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DENDROLOGY OF GROUPS IN LOW @Q-RANKS

HENRI GILLET & PETER B. SHALEN

Introduction

The work of Bass and Seire [15] established the study of actions of
groups on simplicial trees as a basic theme in the theory of infinite groups.
From the standpoint of abstract group theory, this “simplicial dendrology”
provides an efficient and elegant context for the classical theory of free
products with amalgamation. From the standpoint of linear group theory,
simplicial trees arise naturally as Tits buildings for rank-1 algebraic groups
(such as SL, ) over discretely valued fields.

Actions of groups (by isometries) on R-trees, or more generally on A-
trees, where A is an ordered abelian group, are natural generalizations of
actions on simplicial trees. (The definition of a A-tree is reviewed in §1
of this paper, following the point of view of [12] and [1]. The simplicial
case is equivalent to the case A =Z; see [12, p. 430].) The study of such
generalized trees began with Lyndon [8] and Chiswell [3], who took the
abstract group-theoretic point of view. In [8], Lyndon raised the question
of which groups can act freely on R-trees, and how the actions may be
classified.

By “classifying” actions of a group I' on R-trees we shall mean classi-
fying the (translation) length functions (1.16) that they define on I'. In
[1] and [4], it is shown that for a suitably nondegenerate action, the length
function contains all the essential information. In this introduction we
shall say that two actions of I" on R-trees are equivalent if they define
the same length function. An action of a finitely generated group I' on T
defines the zero length function if and only if some point of T is fixed by
all of T'; we shall call such an action trivial.

The study of generalized trees from the point of view of linear group
theory was initiated independently by Tits, who recognized the role of such
trees as buildings for rank-1 algebraic groups over fields with indiscrete
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valuations. The link between the two points of view was recognized by
Alperin and Moss [2).

In [12] and [9], it was shown that degenerations of homotopy-hyperbolic
structures on a manifold M are closely related to certain representations
of I' = n,(M) in rank-1 algebraic groups over indiscretely valued fields,
and hence to certain actions of I" on generalized trees. This connection
between dendrology and hyperbolic geometry was further exploited in [13].

The actions of a group I" on a A-tree T that are relevant to the theory
of [12] and [9] are not in general free actions; rather they have the property
that the stabilizer of every nondegenerate segment (1.1) in 7 is a small
subgroup of I, i.e., one that contains no nonabelian free subgroup. In this
introduction we shall call such an action small. According to the theory of
[9], the space DF, (') of characters of discrete faithful representations of
I' in SO(n, 1) has a natural compactification in which the ideal points
are defined by the length functions associated with nontrivial small actions
of I' on R-trees.

Each of these actions is in fact a completion (1.10) of an action of I
on a A-tree, where A C R is a group whose Q-rank—i.e., the dimension
of the Q-vector space A ®, Q—is finite. Indeed, A arises as a subgroup
of the value group of a valuation v on a finite extension F of the func-
tion field R(X), where X is the variety of characters of discrete faithful
representations of I' in SO(n, 1), and v|R = 0. The Q-rank of A is
thus at most dimg(X), the transcendence degree of F over R.

In this introduction we shall say that an action of I' on an R-tree T
is defined over a subgroup A C R if it is the completion of an action on
some A-tree. In this case the length function takes values in A. We shall
say that an action has rank < r if it is defined over some A C R with
Q-rank <r.

The theory of [9] shows that it is important to be able to classify the
finite-rank small actions of finitely generated groups on R-trees. For exam-
ple, if a given finitely generated I' admits no nontrivial finite-rank small
action on any R-tree, then DF, (') is compact for any 7.

A question related to the above questions about free and small actions,
and of interest from the abstract group-theoretical point of view, is to
characterize the groups that admit nontrivial actions on R-trees.

In the simplicial case, i.e., the case of actions defined over Z, answers
to the above questions are accessible. It has long been known (and is
included in the Bass-Serre theory) that a group can act freely on the real
completion of a simplicial tree if and only if it is a free group. The Bass-
Serre theory also answers the questions of which groups admit nontrivial
actions, and which ones admit nontrivial small actions. Let us say that
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a group I' splits over a subgroup A if I' is either a free product of two
proper subgroups with the amalgamated subgroup A, or an HNN group
with associated subgroup A. Then a group admits a nontrivial (small)
action on some Z-tree if and only if it splits over some (small) subgroup.
Similarly, the Bass-Serre theory may be used to analyze the different free
(or nontrivial, or small) actions of a given group.

Thus it is both natural and useful to try to develop a structure theory
similar to the Bass-Serre theory for actions on A-trees, in particular for
the case where A is a subgroup of R with finite Q-rank. In this paper
we develop such a theory for the case where the Q-rank is at most 2. We
show that our theory is strong enough to be applied to all the problems
discussed above. Before discussing our main theorem, we wish to discuss
its consequences with regard to these problems.

We begin with the problem about free actions. We restrict attention
to finitely generated groups; the examples in [2] show that very exotic
infinitely generated groups can admit free actions.

It is easy to show that the class of groups which act freely and without
inversions on R-trees is closed under the formations of free products.
Since a free abelian subgroup of R acts on R (which is itself an R-tree)
by translations, it follows that any free product of finitely generated free
abelian groups acts freely on some R-tree. These are the examples pointed
out in [8]. On the other hand, it is shown in [14] that most surface groups
(i.e., fundamental groups of closed 2-manifolds) admit free actions on
R-trees.

It is an intriguing question whether every finitely generated group I'
which acts freely and without inversions on an R-tree is a free product
of free abelian groups and surface groups. In [13] it was shown that this
question has an affirmative answer if one adds the hypothesis that T" is the
fundamental group of a 3-manifold (possibly with boundary). Likewise,
in [10] it was shown that the answer is affirmative if I" is assumed to be a
free product of two free groups with a cyclic amalgamated subgroup. The
following result gives an affirmative answer in the case where the action
has rank < 2.

Theorem A. Let A be a subgroup of R, and let T be a finitely gener-
ated group which acts freely and without inversions (1.16) on some A-tree.
If A has Q-rank 1 then T is free. If A has Q-rank 2 then T is a free
product of infinite cyclic groups and surface groups.

(The condition that I" act freely and without inversions on T is equiv-
alent (1.19) to the assumption that the action may be completed to a free
action on an R-tree.)
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This theorem will be proved in two stages in the present paper. The
rank-1 case is included in Proposition 2.2, and the rank-2 case is Proposi-
tion 6.3.

Theorem A leaves open the problem of classifying the rank-1 and rank-
2 free actions of the groups appearing in the conclusion of the theorem.
Two obvious special cases of this question are the cases where I' is a free
group or a surface group.

If T is a free group, the only known free actions of rank <2 of I" on
an R-tree T are those which are essentially simplicial, i.e., equivalent to
actions which are topologically conjugate to simplicial actions on simplicial
trees. It is not clear from our structure theorem whether all free actions
of rank < 2 are essentially simplicial; our theorem shows only that they
are direct limits, in the strong sense described later in this introduction, of
essentially simplicial actions. Bestivina and Handel have given examples
of rank-3 actions of free groups that are not essentially simplicial.

On the other hand, in the case of a surface group, we have a complete
description, in terms of Thurston’s theory of measured foliations, of all
the length functions defined by free actions—or even by nontrivial small
actions—of rank < 2. Thurston’s theory is reviewed in §5, where it is
shown that every measured foliation u on a surface X defines an R-tree
T, the dual tree of p, on which T = n (X) acts in a natural way. The
action of I" on T is always small and nontrivial. (Since any small infinite-
index subgroup of a surface group I' is cyclic, a nontrivial action of I' is
small if and only if the stabilizer of every segment is cyclic.)

Theorem B. Let X be a closed surface, let A be a subgroup of R with
Q-rank < 2, and consider an arbitrary small, nontrivial action of T' = n (Z)
on a A-tree T. Then the induced action of T on the R-completion of T
is equivalent to its action on the dual tree of some measured foliation on X.

This theorem is also proved in two stages in the paper. In the case
where A has Q-rank 1, Proposition 2.11 asserts that up to equivalence the
action of I on T is defined by a system of disjoint simple closed curves
on the surface, which is equivalent to a “rational measured foliation” in
Thurston’s sense. Proposition 6.10 is the rank-2 case of Theorem B.

It is a plausible conjecturel that Theorem B holds without the restriction
torank < 2, i.e., that every nontrivial small action of 7 (Z) on an R-tree
is defined by a measured foliation. In addition to its connection with Lyn-
don’s problem, this conjecture is also significant from the point of view of
hyperbolic geometry. A celebrated result of Thurston’s is equivalent to the

!'Note added in proof. R. Skora has recently proved this conjecture.
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assertion that the actions on R-trees that describe the ideal points of the
compactification of the Tiechmiiller space DF,(I'), where T is a surface
group, are defined by measured foliations. The conjecture would provide
a purely group-theoretical explanation of this, given the general theory of
[12]. (The arguments used in [12] to derive Thurston’s result from the
general theory are somewhat indirect; the same is true of the alternative
arguments in [11].) More importantly, the conjecture would provide in-
formation analogous to Thurston’s theorem for the compactification of
DF,(T'), where T is a surface group and n > 2.

We next turn to the problem of determining which groups admit non-
trivial small actions on A-trees. It is conceivable that the answer for A = R
is the same as for A = Z, i.e., that a group I" which admits a nontrivial
small action on an R-tree always splits over a small subgroup. In [13], this
conjecture was shown to be true in the case where I' is the fundamental
group of a 3-manifold; this implies Thurston’s result that for any group I
which does not split over a small subgroup, DF,(I') is compact. As the
following result shows, the conjecture is also true in the the case where
the action has rank < 2, provided that I" satisfies some additional mild
conditions.

Theorem C. Let I' be a finitely presented group. Let A be a subgroup
of R, and suppose that I" admits a nontrivial small action on some A-tree.
Furthermore, suppose that either

(i) A has Q-rank 1, or
(ii) A has Q-rank 2, and every small subgroup of T is finitely-generated.

Then T" splits over a small subgroup.

The rank-1 case is included in Proposition 2.7, and the rank-2 case is
Proposition 6.9.

The assumption that every small subgroup of I' is finitely generated
is a harmless one for applications to hyperbolic geometry, since it holds
whenever DF, (') # @. On the other hand, the assumption that I' is
finitely presented is restrictive. It seems quite possible that the theorem
would become false if I" were assumed only to be finitely generated rather
than finitely presented.

Now consider the problem of characterizing those finitely presented
groups that admit nontrivial actions on R-trees. It is natural to ask whether
the answer for R-trees is the same as for Z-trees: that is, whether every
group that admits a nontrivial action on an R-tree splits over some sub-
group. Theorem D below answers this affirmatively in the rank-1 case, but
gives only a partial answer in the rank-2 case. Let us say that an action
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of agroup I' on a A-tree T satisfies the ascending chain condition if for
every nested sequence I, D I, D --- of segments of 7" with a common
midpoint, the corresponding sequence of stabilizers G, C G, C--- CT is
eventually constant, i.e., G; = G,,, for all sufficiently large i.

Theorem D. Let A be a subgroup of R, and let T be a finitely gener-
ated group which admits a nontrivial action on some A-tree T . Suppose
that either

(i) A has Q-rank 1, or
(ii) A has Q-rank 2 and the action of T on T satisfies the ascending
chain condition.

Then T splits over some subgroup.

The rank-1 case of this result is again included in Proposition 2.7; the
rank-2 case is Proposition 6.8.

The above results are derived from a general structure theorem for ac-
tions of rank < 2. The structure theorem is stated and proved in two
parts: the rank-1 case is Theorem 2.1 and the rank-2 case is Theorem 6.2.
Theorem 2.1 asserts that an arbitrary action of rank 1 is a direct limit, in a
very strong sense (see §1) of simplicial actions. This implies, for example,
that if / is the length functions defined by a rank-1 action of a finitely pre-
sented group I, then there exists a sequence (/;);», of Z-valued length
functions defined by simplicial actions, and a sequence (n,) />0 Of positive
integers, such that for any given g € I' we have /(g) = l,.(_g) /n; for all
sufficiently large i.

The rank-2 version of the structure theorem applies to rank-2 actions
satisfying the ascending chain condition explained above. It asserts that
such an action is a direct limit, in the same strong sense, of actions de-
fined in a concrete geometric way. These geometrically defined actions are
a common generalization of simplicial actions on the actions defined by
measured foliations on surfaces. They arise from “measured foliations”,
in a suitably generalized sense, on spaces that we call “singular surfaces”:
these are simplicial complexes in which each 1-simplex is incident either
to exactly two 2-simplices or to none.

The main technique that we use in the proofs of the structure theorems
is to associate complexes with trees. Given a A-tree T, where A is a
subgroup of R, we construct for each rank-»n free abelian subgroup L
of A asimplicial n-complex X(L). The vertices of X (L) are the points
of T, and a l-simplex is defined by a pair of points whose distance is a
unimodular element of L (i.e., an element of some basis of L). A 2-
simplex is determined by a triple {x, y, z}, where y lies on the segment
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joining x to z, and where the distances d(x, y) and d(y, z) form a
basis of L.

If A has Q-rank » we may write it as a monotone union of rank-n
free abelian groups L,. The corresponding complexes X, = X (L;) forma
direct system of n-cgmplexes. In the case n = 1 we obtain a direct system
of simplicial trees X; from the X, by a universal covering construction.
We can interpret X ; asan L-tree, and the direct system consisting of the
X ; converges strongly to T .

When A has Q-rank 2, we show that any subcomplex Y of X satis-
fying suitable finiteness condition can be mapped in a natural way into a
I-invariant singular surface £ C X,. The metric on T induces a natural
measured foliation on X. By varying { and Y C X, we obtain a direct
system of singular surfaces with measured foliations; these give rise to the
“geometrically defined trees” that were mentioned in the above discussion
of the structure theorem.

The assumption that A has Q-rank 2 is used in two important ways in
the above argument. First, it is an easy consequence of the definition of
the X, that for any l-simplex 7 in X, there are exactly two 2-simplices
of which 7 is the “longest” edge; here the “length” of a 1-simplex is the
distance between the two points of 7" that define it. This property of the
X, is the starting point for the construction that “replaces” the subcomplex
Y of X, by the singular surface £. For n > 2, there is no natural way
to construct complexes X, having this property.

