0. Applying Lemma 1.16 again gives

|Z(y(ί))| < e2C>\Z(γ(0))\2 = * 2 C 3 |7(y(0)) | 2 for t < 1/2.

Combining this with (1.18) and (1.19), we deduce

\z(y(t))\ < 2 ^ 2 C 3 | r ( y ( / ) ) | for t<ι/2,

\Y(ϊ(t))\<eC2\Y(γ(l))\ for t> 1/2.

We finish the proof of Lemma 1.17 by taking C6 = 2^ 2 C 3.

Lemma 1.20. There exists a constant C 6 = C 6(//, i0, n) > 0, such
that for each p < /0/4, we have

ί
p(x0)-Bp/2(x0)

ar

p\ΛQ>

Proof Let B be the second fundamental form of Sr(x0). Then we

have
f_d_ _d_\ = \_d_
\dxi9 dxJ) 2drg<J>
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and \§j:g\2 = 4\B\2 is independent of the choice of coordinate {x1} . For

a fixed point y e Sp(xQ), we choose a coordinate {x1} on S (x0), such

that

\dxι dxJ ,

at y. Let us denote d/dxι by Yi on B (x0). Then Γz is a Jacobi

vector field along the geodesic γ(r) = {r, y} e Bp(x0), and we have Y" +

i?(7., Γ)Γ = 0, where T = γ(r) is the tangent vector field of γ . We take

the parallel vector fields E. and E{ along 7, such that E (p) = Yt{p) and

Έ^p/2) = Yi(p/2). Thus by Lemma 1.17, \Y.(r)\ < C 6 , and

C6, |£ f. | < C6 for r < p. Defining the vector field At on y by

(1.21) A.(r) = y . ( r ) - -

we then have

0, Ai(p) =

A" + R(Yit T)T = 0.

We now integrate by parts,

p/2 Jp/2

which gives, in consequence of equation A" + R(Yi9 T)T = 0,

fP 1 1 n-4 11 1
- (n - 2) / (A., i4.)|-4 | (-4. , A.)

Jp/2

/

p f n _ 2

n ι ' ' / /

Pβ

2 ίP , , / Λ - 2 2 Z1^ / /1-2
< 3C 6 / I R m l l ^ . Γ ύfr + (A2-2)3C6 / | R m | | Λ . | rfr

y/7/2 y^/2

<C(H9iQfn)Γ
J pih/2

Then the Holder inequality implies
\2/n

,n/2Γ
/
Jp

\Λγdr<c([ IRmf2 dr) I \A',\" dr
p/2 \Jp/2 I \Jp/2
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that is,

or

(1.22)

Using (1.21), we have

Γ U\ndr<C Γ |Rmf/2rfr,
Jp/2 Jp/2

1 r P

\A'\"dr<C \Rm\"/2 dr.
Jo/2

, , _ 2 2Έ

• ' p ' p '

which combines with (1.22) to imply

B - l

(1.23) Y;\"dr<^ + C |Rmf'2

P Jp/2
dr.

We now consider

d

which, together with |1^-| < C6 , gives

d

ΊΓr8

Note that gjλp) = Stj at y e S (x0). Applying Proposition 1.11, we then

h a v e \gιj(r)\ < C o n γ f o r p/2 <r<p, a n d h e n c e

ΊΓr8

which clearly implies that

d n

This with the help of (1.23) yields

We now note that \§-rg\n and | Rm \n are independent of the choice of

{x1} on S (x0). For any such {JC }̂ we have by Proposition 1.11,

C(H, iQ9 n)-lyfg(p) < y/gir) < C(H, J 0 , n)
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on γ(r), p/2 <r < p. This implies

/.
Γ
p/2

Γ
Jp

Integrating over Sp{x0), we then obtain

L a?8
!Bp(x0)-Bp/2(x0)

Using Lemma 1.15, we have

dg<c\f dg + cί \Rm\n/2dg.

LBJxJ-

d

a?8 dg<-
P

| R m | n / 2 ^ .

We take p = ί'0/4 then

(1-24) ί \g\"dg<C6(H,i0,n) •L
For any p < ̂ iQ, applying (1.24) to the metric g = τ~2g, where τ =
4p/i0, and noting that Ric(g') > -Hg inj(g) > i0, by the scale invari-
ance of (1.24), we then finally obtain

d
dg=

a
a?8 dg1

<c6

Now we are ready to prove Theorem 1.14.
Proof of Theorem 1.14. From Lemma 1.20, we have

(1.25) /7
JP/2JS

Yr g dgdr<C(H,K,io,n).

Let us recall the Gauss formula on Sr(x0),

1 / d d d d
κUki - κijki + 4 yd-r^kd^Sj, Q-ySjkQ-^

which, together with (1.25), implies that

(1.26) Γ f \Rm(g)\"/2dgdr<C Γ f \ Rm \"J2 dg dr + C.
Jp/2 Js, Jo/2 Js,
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(1.26) means that there exists an rp > 0 with p/2 <rp<p, such that

\Rm{ro)\n/2dg<C±.
P

This completes the proof of Theorem 1.14.
Remark 1.14(a) follows from above; the only change is that we have to

replace every constant by a constant which also depends on f.

2. Zero order estimate on geodesic balls

In this section we state and prove the central estimates of the paper, a
compactness estimate of the metric g on geodesic balls.

Let (M, g) be a Riemannian manifold as in §1.
Theorem 2.1. For any p < io/4, there exist rp > 0 as in Theorem

1.14, a constant CΊ = CΊ{H, K, iQ9 n) > 0 and a smooth Riemannian
metric h(r ) on the geodesic sphere Sr (JC0), such that

C-χg{rp)<r2

p{rp)<CΊg(rβ)

and |Rm(A)| < C 7 .
First, let us recall a well-known result ([7], [6], [5]).
Theorem 2.2. If p < zo/2, then there is a constant C8 = C8(w) > 0

such that for any f e C™(Up{x0)), we have

(n-\)/n

Ίn/(n-\)Ί <cj \vf\dg,

where Up(x0) = {x e M, d(x, x0) < p} is an open geodesic ball of g.

Using Theorem 2.2 and the Holder inequality, and replacing / in The-
orem 2.2 by a power \f\2^n-χ)ln-2) o f | / | , we can prove the following.

Theorem 2.3. For p < iJ2 and f e C™{Up(x0)), we have

(n—2)/n

0
Bp(χ0) ) V n - 2 ) JBp{Xo)

Let us now consider the metric g(r) on Sr(xQ), and define a new metric

h{r) on Sr(x0) by

Hr) = i f (r).

We need to prove a Sobolev inequality for the metric h(r) on Sr{x0).
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To start, from Proposition 1.11, we have

(2.4) e~c^ ("A2~h{rχ) < h(r2) <

for 0 < rχ < r2 < iQ/2.

Theorem 2.5. For 0 < r < io/4, there exists a constant C9 = C9(H, i0, n)
> 0, such that, for any 0 < / < r and f e C°°{Sr(x0)), we have

^{L{χ)

ιfl2n/{n~2)dg){n~2)/n-C9{l
Proof We take a cut-off function φ: [r, r I] -• [0, 1], such that φ(r) =

0, φ(r + l) = 0, φ(t) = 1 for r +1/4 < t < r + 3//4, and φ is linear on
[r,r + //4] and [r + 3//4, r + / ] . We have

,,/, . 4

r+l ,

/

<c\Γ'ί \vf\2dgdt + ±Γl f fdgdλ.
{Jr Js,(x0)

 S 12 Jr Js,(x0) J

We can consider ^>/ as a function on 5 (x0) with support in

Ur(x0). Applying Theorem 2.3 to φf, we obtain

/
s,(x0)

Since I < r and all the metrics g(t) for ί G [r, r + /] are equivalent by
Proposition 1.11, we can replace the metrics g(t) for t e [r, r + /] by
£(r). Thus we have

(he \f\2n/{n-2)dg)

f rr+l f , „ ., \{"-2)/n

JS,(x0)

< c ( l f
\ JSr(

f2dg),

J
f \
Sr(x0) ' JSr(x0)

which clearly implies Theorem 2.5.
We identify Sr{x0) with S, c R" , and consider g(r) and h{r) to be

metrics on 5 , . From Theorem 2.5, we obtain
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Corollary 2.6. For 0 < r < ίo/4, 0 < / < r, and f € C°°(S,), we have

L2,n

L = l/r and 0<L<l.
For the metric Λ(r) on 5 , from Theorem 1.1.4, we also obtain
Corollary 2.7. For any p < io/4, there exists r > 0, such that p <

r <2p and

(2.8) ί \Rm(h(rp))\n/2dh(rp)<C4.

We now use the evolution equation of Hamilton [19] to deform the
metric h(rp). We fix p < io/4 for the next few paragraphs, and consider
the evolution equation

(2.9)

er p

Theorem 2.10. The evolution equation
where h(0) = h(rp). From [19], we have

has a unique solution on a maximal time interval 0 < t < t < oo. If
T < oo, then max s | Rm(A)| —• oo as t —> T.

We shall estimate the T for h[r ) from below by a constant which
depends only on H, K, /0, and «, and estimate the uniform norm of
Rm(A). We start with the following.

Theorem 2.11. There exist

T = T(H, K, i0, n)>0 and C 1 0 = Cl0(H, K, iQ9 n) > 0,

such that (2.9) has a solution on [0, T], and for t e [0, T], 0 < L < 1,
/ G C°° (S{), we have the following:

(a)

/ \Rm(h)\n/2dh<2C4,
s,

(b)

L2'"
fn/(n-2)dh
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(C)

max|Rm(Λ)|A(τ) < - £
l T

Proof. Note that (a) and (b) are satisfied at t = 0. We take η > 0 to
be the maximal number such that (2.9) has a solution on [0, η), and (a),
(b) hold on [0, η). We may assume that η < 1. First we prove

Lemma 2.12. (c) is satisfied on [0, η).
Proof. Letting τ[0,f/),we have

which is invariant under the transformation t —• τί and Af. (0

(l/τ)Λz7(τ/) = Λ^(0 . Thus we obtain

for h', and this equation has a solution on [0, 1]. For this metric h', we
have

(a,)

f \Rm(h')\"/2dh'= τι/2 f \Rm(h)\"/2dh' < 2C 4 τ 1 / 2 ,
Js1 Jst

(b,)

for any 0 < L < 1 and / 6 C°°(S{). Let L = L/τ1/2. Then L can take
any value on (0, 1], and (b,) can be rewritten as

(b.)

1 / ί I / ι2n/(n-2) ,, Λ „ „ / /
=577 / l/l d h ^ 2 C 9 W

From [18] it follows that

(2.13) ^-| Rm | 2 < Δ| Rm | 2 - 2|VRm | 2 + C(«)| Rm |3.
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For p > 1, by integrating and using (2.13), we obtain
(2.14)

<2p f \Rm\2{p~ι)(ARm,Rm)dh' + Cp f |Rm\
Js, Js,

<-2p f \Rm\2{p~l)\VRm\2dti - 4p(p - I)
Js,

x f \Rm\2{p~2)(VRm,Rm)2dti + Cp ί \Rm
Js, Js,

2p+ι dti

2p+ι dti

< -
P

I V| Rm \p\2 dti + Cp ί I Rm \2p+ι dti,
Js,

so that

(2.15) I - / \Rm\2pdh'+ [ \V\Rm\p\2dh < Cp [ \Rm\2p+ι dh'
dt JSί Js, Js,sι

Similarly, for any nonnegative function φ of t, we have

(2.16)

<Cpφί Rm\2p+l dti'+(τφ) ί \R™\2Pdti.
\at ) Js,

Now we use the standard Di Geogi-Nash-Moser iteration. We take φ(t) =
1 for t > δ', φ(t) = 0 for t < δ, and φ is linear on [δ, δ']. For such
φ, we obtain

(2.17)
1

(δ'-δ)

For each p > 1, we take L small, such that
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Applying (b χ) and (2.16) yields

\Rm\2pdh')+yjs MRm\p\2dti

(«-2)/n

2 (2c9L
2/n)

<Cpφ ί I Rm \2p+ι dti + ~ [ I Rm \2p dh'
Js, 1L Jst

(2.18) +φ [ \Rm\2pdh'.
Js,

Let K = n/{n - 2) > 1. By the Holder inequality we have

ί

φ If \Rm\2pκdti 4C9L
2/n

2/«

<cpφΠ\Rm\2pκdh'\ K Π \Rm\"12dh'\

1L J o — o J
which implies

1/κ

2r
so that

TΓT ( 4 / I Rm

Let

Rml̂ rfA') +^/Ίv|RmΠ2JA'

<C{H,K,iQ,n)p" j\Rm\2pdh' + -^-^j\Rm\2pdh'.

f |V|Rm|VA') dt,
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From (2.18) by integrating from δ to 1, we obtain

(2-19) M2p(δ')<Cpn-^H2p(δ),

(2-20) D2p{s')<Cp"-^H2p(δ).

Lemma 2.21. For R - (n + 2)/« > 1,

H2pκ{δ) < CM2p(δ)

Proof. By the Holder inequality,

< CM2p(δ)2/n(H2p(δ) + D2

{2'22) - Sl (/'Rm |2pίc dtί) ι/κ (/'Rm |2p dh')2/n

< M2p(δfln jf1 (J \\Km\2pκ

Taking L = 1 in (b j), and applying (b j) to the right-hand side of (2.22),
we obtain

H2pR{δ) < CM2p(δfn(H2p(δ) + D2

Using (2.19), (2.20), and Lemma 2.21, we then have

Hence, for q = 2p > 1,

(2.23) HRq{δ') < CU{H, K, i0, n)qR

Let qm = κmq0, δm = \-\-2-m , δm-δm_χ = 2~(m+x), andlet Φ(q, δ) =

H {δγlq . Then (2.23) implies that

<C12(//,Λ:,ι0,/i,90)Φ(ί0,0).
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Letting m —• oo, and taking limits, we obtain

Taking q0 = n/2 and C 1 3 = Cι2(H, K, iQ9 ή) yields

/ l \

max |Rm(A')| = C π ( / [ \Rπί\n/2dh'
1/2<K1 Π \Jθ JSι

Consequently

/ l \

(2.24) max |Rm(V) | ( l ) <Cl3( [ ί \Rm\n/2dh
sι \Jθ JS{

Now from (a, ) it follows that

1 - ., .,

RmΓ dh <2CΛτ' .II
Jo Js

Combining this with (2.24) gives

max|Rm(Λ')|(l) < C 1 3 (2C 4 τ 1 / 2 ) 2 / " < C 1 0 (C 4 ) 2 / V / n .

Changing back to the metric h , we therefore obtain the estimate (c).
To finish the proof of Theorem 2.11, we need only show that there exists

c i 4 = Cl4{H, K, i0, n) > 0, such that η > C{4 > 0. To this end, we
consider the evolution equation for h ,

We have [18] as in (2.15),

^J\Rm\n/2dh+[\v\Km\H/4\2dh<C(n)[\Km\H/2+ιdh.

Hence, by the Holder inequality,

Using (a) and (b), by taking 1/L2/" = 2C9C(w)(2C4)
2 /" , we obtain

£- ί \Rm\n/2dh < Cl5(H, K, /„,«) ί\Rm\"βdh.
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Integrating gives

ί I Rm \n/2 dh < eCχst ί | Rm(Λ)| dh < C4e
Cl5'

and therefore, if t < (Cl5)~ι In \ , then

(a2) J\Rm\n/2dh<lC4<2C4.

We now shall improve the constant in (b). For any fixed / e C 0 0 ^ ) , we
have

= J 2 Ric(V/, Vf)dh + jjl f\-R(h)) dh + J \Vf\2(-R) dh

< 6 max I Ric(A)| ( / |V/|2 dh + ± f f2 dh].
5, \JSl L Jsι J

Using (c), we obtain

and therefore, by integration,

(2.25) / |V/ | 2 ^ + - 1 / f2dh
Jsι Lr hx

' l f2dh
L J

Jt=0

Similarly,

\f\&dh\ " >e-nC»'ljs \f\Adh\ " |ί=0.

Combining (2.25) and (2.26) with Corollary 2.6, for / < ( ^ C 1 6 l n \)n , we

then obtain

Now, if

η < mm < yr- In - , - ^ — C 1 6 > - C 1 4 ,
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then (c) implies that | Rm(A)| is bounded when t —> η. By Theorem 2.10,
(2.9) has a solution on [0, η] for some η > η, and (2.26) and (2.27) imply
that (a) and (b) are true on [0, η]. Therefore η cannot be maximal. This
contradiction proves that η > C 1 4 > 0, and we can take

T=T(H9K9iQ9n) = Cl4>0.

This finishes the proof of Theorem 2.11.
Proof of Theorem 2.1. We take h{rp) = h(T) as in Theorem 2.11.

Then Theorem 2.11 (c) implies that

IRm(A)| < C7 for C7 > ( ^l°ι/n)) (C4)
2/n > 0.

We now prove that g(r ) and r2h(r ) are equivalent. Recalling that

Mr

p) — g(rp)/r2

p

 a n ( i Λ(0) = h(r ) , we have from Theorem 2.1 l(c),

and hence for any vector v e TS{

d f ,
< 2| Ric(A)|A(t;, «) < (~^ΰ) h{v, υ).

Integrating both sides gives

h(T)(v,v)
In <nCΓ

h(0)(υ,v)

nCT^

Since v is arbitrary, by taking C7 = e we have

C;lh(rp)<h<CΊh(rp),

which clearly implies that

C;lg{rp)<r2

ph(rp)<CΊg(rp).

This finishes the proof of Theorem 2.1.
We need to estimate g(r ) by Theorem 2.1, we need only to estimate

h(rp). We like to use the Gromov Convergence Theorem ([11], [16], [25]);
for this, we have to control the volume and diameter of h(rp). For the
volume, we have the results of Croke [7].

Theorem 2.28. For r < iQ/2, there exists a constant C1 7 = Cl7(n),
such that

Combining this with Theorem 2.1, we obtain the following.
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Corollary 2.29. For p < ̂  , there exists a constant Cn- Cn(H ,K J0,n)
> 0 such that

Vo\(h(rp)) > C 1 8 > 0.

For the estimate of diameter, we have
Theorem 2.30. There exists a constant C1 9 = Cι9{H, i0, ή) > 0, such

that for r < io/2, we have

diam(f (r)) < C19r.

We shall postpone the proof of Theorem 2.30 to the next section. For
now, we assume Theorem 2.30. Then from Theorem 2.1, Corollary 2.29,
and Theorem 2.30, we obtain

(2.31) | R m ( * ( r , ) ) | < C 7 , Vol(Λ(r,)) > C 1 8 > 0, diam(Λ(r,)) < C1 9.

We now can use the Gromov Compactness Theorem ([11], [25]) to es-
timate h(r ), and so g(r ) . These, toj
Lemma 1.16, clearly imply Theorem D.

timate h(r ), and so g(r ) . These, together with Proposition 1.11 and

3. The diameter estimate of small geodesic sphere

In this section we will prove Theorem 2.30. Most of the proofs are
straightforward, but for completeness we write them here. The main ref-
erences of this section are [14]—[16]. We start with some lemmas.

We define the set of Riemannian manifolds

, H,n) = {(AT, g)|inj(g)>/0, Ric(g) >-//#, dimM = n}.

Lemma 3.1. Let (Mi, g() e Jί(i0, H, n), and take xt e Af., a point

in M{ for each i. Then there exists a compact metric space X such that

~M. = -β̂ f*"(jcf-) c X with D = 4/0, and the distance functions on compact

sύbspace Hi induced from X and the distance function of (M.9 g() are

the same [14], [15].

Lemma 3.2. There exist a compact subspace M° of X, and a subse-

quence of {Mi} (say {M^), such that Ή:. converges to M° in Hausdorff

distance, which is denoted by ~Mt -̂ -> M° in X.

By passing to a subsequence if necessary, we may assume that x —>

x0 e M° in X.

Lemma 3.3. Let Bt (x0) = {x e M°, d(x, x0) < i0}. Then for any

two points JC, y e B{ (JC0) , there exists a minimal geodesic γ from x to y

in M, i.e., L(γ) = d{x,y).
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Proof. By [16], we need only to prove that for any ε > 0, there is a
point z e M°, such that

(x, z), rf(y, z)} < \ d{x, y) + 4ε.

Since 37. - ^ Af°, for any ε > 0 we have M° c C/e(Λ7.) = {x G

Λf, rf(.x, 57,.) < e} for large /, and there exist x, y G M{ for large /,
such that d{x , x) < ε and d(y , y) < ε. The triangle inequality implies

d{x, y) < rf(*, y) + 2ε, d(x, y) < rf(x, y) + 2β.

Since M{ is a length space, clearly d(x, y) < 2/0 , and there exists z € ]Ϊ7.
such that

, z), d(y, z)} < ^ ( x , y) + e < \d{x, y) + 2ε.

We also have M{ c Uε(M°) for large /, which implies that there is a

z eM° such that ύf(z, z) < ε, and that

U?(JC , z) < d(x, z) + 2ε < \ d{x, y) + 4ε,

ύf(y, z)<d(y, z) + 2ε< \d(x,y) + 4e.