The second way in which the restriction »n = 2 is used is in the proof
that the trees associated with the X ; converge strongly to T ; this depends
on showing (9.15) that the fundamental groups of the complexes X, (with
any consistent choice of base points) converge to the trivial group. The
proof of the latter fact uses the classical theory of continued fractions,
which deals with the structure of rank-2 free abelian subgroups of R, and
does not have a straightforward generalization to higher rank.

In any case it is not clear what the correct generalization of the structure
theorem to rank > 2 would be. Indeed, if Theorem 2.1 went through
without change when A had Q-rank > 2, the proof of 6.3 would show
that every finitely generated group that acts freely on a A-tree was a free
product of cyclic groups and surface groups. But this is false when A
has Q-rank > 2. Indeed, A may itself be regarded as a A-tree, and any
finitely generated subgroup of A acts freely on A by translations; but a
free abelian group of rank > 2 is not a free product of cyclic groups and
surface groups. (A free abelian group of rank 2 is the fundamental group
of a 2-torus.)
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In §1 we introduce a category of trees and study the notion of a strong
direct limit. In §2 we state the structure theorem for the rank-1 case and
show that it implies Theorems A, B, C and D in this case. §§3 and 4 are
devoted to laying the foundations for a theory of complexes associated
with trees; §4 concludes with the proof of the structure theorem for the
rank-1 case.

In §5 we define singular surfaces and measured foliations, and construct
the tree associated with a measured foliation. §6 contains the statement of
the structure theorem for the rank-2 case and the proof that it implies the
rank-2 versions of Theorems A, B, C and D. §§7-10 are preparation for the
proof of the rank-2 structure theorem, which is given in §11. §7 shows how
certain maps from singular surfaces to trees define measured foliations; §8
contains a crucial result on rank-2 free abelian subgroups of R, which
is a slight refinement of a standard theorem on continued fractions; §9
contains the basic properties of the complexes X; in the rank-2 case; and
§10 gives the argument for replacing a subcomplex Y of X; be a singular
surface with a natural measured foliation.

We are indebted to J. Wood for providing us with the proof of a crucial
special case of Lemma 2.3; to A. O. L. Atkin for pointing out Theorem
175 of [6]; and to H. Masur and S. Kerckhoff for their patience in explain-
ing the theory of measured foliations to us. We have also profited from
conversations with J. Baldwin, H. Bass, M. Culler, G. Mess, J. Morgan, L.
Mosher, M. Ronan, J. Smillie and K. Vogtmann.

1. Strong convergence

1.1. Let A be any ordered abelian group. Recall from [12] that a A-
metric space is a set X with a distance function d: X x X — A satisfying
the usual formal axioms for a metric space.

Let X and X' be A-metric spaces. A map of sets f: X — X' will
be called an isometric embedding if it preserves distances (and is therefore
injective). If f is bijective it will be called an isometry.

Let X be a A-metric space. Recall from [12] that a (closed) segment
in X is a subset which is isometric to a (possibly degenerate) closed in-
terval in A. A segment has two well-defined endpoints, or one endpoint
if it is degenerate. Recall that a A-tree is a nonempty A-metric space T
satisfying the following axioms.

(T1) For any two points x, y € X there is a unique closed segment
with endpoints x and y.
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(T2) If two segments o, ¢ c T have a common endpoint x, then
oNa’ isa segment having x as one endpoint.

(T3) If the segments ¢ o' intersect precisely in the common endpoint
x,then o Ud’ is a segment.

If X is an arbitrary A-metric space with distance function d, and if
x and y are points of X, we shall denote by [x, y] =[x, y], the set of
all points z € X satisfying d(x, z)+d(z,y)=d(x,y). If x and y are
points of a A-tree T, one checks immediately that [x, y] is the unique
segment with endpoints x and y.

1.2. The following characterization of A-trees will be useful in §5.

Proposition. Let T be a A-metric space. Let & be a set of segments
in T such that the following conditions hold.

(1) For any two points x, y € T, there is a unique segment S(x, y)
which belongs to & and has endpoints x and y .

(2) For any three points x, y, z€ T we have S(x,y)NS(x, z) =
S(x,w) for some weT.

3) If x, y, ze T satisfy S(x,y)nS(x, z) ={x}, then S(x, y)U
S(x, z)=S8(, z).

Then T isa A-treeand S(x,y)=1[x,y] forall x, y e T. (Thus every
segment in T belongsto &.)

If A =R, then condition (2) may be replaced by the following condition.

(2g) Every subsegment of a segment in & belongs to &.

Proof. To prove the first assertion we need only show that if & satisfies
(1)-(3) then S(x,y)=[x,y] forall x, y € T; it will then follow from
the definition that 7" is a A-tree. By condition (1) we have S(x,y) C
[x, ¥]. Now consider any point z € [x, y]. By (2) we have S(x, z)N
S(z,y) =S(z, w) for some w € T. It follows from (3) that S(x, y) =
S(x, w)US(w, y). In particular w € S(x, y). By (1) we have d(x, y) =
dx,w)+d(w,y). If w# z it then follows that d(x, y) < d(x, z)+
d(z,y), contradicting the assumption that z € [x, y]. Hence w = z and
therefore z € S(x, y). This shows that [x, y] = S(x, »), and the first
assertion is proved.

Now suppose that A =R and that & satisfies (1) and (2;). We shall
complete the proof of the proposition by showing that & satisfies (2) as
well. Let x, y and z be points of 7. Then J =S(x,y)NS(x, z) isa
compact subset of S(x, y) containing x. If ¥ and v are any two points
of J,thenby (1) and (2;) we have S(u, v) C J,sothat J is connected.
Hence J is a segment having x as an endpoint; by (2;) we have J €S,
and (2) is established.
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1.3. It will be convenient to work with a somewhat more general
class of A-metric spaces than A-trees. These spaces will turn out to be
canonically isometric to subsets of A-trees (see 1.10 and 1.14).

A A-metric space T is called a A-pretree if it satisfies the following
axioms.

(PT1) For any two points x, y € T, the set [x, y] is isometric to a
subset of an interval in A.

(PT2) For any three points x, y, z € T wehave [x, ylN[x, z] =[x, w]
for some weT.

(PT3) If x, y, z € T satisfy [x,y]1Nn[x, z] = {x}, then [x, y]U
[x,z]=1[y, z].

It follows from (PT1) that for any x, y € T there is an isometry of
[x, y] onto a subset of an interval / C A mapping x and y onto the
endpoints of 1. We call [x, y] the presegment with endpoints x and y.

It is not hard to show that (PT1) is redundant, i.e., that it follows from
(PT2) and (PT3). We shall not need this fact.

It is easy to show that the intersection of two presegments in a pretree
is either the empty set or a presegment.

Any A-tree is a A-pretree. If A is a subgroup of A, then any A,-
pretree, and in particular any A -tree, is clearly a A-pretree.

Let T bea A-pretree and let T’ be a subset of T. We may regard T"
as a A-metric space. If T is itself a A-pretree we call it a subpretree of
T.

1.4. Proposition. Let T' be a subset of a A-pretree T. Then the
Jfollowing conditions are equivalent.

(i) T' is a subpretree of T .
(i) For any three points x, y, ze€ T, we have [x, yipnix, zl; =
[x, wl, for some weT .

Proof. Note that for any x, y€ T' we have [x, y1,NT =[x, yl-.
It follows that any subset 7’ of T satisfies axiom (PT1). Now suppose
that (ii) holds. Then for any x, y, z € T’ there is a point w € T’ such
that [x, y];N[x, z]; =[x, w];; hence

x, ylpnix, 2l =[x, ¥l N[x, 21,0 T =[x, w], 0 T =[x, wl,.
This establishes (PT2). If [x, y];» N[x, z];» = {x}, then, defining w as

in the argument just given, we have [x, w]; = {x} and hence w = x.
Therefore [x, yl.N[x, z]; = {x}. Since T isa A-pretree it follows that
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[x,y];Ulx, z]; = [y, z]. Hence

[x, ¥l Ulx, 2zl = (X, vl Ulx, 21N T =y, z]p.
This establishes (PT3) and completes the proof that (ii) = (i) .

Conversely, suppose that (i) holds, and let x, y, z be points of 7.
Set a=d(x,y)+d(x, z)—d(y, z). The pretree axioms, applied to T,
show that [x, y], N[x, z]; = [x, w];, where w is a point of T such
that 2d(x, w) = a. Similarly, by applying the pretree axioms to 7,
we obtain a point w € T' such that [x, Yl 0lx, 2zl =[x, w],» and
2d(x, w') = a. Since in particular w and w’ lie in [x, z]; , which can
be isometrically identified with a subset of an interval in A in such a way
that x is an endpoint, it follows that w = w’. Hence (i) = (ii). q.e.d.

The following two simple facts about pretrees will be needed later in
this section.

1.5. Proposition. Let S be a subset of a A-pretree T, and let x, and
X, be points of T. Suppose that each x; lies in a presegment o, whose
endpoints are in S. Then [x,, x,] is contained in a presegment whose
endpoints are in S .

Proof. Let y, and z; denote the endpoints of o,. It follows eas-
ily from the axioms for a A-pretree that at least one of the presegments
[x,,»,] and [x,, z;] meets [x,, X,] only in the endpoint x,. After
changing notation if necessary we may assume that [x,, y,1N[x,, x,] =
{x,}. Similarly we may assume that [x,, y,]N[x,, x,] = {x,}. The A-
pretree axoms now imply that [y, y,1=[y,, x,]U[x,, x,]1U[x,, »,]. In
particular [x,, x,] C [y;, y,]. But y, and y, belongto S. q.e.d.

1.6. Proposition. Let ¢ and o' be presegments in a A-pretree T
such that o Na' #@. Then ana’ isa presegment. If the endpoints of @
and o' lie in a subpretree T' of T, then the endpoints of ¢ Na' also lie
in T

Proof. Set g =|[x,, x,] and ¢’ =[y,, y,]. Choose a point z € ana’.
For i=1,2,set g,=[x,, z] and g, =[y,, z]. Then oNg’ is the union
of the four sets o, N a; , each of which—according to axiom (PT2)—is
a presegment contained in ¢ and having z as an endpoint. Using the
isometric identification of ¢ with an interval in A, we conclude that
oNa’ isa presegment.

Now let w be an endpoint of ¢ Ng’'. Then o Na’ is contained either
in [x,,w]; orin [w, x,];. After changing notation if necessary we
may assume that o Na’ C [x,, w];. Similarly we may assume that o N
g C [v,, w];. The pretree axioms then imply that [x,, y,]N[x,, x,] =
[x,, w]. By 1.3 it now follows that if the x;, and y; lie in a subpretree
T' of T then w also liesin T .
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1.7. Let T and T’ be A-pretrees. A map of sets f: T — T’ will
be called a morphism from T to T’ if each presegment in T can be

written as a finite union of presegments [x,, x,], .-+, [x,_,, X,] in such
away that f|[x,_,, x,]: [x,_,, x] =T " is an isometric embedding of A-
metric spaces for i = 1,---, n. (We may suppose the x; to be chosen

so that [x;_,, x,JN[x;, x;,;] = {x;}.) With this definition of morphism,
A-pretrees form a category. A map between two A-trees will be called a
morphism of A-trees if it is a morphism of A-pretrees; thus A-trees form
a full subcategory of the category of A-pretrees.

Note that our notion of morphism differs from the one used in [1],
where morphisms are defined to be isometric embeddings. An isometric
embedding of A-pretrees is obviously a morphism in our sense, but not
conversely. On the other hand, a morphism is always a distance-decreasing
map; that is, a morphism f: T — T’ satisfies d(f(x), f(¥)) < d(x, )
for all x, y € T. (Here and elsewhere we write d for the distance
function on a A-pretree if it is clear from the context which A-pretree is
involved.)

It follows that the isomorphisms in the category of A-pretrees are isome-
tries. Hence when we say that a group acts on a A-pretree, it will always
be understood that it acts by isometries. The full group of self-isometries
of a A-pretree T will be denoted Aut(7T).

Note that if f: T — T’ is a morphism of A-trees and if ¢ C T is a
segment such that f|o is 1-1, then f|o is an isometric embedding.

1.8.  The following characterization of morphisms will be useful in
87.

Proposition. Let T, and T, be A-pretrees, and let f: T, — T, be a
map of sets. Suppose that for any two points x, y € T there exist points
X=Xy, ,Xx,=y such that f|[x,_,, x;] is an isometric embedding for
i=1,---,n. Then f is a morphism of A-pretrees.

Proof. We must show that for any x, y € T we may express [x, y]
as a finite union of presegments on which f restricts to an isometric
embedding. We choose X, --- , x, asin the hypothesis of the proposition
and argue by induction on n. If we set z = x,_,, then the pretree
axioms imply that [x, z]N [z, y] = [z, w] for some w € T, and that
[x,y] =[x, w]ulw, y]. By the induction hypothesis, [x, z] is a finite
union of presegments on which f restricts to an isometric embedding;
hence the same is true of [x, w]. On the other hand, since f]|[z, y] is an
isometric embedding, so is f|[w, y]. The assertion follows.

1.9. In [1], Alperin and Bass study A-trees in terms of base points.
Givena A-metric space X and a base point x, € X, they define a function
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At XxX—3IAby xAy=13d(x,x)+dy, x,) —d(x,)). According
to Theorem 3.17 of [1], X is isometric to a subspace of a A-tree if and
only if the following conditions hold:

(@) xAyeA forall x, ye X;and

(b) xAz>min(xAy,yAz) forall x, y, ze X.

The proof given in [1] of the necessity of (a) and (b) works equally well
if X is a subspace of a A-pretree. In particular, if 7 is a A-pretree, and
if we choose a base point x, € T and define A: T x T — %A as above,
then (a) and (b) hold. It follows that T is isometric to a subspace of a
A-tree T . Furthermore, the proof of Theorem 3.17 of [1] gives an explicit
construction of such a A-tree 7 ; and it follows from the construction that
every point of T lies in a segment with endpoints in 7. This proves the
following result.

1.10. Proposition. Let T be a A-pretree. Then there exist a A-tree
T andamap j: T — T such that

(i) Jj is an isometric embedding of A-metric spaces, and

(ii) every point of T lies in a segment whose endpoints are in j(T).

A pair (T, j) consisting of a A-tree and a map having the above prop-
erties will be called a A-completion of T. (We shall say that T is a
A-completion when it is clear which map j is involved.)

1.11. Proposition. Let (T, j) be a completion of a A-pretree T .
Then for any A-tree T' and any morphism w: T — T' of A-pretrees,
there is a unique morphism W: T — T' of A-trees such that Woj=y.

1.12. The proof of 1.11 will be based on the following result.

Lemma. Let (T, j) be a completion of a A-pretree T. Then any
segment in T is contained in a segment whose endpoints are in j(T).

Proof. Using the isometry j, we identify 7" with a A-metric subspace
of T. Consider a segment [x,, X,]7. By the definition of a completion,
each Xx; lies in a segment o; whose endpoints are in 7. We now apply 1.5,
letting T and T play the roles of .S and T respectively, to conclude that
[x,, x,] is contained in a segment whose endpoints are in 7. q.e.d.

1.13. Proof of 1.11. Using j, we identify 7 with a A-metric sub-
space of T .

Consider an arbitrary point x € T . Note that since T is a completion
of T and y is a morphism, there is a segment ¢ C T , whose endpoints
y and z liein T, such that x € g, and such that y|o N T is an isomet-
ric embedding. There is a unique isometry ¥_ of o onto the segment
[w(), w(z)] ¢ T' which extends wlonNT. If ¥: T — T is a mor-
phism extending w , then since ¥ is distance-decreasing we must have
¥|o =¥, , and hence ¥(x) =¥ (x). This proves uniqueness.
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To prove existence, we again consider an arbitrary point x € 7, and
choose a segment ¢ as above. We wish to set ¥(x) = ¥ (x). We must
check that ¥ is well defined.

For i =1, 2, let g, be a segment whose endpoints y; and z, lie in
T, such that x € 0;, and such that y|o,N T is an isometric embedding.
By 1.3, 0, = 0, N0, is a segment whose endpoints y, and z, lie in
T. For 1 <i< 3, there is a unique isometry ¥, of o, onto the segment
[w(y,), w(z,)] C T' whichextends y|g,NT . Clearly 7|05 = ¥ = ¥,|o, .
In particular ¥, (x) = ¥,(x), so that ¥ is well defined.

If x € T we can take the segment ¢ appearing in the definition of ¥(x)
to be {x}; hence ¥|T = y . It remains to show that ¥ is a morphism.
To do this, we consider an arbitrary segment ¢ C 7. By 1.12, g is
contained in a segment ¢' whose endpoints x, y liein 7. Since y is
a morphism we may write [x, ], = ¢’ N7 in the form [x,, x,];U---U
[x,_1> X,lp» Where xo=x, x, =y, [x;_,, x;]p 0 [x;, x| 17 = {x;} for
0<i<n,and y|x;,_,, x;]; is an isometric embedding for 1 < i< n.
Now ¢’ = [xy> X, J7U---U[x,_,, x,}7; and the definition of ¥ says that
¥|[x,_,, x;]7 is an isometric embedding for 1 </ < n. This proves that
¥ is a morphism. q.e.d.

1.14. It follows from 1.11 that the completion of a A-pretree T is
unique in the sense that if (Tl , J;) and (Tz , J,) are completions then
there is a unique isometry i: T, — T, such that io j, = j,. The A-
completion of a A-pretree T will be denoted AT . If T is a Aj-tree,
where A, is a subgroup of A (cf. 1.3), we may say that AT is obtained
from T by base change. If one compares 1.11 with Proposition 4.4 of [1],
it is clear that this is consistent with the terminology of [1].

If T is a A-pretree, we shall always understand T to be identified
with a subpretree of AT via the map j. It follows from 1.11 that any
morphism f: T — T of A-pretrees extends uniquely to a morphism
Af: AT — AT'. (Thus T — AT is a functor from the category of A-
pretrees to the category of A-trees.)

1.15. In studying group actions on trees, it will be necessary to con-
sider group actions on objects in various other categories. Furthermore,
it will often be necessary to compare actions of different groups on dif-
ferent objects within a single category. The following terminology will be
convenient.

Let & be a category. By an object with symmetry in € we mean a
triple 2 = (X, T, p), where X is an object in &, I' is a group and
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p is a left action of " on X, i.e., a homomorphism from I' to the group
of automorphisms of X .

Let # =(X,T,p) and & = (X', T, p') be objects with symmetry
in €. A morphism from 2 to 2 is a pair (f, w), where w: T — T’
is a homomorphism and f: X — X' is a morphism such that fo p(g) =
p'(w(g))o f forall g eT; here o denotes composition in the category
@ .If I =T and w is the identity, we shall often say that the map f is
T-equivariant.

With the above definition of morphism, the objects with symmetry in &
form a category. For example, we have the category of sets with symmetry,
the category of A-trees with symmetry and the category of A-pretrees with
symmetry.

1.16. Recall from [12] and [1] that a group I" is said to act without
inversions on a A-tree T if whenever a segment [x, y] C T is invariant
under an element g of I', either g fixes [x, y] pointwise, or d(x, y)
is divisible by 2 in A (in which case g fixes the midpoint of [x, y]).
It is shown in [12] that if I" acts on 7 without inversions then /(g) =
min _,d(x, & x) € A exists for every g € I'. As in [12], we call the
function /: I' — A the length function defined by the action of I" on T'.

117. If = (T, T, p) is a A-pretree with symmetry, it follows
from 1.14 that the action of I' on T extends uniquely to an action on
AT, so that we have a A-tree with symmetry (AT, I, p). This A-tree
with symmetry will be denoted A7 . Clearly 9 — A9 is a functor from
the category of A-pretrees with symmetry to the category of A-trees with
symmetry.

1.18. If A; C A and if a group I' acts without inversion on a A,-
tree T, then it follows from Corollary 6.16 and Lemma 6.15 of [1] that I
acts without inversions on AT, and that the actions of I" on 7 and AT
define the same length function; in particular, the length function defined
by the action of I" on AT takes its values in A;.

1.19. Suppose that a group I" acts without inversions on a A-tree. It
is clear that I" acts freely on T if and only if the associated length function
is nonzero on every nontrivial element of I". Hence it follows from 1.18
that if A; C A, and if a group I' acts freely and without inversions on a
Ay-tree T, then I' also acts freely and without inversions on AT .

1.20. The remainder of this section is devoted to studying certain
direct limits in the category of A-pretrees or of A-pretrees with symmetry.

Consider a direct system (7}; f; j) in the category of A-pretrees. (Such
a system is understood to be indexed by some nonempty filtered ordered
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set. Of course the f; ; are understood to be morphisms.) We shall write
d; to denote the distance function on T;.

The direct system (T;; f; j) will be said to converge strongly if for every
index i and forall x, y € T}, there exists some k > i such that for every
Jj 2k, the map f, |f,([x,y]) is an isometric embedding of f, ([x, y])
into 7. Note that this implies in particular that for any x, y € T,
the sequence (d;(f;;(x), f;;(¥)));»; is eventually constant, i.e., that there
exists some k > i such that for all j > k£ we have dj(f:.j(x), fl.j(y)) =
d ([ (x) s [ ) -

1.21.  Assuming that the direct system (7; f, j) converges strongly, let
T denote the direct limit of (T;; f; ;) in the category of sets, and for each
index i let f;: T, » T denote the canonical map. We define a function
d: TxT — A as follows. Given x, y € T we may write x = f,(x;)
and y = f(y;) for some positive integer / and some X;, y; € T;. Strong
convergence implies that (d (X)), fij(yi))) i>i is eventually constant.
We define d(x,y) to be the value of dj(fl.j(x,.), f,.j(yi)) for large j.
This definition is at once seen to be independent of the choices of i, x,
and y,.

Since the T, are A-metric spaces, it is immediately clear that the set T
becomes a A-metric space if we take d as the distance function. Further-
more, since the f ; are distance-decreasing (1.7), the f; are clearly also
distance-decreasing.

1.22. Proposition. The A-metric space T is a A-pretree, and the
maps f, are morphisms in the category of A-pretrees.

Proof. We first show that T is isometric to a subspace of a A-tree.
This will be proved using the result of Alperin and Bass discussed in 1.9.
Thus we choose a base point x;, € T, and define A: T x T — %A by
XAy =3d(x, Xo) +d(y, xy) —d(x, y)). We must show that A satisfies
conditions (a) and (b) of 1.9. To prove (b), consider three points x, y,
z € T. It follows from the definition of the metric on T that there exist an
index i and points x,;, x;, y;, z; € T; which are mapped by f; to x,,
X, y and z respectively, and such that f|{x,;, x;, y;, z;} is an isometric
embedding. The base point x,, € T, defines a function ATy x T, — %A
satisfying (b). Hence we have

XANz=x;Az; 2min(x; Ay, y; Az;) =min(x Ay, yAz).

This shows that T satisfies (b). The same method establishes (a).
Thus we may identify T isometrically with a subspace of a A-tree T .
According to 1.4, in order to show that T is a A-pretree, we need only
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prove that if x, y and z are points of 7T and if [x, ylzN[x, zlF =
[x, w]F for some w € T, then w € T. To prove this, we first note that
by the pretree axioms we have d(x, w) = %(d(x, y)+d(x, z)-d(y, z)).
On the other hand, by the definition of the metric on T, there exist an
index i and points X;, y;, z; € T, which are mapped by f, to x, y and
z respectively, and such that f|{x;,y;, z;} is an isometric embedding.
We have [x;, y,1N[x;, z;] = [x;, w;] for some w;, € T;,. The pretree
axioms give

d(x;, w;)=3d(x;,y)+d(x;, z,)—d(y;, z,)) =d(x, w).

Since the morphisms f ; are necessarily distance-decreasing, the defi-
nition of the metric on T implies that the map f; is distance-decreasing.
Since d(x,y) = d(x;,,;), it follows that f, embeds [x;, y,] isometri-
cally in [x, y]; C [x, yl7. But we have w € [x;,y;], w € [x, y] and
d(x;, w;) = d(x, w). Therefore f,(w,) = w, so that in particular w € T .
This completes the proof that T is a A-pretree.

To prove that f; is a morphism for each index i, we consider an arbi-
trary presegment o C T,. By the definition of strong convergence there is
anindex k > i such that for every j > k, the map f, |f; (o) is an isomet-
ric embedding. By the definition of the metric on T', the map f,|f, (o)
is an isometric embedding. Since f;, is a morphism, we may write ¢ as
a finite union of presegments each of which is isometrically embedded in
T, by f, . Hence f, embeds each of these presegments isometrically in
T . This shows that f; is a morphism. gq.e.d.

The A-pretree T given by 1.22 will be called the /imit of the strongly
convergent system (7; f;).

1.23. Remark. Itiseasy toshow that T is the direct limit of (T;; f, j)
in the category of A-pretrees. However, a direct system of A-pretrees may
well have a direct limit without being strongly convergent. For example,
for each positive real number r with 0 <r < 1,let 7, denote the R-tree

with d(x,, z,) = d(y,, z,) = r and d(z,,w,) = 1 —r. Whenever 0 <
s < r < 1, there is a unique morphism f _: 7, — T, mapping X,, ),
and z, to x,, y, and z respectively. Hence (7} ; f,,) is a direct system
of R-trees; it is easily seen that the unit interval in R, regarded as an
R-tree, is a direct limit of this system. However, the system clearly does
not converge strongly.
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1.24. The following characterization of a strongly convergent system
of A-pretrees and of its limit will be useful.

Proposition. Let (T, f j) be a direct system in the category of A-
pretrees. Let T be a A-pretree, and for each index i let f,: T, - T
be a morphism of A-pretrees. Suppose that the following conditions hold:

(i) f;=f;ot;; whenever i< j;
(i) T=U,f(T)
(iii) given any index i and any two points x, y € T,, there exists some
Jj > i such that d(f;;(v)) =d(f,(x), £;,(¥)).
Then the direct system (T;, f, ;) converges strongly, and its limit is iso-
metric to T . Furthermore, the isometric identification of T with the limit
of the T, may be made in such a way that the f, are the canonical mor-

phisms of the T, to their limit.
Proof. Observe that since a morphism of A-pretrees is distance-decreas-

ing, hypothesis (iii) implies:
(iii') given any index i and any two points x, y € T,, we have

d(f;(x), ;) = d(f;(x), £,(»)

for all sufficiently large > i

To prove that (T}, f, j) converges strongly, we consider an arbitrary index
i and an arbitrary presegment [x, y] C T;. Since f; is a morphism we
may write [x, y] =[x, y]T in the form [xo, x,Ju---U[x,_,, x,], where
Xy =X, X, —y,[x,l,x]r‘l[ ,+1]—{x}for0<r<n and
fillx,_,, x,] is an isometric embeddmg for 1 <r<n. By (iii)’ there is
an index k > i such that for all nonnegative integers r, s < n we have
d(f(x,), fi(x,) = d(fi(x,), f,(x,)). We claim that for every j > k,
the map f, j| Si([x, ¥]) is an isometric embedding; this will prove strong
convergence.

Set S = {f,(x;), -, fi(x,)}. Then according to our choice of k,
the map f,|S is an isometric embedding of § in 7. On the other hand,
note that since f[[x,_,, x,] is an isometric embedding for 1 < r < n,
and since f, is distance-decreasing, f,|[x,_,, x,] is also an isometric
embedding for 1 <r<n.

Let u, and u, be any two points of f,([x,y]). For m = 1,2,
set u, = f,(w,), where w,, € [x,y]. Then each w,, lies in one of
the presegments [x,_,,x,], 1 <r < n. Since f k|[xr_1 , X,] is an iso-
metric embedding it follows that each u; lies in one of the presegments
[fi(x,_1)s fi(x,)]. Thus each u, lies in a presegment with endpoints
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in §. Hence by 1.5, it follows that [u,, u,] is contained in a preseg-
ment ¢ with endpoints in §. Since f |S is an isometric embedding,
and since f, is distance-decreasing, it follows that felo is an isomet-
ric embedding. In particular d(f, (%), f,(4,)) = d(u,, u,). Finally,
for any j > k, since f, ; and fj are distance-decreasing, we must have
d(fi;j(u), fij(uy) = d(u,, u,). This shows that f ;| f; ([x, y]) is an iso-
metric embedding, and completes the proof of strong convergence.