This completes the proof of Lemma 3.3.
Lemma 3.4. For r < /0/2, we have

where Br(xt) and Br(xQ) are geodesic balls in Ή\ α«d/ Af°, respectively.
Proof. For ε > 0, we have 5r(jc0) c Ue(M ) for large /. For any

y0 € 5 r(x0), there exists y G 37f., such that D(y0, y) < ε, and hence

x() < d(y, y0) + rf(y0, x0) + d(xQ, xz )

for large /. This implies that y G ̂ r + 2 e ( x o) Since Mt is a length space,
there is a y G Br{xt), such that d(y, y) < 2ε, and therefore, d(y0, y) <
3ε and Br(x0) c U^Bfa)). _

Now for any y G fir(jcf.), since M° c U^M^ for large /, there exists

a y0 G M°, such that d(y, y0) < ε, and

ί/(y0, x0) < d{x0, xz ) + d{xi, y) + d{y, y0) < ε + r + ε < r + 2ε

for large /, which implies that y0 G 5r+2e(-xo) I f ^o ^ βλxo)» t h e n

^(x o ,y o ) > r, and by Lemma 3.3, there is a y0 G # r (x 0 ) , such that

y0) ^ 2 ε ' a n d d(y>yo) ^ 3 ε I f ^o G ^(-^o)' w e t a k e >"o = >̂o
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and d(y,y0) < ε, and hence y e U3ε(Br(xQ)) for large /, and Br(χ.) c

U3ε{Br(x0)). This proves that Br(χ.) -^-> Br(x0).

Lemma 3.5. Let Sr{χ.) = {x e M., d(x, x.) = r} and Sr(x0) = {x e

M°, d(x, x0) = r},for r< iJ2. Then

Sr(xt) -£+ Sr(x0) in X.

Proof. (1) We shall show that for any ε > 0,

Taking any y0 e Sr(x0) 9 we have d{yQ9 xQ) = r. Lemma 3.4 implies
that Br(x0) c U^B^Xj)) for large /, so there is a y e Br(χ.) such that
d(yQ, y) < ε, and hence

r = d(x0, y0) < d(x0, x.) + d(xi, y) + d(y, y0) < 2ε + d(xi, y)

for large /. This gives d(xi9y) > r - 2ε, and d(xi9y) < r. Since
r < inj(A/f.), there exists a y e Sr{x(), such that d(y, y) < 2ε, and hence
^(y 0, y) < 3ε . Consequently, Sr(x0) c ^3 e(5' r(x /)).

(2) We now are going to show that 5r(jc/) c U3ε(Sr(x0)) for large /.
We start with the following.

(a) For any y e £r(-xo) and d(x0, y) > r - 2δ, there exists a y0 G
«Sr(x0), such that d(y, y0) < 2δ . In fact, for any y E 5 r(x0) and ε > 0,
there is a z e Br(χ.) for large /, such that d(y, z) < ε, and therefore

r-2ί<rf(xo,y)<rf(xo,z) + rf(z,y)

< 2ε + rf(χ., z)

for large /. This implies that r - 2δ - 2ε < d{xt, z) < r < iQ/2, so that
there is a zε G ^(JC^) , such that d(z, zε) < 2ί + 2ε . For such z ε , there
exists a ^Q G 5 r(^ 0) such that d(zε, yε

0) < ε. We may assume that f0 -•
y0 E 5 r(x0) as ε -• 0, and z £ ^ z a s ε ^ 0 . Then d{zε, yε

o) < ε implies
that y0 = z, and since xt —• x 0 , we have rf(x0, z) = limί/(xz, z)ε) = r,
and hence d(x0 ,yo) = r, yQe Sr{x0). We have

d{y,yΌ) <d{y, z) + d(z, z) <ε + limd(z, zε) < ε + 2<5 + 2ε.

Letting ε —• 0, we then obtain d(y, y0) < 2δ .
(b) For any y e Sr(x(), rf(y, xt) = r, for large /, there is a y0 G 5 r(x0)

with d(y, y0) < ε, such that

r = d(Xi, y) < rf(xf., x0) + rf(jc0, y0)
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for large /. This implies that d(x0, yQ) > r - 2ε, and that d(xo,yo) <
r < i0. By (a), there exists a y 0 G Sr(x0), such that d(y0, y0) < 2ε, and
hence

diy, y0) < d(y, y0) + d(y0, y0) < 3ε.

Consequently, S^x^ c U3ε(Sr(x0)). This finishes the proof of Lemma
3.5.

Lemma 3.6. Sr(x0) is connected for r < io/2.
Proof. Since Sr(Xj) is connected and compact, so is Sr(x0).
Define PCδ = {a\a\[tn ti+ι] is a minimal curve with length < δ in

M° , and α(ίf.) G 5 r (x 0 ), 0 = ί0 < tx < < tm+ι = 1, a is C° in M 0 } .
Lemma 3.7. For any δ > 0 α«af x , y G S r ( j ί 0 ) , ί/jere exw^ α« α e

α(0) = x, o (l) = y.
Let us fix x, and let

By Lemma 3.3, 4̂ is open and closed in Sr(x0), and hence A = Sr(x0).
Theorem 3.8. For r < / 0 / 4 , there is a constant C 2 0 = C20(H ,K ,io,n,r)

> 0, such that diam^XQ)) < C 2 0 .
Proof Taking δ = r/8, we then have for any ae PCδ,

a C U™ (x0)) C M°.

Let y(, ẑ  G 5 | = 5r

r(x/), such that

diam(5;) = d(y., zt) = mf{L(γ)\γ(0)=yi, γ(ί) = z.}.

Since X is compact, and Sι

r -^-> Sr = Sr(xQ) in X, we may assume that

ytr -> y, z z . ^ z and y, z E S r .

Lemma 3.7 implies that there exists an α e PCδ such that L(a) < oo,

a(0) = y and α(l) = z . Thus we have a: [0, 1] -+ M° and 0 = ί0 <

ίj < ••• < ίm+1 = 1 such that a\[tj, tj+ι] is minimal in B2r(x0) and

a(tj) e Sr{x0). By Lemma 3.5, there exists an όί. e Sι

r, such that for

small ε < δ and / large, d(a(tj), aβ < ε άι

0 = y., and am+{ = zr

Therefore

d(ά) , άj+ 1) < d(a(tj), άj.) + d(a(tj), α(ί y + 1)) + rf(α(ίy+1), ά}+1)

< 2ε + ί < 2ε < r/2,

which implies that there is a minimal geodesic βι-, from δί to c^.+1 in

'Mi, such that
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Let βι = U7=o β) τ h e n ^(°) = y*> A 1 ) = zi> a n d A' is a piecewise
continuous minimal geodesic in ~λf.. Thus

(3.9) L(a) < oo.
7=0

Now note that βι

} c B2r{xi) - 5 r / 2(χ.) c Mέ. From Proposition 1.11, we

have

gi = g = dr2 + gkl(r, x) dxι dxι on B2r(χ.),

(3.10) e'

for r/2 <rχ<r2<2r. Let β)(t) = (r(t),x(ή). Then r(tj) = r(ί ; + 1 ) = r.

Define j8;(ί) = (r, x(ή) to be the radial projection of βlj on ^(x,.).
Then from (3.10) it follows that

r(t) T,™ dt
r(t)

Taking βi = \jj=oβj9 where βι is a C°-piecewise C 1 curve in S\,

and L{fi*) < elc'L{βι), we have β\0) = y. and β\\) = zr By (3.9),
we obtain

L(β*) < e1C\2mz + L(a)) < ex).

Consequently

diam(^) < elc\2me + L{a)) < oo

for large /. This completes the proof of Theorem 3.8.
Proof of Theorem 2.30. First we claim that

(3.11)

If (3.11) is false, then there exists a sequence

such that diam(fz(/0/4)) -> oo, and thus diamίί' / 4) -• oo. But by Theo-

rem 3.8, there exists a subsequence of {(Mr, g()} (say {(Aff., gf)}) such

that d iam^ ' / 4) < C 2 0 . This contradiction proves (3.11).
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2Let g'. = (1/τ )g. for any r < iQ/4 and τ = 4r//0. Then since τ < 1,
we have

that is, (Mi, g[) € Jt(H, i0, ή). Applying (3.11) to (Mi, g[), we obtain

which implies

Hence the theorem is proved.

4. zΛcurvature pinching estimates

Let M be a compact Riemannian manifold with metric g as in the
above sections, and assume that

*ic{g)>-Hg9

^ ' ' max

where H > 0. In this section, we make the following additional hypothe-
sis.

Assumption 4.2. Let

Tm = Tijkl = Rijkl - A(gijgjl - gilgjk),

with Δ = 1, 0, or - 1 , and assume that

max / \Tm\ dg < μ

for a small μ > 0.
As in earlier sections, we consider the metric g in polar geodesic coor-

dinates on the geodesic ball Bt (x0),

ij(r,x)dxidxj.

Let g(t) be the induced metric on the geodesic sphere S (x0). Denote the
o o

scalar curvature free curvature tensor of g(r) by Rm(r) = Rm(?(r)),
and the second fundamental form of Sr{x0) by B(X, Y) = (VXY, d/dr)
for X, Y vector fields on Sr(x0).
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The main theorem of this section is:

Theorem 4.3. Let σ(μ) = μι/{n+ι). Then for any x0 e M and p =
/0/4, there is an x e Bσ(x0) c M, such that

ί \Rm(g)\dg < σ(μ)l/2C(H, K, i0, n).
JBβ{x)-Bp/2(x)

Remark 4.3(a). Similarly, if 0 < r < ιo/4, there exists a n x e Bσ(x0) c
M such that

< σ(μ)l/2C(H, K, iQ, n, r).

We start with several lemmas.
Lemma 4.4. Let γ be a geodesic of length I < π/2, and J a vector

field along y, such that J(γ(0)) = 0 and J{γ(l)) = 0. Then for A = 1, 0,
or -1, we have

[ \J\2dt< [ \f\2dt-A [ \J\2dt.
o Jo Jo

Proof Since the Dirichlet eigenvalue problem of the Laplace operator
-d2/dt2 on [0, /] has the first eigenvalue (π//)2 > 4, we have

[' \f\62 - A [' \J\2 > 4 f \J\2 - A [' \J\2 > [' \J\2.
Jo Jo Jo Jo Jo

Lemma 4.5. Let γ and J be as in Lemma 4.4. Then

[ \J'\2dt<2\ ί \f\2dt-A[ \J\2dt).
Jo \Jo Jo J

Proof We have

f \f\2dt= [ \f\2dt-A( \J\2dt + A[ \J\2dt
Jo Jo Jo Jo

<2(ί'\j'\2dt-Aί\J\2dt\.