Next note that for any given index i, it follows from hypothesis (iii)
that two points of 7, have the same image under f; if and only if they
have the same image under fij for some j > i. This, together with
hypothesis (i) and (ii), allows us to identify 7 with the direct limit of
the T; in the category of sets, in such a way that the f are the canonical
maps of the 7; to their direct limit. Hypothesis (iii) now shows that the
given metric on 7; coincides with the metric on the set-theoretic direct
limit constructed in 1.21. Thus 7T is the limit of the strongly convergent
system (T}, fij). q.e.d.

1.25. Now consider a direct system (7;; / j) , in the category of A-
pretrees with symmetry, where J; = (T;, T, p;) and /; = (f};, »;;) . We
shall say that such a sequence converges strongly if the underlying direct
system (T, f, j) of A-pretrees converges strongly. Let T denote the limit
of this strongly convergent system, and let I" denote the direct limit of
the direct system (I, w, j) of groups. For each index i,let f,: T, = T
denote the canonical morphism, and let w,: I', — I' denote the natural
homomorphism. Then there is a unique action p of I' on T such that
(f;» w;) is a morphism from J; to = (T, T, p) for each i. We call
" the limit of the given strongly convergent system (J7; / i)

1.26. The following characterization of a strongly convergent system
of A-pretrees with symmetry, and of its limit, is an immediate conse-
quence of Proposition 1.24.

Proposition. Let (7; /, ) be a direct system in the category of A-
pretrees with symmetry, where I, = (T;,T;, p;) and /; = (f;;, »;).
Let = (T, T, p) be a A-pretree with symmetry, and for each index i
let f,=(f;,w,): T — T bea morphism of A-pretrees with symmetry.
Suppose that the following conditions hold.

(i) /;=/jo/;j whenever i < j.
(i) 7 =U,f(T)).
(iii) Given any i > 1 and any two points x, y € T;, there exists some
Jj > i such that d(f;;(x), f;;(¥)) =d(f;(x), £,(¥)).
(iv) The w; induce an isomorphism of lim I'; onto T'.
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Then the system (T, /; ;) converges strongly, and its limit is isomorphic
to F . Furthermore, the isomorphic identification of F with the limit of
the F; may be made in such a way that the /, are the canonical morphisms
of the T to their limit.

1.27. If (F; 4 j) is a direct system in the category of A-pretrees
with symmetry, then by 1.17 we have system (AJ; A/ ;) in the category

of A-trees with symmetry.

Proposition. If (J7; / converges strongly, then (AT ; A/, ;) also con-
verges strongly, and its lzmzt is isomorphic to the A- completion of the limit
of ('7,— > //;_,)

Proof. Letus write ;= (T,, T, p;) and /; = (f;, @

Let = (T, F p) denote the limit of the system ( 7 / and for
each i let / = (f;, w;): J; = F denote the natural morphlsm We
shall prove the proposition by showing that conditions (i)-(iv) of 1.26 are
satisfied when (7]; /;),  and / are replaced by (AF]; Af)), AT
and A/ . Conditions (i) and (iv) are clear. To check (ii) we consider
a point x € AT. Let [y, z],; be a segment having endpoints in T
and containing x. By the definition of the metric on 7T there exist an
index i and points y,, z, € T, such that f(y,) =y, f(z;) = z and
d(y, z) =d(y;, z;) . Hence the morphism Af; restricts to an isometry of
;s z]ar. onto [y, z],; . In particular, x € f;(AT;). This proves (ii).

To prc;ve (iii) we consider an index i and two points x, y € AT,.
By 1.12 there is a segment ¢ in AT, which contains [x, y] and has its
endpoints in 7;. By the definition of strong convergence and the defi-
nition of the metric on T, there is an index j > i such that fjl /i (@)
is an isometric embedding. In particular we have d(f;(x), f;(¥)) =
d(f(x), £). aed.

1.28.  We conclude this section with a simple result on length func-

tions. Let X be a set and let /,/,,... be a sequence of real-valued
functions on X . We shall say that I, L, ... converges strongly if for
each x € X the sequence /,(x), [, x), ... 1s eventually constant. A

strongly convergent sequence (/;) has a limit function /: X — R, which
can be defined for each x € X by /(x) = [,(x) for sufficiently large i.

Proposition. Let I' be a group, and let (T, /, ;) be a strongly conver-
gent direct system of A-trees with symmetry, where I, = (T,,T', p,) and
/;.j = (fij, 1). Let 7 = (T, T, p) denote the limit of the system. Suppose
that T acts without inversions on each T;. Then T also acts without inver-
sions on T, and the length functions defined by the J; converge strongly
to the length function defined by .9 .
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Proof. Let /= (f;,1): T, —» T denote the canonical morphism.

To show that I" acts without inversions on 7', we must show that if x
and y are points of 7 suchthat y-x =y and y-y = x forsome y T,
then d(x, y) is divisible by 2 in A. For some index i there is a point
x; € T, with fi(x,) = x. Set x, = y*-x,. Then f,(x]) = x. Hence for
large enough j > i we have fij(xi) = fij(x;) =X, say. Set Y, =7-X;;
then y -y =X Since I' acts without inversions on T;, it follows that
d(xj, yj) is divisible by 2 in A. But for large enough j > i we have
d (x;,¥;)=d(x,y). This proves that I' acts without inversions on 7.

Now let d; and [, (resp. d and /) denote the distance function and
length function for J; (resp. 9 ). Let g € I' be given. Since the f;
and f, ; are distance-decreasing it is clear from the definition of the length
functions that /,(g) > lj(g) > I(g) whenever i < j. Now let x be a point
of T such that d(x, p(g)x) = I(g). For some index m there is a point
y € T,, such that f, (y) = x. By strong convergence, for some n > m we
have d(f,,,(v), f,,,(P,n(8)y)) = d(x, p(g)x). Thus /(g) > (g). Hence
l(g)=1(g) forall i>n. q.ed.

1.29.  For the rest of this paper, all direct systems will be understood to
be indexed by the natural numbers.

2. The rank-1 case: statement of results

In this section we state the structure theorem (Theorem 2.1) for group
actions on A-trees, where A is a subgroup of R whose Q-rank is 1. We
also give more formal statements of the rank-1 versions of Theorems A,
B, C and D of the introduction. We prove in this section that the latter
results follow from the structure theorem. Along the way we formulate
a result, Proposition 2.6, which, in the case of a finitely presented group,
gives a partial reinterpretation of the structure theorem in terms of the
Bass-Serre theory of graphs of groups. The proof of the structure theorem
itself will be given in §4.

2.1. Theorem. Let A be a subgroup of R whose Q-rank is 1, and
le¢ & = (T, T, p) be a A-tree with symmetry. Then J is the limit of
a strongly convergent direct system (7} /; ;) in the category of A-pretrees
with symmetry, where each I, = (T;, T';, p,) is a A -tree with symmetry for
some cyclic subgroup A, of A, and A; C A ; whenever i < j. Furthermore,
if /,=(f;, w,;) denotes the canonical morphism from J; to ", the kernel
of w; acts freely and without inversions on T; for each i.

Theorem 2.1 will be proved in §4. For the rest of this section it will be
assumed.
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2.2.  The following result is the rank-1 case of Theorem A of the
introduction.

Proposition. Let A be a subgroup of R whose Q-rank is 1. Let T’
be a finitely generated group which acts freely, without inversions, on some
A-tree. Then T is a free group.

Furthermore, T is the limit of a strongly convergent system (T, f; j)
in the category of A-pretrees, where each T, is a A -tree for some infinite
cyclic subgroup A; of A; and there exist free actions without inversions of
I on the T, such that the f, ; and the canonical morphisms f.: T, - T
are I'-equivariant.

2.3. The following group-theoretical lemma is needed to deduce
Proposition 2.2 from Theorem 2.1. It is stated in a general enough form
to be used for other applications later in this section and in §6. We are
grateful to John Wood for pointing out a proof of the lemma in the spe-
cial case where I is finitely generated and all the I'; are free, which is the
case needed for the proof of 2.2. The proof given below in case (ii) was
suggested by Wood’s argument.

Lemma. Let (T, w, j) be a direct system in the category of groups. Set

I'= m I';. Suppose that either

(i) T is finitely presented, or

(ii) T is finitely generated, and there exist an integer n > 1 and a field
K such that for each i, every finitely generated subgroup of T, is
isomorphic to a subgroup of GL,(K).

Then for every sufficiently large index i, there is a subgroup 1"; of T,
such that the canonical homomorphism w;:T'; — T maps 1"’; isomorphi-
cally onto T .

Proof. Since T is finitely generated, there is some index / such that
w, is surjective. We may assume that / = 1. There is a finitely generated
subgroup I“;‘ of T, such that w,(l“;) = I'. After replacing each I', by
w,,.(l“,*) ,» we may assume that the I'; are finitely generated and that the
w;; are all surjective. Under this assumption we shall prove the lemma by
showing that , is an isomorphism for all sufficiently large i.

We fix a homomorphism /4 of a finitely generated free group F onto
I',. For each i, let R; denote the kernel of w,;0h: F — I, . Likewise, let
R denote the kernel of w0 h: F - T. Then R, C Rj whenever i < j,
and R=J;R,;.

Suppose that (i) holds. Since I' ~ F/R is finitely presented, the normal
subgroup R of F is the normal closure of a finite set of elements of F .



DENDROLOGY OF GROUPS IN LOW Q-RANKS 627

Hence for sufficiently large / we must have R, = R. Then o, is an
isomorphism.

Now suppose that (ii) holds. Since we are now in the case where the T
are finitely generated, this means that each I'; is isomorphic to a subgroup
of GL,(K). Let us write r for the rank of the free group F. Fixing a
basis for F establishes a bijective correspondence between the set of all
representations of F in GL,(K) and the Cartesian power GL, (K ). We
regard the latter set as a subset of the affine space M, (K )" and endow
it with the Zariski topology. For each index i, let V; denote the set of
all points of GL, (K )" that correspond to representations whose kernels
contain R;. Then V; is a closed subset of GL,(K), and ¥, D V; for
i<j.

By the Hilbert Basis Theorem, there is an index m such that V.=V,
for all { > m . This means that whenever the kernel of a representation of
F contains R, it must actually contain R; for all i > m . But according
to condition (ii), for each i there is a representation p, of F whose kernel
is precisely R;. Hence we must have R; = R, for all i > m. This means
that for i > m we have R = R,, so that w, is an isomorphism. q.e.d.

2.4. Proof of Proposition 2.2. Let (7; / ;) be the direct system, and
A, C A the subgroups, given by Theorem 2.1. We write 7, = (T, T;, p;)
and /;.j = ( L w,.j). For each index i, let / = (f;, w,): J; = T be
the canonical morphism. Since A; is a cyclic subgroups of A, we can
identify T; with the O-skeleton of a simplicial tree K;, and the action of
[, on T, is the restriction of a simplicial action.

The morphism / is in particular a morphism of sets with symmetry.
Since I" acts freely on T, it follows that any element of I'; that fixes a
point of T, lies in the kernel of w;. But by 2.1, the kernel of w; acts
freely on T;. Therefore the action of I'; on T; is free.

If 7 is any l-simplex of K, the endpoints of 7 constitute a segment
in T, whose length is the positive generator of A;. It follows from the
definition (1.7) of a morphism of A-pretrees that f; embeds such a seg-
ment isometrically in 7. Hence if an element g of I'; leaves 7 invariant
then w,;(g) must leave a segment in 7 invariant. Since I acts freely and
without inversions on 7 this implies that g € kerw, . Since kerw, acts
freely and without inversions on T, we have g = 1. This shows that T
acts without inversions on K, in the sense of [15].

Since I'; acts freely and without inversions on a simplicial tree, it is
a free group (see [15, Chapter I, Theorem 4]). On the other hand, by
the definition of the limit of a strongly convergent system of trees with
symmetry, I is the direct limit of the directed system of groups (I';, ; j) .



628 HENRI GILLET & P. B. SHALEN

It follows from [15, Chapter I, Example 1.5.3] that a finitely generated
free group is isomorphic to a subgroup of GL,(C). Hence we can apply
2.3 to conclude that I is isomorphic to a subgroup of one of the I', and
is therefore itself a free group.

To prove the last assertion of the proposition, note that by 2.3 there
exists, for every sufficiently large i, say for i > m, a subgroup 1":.’ of T,
such that w; maps I' :’ isomorphically onto I". Restricting the action of
I, gives an action of F;' on T,, which we can then push forward via the
isomorphism will"'; to define an action of I on 7;. Since the / and
/i ; are morphisms of sets with symmetry, f; and f; ; are T"-equivariant,
in terms of the pushed-forward actions, for m <i <.

2.5. The next result, Proposition 2.6, will be used in deducing the
rank-1 case of Theorems B, C, and D of the introduction from Theorem
2.1. The statement of the result involves the notion of a graph of groups.
Recall from [15] that a graph of groups % is a connected 1-dimensional
CW-complex G in which each cell ¢ is labelled with a group £(c), and
for each oriented edge e with terminal vertex v, a homomorphism is
specified from Z(e) to £ (v). In [15] a group =,(¥) is associated with
%, the fundamental group of the graph of groups % . For each cell ¢
of G, the group Z(c) is identified isomorphically with a subgroup of
m,(¥); this identification is canonical modulo inner automorphisms of
n,(¥). Thus a cell of G determines a conjugacy class of subgroups of
n,(¥). We shall call a subgroup of 7,(¥) a vertex group (or edge group)
if it is in the conjugacy class of subgroups determined by some vertex (or
edge) of G.

2.6. Proposition. Let A be a subgroup of R whose Q-rank is 1. Let
I" be a finitely presented group which acts without inversions on a A-tree
T. Then T can be identified isomorphically with the fundamental group
of a graph of groups in such a way that

(i) each vertex group in T is contained in the stabilizer of some point
in T, and

(ii) each edge group in T is contained in the stabilizer of a nondegen-
eratearcin T.

Furthermore, T s the limit of a strongly convergent system (T, f, ;)
in the category of A-pretrees, where each T, is a A -tree for some infinite
cyclic subgroup A, of A and there exist actions without inversions of T
on the T, such that the f, ; and the canonical morphisms f,;: T, = T are

I-equivariant.
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Proof. Let (77; / j) be the direct system, and A; C A the subgroups,
given by Theorem 2.1. We write ;= (T;.T,, p;) and /; = ( 1> @ij) -
For each index i, let / = ( Ji» w;): I, — T be the canonical morphism.
By the definition of the limit of a strongly convergent system of A-pretrees
with symmetry, I' is the direct limit of the system of groups (T}, o, j).
Since I' is finitely presented, we can apply 2.3 to obtain a subgroup l';’
of T, for all sufficiently large i, say i > m, such that ®; maps 1':
isomorphically onto I". As in the last step of the proof of 2.2 we can then
conclude that there are actions of I' on the 7; for i > m such that f
and f ; are I'-equivariant for m < i < j. This proves the last assertion
of the proposition.

To prove the other assertions we use the Bass-Serre theory [15]. As
in the proof of 2.2, we regard 7,, as the O-skeleton of a simplicial tree
K, . Then I' acts without inversions on the barycentric subdivision K,
of K, . According to [15, Chapter I, Theorem 13] we can identify T’
isomorphically with the fundamental group of a graph of groups £ in
such a way that each vertex group in I' is the stabilizer of some vertex of
K, , and each edge group in T is the stabilizer of an edge in K. We
claim that conditions (i) and (ii) of the statement of Proposition 2.6 then
hold.

Consider any vertex group £ (v) C I'. Since Z(v) fixes a vertex of
K;, , it either fixes a vertex of K, or leaves an edge of K, invariant.
If £(v) fixes a vertex of K, , i.e., a point x € T, , then since f; is
I'-equivariant, ¥ (v) is contained in the stabilizer of f (x) € T. Now
suppose that £ (v) leaves invariant an edge of K, with endpoints x, y €
T, . Thentheset {f, (x), f,(¥)},and hence the segment [f, (x), £, ()],
are invariant under % (v). Since I' acts without inversions on T, some
point of [, (x), f,,(¥)] must be fixed by &(v). This establishes condition
(i)

Now consider an edge group Z(e). Since Z(e) fixes an edge of K;, ,
it must fix (pointwise) some edge of K, with endpoints x, y € T,, . The
distance in T,, between x and y is the positive generator of the infinite
cyclic group A, . Hence by the definition of a morphism of trees, f,
maps [x, y] C T, isometrically onto [f,, (x), f,,(¥)] C T. It follows that
the latter segment is nondegenerate and, by the I'-equivariance of f, , is
fixed by Z(e). This establishes condition (ii). q.e.d.

2.7. The next result combines the rank-1 cases of Theorems C and
D of the introduction. Recall from the introduction that a group I is
said to split over a subgroup A if I is either a free product of two proper
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subgroups with amalgamated subgroup A, or an HNN extension with as-
sociated subgroup A.

Proposition. Let A be a subgroup of R whose Q-rank is 1. Suppose
that a finitely presented group T admits a nontrivial action, without inver-
sions, on a A-tree T. Then T splits over some subgroup. If in addition
the stabilizer of every nondegenerate segment of T is a small subgroup of
I, then T splits over a small subgroup.

2.8. The proof of 2.7 is based on the following lemma.

Lemma. Let & be a graph of groups. Suppose that n,(¥) is finitely
generated and that every vertex group in n,(¥) is a proper subgroup. Then
there is some edge e of & such that n,(Z) splits over & (e).

Proof. Since I = n (¥) is finitely generated, there is a finite subgraph
%, of the graph of groups & such that r,(%,) maps isomorphically onto
n,(¥). Among all finite subgraphs with this property, we may suppose
%, to have been chosen to have the smallest possible number of vertices.
If the underlying graph G, of % is nonsimply connected then it has a
nonseparating edge e. It follows from the definition of #,(%) that T’
is a HNN group with Z(e) as amalgamated subgroup. If G, is simply
connected it has an endpoint v. Since the vertex groups in #,(¥) are
proper subgroups we have & (v) # I' and hence {v} # G,. Thus v
is incident to a unique edge e¢ of G, and the graph G, obtained by
removing v and e from G, is nonempty and connected. If & is the
graph of groups corresponding to G, , the definition of 7 (%) implies
that T' = 7, (%)) *¢(,, £(v). But 7/ (%)) # T by the minimality of %,.
Thus I' is a nontrivial free product with amalgamation, the amalgamated
subgroup being Z(e). q.e.d.

2.9. Proofof 2.7. If I admits a nontrivial action on A-tree T, where
the Q-rank of A is 1, then according to 2.6, I' may be identified with
n,(¥), where & is a graph of groups, in such a way that (i) every vertex
group is a proper subgroup of I' and (ii) every edge group is contained
in the stabilizer of a nondegenerate segment in 7. The conclusion now
follows from Lemma 2.8. q.e.d.

2.10. The final result of this section, Proposition 2.11, includes the
rank-1 case of Theorem B of the introduction. However, it will be stated in
elementary form, without reference to the theory of measured foliations.

Let F be a closed (piecewise-linear or smooth) surface. If C C F is
a closed 1-manifold whose components are two-sided, homotopically non-
trivial simple closed curves, then C determines a function /.: 7, (F) —
N, which assigns to any element y of n (F) the geometric intersection
number with C of the homotopy class of closed curves corresponding to
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the conjugacy class of y. According to [12, Proposition III.2.3] /.. is the
length function for a nontrivial action of 7,(F) on a Z-tree.

2.11. Proposition. Let A be a subgroup of R whose Q-rank is 1. Let
F be a closed surface and set I = n (F). Suppose that T acts on a A-tree
T in such a way that the stabilizer of every nondegenerate segment in T
is a cyclic subgroup of T'. Then the length function defined by the action
has the form | = A - 1., where 1 is a positive element of A, C C F is
some compact two-sided 1-manifold whose components are homotopically
nontrivial, “ -” denotes multiplication of real numbers.

2.12. The proof of 2.11 depends on the following lemma. Let us define
a geometric length function on = (F) to be a function of the form /.,
where C C F is some compact two-sided 1-manifold whose components
are homotopically nontrivial.

Lemma. Let I' be the fundamental group of a closed surface. Then
there exists a finite set ® of a conjugacy classes in T such that any two
geometric length functions which agree on ® are equal.

Proof. The lemma asserts that there exist closed curves g, , --- , g, in
F such that if C and C’ are any two compact two-sided 1-manifolds in
F without homotopically trivial components, and the geometric intersec-
tion numbers I(C, o,) and 1(C’, ;) are equal for all i, then I(C, o) =
I(C', a) for every closed curve ¢ in F . This follows from results proved
in [5]. (In [5, Exposé 6, §IV.5 and Appendix], it is shown that there are
simple closed curves g, -, gy such that any two measured foliations
u and u4' which satisfy I(u, g;)= I, g;) for and i are equivalent via
Whitehead moves; this implies that they satisfy I(u, o) = I(4', o) for
every o. To deduce our assertion we need only apply the latter result to
the measured foliations associated to C and C’ by the construction of
[5, Exposé 5, §II1.1]. These arguments can easily be translated into an ele-
mentary proof of the lemma not referring to measured foliations.) q.e.d.

2.13. Proof of 2.11. Let (T}; fij) be the direct system, and A; C A
the subgroups, given by Theorem 2.1. We may write A, = 4,Z for some
A; > 0. We can identify 7; with the O-skeleton of a simplicial tree K,
so that the action of I' on T; is the restriction of a simplicial action.
Since the natural morphisms f;: 7, — T are I'-equivariant, the stabilizer
in I of each edge in K; is cyclic. It therefore follows from [12, Theorem
I11.2.6] that the length function /;, defined by the action of I" on 7; has
the form 4, - l{ , where l; is a geometric length function.

Let ® be the finite set given by 2.12. According to 1.28, the /, converge
strongly to the length function / defined by the action of I on 7. In
particular there is a natural number m such that / |® = [|® = /|® for



632 HENRI GILLET & P. B. SHALEN

all i > m. If we write 4, = a;/b; with a,, b, € N, then the geometric
length functions bb, I = ab, ! and bb,l, =a,bl, agree on ® and
are therefore equal. Hence /, =/, for all i > m. By strong convergence

it follows that /=1 =4 _-1I .

3. Complexes associated to trees

The proof of Theorem 2.1, which all be given in §4, is an illustration of
the principal method of this paper: one studies group actions on a A-tree
T, where A is a subgroup of R, by associating a simplicial complex to
T in a natural way. Groups that act on 7 then act in a natural way on
the associated complex. In this section we shall give a general discussion
of complexes associated with trees.

3.1. We begin by fixing some conventions involving topological spaces,
simplicial complexes, paths and homotopies that will be used for the rest
of the paper. Recall that a path y in a topological space X is a map of
the unit interval into X . The image of the map will be called the sup-
port of y and will be denoted |y|. Homotopy of paths will always mean
fixed-endpoint homotopy; in particular, the assertion that two paths are
homotopic includes the assertion that they have the same endpoints. A
path which is a 1-1 map is called a parametrized arc. The inverse 7 of
a path y is defined by 7(¢) = (1 -¢). If yp,,---, 7, are paths with
7, (1) = 7i41(0) for 1 < i < n, their composition, denoted y, x---*x 7y, , is
the path y defined by y|[(i — 1)/n, i/n] = y,0h,, where h; is the unique
orientation-preserving affine map of [(i — 1)/n, i/n] onto [0, 1].

If T is an R-tree, it follows from Proposition II1.1.13 of [12] that the
image of a parametrized arc y: [0, 1] — T is a segment [x,y] C T.
For this reason a parametrized arc in an R-tree will often be called a
parametrized segment, or—when the support ¢ is named explicitly—a
parametrization of o .

It will be necessary to distinguish between abstract and geometric sim-
plicial complexes. The main reason for being careful about the distinction
is that we will often be considering nonsimplicial maps between geometric
simplicial complexes.

Recall that a geometric simplicial complex is a cell complex in which
each (closed) cell has the structure of an affine simplex in a Euclidean
space, and the inclusion map of a face into a cell is always an affine map.
A geometric simplicial complex will be regarded as a topological space,
with the usual weak topology.
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On the other hand, an abstract simplicial complex is defined by a set,
the set of vertices, having a distinguished class of finite subsets called
simplices, such that every subset of a simplex is a simplex. The geomet-
ric realization of an abstract simplicial complex is a geometric simplicial
complex in the above sense, and conversely.

In an abstract simplicial complex, an n-simplex whose vertices are

Xis s X,y 18 .by definition {x, s X +1)-Ina geome?nc simplicial
complex, an n-simplex whose vertices are x,, --- , x, , will be denoted
Alxys e Xpy) -

If X is an abstract or geometric simplicial complex and i is a nonneg-
ative integer, we shall write sk,(X) for the i-skeleton of X .

A simplicial complex—whether abstract or geometric—is not assumed
to be locally finite.

The term “complex”, when unmodified, will mean “geometric simplicial
complex”.

3.2. There is a familiar category in which the objects are complexes
and the morphisms are simplicial maps. An object with symmetry in this
category will be called a complex with simplicial symmetry.

Let (X, T, p) be a complex with simplicial symmetry. We shall say
that X is finite mod T if there are only finitely many orbits for the action
of T" on the set of simplices of Y .

For our purposes it will often be necessary to consider categories in
which more general maps appear as morphisms.

Let X and X' be geometric simplicial complexes. Let k be an integer
> 0. By a k-tame map from X to X' we shall mean a continuous map
f: X — X' such that for every closed simplex A and X whose dimension
is at most k, f(A) is a subcomplex of X with dim f(A) < dimA. In
particular a k-tame map carries sk,(X) into sk (X ") forevery i<k.

A k-tame map is k'-tame for any k < k. A map is O-tame if and only
if it is continuous and takes vertices to vertices. A simplicial map is in
particular k-tame for every k.

Let X be a geometric simplicial complex. For k =0 or 1, we shall say
that a path y: [0, 1] = X is k-tame if it is a k-tame map of simplicial
complexes, where [0, 1] is triangulated with two O-simplices and a single
1-simplex.

A path is O-tame if and only if its endpoints are vertices of X. A
parametrized arc y is 1-tame if and only if it is O-tame and has support
contained in sk, (X).

For every k there is a k-tame category of (geometric) simplicial com-
plexes in which the morphisms are all k-tame maps.
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3.3. By 1.15 we also have a k-tame category of complexes with sym-
metry. For any k, we may regard complexes with simplicial symmetry
as forming a full subcategory of the k-tame category of complexes with
symmetry, the k-tame category of complexes with simplicial symmetry. It
is this category that will be most important for our purposes. Explicitly,
an object in this category is a triple (X, I, p) consisting of a complex
and an action of a group by simplicial automorphisms; on the other hand,
a morphism (f, w): (X, T, p) — (X', I", p') is a morphism of sets with
symmetry such that f is a k-tame map.

Let X be a complex and let v be a base vertex of X . Tge universal
cover of X with respect to v will be defined to be the set X of homo-
topy classes of paths with initial point v. If X is connected, this is the
standard definition of the universal cover; in general, it gives the universal
cover (in the standard sense) of the connected component of X containing
v. In any event we shall always regard X as a geometric complex, with
the unique triangulation for which the covering projection p: X — X isa
simplicial map. Furthermore, X will always be understood to be equipped
with the standard base vertex ¢ which is the homotopy class of the con-
stant path at v.

Nowlet & = (X, T, p) be a complex with simplicial symmetry and let
v be a base vertex for X'. Let I, denote the stabilizer in I" of the con-
nected component of X containing v. Let X denote the universal cover
of X with respect to v, and let p: X — X be the _covering projection.
We shall say that a 51mp11c1a1 automorphism A of X covers an | element
g €T, if we have p(h(X)) = g-p(X) for every point X € X . Let T denote
the set of all ordered pairs of the form (g, h) where g is an element
of Iy and £ is a simplicial automorphism of X covering g Then T is
a group under the composmon law (g, h)o(g', n') = (gg’',hh'), and a
natural action of T on X is defined by setting (g h) -X = h(x). Thus
we have a complex with simplicial symmetry Z = (X, F p), which we
call the universal cover of 2 with respect to v .