Lemma 4.6. Let γ be a geodesic of length I < io/4 < π/2, and Y
a Jacobi field along γ such that Y(γ(0)) = 0, \Y{γ(l))\ = 1, and Y
is perpendicular to γ. Let E be the parallel vector field along γ with
E(γ{l)) = Y(γ{l)), and define

r-(sin//sin/)J? if A = 1,

A={ Y-(t/l)E ifA = 0,

Y - (sin htl sin hl)E ifA = -\.
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Then

/Vl
Jo

2dt<C20 ,/Vj
Jγ

Proof. We have Y" + R(Y, / ) / = 0, which can be rewritten as

Y" + AY = -(R(Y,γ')γ'-AY),

so that
A" + AA = Y + AY = -(R(Y, y')y - AY).

Noting that (R(Y, / ) / - AY) <\TJ\Y\, we deduce

(4.7) \A" + AA\<\Tm\\Y\.

Since |7(/)| = 1, Lemma 1.17 implies that \Y\ < C6{H, iQ, ή) so that

Combining this with (4.7) gives

ί' ,2 ί' 2 f' n
I \A\2-A \A\2 = - (A +AA,A)dt

Jo Jo Jo

< f\Tm\\Y\\A\<(C6+l)2 f\Tm\.
Jθ Jγ

Thus using Lemmas 4.4 and 4.5, we thus prove Lemma 4.6.
Lemma 4.8. Let γ,Y, and A be as in Lemma 4.6, and assume

/0/100</<;0/4. Then

\Af\2(γ(l))<C2l f\Tm\2

Jγ

for a constant C2 1 = C2ι{H, K, iQ, n) > 0.
Proof. Let ψ be a function on γ, such that ψ{t) = 0 for t < //8,

ψ{t) = 1 for t > 7//8, 0 < ψ < 1, and \ψ'\< 10//.
Integrating by parts yields

if1 i ίl

\ψA!\= I \(ψA')'\dt= / \ψAtf + ψΆ'\dt
Jo Jo

< ί \-AA-(R(Y,γ')γ'-AY)\ + ̂  f \X\dt
Jo i Jo

<^['(\A\ + \A'\)dt+f\TJ\Y\.
I Jθ Jγ

By the Holder inequality and Lemma 4.6, we obtain
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so that

\A'\2. (y(/)) <C2lf\Tm\\
Jγ

Remark 4.8(a). By taking ψ = 1 on [f, /0/4] in the proof, we can
show that, for any 0 < f < iJA, we have

max \Af\2(γ(r)) < C(H,K, iQ, n, r) [\τj.

Lemma 4.9. For each x e M, let γ be the geodesic in M, and γ(0) =
x with the length I of γ satisfying /0/8 < / < /0/4. Then at γ(l),

\B-b(l)g\2(γ(l))<Cnf\Tm\2

Jy

for a constant c22 = c22(H, K, z0, ή) > 0, where

) -cos//sin/ z/Δ = 1,

- 1 / / ι/Δ = 0,

-coshl/sinhl //Δ = - l ,
α«rf 5 α«ί/ g are the second fundamental form and induced metric on
Sr(x), respectively.

Proof Let X, Y be vector fields on S^x), such that \X(γ(l))\ = 1
and |7(y(/))| = 1, and let E, Έ be parallel vector fields on γ, with
E(γ(l)) = X(γ(l)) and Έ(γ{l)) = Y(γ(l)). We can extend X, Y to vector
fields on B^x), such that X, Y are Jacobi fields on each radial geodesic
from x. Then clearly, we have

From Lemma 4.8, it follows that

\B{X, Y)-b{l)(X, Y)\\γ(l)) = \(X/, Y) + b{l)(E, Y)\2(γ(l))

' + b(l)E),Y)\2<C2l\Y\[\T
Jγ

I
/

Jy

m\2

< C C
Jy

Since this holds for any such vector field X, Y on S{(x), clearly this
implies that

\B-b{l)g\\y{l))<C22(\Tm\\
Jy

which finishes the proof of Lemma 4.9.
We now define a function / on M x M n {{x, y): rf(x, y) < ιo/2} .

For each (JC , y) e M x M with d(x, y) < /0/2, there exists a unique
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geodesic γ from x to y in M with length 2/, and / < /0/4, y(0) = JC,
y(2/) = y . Let Bχ(l) and fx(/) be the second fundamental form and
induced metric on Sι(x)9 respectively. Then we define

f(x,y) = \Bx{l)-b(l)gx(l)\\γ(l)).

Lemma 4.10. Let xQ e M, and for small 1 > δ > 0, Bδ(xQ) = {x e
M: d(x0 9x)<δ}. Then there exists a constant C2 3 = C23(H, K, iQ, ή) >
0, such that for ιo/8 < I < ιo/4, we have

f (ί f(χ,y) dgχ(y)) dg(x) < C23μ.
JBδ(xQ) \Js2l(x) J

Proof Let Ω = \JxeB ( J C } S2l(x) c M. We consider the distance func-

tion d on Bδ(x0) x M. Since 2/ < /0/2, 2/ is a regular value of d,

is a smooth submanifold ofMxM with dim Σ = 2n - 1. Let us denote
the (2Λ - l)-dimensional Haussdorff measure of M x M by di/. We use
the coarea formula [8] to compute / JΣ / (x , y) rfz^. On the one hand, we
have

f f f(x,y)dv= f ( ί f(x, y)dgx(y)) dg(x).
J J^ JBδ(xQ) \JS2l(x) J

On the other hand, for each y e Ω, we set Ω^ = ^ ( x 0 ) Π S2l(y) = {x €
Bδ(x0), d(x, y) = 21} . Then Ωy c S2l(y), and

f{x,y)dv =
ly

(4.11) ^
dg(y).

Now for each y e Ω and x G 52 /(y), we denote the geodesic from x to
by y, i.e., y(ί) = γ(t) for ί < /. Using Lemma 4.9, we obtain

ί /(x, y)dgy{x) < C22 f (ί\Tm\2) dgy{x)9

Js2l(y) y Js2l(y) \Jγ J

where / \Tm\2 is considered as a function of x and y with rf(x, y) =
2/, and hence

/ /(x,y)^(x) <Cn f2' ί ί \Tm\2(γ(2l-t))dg(x)) dt.
Js2l(y) y Λ V /52/(>') /
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From Proposition 1.11, we have dgy{γ(2l - ή) > C(Y, /0, n)dgy(x),
x e S2l(y), which implies

/ f(x,y)dgy(x)<C(H,K,i0,n) ί \Tm\2dg
JS2l(y) JB2({y)-Bι{y)

<C(H,K,io,n) f \Tm\2dg<Cμ.

Combining this with (4.11), we obtain

If f(x,y)dv<CμVol(Ω).

Note that Ω c Bδ+2l(x0) c BδJti (x0) and Ric > -H. From Lemma 1.15,

it then follows that

/ If f{x,y) dgχ(y)) dg(x) < C23μ.

Lemma 4.12. For io/S < I < z'0/4, 1 > δ > 0, we have

(I) ~ b(l)gx(l)\2dgχ(y)) dg(x) < C24μ
\JS,(x)

for a constant C24 = C24(H, K, /0, n) > 0.
Proof From Lemma 4.10, it follows that

( / ^ ( 0 - b(l)gχ(l)\2 dgχ(y)) dg(x) < C23μ.

By Proposition 1.11, the metrics gχ(l) and ̂ (2/) on S^x) and S2l(x)
respectively are equivalent. We thus obtain Lemma 4.12.

Remark 4.12(a). If we replace 4.8 by 4.8(a) in the proof above, we can
show that for any 0 < f < iQ/4,

( max / \Bχ(r)-b(r)gχ(r)\2dgχ(y)) dg(x)
Bδ(x0) \r<r<io/4Jsr(x) x x J

<C(H,K, io,n,r)μ.

We now can prove Theorem 4.3.
Proof of Theorem 4.3. For δ > 0 small, by Theorem 2.28 we obtain

VO1(^(JC 0 )) > C(H, i0, n)δn . Then Lemma 4.12 implies that there is an
x e Bδ(x0), such that

\BχV) ~ b(l)gx(l)\2dS <C(H,K, iQ9 n)μ/δn.
s,(χ)
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Taking δn+x = μ > 0, and σ(μ) = μ1 / ("+ 1 ) = δ > 0, we have

(4.13) / \Bχ(l)-b(l)gχ(l)\2dg<Cσ(μ), fovxeBσ(x0),

and lim o σ(μ) = O.
Now let us recall the Gauss formula on St(x)9

We will estimate

/ I Rm(^) - (Δ + b(l)2)(gikgjΊ - gngjk)\ dg.

First, noting that g(d/dxι!, d/dxj) = g.. = gtj and g(d/dr, d/dxl) = 0,
we have

\R(g)ukl - A{glk8j, ~ 8u8jk)\ < \Tm\ on S,(x),

and hence

/ \R(g)iJkl - Δ{gik-8jl - -gilgjk)\2dg < μ.
BP(X)-BP/2(X)

Secondly, (4.13) implies that

\Bχ{l)\2dg<C(H,K9i09n),

so that

= f \Bik{Bjl - b{l)gjt) + b(l)gJBik - b(l)gik)\ dg
JS,(x)

= C f \B\\B- b(l)g\ dg + C [ \B- b{l)g\ dg.
JS,{x) Js,{x)

By the Holder inequality, we thus obtain

f

JsAx) l J

<C(H,K,io,n)[ \B-b(l)g\2dg) <Cσ(μ)lβ,
\Js,{x) J

and hence

/ \(BikBjΓBuBjk)-W\gikgjΓSuSjk)\dg < C{H, K, io,n)σ(μ)l/2.
J Sι(x)
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Combining this with the Holder inequality and (4.14) yields

(4.15)

< Cσ(μ)l/2 + Cμβ < C(H, K,iQ9 n)σ(μ)l/2

for μ < 1. If R denotes the scalar curvature of g(r), then

\r - (n - l)(/ι - 2)(Δ + b{rf)\ dg < Cσ(μ)l/

BP(X)-BP/2(X)

Combining this with (4.15), we thus obtain

(4.16)/ \Rm(g)\dg
JBJx)-B.,,(x)

7?
dg

lBp(x)-Bp/2(x)

R-L (n - \)(n -Bp{x)-Bpll{x)

<C(H,K,io,n)σ(μ)l/\

which completes the proof of Theorem 4.3.
As a corollary of Theorem 4.3, we have
Corollary 4.17. For the metric g on M, if
(a) Ric(#)>-//g,
(b) inj(#) > i0 > 0,
(c)

J \Rm\n/2dg<H,
' JB: (X)

f \Tm\2dg<μ<\,
JB,Λχ)

max
'v

(d)
max

\«
then there exist a σ(μ) > 0, lim^ocr(μ) = 0, and a constant C25 =
C25(i/, /0, n) > 0, such that for any x0 e M and p = io/4, there is an
x e Bσ(x0) e M, and an rp>0, p/2 <rp< p, and

f \Rm(g)\dg<C25σ(μ).
JSr (x)

Proof First (c) and Lemma 1.15 imply that

max / | R m ( ^ ) | n / 2 ^ < C(H, iQ9n),
' JB: (X)
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so that K < C(H, i0, n). Theorem 2.28 yields that V o l ^ - Bp/2) >
C(H, i0, n) > 0. These and Theorem 4.3 thus immediately prove Corol-
lary 4.17. Remark 4.3(a) follows from Remark 4.8(a) above.

5. Ln -curvature pinching theorems

In this section we shall prove the main theorems of this paper. We refer
to the L^-curvature pinching theorems.

Theorem 5.1. For each H > 0 and 0 < io< π/2, there exists a small
μ = μ(H, iQ, n) > 0 which depends only on H, i0> and n, such that if
(M, g) is a complete Riemannian manifold with dim M = n>4, and

(a) Ric(g)>-Hg,
(b)

(c)

max/ \Rm(g)\n/2dg<H,

(d)

then M is homotopic to a Riemannian manifold M with positive con-
stant sectional curvature, in particular, M is compact. Furthermore, M is
covered by a homeomorphism sphere.

Theorem 5.2. For each H > 0, d > 0, and 0 > /0 < π/2, there exists
a small μ = μ(H, z0, n, d) > 0 which depends only on H, iQ9 n and d,
such that if (M, g) is a compact Riemannian manifold with dim M =
n>4, and

(a) Ric(g)>-Hg,
(b) in j te)>i o >θ,
(c)

max / \Rm(g)\n/2dg<H,

(d)

(e) diam(#) < d,
then M is homotopic to a manifold with constant sectional curvature Δ =
- 1 or 0.
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We shall prove Theorems 5.1 and 5.2 together. Condition (c) can be
rewritten as

(5.3) max/ \Tm\2dg<μ.
xeMJBlQ(X)

We first start with the following.
Theorem 5.4. Let [Mk, gk) be a sequence of Riemannian manifolds,

such that
(a) Kic(gk)>-Hgk,
(b) in j (^)>ϊ o >O,
(c)

max/ \Rm(gk)\n/2dgk<H,

x^M JBiQ{x)

(d)

/ \Tm{gk)\2dgk<ί=μk.
JB^X)

max

Then there is a subsequence of (Mk, gk) which converges to a complete
Riemannian manifold Λf of constant sectional curvature Δ in Haussdorff
distance.

Proof We take a point xk e Mk , for each k . Then the precompact-
ness theorem of Gromov [16] implies that there exists a subsequence of
(Mk, gk) (for simplicity, say this subsequence is (Mk, gk)) which con-
verges to a length space M. We claim that M is a Riemannian manifold
of constant curvature Δ. Let us denote the (n - l)-dimensional standard
Euclidean unit sphere by Sγ.

Let _

We denote the ball of radius r in Mk at xk by Br(xk), and the sphere
of radius r in Mk at xk by Sr(xk) . Similarly, we have the ball Br(x)
and sphere Sr(x) in Ή. For any large D > 0, there is a compact metric
space X, such that BD(xk) is a subspace of X with induced metric,
and also BD(x) c X. We have x ^ i i n l . From §3, for r < io/2

y e Ή, and </(Jc, y < D, we have 5r(xfc) - ^ 5r(y) in Λf for a sequence

x^ € ^ ( x ^ ) , and xk -> y in X.

Let flf#2 denote the standard metric of constant sectional curvature on
Sλ ,and

sin2 rdθ2 if Δ = 1,

g(r) = s(r)2 dθ2 = { r2dθ2 if Δ = 0,

sinh2rdθ2 if Δ= -1.



750 L. ZHIYONG GAO

Lemma 5.5. For y eJf and any 0 < f < io/4, there exists a yke Mk

with d(xk, yk) < σ(l/k), such that for each r e [r, /0/4], and for gk =

dr2 + gk(r) on B. ,A{yk) there is a diffeomorphism φk: S{ —• S{ such that

(φk may depend on r)

\ΦUk(r)-g(r)\g{r)^0 onSx.

First we need the following.
Sublemma 5.6. There exists yk e Mk with d(xk, yk) < σ(ί/k) such

that for any r e [r, io/4] and any δ > 0, there is an rk > 0, r < rk <
δr + r, and a diffeomorphism φk: S{ —• S{ for each k, such that

hδ = (l/κδ)dθ2 for some κδ>0.
Proof Let us recall from Theorem 1.14, Remark 1.14(a) for any x e

Mk, and from Theorem 4.3, Remark 4.3(a) respectively:

\Rm(gk)\n/2dg)kdr<C(H,i0,n,r);
)

Γ
Jr

Γ° f
Jr Jsr

° f Rm(gk) dgkdr<C(H,i0,n,r)σ(μk),

or

f °/4
f °/4 f I Rm(^) - (Δ + birfXgugj, - gugjk)\ dgk dr

Jr Jsr(yk)
<C(H9i0,n,r)σ(μk).

Since yk —• y in X, we also have Sr(yk) —• 5Γ(y) in X for each r < iQ/4.

Now taking r e[r, io/4] and ί > 0 small, we have

(5.7) / / \Rm(gk)\n/2dgkdr < C(H, ι 0 , Λ > r ) ,

(5.8)(a) / / R m ( ί k ) dgkdr < C{H, i 0 , n,
Jr >>Sr(yk)

r Is(5.8)(b) Jr Is (yk)

<C(H,i09n9r)σ(l/k).

Note that (5.8)(a) is a consequence of (5.8)(b).
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We define the subsets A \ and Ak

2 of [r, (δ + l)r] by

A\ = \pe[r, (δ + l)r]; ί | R m ( ^ ) | " / 2 ^ < C(H, i0, n,r)^-\ ,
{ Jsp(yk)

 dr J

A\ Λp e [r, (δ + l)r]: ί | Rm(gk) - (4 + b(p)2)(gijgjl - 8jlgJh)\ dgk

I ^s

P(yk)

Then from (5.7) and (5.8), it follows that for each k,

m(Ak

χ)>\δr and m{Ak

2)>\δr,

where m{Ak

χ) is t h e Lebesgue measure of Ak

χ . These clearly imply tha t

there exists a n rk e A k n A k , for each /:, such tha t r <rk<{δ + \)r a n d

(5.9) ί \Rm(gk)\n/2dgk <C(H9iQ,n9r,δ)9
J\(yk)

f Rm(gk) dgk < C(H, i0, n, r, δ)σ (]λ ,

)2
-{Δ + b{kγ){gihgjl-]il-gjh)\dgk

Notation. We shall write S(k) = SΓk(yk) (also identify S(k) with 5,),

and simply write S as S{ = S(k). For r < io/2, we also identify Sr(yk)

with 5 .
We now consider the evolution equation on Sr (yk) = S:

(5.11) — hk = -2Ric{hk)

such that hk(0) = gk(rk). We apply Theorem 2.11 to gk(rk), and note
from (5.9) and Theorem 5.4(c) that there exists a Γ = T(H ,io,n,r,δ)>
0 such that (5.11) has a solution on [0, T], and

r, i,n,r)
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From [19] and [20] it is a straightforward but long calculation to show

< Δ RJhk) +C(n) RJhk) \RJhk)\.

Then for each fixed τ , 0 < τ < T, and all k we have

*„(**) \RJhk)\dhk

Integrating both side yields

' T>

Combining this with (5.10), and noting that n > 4 , we obtain

(5.13) RJhk(τ)) dh)k(τ) < C(H, io,n,r, δ)τi/nσ(l/kfn.

From §2, we also have

(5.14)
τ)) >C(H,i0,n,r)>0 for τ<δ\

diam(Afc(τ)) < C{H, i0, n) for τ < δ2.

l-l/nSince \Rm(hk(τ/2))\ < C/τ ' , using a smoothing theorem in [1] we
find

max

For each fixed 0 < τ < min{7\ 5 2 }, by the Gromov Convergence Theo-
rem ([15], [25]), a subsequence of (S(k), hk(τ)) converges to a C 2 Rie-
mannian manifold (S, A(τ)) we still call this subsequence (S(k), ΛΛ(τ)).

o

(5.13) implies that Rm(A(τ)) = 0, and hence h(τ) is a constant curvature
metric on S.

From §2 again, we have

(5.15) \gk(rk) - h k ( τ ) \ h { τ ) < C(H, iQ9 n,r, δ ) τ X ' \

Recalling the Gromov Convergence Theorem ([11], [25]), we see that there
exists a diffeomorphism φk: S —• S for each k, such that Φ*khk(τ) con-
verges to a constant curvature metric h(τ) on S in C2-topology, so that
for large k,

(5.16) X'\- h(τ)\ < C{H, io,n,r9 δ)τX'\
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From (5.14), the constant curvature K(τ) of h{τ) on S satisfies

0 < C{H,io,n,r)< K(τ) < C ( H 9 i 0 , n , r ) f o r τ < δ2

which shows that there exists a subsequence {τα} such that τa 0,
c2

the sectional curvature K(τa) —> κδ, and A(τα) • hδ, where hδ is a

constant curvature metric on S with Λ^/^) = κδ. Then (5.16) implies
that

and that Φ*k{gk{rk) converges uniformly to hδ on S.

W e a l s o h a v e 0 < C(H, iQ9 n, r) < κ δ < C(H, iQ,n, r) a n d h δ =

(l/κδ) dθ2. This completes the proof of Sublemma 5.6.

We may take a subsequence {δQ} of {δ} , such that δa —• 0 and K^ -*•

K > 0. We have

0 , io,n,r)dθ2 <hδ< C{H, iQ9 n,r)dθ2.

Sublemma 5.18. There exists a subsequence of {φ*kgk{r)} and h(r) =
2(l//c) dθ2, such that for this subsequence

onS,

i.e., such a subsequence converges uniformly to h{r) on S.

Proof. Note that hδ —• h uniformly on S. For any given ε > 0, we

have for a small δa > 0,

(5.19) \hδn-h\h<ε.

For simplicity, we rewrite gk(r) as Φ*kgk{r), consider that φk is fixed,
and use φk to define a new polar coordinate on S(k), i.e., we compose
φk with x ' s of polar coordinate {r,x1}. Then in the new coordinate,
Φ*kgk(s) changes to gk(s) for all s < io/2. From Proposition 1.11, we
have

rL/4 _ Q 2d _ L

which implies

r d _

<: - (intr;

dr

d

r2

< c:(H

* dr

d~rgk

1/2

dr \rk~r
1/2

<C(H,io,n,F)\rk-r
1/2



754 L. ZHIYONG GAO

We also take δa > 0 small such that

C(H,io,n,r)\rk-r\l/2<ε,

and fix such δa . For k large, from (5.17) we have

\Sk(rk)-hδ\h<C\gk(rk)-hδ\h < ε.
a a δa

This implies that \gk{rk) - h\h < 2ε for large k, and that the gk{rk) are
equivalent to h for large k, so that

d .