34. Wedefine a homomorphism 6: ' — T" by setting 6(g, h) =g €
I, ¢ T'. By elementary covering space theory, the image of 6 is all of
I, . Its kernel is the group of covering transformations of X . Note also
that ~ = (p, 0): Z - Z isa simplicial morphism of complexes with
symmetry; we shall call it the covering projection.

35. Fori=1,2,let Z =(X,, T, p9) bea complex with symmetry
and let v; € X; be a base vertex. Let 2” ( l", , P;) denote the
universal cover of 27 with respect to v;, let 9, denote the base vertex of
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Z,,and let r;: 2, — 2, denote the corresponding covering projection. A
k-tame morphism /~: f?; — % will be said to cover a k-tame morphism
/&~ % ifwehave 0/ =0 p,.

It follows easily from the lifting criterion of elementary covering space
theory that if / = (f, w): 2] — £, is a k-tame morphism such that
f(v,) = v, , then there exists a unique k-tame morphism / = ( f,a@: Z
- Z which covers / and satisfies f(7,) =7,.

3.6. We now turn to the discussion of complexes associated with
trees. Let 7T be a A-tree, where A is a subgroup of R. Then RT is
an R-tree; in particular it is an R-metric space, and will be understood to
be endowed with the usual metric topology. Recall (1.14) that we regard
T as a subset of R7 . Any segment in R7 has the structure of an affine
simplex of dimension < 1.

By a geometric T-complex we mean a pair (X, ¢), where X is a sim-
plicial complex and ¢: X — RT is a continuous map such that

(i) o(sky(X))C T, and

(i1) for each positive-dimensional closed simplex A of X, the set ¢(A)
is a nondegenerate segment, and ¢ restricts to an affine map of A
onto ¢(A).

The segment ¢(A) will be called the support of A and will be denoted
|A]. Note that its endpoints lie in 7. We define the length of the simplex
A to be the length of |A|. The length of any simplex is a positive element
of A.

We shall often say that X is a 7-complex when it is understood which
map ¢ is involved.

An abstract T-complex is a pair (X, ®), where X is an abstract sim-
plicial complex and ® is a map of the set of vertices of X to the tree T
such that for each simplex ©® of X the map restricts to a 1-1 map of D
into a segment of 7. If D is a simplex of the abstract 7-complex X, the
smallest segment of R7 containing ®(D) is called the support of © and
is denoted |D|. Its endpoints belong to ®(Z).

Let (X, ®) be an abstract T-complex, and let X denote the geometric
realization of X. For any closed simplex A of X, the set of vertices of
A is identified with a simplex ® of X. The map ®|D extends uniquely
to an affine map ¢A: A — |D|, which we may regalrd as a map of A into
RT. If A" isaface of A, it is clear that ¢*|A’ = ¢* . Hence we can define
a continuous map ¢: X — RT by setting ¢|A = ¢A for every simplex A
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of X. Clearly (X, ¢) is a geometric T-complex; we call it the geometric
realization of (X, ®).

The term “ T-complex”, when unmodified, will mean “geometric 7-
complex”.

Let (X, ¢) and (X', ¢') be T-complexes. By a T-map from X to
X' we mean a O-tame map J: X — X’ such that ¢ oJ = ¢. Note that
for any k > 0 there is a k-tame category of T-complexes, in which the
objects are T-complexes and the morphisms are the k-tame 7-maps.

If (X, ¢) is an abstract or geometric T-complex such that ¢ maps the
sk,(X) bijectively onto T, then we shall often identify sk,(X) with T.
We shall say that the T-complex (X, ¢) is natural if ¢ maps sk,(X)
bijectively onto 7 and the action of Aut(7) on 7 extends to an action
on X . This extended action, which is then clearly unique, will be called
the natural action of Aut(T) on X . The geometric realization of a natural
abstract T-complex is a natural geometric 7-complex.

Note that if (X, ¢) is a natural geometric 7-complex, then the map
¢: X — RT is Aut(T)-equivariant, where Aut(7") is understood to act in
the natural way on RT (see 1.17).

Note also that if (X, ¢) is a natural geometric 7-complex then any
1-simplex of X is mapped homeomorphically onto its support by ¢.

Let (X, ¢) and (X', ¢') be two natural geometric T-complexes. Since
¢ and ¢ map sko(X) and sk (X ') bijectively onto T, there is a unique
T-map from the sky(X) to sky(X ’). Hence any two O-tame T-maps from
X to X' agree on sky(X) .

3.7. Let (X, ¢) be a geometric 7-complex, and let y: [0, 1] —
RT be a parametrized segment. By a /ift of y to X we mean a path
$:10, 1] — X such that ¢ oy = y. Of course any lift of a parametrized
segment in R7 is a parametrized arc in X . For k£ =0 or 1, a lift of y
will be called k-tame if it is a k-tame path in X . Since ¢ maps vertices
of X to points of T, a necessary condition for a parametrized segment
to have a O-tame lift is that its endpoints lie in T'.

If the geometric 7-complex (X, ¢) is natural then any two O-tame lifts
of a given parametrized segment must have the same endpoints.

If $ is a k-tame lift of y then the inverse of $ is a k-tame lift of the
inverse of y. Similarly, if y and y' are parametrized segments such that
the composition y * y' is defined, then for any k-tame lifts  and % of
» and ', the composition 77" is defined and is a k-tame lift of y*y'.

38. Let (X, ¢) and (X', ¢') be geometric T-complexes, let 7 be a
k-tame lift to X of a parametrized segment y in RT,andlet J: X — X’
be a k-tame T-map. Then J o is clearly a k-tame lift of y to X’.
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3.9. The following notions will be important in §9. Let y be a
parametrized segment in R7 , and let 7, 7 be l-tame lifts of » to X .
A T-homotopy from $ to ' is a homotopy Z:[0,1] x [0, 1] — X,
constant on 0 and 1, such that &, =7, E, = %', and E, is alift of y for
every t € [0, 1]. The T-homotopy = will be called tame if its image is a
subcomplex of X . If there exists a tame T-homotopy from 9 to ' we
shall say that  and ' are tamely T-homotopic. Tame T-homotopy is
plainly an equivalence relation among 1-tame lifts of y.

3.10. We shall now show how to associate a natural 1-dimensional
T-complex with any free abelian subgroup of A.

Let L be a free abelian group of finite rank. Recall that an element
a of L is called unimodular if it is an element of some basis of L.
Equivalently, « is unimodular if and only if it cannot be written in the
form na, with o€ L and n> 1.

If L is afree abelian subgroup of A, we define a 1-dimensional abstract
T-complex (uU,¥) = (U(L), ‘PL) as follows. The vertices of il are the
points of 7. A 1-simplex is a two-element subset {x, y} of T such that
d(x,y) is a unimodular element of L. The map ¥ is the identity map
of T . One checks immediately that (4, ¥) is a natural T-complex.

The geometric realization of (U(L), pl ) will be denoted (U, y) =
(UL, WL). Note that the length of any 1-simplex of U is a positive
unimodular element of L.

3.11. Let y: [0, 1] — RT be a parametrized segment with endpoints
in T. There is a simple way of cataloguing all 1-tame lifts of y to U.
Identifying T" with sk,(U), we may regard x = y(0) and y = y(1) as
vertices of U. Let § be a I-tame lift of y, and let 0 = g, < g, <
-+ < a, =1 be the points of [0, 1] that are mapped to vertices of U by
7. Set x; = (a;) for i =0,---,n,sothat x,=x and x, =y. Then
A(x,_,, x;) isa 1-simplex of U for i=1,---, n;hence o; =d(x,_,, Xx;)
is a positive unimodular element of L. Since y is a homeomorphism
of [0, 1] onto the segment [x,y], we have d(x,y) = o, +--- + .
Thus any 1-tame lift of y determines an ordered partition of d(x, y)
into positive unimodular elements of L. This is at once seen to define a
bijective correspondence between 1-tame lifts of y and ordered partitions
of d(x,y) into positive unimodular elements of L.

In particular, a parametrized segment y in R7 admits a 1-tame lift to
U if and only if the endpoints x and y of y liein T and d(x,y) is
an element of L.

If d(x,y) does belong to L, there is a unique way to write d(x, y)
in the form na, where o is unimodular and 7 is a nonnegative integer.
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The 1-tame lift y corresponding to the partition d(x,y) =a+---+a
will be called the standard lift of y to U(L).

If L is free abelian of rank 1, there is only one way to write an element
of L as a sum of positive unimodular elements. Hence a parametrized
segment in R7 can have only the standard lift to U.

3.12. Nowlet L and L' be free abelian subgroups of A with L c L.
We shall define a canonical 1-tame 7T-map H =H; ,:: UL)— UL".

Identifying the O-skeletons of U(L) and U(L') with T, we define H
to be the identity on sk,(U(L)). If 7 is any l-simplex of U(L), fix a
homeomorphism j: [0,1] — 7. Then y = w o j is a parametrized
segment whose endpoints x = y(0) and y = p(1) lie in 7. We have
d(x,y) € L c L'. Hence there is a standard lift 7 of y to U(L').
Define H' = 0" . Since § is a 1-tame lift of y, we have woH' = y|1,
and H® fixes the endpoints of 7. It is clear that H' is independent of
the choice of the homeomorphism j. Hence we can extend the identity
map of sky(U(L)) to a 1-tame T-map H: (U(L) — U(L') by setting
H|t = H" for every 1-simplex t of U(L).

Since the definition of H is canonical, it is clear that H is Aut(7)-
equiyariant with respect to the natural actions of Aut(7) on U(L) and
U(L).

313. Let 9 = (T,T, p) be a A-tree with symmetry, where A is
a subgroup of R. We define a (geometric) J -complex to be a quintuple
Z = (X, I, py, ¢, w), where (X, T, p,) is a complex with simpli-
cial symmetry, ¢: X — T is a map that makes (X, ¢) a geometric 7-
complex, and w: Iy — T is a group homomorphism that makes (¢, w)
a morphism of sets with symmetry.

For i =0, 1,let Z = (X;,T,,p;, ¢,, w;) be a I -complex. A I -
map from 2 to 2] is a O-tame morphism of complexes with symmetry
F =,Kk):(X,, Ty, py) = (X,, T, p;) such that J is a T-map and
W, oK = @, . (In particular it follows that (¢,, w,)o(J, k) = (¢,, ) .)

For any fixed ., and for any k > 0, we have a k-tame category of
T -complexes in which the morphisms are all k-tame .7 -maps.

3.14. Suppose that we are given a group A C R, a A-tree with
symmetry J = (T, T, p) and a natural T-complex (X, ¢). There is a
unique action 7 of I' on X that makes ¢ a I'-equivariant map. Thus
(X,T',p,¢,1) isa I -complex.

If (X,,#,) and (X,, ¢,) are two natural T-complexes and J: X, —
X, is an Aut(T)-equivariant T-map, then (J, 1) is a .7 -map between
the corresponding .7 -complexes.
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3.15. Let J be any A-tree with symmetry, let 2 = (X, T, P>
¢ w) be an arbitrary J -complex, and let v be a base vertex of X . Let
X, I 0 Po) denote the universal cover of the complex with symmetry
(X, Ty, py), let U denote the base vertex of X, and let (p, 6) denote

the covermg prOJectlon If we set ¢ = pop and @ = wo 6, then 7 =
(X r 0> Pos ¢0 , @) is a I -complex. It is called the universal cover of &
with respect to v .

Now for i =0, 1let Z = (X,,T;, p;, ¢;, w;) bea J -complex and let
v, be abase vertex in X, . Let [ : Z) — 2] bea k-tame .7 -map such that
F(vy) = v,. Let f&‘? (X’ IN",, P> d;l , @;) denote the universal cover
of 27 with respect to v,. By 3.5, there is a unique base- pomt preservmg
k-tame morphism of complexes with symmetry f (X FO, Py)

- (X 1> r 1» Py) which covers # . It follows from the definitions / is a
J -map; it is said to be induced by 7 .

4. Proof of the structure theorem in the rank-1 case

In this section we shall give the proof of Theorem 2.1. The method
of proof is to write the value group as a monotone union of rank-1 free
abelian subgroups L,, and to use the construction of 3.10 to define a direct
system (%, #; j) of 1-dimensional 7 -complexes corresponding to the L, .
One then replaces the system (%, #; ) by a direct system of 1-connected
1-dimensional 7 -complexes and 1-tame maps via the universal covering
construction of 3.15, and interprets the 1-skeletons of the latter complexes
as L;-trees; this gives the directed system of pretrees with symmetry 7,
appearing in the statement of 2.1.

Much of the relevant material on direct systems of .7 -complexes will
be needed again in §11 to prove the analogue of 2.1 in the case where A
has Q-rank 2. In order to avoid extensive repetition, we shall discuss this
material in a form that is general enough to cover both the rank-1 and
rank-2 cases. The study of direct systems of 7 -complexes will occupy
most of the present section.

41. Let (X, J; j) be any direct system (see 1.29) in the O-tame cat-
egory of geometric simplicial complexes, and let v; be a base vertex in
X; for each i. We shall say that the v, are consistent if J, j(v[) =
whenever i < j. If the X; are nonempty, it is obvious that consistent
vase vertices exist for the system.

4.2. Let A beasubgroup of R which is exhibited as a monotone union
Uf;l L;, where each L, is a free abelian subgroup of A and L, C L, ,
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(The inclusions need not be proper.) Let 7 be a A-tree. By 3.10, for each
i > 1, we have a T-complex U, = U(L;), and by 3.12, for 1 <i < j
we have a 1-tame T-map H, ;= H L, L,: Uu-—-U iz Thus we have a direct
system (U, , H,;) in the O-tame category of geometric simplicial complexes.
Let us choose consistent base vertices for the U,. In terms of these base
vertices we can form the direct limit lim =, (U;) for any n > 0. For
n > 1, we have n,(U,) = 0 for all i since the U, are 1-dimensional.
Thus the interesting cases are » =0 and 1.

4.3. Proposition. We have lim 7,(U;) = 0.

Proof. We must show that for any i > 1 and any vertices x, y of
U;, there is some j > i such that Hij(x) and Hij(y) are in the same
connected component of Uj . We can regard x and y as points of 7.
Let y be a parametrization of the segment [x, y] C RT. Choose j > i
so that d(x, y) € L;. Then the standard lift of y to U f is an arc joining
H;;(x) to H(y) in U;. qed

In general, hl»“ n,(U;) need not be 0. However, we shall see (4.5) that
it is 0 when the Q-rank of A is I (in which case L; has rank 1 for large
i ). This is a key step in the proof of Theorem 2.1. We shall prove it as
an application of a more general result which will be used again in §9.