<C\rk-r ,1/2

and therefore

< ε

d

From this and (5.19), one has

dr

which proves Sublemma 5.18.
Remark 5.18(a). For each r e [r, zo/4], we have

0 < C(H, io,n,r)dθ2 < h(r) < C(H, io,n,r)dθ2.

Sublemma 5.20. We can choose Φk{r), such that

for re[r, iJA] and p = / 0 /8.

Proof. Now we take p = /0/8 then

where each φk depends on gk(p). For each k, we use φk to define a
polar coordinate on B2p(yk), and write ^(r) as Φ*kgk{r) for all r < zo/4.
First we have

0 < C(H, io,n,r)dθ2 < gk(r) < C(H, io,n,r)dθ2.

Secondly, from Lemma 4.12 and Remark 4.12(a), noting that Bk(r) =

> w e o b t a i n
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(Clearly, we can choose yk , such that this and (5.8) are satisfied.) From
this it follows that

Jsr

2

dθ2

where dθ is the volume element of (S{, dθ2). Now let

**(')r) = ^r)-(^l
\S(P)2

h(p),

where

We have

sin r if Δ = 1,

S(r) = { r ifΔ = 0,

ifΔ = - l .

If we now integrate over r e[r, io/4], we then obtain

er Jr hk(r)-hk{p) <C

<C

dr

\ '/2

dr

that is,

L dr.

By integrating over S, , we deduce

dθ<C Jf J^gk + 2b(r)gk

<C(H,io,n,r)σ(j) ,

dθdr

and thus

\hk(r)\2

dθ2 dθ<CI \h)k{p)\2dθ + Cσ (jj .

Noting that \hk(p)\ = \ξk{p) - h{p)\ -»0,we then obtain

f\hk(r)\2

Js
dθ^0
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and for each re[r,io/4], gk(r) converges to {S(r)2/S{p)2)h{p) almost

everywhere. On the other hand, gk(r) converges uniformly to h{r) (up
to diffeomorphisms). We have

This clearly implies

(S(P)2
h(p),

and proves Sublemma 5.20.
S u b l e m m a 5 . 2 1 . h(r) = S { r ) 2 d θ 2 for re[r, ι o / 4 ] .

Proof. All we need is to show that for one r e [r, /0/4], h(r) =

S{r)2dθ2.
To this end, we consider the evolution equation again:

where /^(O) = gk(rk), and where we take r = /0/8 and rk as in Sublemma
5.6 for δ = 1. We have

Now recalling (5.10)(b), we find

* ( * * ( ' * ) ) - ( π - l ) ( « - 2 ) ί - i - j

If we denote the scalar curvature of hk by R{hk), we have

( « - ! ) ( « - 2 )
(5.22) R(hk)(0) - < Cσ ( I

We also have from (5.10)(a) and Theorem 2.11,

f\Rm(hk)\n/2dh)k<C(H,i0,n,r)
Js

for 0 < ί < T = T{H,io,n,r).
Note that

and that

= | ( 2 | Ric(A,)|2 -
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Then

which implies that

)dhι <C(H,io,n,r),

R{hk)dh)k- jR{gk){rk)

Combining this with (5.22) gives

- 2 )
(R{hk)

J
dhk - Vo\(gk(rk

<C(H,iQ,n,r)t.

< C(H, iQ,n, r)t

Passing to a subsequence if necessary, we may assume that rk -+ Ro,
io/8 < rQ < iJA. Noting that

I Vol(gk(rk) - Vo\(hk)\ < C(H, io,n, r)tl/n ,

we then have

< Ctι/" + Cσ I ± ) .

Taking a subsequence, and then letting k —• oo, keeping in mind that such

a subsequence converges to A. in C2-topology, we obtain

* ( * , ) < « . , - < " - ' ) ( " - 2 ) V o l ( * , ) < cr".

We observe that h - 1 is a constant sectional curvature metric on S1, and
2

<Ct

\2 Jn2Letting / -•• 0, we have /?,(/) -> s(rQ) dθ . As in the proof of Sublemma
5.6, this implies that

and therefore h(rQ) = s(ro)
2dθ2. Hence Sublemma 5.21 is proved.

Now we are ready to prove Lemma 5.5.
Proof of Lemma 5.5. From Sublemma 5.6 through Sublemma 5.21,

there exists a subsequence of {gk} which converges to g(r) = h(r) =

s{r)2 dθ2 for all r e [r, ιo/4]. We can apply this to any subsequence

of a subsequence of {gk}, which all have the same limit. This clearly
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implies that the sequence {gk} itself converges to g(r) = s(r)2 dθ2 for
each r e [ f , /0/4], i.e.,

(5.23) l^tW-ίWU^O on S,

which proves Lemma 5.5.
Since we can take any f (0 < f < iQ/4), as an immediate consequence,

we have the following.
Corollary 5.24. For any y € ~M, we have

0<r<iQ/4.
Estimate (5.19)(a) also gives the following.
Corollary 5.25. Let y e M , and yk e Mk as above. For a proper

choice of polar coordinate on Bi (yk), we have

f\gk(r)-g(r)\2
g{r)dg(r)^0

Js

uniformly for re[r, io/4]. In particular gk(r) converges to g(r) almost
everywhere for each r e [r, / 0 / 4 ] .

Proof Corollary 5.25 follows from (5.19)(a) and Sublemma 5.21.
Corollary 5.24 says that any metric sphere Sr(y) of M for 0 < r < io/4

is the Euclidean sphere (S{, g(r)), which almost implies that 2?z .4(y)

is isometric to (B. / 4(0), g), where Br{0) = {x G Rn , \x\ < r} and

g = dr2 + s(r)2 dθ2, i.e., B. /4(y) is isometric to the geodesic ball of
radius iQ/4 in the constant sectional curvature space form. The next few
paragraphs are devoted to the proof of this fact.

Lemma 5.26. Let y e Λf and yk G Mk be as above. Let φk: S{ —• S{

be as in Lemma 5.5 for each fixed r e [r, io/4]. Then we have

\<t>Uk(r)-S(r)\g{r)^Q onSv

If d denotes the distance function of (Sι, g(r)), then for any p, q eS^

d(Φk(p),Φk(q))^d(p,q) and d(φ;\p), ^ ' ( t f ) ) - d(p, q).
k(p),Φk(q))^d(p,q) and d(φ;

Here we agree to take the proper polar coordinate on Bt (yk), such that

\Sk(P)-g(P)\gp)-+0 onS, p = io/S.

Proof From Corollary 5.25,

(5-27) [\gk(r)-g{r)\n/2dg(r)^0
Js
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uniformly for r e[r, iQ/4]. Note that

0<C(H, i0, n)g(p) < gk(p) < C(H, iQ9 n)g(p).

This and Proposition 1.11 imply

(5.28) 0<C(H, io,n,r)dθ2 < gk(r) < C(H, io,n,r)dθ2.

From this, we have

(5.29) \Dφk\ + \Dφ-ι\<C{H,io,n,r)

where Dφk is the tangential map of φk, the pointwise norm \Dφk\ is

taken with respect to any one of dθ2 , g(r) or gk(r).

Now (5.27), (5.28), and (5.29) imply

ί\Φ*kg(r)-g(r)\2dg(r)
Js

<C f \φ*kg{r) - Φ*kgk\
2dg(r) + C f \φ*kgk(r) - g(r)\2dg(r)

Js Js

<C(H,io,n,r) [\gk(r)-g(r)\2dg + C [\g(r)-φlgk(r)\2dg,
Js Js

and therefore

(5.30) [\φ*kg{r)-g(r)\2dg(r)^0.
Js

Similarly

ί\Φ~k

l*g(r)-g(r)\2dg(r)
Js

<C f \Φ~k

Ug(r) - gk(r)\2dg(r) + C ί \gk(r) - g(r)\2dg
J s J s

<C(H,io,n,r) [\g(r)-φ*kgk(r)\2dg + C ί \gk{r) - gk{r)\2dg
Js Js

and thus

(5.31)
Js

Clearly, Lemma 5.26 will follow from the following.
Sublemma 5.32. Let φk: 5j -> S{ be a dijfeomorphism, such that

[\Φ*kg(r)-g(r)\2dg->0 onSx,
Js

, - 1
\Dφk

ι\<C(H,i0,n9r).
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If φk • φ on Sx, then for any p, q eS{, we have

d(φ(p),Φ(q))<d(p,q).

Proof Let hk = Φ*kg(r). Then hk converges to g(r) almost every-
where on S{.

Let γ be the minimal geodesic from p to q in (S, g(r)). We have
the formula for the length L(γ) of γ:

L(γ) = d(p,q).

Given ε > 0, we take two totally geodesic discs D and Df in the sphere
(S, g(r)) through p and q with center p and q and the same radius < ε,
which are perpendicular to γ. It is obvious that there are parallel geodesies
connecting each point of D to the corresponding point of Df. These
geodesies define a cylinder Σ in Sx with axis γ. Clearly, Vol(Σ) > 0,
and hk —• g(r) almost everywhere on Σ, and the Fubini Theorem implies
that there is a parallel geodesic / in Σ, such that hk —• g(r), almost
everywhere on γ . In fact, we have

Jf \hk - g\n'2 - 0.

Note that
L(γ) < L(γ) + ε < d(p, q) + ε.

Now ht —• g(r) on 7' implies that for large k ,

Lk{y) < L(γ) + ε < d(p, q) + 2ε,

where -LΛ(y) is the length of / in (S{, hk), and hence

L{φk(γ'))<d(p,q) + 2ε,

d(φk(γ'(0)),φk(γf(l))) < d(p,q) + 2ε.

Since d(p, '̂(O) < ε and d(q, / (I)) < ε , we have

*(0*(P), ^ ( / ( 0 ) ) ) < Cε, J ( ^ ( « ) , ^ ( / ( l ) ) ) < Cε.

Therefore, the triangle inequality gives

d(Φk(p), 0*(tf)) < d(p, ?) + 2ε + 2Cε.

Letting /: —• 00, we thus obtain

d(Φ(p), φ(q)) < d(p ,q) + 2ε + 2Cε.

Since ε is arbitrary and C is independent of ε, this proves Sublemma
5.32.
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Now we can finish the proof of Lemma 5.26. We apply Sublemma 5.32
to any subsequence of {φk} and {Φ^1} .

For if φ is a limit of any subsequence of {φk} , then φ~x is also a limit

of a subsequence of {φ^1} . We have

d{φ(p)9φ(q))<d(p,q),

dip , q) = d(φ~lφ(p), φ'lφ(q)) < d(φ(p),

Hence

Since all of them have the same limit d(p, q), this clearly implies Lemma
5.26.

Remark 5.33. If d(r) denotes the distance function for g(r), then we
clearly have

d(r)(φk(p), φk{q)) - d(r)(p, q) for all 0 < r < io/4-

(since g(r) are constant multiples of each other). Note that φk depends
on r € [ M ' 0 / 4 ] .

Corollary 5.34. For a fixed r e [r, io/4], let dk denote the distance
function of (S, gk{r)). Then foranyp,qeSf

lim dk(p,q) = d(p,q).

Proof First we have \φ*kgk(r) - S(r)\g -^ 0 on 5j and hence

. Therefore,

<\dk(p,q)-d(φ7l(p),φ-k

l(q))\

which finishes the proof of Corollary 5.34.
Now we want to prove a similar fact for the metrics gk = dr + gk(r)

o^BiQ/4(yk)-B2r(yk).

Lemma 5.35. If dk and d denote the distance function of gk and g =

dr2 + g{r), then for any p, q e BiJ4{yk) - B2r(yk) = Ωk and d(p,q)<f,

lim dk(p, q) = d(p, q).

F i r s t , f o r a n y φ k \ S —• S a s a b o v e a n d re[r, io/4], w e h a v e
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We define diffeomorphisms ψk(r): Ωk -> Ω^ by ψk(r)(t,p) =
('> Φk(r))' h e r e w e identify Ωk with [2r, io/4] x S, and r is considered
as a fixed number. It is easy to see that from Lemma 5.26 we obtain

Sublemma 5.36. For p, q eΩk,

Sublemma 5.37. For p, q eΩk and d(p, q) <r,

d(p, q) < in fLim^(p, q).

Proof. First we have

57**
dr<C{H, iQ>n),

and hence for r, r, e [r, oQ/4],

dr2k dr

<C(H,io,n,r)[ / r
drSk

2/2

I 1 / 2

\λl1

/ n f\\r - H 1 / 2

This implies that for φk: S —• S as above,

l ^ ^ ( r i ) - ^ ^ ( Γ ) l ^ ( r ) ^ c ( ^ ' / 0 ' Λ ' ^ i - r Γ / '

Given any ε > 0, for large k we have

\ΦUk(r)-g(r)\g{r)<ε,

and therefore

Taking |r, - r | 1 / 2 < ε, we thus obtain

\ψk(r)*gk-g\g<ε + Cε

on [r, ε +r]x S. Dividing [r, /0/4] to finite number intervals r = ro<
r\<"' < r

m

 = ' o / 4 > w * t n ri+\ = ri - g 2 > w e n a v e

l^*(Γ/)*S /t - g\g < « + C ( / / , io,n, r)ε

on [r(., r j + 1 ] x S c Ω t .
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Sublemma 5.38. For any δ < 0 there exists N > 0, such that if k > N,
then

\d(ψk{r)-ι(p)9ψk(r)-\q))-d(p,q)\<δC{H9i09n9r)

for all p, q,eΩk.

Proof Letting dk(p, q) = d{ψk(r)~\p), ψk(r)~\q)) and noting that

we have

k(pq)dk(p'q\ d k ( p , q ) - d k ( p ' 9 q ) \ < C ( H 9 i Q 9 n 9 r)[d(p9p') + d ( q 9 q ) ] .

This implies that for each (p, q) e Ωk x Ωk, there exists a small neigh-

borhood O(p, q) = {(// , </), ύf(p, p) H- ύ?(^, #') < ί } such that

\dk{p\q)-dk{p9q)\<Cδ9

\d(p',q')-d(p,q)\<δ.

The family of open sets {Op q) covers Ω^xΩ^, and then there is a finite

covering {O(pi, q.) 9 i = 1, 2, , /} of Ωk x Ω^ . Taking TV large, such

that for each (pt, qt), we have Sublemma 5.36,

| / ( P ^ - ^ ( Λ , <?/)!<<* toτk>N.

Thus for any (p, q) eΩ,k xΩk, there is a (pf., q.), such that {p, q) e
O(p(, qQ) and

\dk(p, Q) - dk(pi,qi)\ < Cδ9 \d(p9q) - d(pn q.)\ <δ,

which implies that for k > N,

\dk(p,q)-d(p,q)\ <Cδ< C(H, i0, n,r)δ.

We now return to the proof of Sublemma 5.37. Taking δ = ε3 and N(r)
large, for k > N, we have

\d(ψk(r)~\p), ψk(r)~\q))-d(p, q)\ < C(H, iQ9n9r)e\

We take N = maxί^^.)} then for k>N,

\d(ψk(ri)~\p)ψk(riy\q))-d(p,q)\<Cε3

for all (p,q).

We now take a k> N such that

dk{p, q) < i n f U m d k ( p , q ) + ε,
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and Sublemma 5.38 is satisfied for all τi. We now fix such a k > N, and
let γ be a curve from p to q in B. /4(yk) such that

Lk(γ) < dk(p, q) + e < infLim^Q?, q) + 2ε,

where Lk(γ) is the length of γ in (Ωk, gk). Let pi be the intersection
of γ with {r7} x 5 c Ω^ (if they have more than one intersection, take

pt be one of them). Then dk(pi, pi+ι) > ε2 and

that is,

(5.39) d[p{, pM) < dk(pi, pM)

By Sublemma 5.38, we have

which implies that

(5.40) kU>i>Pi+ι)ί

Therefore,

< inf Lim dk(p, q) + 2ε + Cε(inf Lim ^(/?, #)),

and hence

^(P, O) < inf Lim dk{p, q) + 2ε + Cε(inf Lim tf^(/?, ήr)).

Since ε > 0 is arbitrary, we have d(p,q) < inf Lim dk(p, q), which
proves Sublemma 5.37.

Lemma 5.41. For p, q eΩk,

S\ip\imdk{p,q)<d{p,q),

and thus
lim dk(p, q) = d{p, q).

Proof. The proof is similar to that of Sublemma 5.32. Let γ be the
minimal curve from p to q in M , such that
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Note that gk -• g almost everywhere. We can find a nearby parallel
geodesic γ of γ in Ω^ , such that for any preassigned ε > 0

L{y) < L(γ) + e, d(p, /(0)) < ε, </(<?, /(I)) > ε,

and gk -> g almost everywhere on / . Thus L f c(/) -• L(γ) and for
large fc,

rffc(p, q) < L(γ) + 3ε< L(γ) + 4ε < rf(p, <?) + 4β.

Since ε > 0 is preassigned, we have

suplim dk{p,q)<d{p,q).

Now we are ready to prove the main lemma of this section.
Lemma 5.42. For any y e Ή, Bt /4(y) is isomeίnc to {Bi / 4 (0), g),

where Bi/4(0) = {x e Rn \x\ < io/4} and g = dr2 + s(r)2 dθ2, i.e.,

(βi 74(0) > S) is the geodesic ball of radius /0/4 in the constant sectional

curvature space form.
We start with the following Lemma of [16]. We write it in the form

that we need, so that the easy proof is also provided.
Sublemma 5.43. Let {Xt, / = 1, 2, ...} and X be compact metric

spaces with
sup{diam(^), diam X) < D.

If for each ε > 0, there exists a lε-net of X which is the limit of a

sequence of a 4ε-net N. c Xi in Lipschitz distance, i.e., there exists a

2ε-net {xp}peP c X and Aε-net N. = {yι

p}peP c Xt such that

sup In 0 as i —• oo,

Proof. Let Z ^ I U JΓf., and define the metric d on Zt such that rf

is the same with dx on X and with rf*1' on Xt, and for x e X, y 6 Xi

(5.44) rf(^, y) = lfp[dX{x, xp) + A ^ , y)] + β-

We need to show that d is a metric on Zi for large /. Note that ε > 0
is a preassigned number.

(a) d{x, y(< rf(x, x) + rf(^7, y) or rf(x, y) < d(x, y;) + rf(y;, y) for
x, x e X and y,y' eXr This is clear from (5.44).
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(b) d(x,x')<d(x,y) + d(y, x) or d(y,y')<d(y,x) + d(x, /) for
x, x e X and y,y eXr

Proof. We take / large, such that

max< sup —p - — - — , sup — τ — > = l + ί. < 1+ 777 U ,

and write d{x, *') < d(x, xp) + d(xp, xq) + rf(jc^ , x ; ) , so we have

d(x, y ) < </(*, xp) + ( l + ̂ j d[y\, yj) + d(xq, / )

< rf(x, xp) + rf(yj , y) + (rf(y, yι

q) + rf(^ , X )) + β.

This implies

Similarly, we have

so (Zi, d) is a metric space. Clearly, we have d^i(X, X.) < 5ε that is,

Xt±X.

Proof of Lemma 5.42. Let X = (£,-/4(0) - B2r{x), g) and Xk =

(2*.o/4(y, ) - B 2 , ( ^ ) , gk). We claim that Xk-^X.

By Lemma 5.42, we identify Xk with (Ω(f), gk), where Ω(f) = Bt /4(0)

- 5 2_(0) = {x eRn , 2r < \x\ < io/4} . Let {xp}peP be a maximal subset
of X, such that d(xp, xq) > ε. Then {xp} is a 2ε-net of X. We know

that {yp = xp}/7€/> is a 4ε-net of Xk for large k by Lemma 5.41. We
also have

sup In 0 as A: —̂  00.

By Sublemma 5.43, we obtain dH(X, Xk) < 5ε, which implies that Xk -̂ ->

X. On the other hand, from §3 it follows that

O

Therefore, Bt .4(y) - B 2r{y) = (Ω(r), g). Since r can be any positive

number, we thus have
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Now clearly we can extend the metric on Bt ,4(y) - {y} to Bi /4(y), and

we finally obtain

which proves Lemma 5.42.
We are now ready to return to the proof of Theorem 5.4. We have the

limit M for each y e M, Bi ,4{y) is isometric to the geodesic ball of

the space form. This implies that M is a Riemannian manifold of con-
stant sectional curvature Δ, since any distance preserving map of any two
Riemannian manifolds is a smooth isometry [23]. This proves Theorem
5.4.

Corollary 5.45. Let (Mk, gk) be as in Theorem 5.4 and Δ = 1. Then

suplimdiam(MA:) < π.

Proof. For any subsequence of (Mk, gk) ,we can find a subsequence
which converges to a Riemannian manifold M of constant sectional cur-
vature 1, and this implies that diam(Af) < π, and therefore that the
diameters of such a subsequence are uniformly bounded. This clearly
proves Corollary 5.45.

Remark 5.46. From Corollary 5.45 we may assume that the diameters
of (Mk, gk) are uniformly bounded.

We are finally ready to prove Theorems 5.1 and 5.2.
Proof of Theorem 5.1 and 5.2. If the theorems are false, then we have a

sequence of manifolds [Mk, gk), which satisfy the conditions of Theorem
5.4, and for each k, Mk is not homotopic to a manifold of constant
sectional curvature Δ. From Corollary 5.45, in either case, we assume
that

, gk) < d < oo.