44. Consider the following general situation. Let A be a subgroup
of R, let T be a A-tree, and let ((X;, ¢,); J;;) be a direct system in
the O-tame category of T-complexes. Let us fix consistent base vertices
for the X,. The following result gives a general criterion for triviality of
lim 7, (X;).

Proposition. Suppose that the direct system ((X;, ¢,); J; ;) satisfies the
Jollowing conditions:

(1) Every arc in RT with endpoints in T admits a tame lift to some
X..

(2) G;’ven any i > 1, anyarc y in T, and any two tame lifts 9 and
P of v to X, the paths Jij°5’ and J,.jo)‘/ are homotopic in X i
for some j>i.

Then we have lim 7, (X;) = 0.

Proof. Suppose that (1) and (2) hold. Then we shall prove the following
assertion:

(44.1). Let i > 1 be given, and let y: [0, 1] — X, be a path whose
endpoints are vertices of X,. Then for some j > i (and hence for all
sufficiently large j, see 3.8), the path J, jov s homotopic in X i either to
a constant or to a 1-tame lift of some parametrized segment in RT .
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It follows from (4.4.1) that if » is a closed loop y based at a vertex
of X; then J, j(y) is homotopic to a constant. Hence proving (4.4.1) will
complete the proof of the proposition

Any path between two vertices in a complex is homotopic either to a
constant or to a path of the form y, * ... x 7,, where r > 0, and where
each ?p> 1 <p <r,isan affine homeomorphism of a closed interval onto
a l-simplex in X,. Hence it is enough to prove (4.4.1) for paths of the
latter form. For such paths we shall proceed by induction on r.

If r =1 then p is an affine homeomorphism of an interval onto a
I-simplex 7 in X . By the definition of a T-complex, ¢ maps t home-
omorphically onto a segment in R7 ; thus y is itself a 1-tame lift of a
parametrized segment in RT .

Now suppose that r > 1. Then the induction hypothesis implies that
y has the form { % ¢, where for sufficiently large k each of the paths
Jyo¢ and J;, o€ is homotopic in X, to a constant or to a 1-tame lift of
a parametrized segment in R7 . We may assume that Jyol and J, oe
are homotopic to 1-tame lifts @ and # of parametrized segments w and
n in RT. Thus J,(y) is homotopic to @ x#. Let x and y denote,
respectively, the initial point of @ and the terminal point of #. The
terminal point of w, which is also the initial point of #, will be denoted
by u.

Since T is a tree, we have [x, u]N[y,u] =[z,u] forsome z € T.
We have [x, z]Nn[z, y] = {z}, and hence [x, z]U[z, y] =[x, y]. Let us
consider the case where x, y, u and z are all distinct. We can regard
@ as a reparametrization of w, * w,, where w, is a parametrization of
the segment [x, z] C RT, and w, is a parametrization of the segment
[z, u]. Likewise, n is a reparametrization of 7, * n,, where 7, is a
parametrization of the segment [u, z] and w, is a parametrization of the
segment [x, y]. Since w, and 7, are homeomorphisms of [0, 1] onto
the segment [u, z], the path 7, is a reparametrization of the inverse of
w,.
2Since [x, z]N[z, y] = {z} and [x, z]JU[z, y] = [x, y], the path w,*7,
is a parametrization of the segment [x, y]. By hypothesis (1) and 3.8, for
sufficiently large k the parametrized segments @, and 7, admit 1-tame
lifts @, and 7, to X, . By 3.7 we may take 7, tobea reparametrization
of the inverse of @, . In particular, @, * f}, is homotopic to a constant.

Now by 3.7, the parametrized segment « has a 1-tame lift which is
a reparametrization of @, * @, and is therefore homotopic to @, * @, .
Hypothesis (2) then implies that for large enough j > k, the paths J, j(cb)
and J, j(cbl * @,) are homotopic. Similarly, for large enough j the paths
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Ji;(f) and J, (A, * fi,) are homotopic. Hence J;;(y) is homotopic to
Jij(@) x @, f); *7,) , and therefore to Jy.j(@, *#,) . But by 3.8 the latter
path is a 1-tame of the parametrized segment @, * 7, .

This completes the induction in the case where x, y, z and w are all
distinct. The other cases are handled by exactly the same method and are
slightly simpler.

4.5. Corollary. Let A be a subgroup of R whose Q-rank is 1. Let us
write A as a monotone union Uj’il L,, where each L, is infinite cyclic and
L;C L, . Then with the conventions of 4.2, we have lim 7, (U;) =0.

Proof. If a parametrized segment ¥ in RT has endpoints x, ye T,
then d(x, y) € A and hence d(x, y) € L, for some i. Hence by 3.11, y
admits a 1-tame lift to U,. Since L, is free abelian of rank 1, it follows
from 3.11 that the lift of y is unique. The result therefore follows from
Proposition 4.4.

4.6. Now let us consider a A-tree with symmetry 7 = (T, T, p),
where A is a subgroup of R, and a direct system (27; % ;) in the 0-
tame category of 7 -complexes. Let 2 = (X,, I, p;, ¢,, ;) and jfj =
(Jij> K j). We shall say that (27; 7 J.) is abundant if it satisfies the fol-
lowing conditions.

(1) For every point x € T there exist an index i and a vertex v of
X, such that ¢,(v) = x.

(ii) Given an index i, a parametrized segment y in R7, and two
vertices v, and v, of X, such that ¢,(v,) = y(¢) for t =0, 1,
there exist an index j > i and a O-tame lift  of y to X i such
that 7(¢) = J;;(v,) for t =0, 1.

(iii) The natural map from IimT; to T induced by the w; is an
isomorphism.

4.7. In order to motivate the above definition, let us consider a group

A C R which is given in the form |J2, L, , where each L, is a free abelian
subgroup of A and L; C L; whenever i < j. Let 5 =(T,T, p) be

any A-tree with symmetry. Let us write (U,, y/i) for the T-complex

(U(L,), !//L"). As in 4.2, setting H,.j = HL,,L]. , we have a direct system
U;, Hy;) of T-complexes and 1-tame maps. Since the U, are natural 7-
complexes, and since the H, ; are Aut(T)-equivariant, according to 3.14
we have a J -complex %, = (U;, T, p;, ;, 1) for each i, and a 1-tame
morphism #; = (H, T 1): % — ?/J of J -complexes whenever i < j.
Thus we have a direct system (%;; #; j) in the 1-tame category of 7 -
complexes.
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Proposition. The direct system (%,;; #; j) is abundant.

Proof. Since the U, are natural, each y, maps sk, (U,) bijectively to
T ; in particular, condition (i) of 4.6 holds. That condition (ii) holds is
immediate from the proof of 4.3. Condition (iii) is trivial in this case
since we have I', =T and w, = K= 1 forall i and j. q.e.d.

A key step in the proof of Theorem 2.1 will be to show that the universal
cover of the .7 -complexes in a certain abundant direct system again form
an abundant direct system. This will follow from Proposition 4.8 below,
which will also be used in §11.

4.8. Let A be a subgroup of R, let .7 be a A-tree with symme-
try, and let (27, 5, ;) be a direct system in the k-tame category of 7 -
complexes for some k > Qv Suppose that we are given consistent base ver-
tices v; for the 27. Let 2] denote the universal cover of 2] with respect
to v;. By 3.15, the jfj induce k-tame T-maps }; Z‘* QA’?, so that we
have a direct system (é‘? , };) in the k-tame category of .7 -complexes.
We shall call it the universal cover of the direct system (27, %) with
respect to the v, .

Proposition. Let A be a subgroup of R, let 7 = (T, T, p) be a A-
tree with symmetry, and let (Z,, 5, j) be an abundant direct system in the
0-tame category of  -complexes. Let X; denote the underlying (geomet-
ric) simplicial complex of Z,, and let v, € X, be consistent base vertices.
Suppose that for n =0, 1, we have h_n)n n,(X;,v,) =0. Then the univer-
sal cover of (27, 5, ;) with respect to the v, is an abundant direct system.

Proof. Let 2, = (X;,T;,p;, ¢;, w;) and )fj = (Jij,kij). Let V;
denote the component of X; containing v;.

To check condition (i) of 4.6, consider an arbitrary point x € 7. Since
&, % j) is abundant, there exist an index / and a vertex v of X, such
that ¢,(v) = x. Since lim 7y(X;, v;) = 0, there is an index i >/ such
that v € V;. If 0 is a vertex of fi such that p,(9) = v, then J&i(ﬁ) =X.
This proves (i).

Next we verify (ii). We are given an index i, a parametrized segment
y in RT, and two vertices @, and @, of ;Yv'i such that &i(ﬁt) = y(t) for
t=0,1 Set v, =¢(d,). Since (Z,.7;) is abundant, there exist an
index k > i and a O-tame lift § of y to X, such that $(t) = J, (v,)
for £ =0, 1. Since lim my(X;, v;) = 0, there is an index k' > k such
that ¢, (7([0, 1])) C V.. Hence we may assume k to be chosen so that
(10, 11) C V.
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Now let 3, be alift of 7 to X, such that §,(0) = 9. Set ¥) = y,(1).
Then 1‘); and ¥, are in the same fiber in the covering space X, of V.
Since lim 7,(X;, v;) = 0, there is an index j > k such that ka(z*)i) =

Jij(0,). The path j = I (7o) is a O-tame lift of y to )?j such that
p(t) = Jij(v,) for ¢t =0, 1. This establishes (ii).

To prove (iii) we first show that the natural map w: limI'; — T is
surjective. Consider an arbitrary element g € I'. Since (27, 7, ;) is abun-
dant, there is an index / such that g = w,(g;) for some g, in T,. Since
li_r)n ny(X;, v;) = 0, thereisanindex k >/ suchthat g, = k; (g,) belongs
to the stabilizer G, of ¥, in I'; . Since by 3.4 the natural homomorphism
_01: lz,'—> r, has image G/, it follows that g € a),(l~“,) ; this shows that w
1S surjective.

It remains to prove that w is injective. Consider an index / and an
element g of I'; such that w,(g) = 1. Set g = 6,(g) € G,. Since
(#7, ;) is abundant, there is an index k > i such that k,(g) = 1.

~

Hence K, (&) is a covering transformation in the covering space X, of
V, . Since h_n} n,(X;, v;) =0 it follows that fcij(g) =1 forsome j > k.
Thus w is injective. q.e.d.

4.9. Proof of Theorem 2.1. We are given a A-tree with symmetry
I =(T,T, p), where A CR has Q-rank 1. Let us write A as a union
Ui2, L, , where each L, is an infinite cyclic subgroupof A and L, C L,_, .
We shall denote the positive unimodular element of L; by 4. Using the
L; we can define, as in 4.7, a direct system (%;; #Z j) in the 1-tame cate-
gory of 7 -complexes, where %, = (U, T, p;, ¥;, 1) and ij = (H;, 1).
Recall that this system is indexed by the positive integers, that the U, are
1-dimensional, and that the system is abundant by Proposition 4.7.

As we observed in (4.1), we can choose consistent base vertices v; in

the U;. In terms of the v; we can form the universal cover (?Z ; ZF/Z.) of
%, Z, j) , which is again a direct system in the 1-tame category of 7 -

complexes. Let us write @, = ((7[, I~“i, p;i» ¥, @;) and ZA{? = (ﬁij,
According to the definitions, (Ui ,T ;» P;) 1s the universal covering space
of (U, T, p;), where V, is the component of U, containing the vertex
v,. Foreach i welet =, = (p,, 0,): (U,,T,, p,) = (U,, T, p,) denote the
covering projection. Note that since the group homomorphism underlying
each 7, is the identity, we have @, = 0,.

By 4.3 and 4.5 we have lim,_, _x,(U;) =0 for n = 0, 1. Hence by

1—00

4.8, the direct system (?Z ; /‘Z?./j) is abundant.

;).
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The (NJI. are 1-connected 1-complexes. Hence each T, = sko(f/i) isa Z-
tree under the standard metric in which the distance between two vertices
? an @ is 1 if and only if ¥ and W are joined by an edge. Multiplying
this standard metric by 4, we obtain a metric d; that makes T, an L-
tree. The action p; of F on U restricts to an action on 7. Thus

I, = (T, Fl, p;) is an L -tree with symmetry.
Smce y;: U, —» RT maps sk,(U;) into T, the map y, restricts to
amap f;: T, — T for each i. Likewise, since the H, ; are 1-tame and

hence O-tame, fI i restricts to a map f 1T, — Tj .

It follows from the definition of a 9 -map that (;,@;) and (H, i ;)
are morphisms of complexes with symmetry. Hence /; (f;> @; ;) and
/ ;= (f; T @, j) are morphisms of sets with symmetry.

We claim that f; is a morphism of A-pretrees, so that / is a morphism
of A-pretrees with symmetry. Since T, is defined from the 1-connected
1-complex l7,. , this amounts to saying that if two vertices ¥ and W are
joined by an edge in l7i, then d(y,(0), y,(w)) = 4,. Butif ¥ and w
are joined by an edge, the vertices v = p,(9) and w = p,(@) in U,
are joined by an edge in U,;. By the definition of U, this means that
d(y;(v), y;(w)) = d(y,(0), y,(w)) is a unimodular element of L, so
that d(y,(9), y,(@)) = 4,. This proves the claim.

We claim that the maps f, % T, — Tj are also morphisms of A-pretrees,
so that the /£, = (f};, @;;) are morphisms of A-pretrees with symmetry.
To prove this 1t is enough to show that if two vertices ¥ and W are joined
by an edge in (71" then the distance in 7 between f;(v) and f (w) is
A;. Let us write 4, = ni i where n is a positive integer. We must show
that the unique simplicial arc in ﬁj joining ﬁi j(ﬁ) to I:f,. (W) consists of
exactly n closed 1-simplices. _

Let 7 denote the closed edge in U, joining 0 to w. Set v = p,(?),
w = p;(w), and 7= p,(T). It follows from the definition (3.12) of H;
that H,;(7) is the image of the standard lift to U f of a parametrlzatlon
of the segment [v, w] C RT. Hence H,;(7) is a simplicial arc in U,
consisting of exactly n closed 1-simplices. It follows that Flij(%) is a

simplicial arc in (71‘ consisting of exactly »n closed 1-simplices. This proves
the claim.