By Theorem 5.4, we know that (Mk, gk) -^-> (M, g) (passing to a subse-

quence if necessary), where (M, g) is a Riemannian manifold with con-

stant sectional curvature Δ. From the proofs above, we have inj(M) >

ιo/4. The rest of the proof is very similar to [18]; since inj(Mk) > i0 and

Mk -¥-+ Ή, the proof is much easier.

First we imbed all Mk to a compact metric space X, with metric d, as
in §3 such that the distance function dk of Mk is the same as the induced
distance from X. Then Mk converges to a subset G of X in Haussdorff
distance (passing to a subsequence if necessary), and G is isometric to
Λf we can identify M with G.
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Given ε > 0 small, we take a minimal ε-net {pt} of M, / = 1, 2, ,

tf,i.e., _

(i) The open balls £(/?., ε), / = 1, 2, , iV, cover Af.
(ii) The open balls B{pi, ε/2), / = 1, 2, , N, are disjoint.
Since M has constant sectional curvature Δ = 1, 0, or - 1 , the fol-

lowing lemma is well known ([18], [16]).
Lemma 5.47. There is a constant Nx depending only on n and d,

so that any minimal ε-net p{, , pN in ~M has the property. For any
y G Λf, the ball B(x, ε) intersects at most N{ of the balls B(p{, ε), ,

B(PN>*).
We now take a sequence {pk } for each / = 1, 2, , N, so that pt e

Mk c X, and d{pk

i , pt) -> 0 as A: -» oo. Since U i?^ . , ε) =Ή, clearly

Ήthere is a 0 < <J < ε, such that U ̂ (p,., ε - δ) = Ή. We take /: large, so
that

dX

H{Mk,Ή)<^δ/2, i.e.

(5.48) M c Uδ/2{Mk) cX, Mkc Uδ/2(M) cX,

k

Then it is easy to see that

As above, we may assume that d{pi, p) > c/2, and no pair of {p,}

satisfies d{pi, p.) = ε by shrinking the balls a little bit if necessary. Then

by taking k even larger, we have

B(Pi,ε/2)nB(pk,ε/2) = 0, iφj, i, j = 1, 2 , , N.

Now note that d{pi, p.) < ε if and only if Λ(p.c) Π B{p., ε) = 0 . By

taking /: large enough, we have

d{p\,pk.)<ε if and only if d{pnPj)<e9

d(Pj ,Pj)>e if and only if d{p{, pj) > ε.

This implies that the minimal ε-net {pk , / = 1, 2, , TV} of Mk has
the same intersection pattern as {/?,} of M, for large k, i.e.,

B(pi

k,ε)nB(P>Pi,ε)ϊ0 if and only if B(p., e)ΠB(pj9 e) φ0.

As in [18], we define the notion of center of mass.
Let q e M = Mk or M, and consider a continuous map / : T —• M,

where Γ is a topological space and ί/(/(ί), q) < /0/4 for all / E Γ. The
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map Cf(t9 s) = γt(s), where γt(s) is the unique minimal geodesic from
f(t) to q , induces a continuous map

(5.49) f:TxI-+M9(t9s)^C(t9s)9

which we interpret as an extension of / to the CT, mapping the cone
point to q.

We construct a center of mass for an order set of points (p0, pχ, 5 ^ )
with weights (Ao, A1 ? ••• 9λm)9 0 < A 0 < 1, ΣA,. = 1.

Lemma 5.50. Let εm < io/4. If d{pi, p.) < ε, i, j = 0, 1, , m.

Then a center of mass, c = C{p p ... p }(A0, λ{, , λm) with the follow-

ing properties is defined
(i) C depends continuously on (Ao, λλ, , λm),

(iii) d{pi, c) < mε, i = 0, 1, , m .

Proof The proof is by induction on m . For fixed (pQ, , pm), we

will view C as a map from the standard m-simplies Δm c Rm+ι into

M. For m = 1, c(λ0, At) = y(l - λ 0 ), where y is the unique minimal

Δ w c i? m + 1 into M . For m = 1, C(A0, λχ) = γ{l - Ao), where y is the

unique minimal geodesic from p0 to p{ . The induction step is completed

by identifying Δ w with the cone CAm~ι and appealing to (5.49).

We now first take ε > 0 small such that εN < /0/100. Then we take

the minimal ε-net of M as above so that

d(pnPj)>e/2 and d{pi9pj)φε for all ptφpr

and take a minimal ε-net {pf} of Mk as above for k sufficiently large,

so that {B{pk

i , ε)}, / = 1, , iV, has the same intersection pattern as

{B(pne)}. l

Let (A )̂ be a partition of unity subordinate to the covering {B(p* , ε)}

of Af̂ . For x e Mk, let /0 < iχ < < is be the indices / for which

Xk.[x) φ 0. Note that s + 1 < N{ by Lemma 5.47, and use Lemma 5.50

to define F: Mk —̂  M by

Then F: Mk -^ M is continuous.
Similarly, we can define G:Ή ^ Mk by choosing a partition of unity

(μt) for the cover {B(pi, c)} of ¥ . By symmetry, it is sufficient to show
that G F is homotopic to the identity map Id M of Mk .



770 L. ZHIYONG GAO

Let us consider again x e Mk and suppose λ^x) Φ 0 . From Lemma

5.50, we have d{pi, F(x)) < N{ε, and hence d{p{, p.) < ε + Nχe where

μj(F(x)) φ 0. Similarly, dip), G(F(x))) < N{ε and by (5.48), dip), p))

< dip), pt) + </(/?,, Pj) + </(/?;, p*) < 2ε + Λ^ε. This together with the
triangle inequality yields

rf(x, G(F(x))) < d(x, pf) + d{p) , pj) + rf(pj, G(F(x)))

<ε + 2ε + N{ε + N{ε < AN + lε < /0/4.

Then we can connect x with G(F(x)) by the unique minimal geodesic
in Mk to construct a homotopy ofG F and I d ^ , which shows that
GF is homotopic to Id M . This contradiction proves the homotopy part
of the theorems. For the case Δ = 1, we can apply the above results to
the universal cover M of M, which satisfies the hypothesis of Theorem
5.1. Then clearly M with the pull-back metric also satisfies the assump-
tion of Theorem 5.1, and hence is homotopic to a Riemannian manifold
of constant positive sectional curvature. This implies that M is homo-
topic to Sn by the solution of Poincare conjectures ([29], [9]), M is
homeomorphic to Sn . Hence Theorems 5.1 and 5.2 are proved.

6. Miscellaneous results

In this section we study the problems with the curvature bound
fλi \R

m\{n+2)/2 dg <C <oo for an w-manifold M, but with a little more
work, every result in this section can be proved for the general curvature
bound $M\Rm\Pl2dg < C for p > n. Using the exact same proof of
Theorem 2.11, we can prove the following.

Theorem 6.1. Let (M, g) be a compact Riemannian n-manifold which
satisfies

(i)

(ii) for any small 0 < L < 1 and f e C°°(M), we have the weak
Sobolev inequality

(jM\f\2{n+mn-i)dgy~mn+i}

<K2\ί \Af\2dg + ̂ j f f2dg\.
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Then the evolution equation

on M for h(0) = g has a solution on [0, T], where T = T{K{ ,K2,n)>

0 depends only on K{, K2 and n, and we have for τ € [0, T],

As an easy consequence of Theorem 6.1, we have the following.
Theorem 6.2. There is a constant μ = μ(Kχ, H, d, V, n) > 0 which

depends only on Kχ9 H, d ,V and n, such that if (M, G) is a Rieman-
nian manifold of dim M = n, and

(i) Ric(g)>-Hg,

(ii) f\Rm(g)\{n>)/2dg<K{,
(iii) diam(£) < d, Vol(#) > V > 0,

(iv)(a) fM I Ric(g) = (R/n)g\ dg<μ,or
(iv)(b) / M | Λ i y w - R(gikgjl - 8ilgjk)l[n{n -\)]\dg<μ,

then M admits an Einstein metric or a constant sectional curvature metric.
Proof. We consider the manifold M x S1 with a product metric g.

Then Ric(s) > -H and diam(Λf xS 1 ) < max{c?, 1}, VoKΛ/xS1) > F.
The following Sobolev inequality follows from a combination of the results
in [6] and [23]:

(ί
MxS1 / \JMxX1 JMXS

for each fe C°°(M x Sι).
As in the proof of Theorem 2.3, we take / e C°°(Λf), and for any 0 <

L < 1 and a cut-off function φ: S = [0, l]/{0, 1} -> [0, 1], 0(0) = 0,
0(0 = 0 for t > L, 0(0 = 1 for L/4 < t < 3L/4, and 0 is linear on
[0, L/4] and [3L/4, L]. As in the proof of Theorem 2.3, we have

<C(H,d,V)([ \Vf\2dg + ± f f2dg).
\JM L JM )

We now consider the evolution equation
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on M, with h(0) = g. Using Theorem 6.1, we see that there exists
T = T{H, Kl,d,V,n)>0, such that h exists for t e [0, T] and

( 6 # 3 ) max|Rm(A)|(τ)<

As before, for case (iv)(a), we have

d_
dt

Ric < Δ Ric + C\ Rm I Ric

where Ric = Ric -(R/n)h . This implies

j - I R°ic(A) dh<C(H, K{,d,V,n)μ

and for h{T),

max|Rm(A(Γ))| < C(H, Kχ, d9 V9 n).

(6.3) yields

0 < C ( H , K l 9 d 9 V 9 ή ) g < h{t) < C ( H , K l 9 d 9 V 9 ή ) g 9

and hence

diam(Λ(Γ)) < Cd, Vol(A(Γ)) > CV > 0.

As in §5, a smoothing theorem of Bemelmanns, Oo and Ruh [1] also
gives

|VRm(A(Γ)) |<C(//, tf^rf, V9 n).

If Theorem 6.2 is false, there exists a sequence of Riemannian manifolds
(Mk , gk) which satisfy (i)-(iv) for μ = l/k, and Mk does not admit any
Einstein metric.

By the Gromov Convergence Theorem, (Mk , hk(T)) (passing to a sub-

sequence if necessary) converges to (M, h) in C2-topology, and we have

Ric(A) = (iί/Λ)A,

which shows that h is an Einstein metric on M. This contradiction proves
Theorem 6.2, since M is diίfeomorphic to M for k large.

Similarly, we can prove case (b).
Remark 6.4. We can replace R by Δ = 1, 0 or - 1 in (iv) of Theorem

6.2. Then M admits an Einstein metric or a constant sectional curvature
metric with R = n(n - 1)Δ. The proof is similar to that of Sublemma
5.21.

Remark 6.5. This section serves as a contrast with the case
fM\Rm\n/2dg<K.
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