We now have a direct system (7; / j) of A-pretrees with symmetry,
and we have morphisms //: 7 — 7 . We shall prove the first assertion
of Theorem 2.1 by showing that (J7; / ;) converges strongly and that its
limit can be identified isomorphically with 7 in such a way that the /

1
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are the canonical morphisms. To do this we must check that conditions
(1)-(iv) of 1.26 are satisfied.

Condition (i) holds since /‘Z?j isa J -map for 1 <i < j. The verifica-

tion of conditions (ii)-(iv) uses the fact that the direct system (?Z. ; /‘%f/j) is
abundant. Indeed, conditions (ii) and (iv) of 1.26 follow respectively from
conditions (i) and (iii) of Definition 4.6. In order to check condition (iii)
of 1.26 we must consider an integer i > 1 and two points 7, 9, € T;,
which we may regard as vertices of l~/l.. For t = 0, 1, set v, = p,(9,)
and x, = ‘5;'(17:) = ¢,(v,). Let y be a parametrized segment in R7 with
y(t) = x,.

By condition (ii) of 4.6, there exist an index j > i and a O-tame lift
7 of y to U, such that #(¢) = H;(,) = f;,(8,) for t =0, 1. The path
p;o¥ is a O-tame lift of y to U;. By 3.11, it must be the standard lift.
Hence the arc p,(7([0, 1])) C U; is made up of » closed simplices, where

n is the nonnegative integer defined by d(x, y) = ni e Therefore the arc

([0, 1)) C U f is also made up of n closed simplices. By the definition
of the metric in T this means that d(f;;(9,), f;;(9,)) =nd; =d(x,y).
This establishes condition (iii) of 1.26 and proves the first assertion of
Theorem 2.1.

To prove the second assertion of the theorem, we recall that @, = 6,,
and that by 3.4, the kernel of 6, is the group of covering transformations
of (NJi. Thus ker @, acts freely on (~Ji and hence on RT.

5. Measured foliations

It was recognized by the authors of [14] that Thurston’s theory of mea-
sured foliations on surfaces gives a natural class of group actions on R-
trees. As we explained in the introduction, the actions arising from mea-
sured foliations will play a central role in the structure theorem for group
actions on A-trees where A C R and Q-rank 2.

It will be necessary to rework some of the material developed in [14].
One reason is that the presentation in [14] is not in terms of measured
foliations, which for our purposes are the natural objects, but in terms of
measured geodesic laminations; these objects are in a sense equivalent to
measured foliations, but the equivalence is nontrivial. A second reason for
reworking the material in [14] is that we need it in a more general context:
our foliations are defined not on 2-manifolds but on spaces that we call
“singular surfaces”, which are locally Euclidean of dimension at most 2
except at isolated points. We begin with a discussion of such spaces; for
convenience we shall take them to be triangulated.



DENDROLOGY OF GROUPS IN LOW Q-RANKS 647

5.1. If § is an i-simplex in a geometric simplicial complex Y , we
define the valence if § (in Y) to be the (cardinal) number of (i + 1)-
simplices in Y of which ¢ is a face. The valence will be denoted val, (J) .
Since our simplicial complexes are not assumed to be locally finite, val,, (d)
may be a finite or infinite cardinal. A simplex ¢ is said to be isolated (in
Y) if val,(6) =0, and free (in Y) if val, () =1.

A geometric simplicial complex X will be called a (triangulated) singu-
lar surface if ¥ has dimension at most 2 and if every 1-simplex of X has
valence O or 2.

If X is a singular surface, then the link of an arbitrary vertex of X isa
complex of dimension < 1 in which every O-simplex has valence 0 or 2.
Hence the components of the link of a vertex are points and combinatorial
1-manifolds. The link may have infinitely many components, and the 1-
manilfold components may include complexes homeomorphic to either R
or S .

Thus a singular surface X is locally Euclidean of dimension of most 2
at all points except vertices.

If the link of every vertex of X is s! (so that X is locally Euclidean
of dimension 2) we call £ a (triangulated) surface. If the link of every
vertex is homeomorphic to either S’ or R we call £ a (triangulated)
surface with points at infinity.

If X is a surface with points at infinity, and if we let E denote the set of
points at infinity of X—i.e., vertices of £ whose links are homeomorphic

to R—then }% =X — E is a 1-connected 2-manifold; we call it the interior
of X.

5.2. Let x be a point of singular surface X. Let S denote the closed
star of x, i.e., the union of all the closed simplices of X containing x.
By a local branch of ¥ at x we shall mean the closure of a connected
component of S — x.

If x is a vertex of X, we may identify S with the cone over the link of
x . Hence in this case each local branch of X is identified with the cone
over a connected component of the link of x. Thus a local branch at any
vertex x is either a closed arc with x as an endpoint, a closed disk with
X as an interior point, or a homeomorphic copy of {0} U (D2 nH? ) C R’ ,
where D’ is the closed unit disk and H” is the open upper half-plane.
(The latter set is the cone over R; here x corresponds to 0.)

If x is not a vertex, there is only one local branch at x, namely the
closed star of x itself. This unique local branch is PL homeomorphic to
a closed disk, with x an interior point.
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In any case, the closed star of a point x is the union of all local branches
at x, and any two local branches intersect precisely at x .

5.3. Now suppose that the singular surface X is 1-connected. We
define a global branch of X to be a subcomplex which is the closure of a
connected component of X — sk (X). (Thus X is the union of its global
branches, unless it consists of a single vertex.) It follows from the 1-
connectedness of X that the global branches are 1-connected, and that
any two global branches meet in a single point. The 1-connectedness of
X also implies that for any vertex x of X and any global branch %
containing x , the link of x in % is connected. It follows that the link of
Xx in & is a connected component of the link of x in X, and therefore
that the star of x in % is a local branch of x in X.

Hence every global branch of a 1-connected singular surface is either a
closed 1-simplex or a 1-connected surface with points at infinity.

5.4. For future reference we insert a few remarks here about groups
acting on surfaces with points at infinity.

Let X be a 1-connected triangulated surface with points at infinity and
suppose that a group I' admits an effective simplicial action on X such
that X is finite mod I'. Then I is clearly finitely generated. The interior

o
X of X is clearly I'-invariant. It is easy to show that the action of I" on

o o
X must be properly discontinuous, in the sense that each point of £ has a
neighborhood V such that gV NV =@ for all but finitely many g €T.

If x is a vertex belonging to % , so that the link of x is a triangulated
l-sphere L, then the stabilizer ', acts faithfully and simplicially on L,
and is therefore a finite cyclic or finite dihedral group. Similarly, if x is
a vertex in E, then I'  acts faithfully and simplicially on a triangulated
real line L; and L is finite modI', since I is finite modI'. Thus I',
is an infinite cyclic or infinite dihedral group.

By a planar discontinuous group we shall mean a pair (I', &), where
I is a group, & is a (possibly empty) family of cyclic and dihedral sub-
groups of I which is closed under conjugation, and I" admits an effective
simplicial action on some 1-connected surface with points at infinity such
that % is the set of all subgroups of I' that are stabilizers of simplices.
We shall often omit & from the notation and say that I" is a planar dis-
continuous group. The finite subgroups in & are called elliptic subgroups
of I'; the infinite subgroups in % are parabolic subgroups.

For a classification of planar discontinuous groups, see Chapter 4 of
[17].
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We now turn to the discussion of measured foliations on singular sur-
faces. Our definitions are straightforward generalizations of those given
in [5] for the case of (nonsingular) surfaces except that we work in the
piecewise-linear (PL) category.

5.5. let X be a topological space. By a decomposition of X we
mean a collection of nonempty, pairwise disjoint subsets whose union is
X.If & isadecomposition of X, every subset Z of X has an induced
decomposition consisting of the path components of intersection of Z with
the sets in <.

Let Z, and Z, be polyhedra in simplicial complexes X, and X, ; thus
Z, is a subcomplex in some subdivision of X;. Let %, be a decomposition
of Z,. We shall say that .#] and £} are piecewise-linearly homeomorphic
if there is a PL homeomorphism of Z, onto Z, carrying the elements of
£ onto those of .7 .

Let Z be a polyhedron in a simplicial complex. A decomposition of
Z will be called a product decomposition if it is PL homeomorphic to the
decomposition of some product complex Ax B by the sets Ax{b} for b €
B . The spaces A and B, which are determined up to homeomorphism
by the decomposition, will be called the divisor and quotient of the product
decomposition. The projection ¢ = g,: Z — B is determined modulo PL
homeomorphisms of B.

5.6. Let R be a connected combinatorial 1-manifold and let C de-
note the cone over R. Let K be a discrete subset of R such that every
component of R — K is relatively compact. Suppose that K has cardi-
nality k > 2; note that k is finite if R ~ S' and k = R, if R~ R.
The cone over K is a subcomplex P of C. If D is the closure of any
component of C — P then D is PL homeomorphic to a closed disk, and
DN P is aclosed arc; thus D has a product decomposition £, in which
DN P is a single element, and the quotient is an arc. There is a unique
decomposition . of C which induces the decomposition -#7, on D for
each component D of C — P. This decomposition £ = % is uniquely
determined by k up to PL homeomorphism.

Let x be a point of a polyhedron Z . A decomposition of Z will be
called a standard k-prong decomposition centered at x if it is PL homeo-
morphic to % , under a PL homeomorphism that maps x onto the cone
point in ., (c.f. figure, next page).

Note that a standard 2-prong decomposition is simply a product decom-
position in which the divisor and quotient are arcs.

A decomposition of Z will be called a standard decomposition centered
at x if either (i) it is standard k-prong decomposition centered at x for
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/S e~

k=¥,

some k > 2, or (ii) Z is a closed arc and the elements of the decompo-
sition are points.

5.7. Let X be a singular surface. A decomposition # of X will be
called a foliation with nondegenerate singularities, or more briefly a folia-
tion, if for every point x € f and every local branch g at x, there is a
neighborhood Z of x in B whose induced decomposition is a standard
decomposition centered at x . We call Z a standard neighborhood. (Our
standard neighborhoods generalize the domaines de cartes of [5, Exposé
5].) If P denotes the element of the induced decomposition of Z con-
taining x, the closures of the components of Z — P are called sectors in
the standard neighborhood Z of x. The induced decomposition of each
sector is a product decomposition. The components of P —{x} are called
prongs. (Thus if dim § = 1, there are no prongs.)

A point of X will be called regular (with respect to .# ) if it has a neigh-
borhood in ¥ whose induced decomposition is a product decomposition;
otherwise it will be called singular. The singular points form a discrete
closed subset of X.

58. If & is a foliation of a singular surface X, an element of the
decomposition ¥ will be called a /eaf. On the other hand, an element of
the induced decomposition of the set of regular points of £ will be called
a classical leaf. In the case where X is a surface, our notion of classical
leaf corresponds to the notion of “leaf” used in [5].

59. Let ¥ be a foliation of a singular surface £. A path y in X is
said to be monotonic (with respect to ¥ ) if |y| is contained in a subset Z
of ¥ whose induced decomposition is a product decomposition Z = Ax B
and g, oy is a monotonic map of [0, 1] into B (in the sense that the
inverse image of every point in B is a connected subset of [0, 1]). If
g, o7 1s one-to-one we shall say that y is strictly monotonic.

A path y in X is piecewise monotone if some reparametrization of y
is a composition of finitely many monotonic paths. An arc 4 C X is
Diecewise monotonic if a parametrization of A4 is piecewise-monotonic.
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5.10. Now let D be a compact subset of ¥ whose induced decom-
position is a product decomposition with quotient B, and let n be a PL
homeomorphism of B onto a closed interval in R. Then there is a non-
negative real-valued function u, on the set of all monotonic paths in D
which assigns to each monotonic path y the Euclidean length of the in-
terval 7(q,(|7])). A function on the set of monotonic paths in D will be
called a standard transverse measure in D if it has the form Iy for some
PL homeomorphism 7.

Suppose now that % is a foliation (with nondegenerate singularities)
of the singular surface ¥ and that u is a function that assigns a nonneg-
ative number u(y) € A to each path which is piecewise-monotonic with
respect to # . The pair (¥ , u) is called a measured foliation of X if the
following conditions hold:

(i) u is additive under composition of piecewise-monotonic paths;
and

(i) for every point x € X and every local branch f# at x, there exist
a standard neighborhood Z of x in g such that for each sector
D of Z , the restriction of u to the set of monotonic paths in D
is a standard transverse measure.

Let (¥, u) be a measured foliation on X. Then a path y in X is
contained in a leaf of & if and only if u(y) is defined and equal to
0. For this reason we shall generally suppress .# from the notation and
denote the measured foliation by u.

It is clear that the measure of a piecewise-monotonic path with respect
to a measured foliation is invariant under reparametrization. In particular,
a piecewise-monotonic arc A has a well-defined measure u(A).

5.11. It is often convenient to define a measured foliation on a sin-
gular surface X by local data. Suppose that for every point x of X and
every local branch # at x we are given a neighborhood Uy of xin #,a
standard decomposition 57/; of Uy, and a standard measure u, on each
sector D of U 5 Suppose that for any two points x, x", any two local
branches B and B’ at x and x’ and any two sectors D and D’ in Uy
and U 5> the following compatibility conditions hold:

(1) ,7” and ,Z, induce the same decomposition of DN D', and
(ii) for any monotonic path y in DN D’ we have Up(7) = up (7).

Then there is a unique measured foliation of ¥ which induces the decom-
positions 973 and the measures u, forall g and D.
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5.12. By a measured foliated singular surface we shall mean a pair
(X, u), where X is a singular surface and u is a measured foliation. In
particular we have the notion of a measured foliated surface, and of a
measured foliated surface with points at infinity.

In arguments involving measured foliated surfaces we shall often quote
results from [5]. This is legitimate because the arguments given in [5]
for the smooth category are equally easy to interpret in the PL category.
(Alternatively, one could show that every PL measured foliated surface
can be smoothed.)

5.13. Let (X, u) be a measured foliated singular surface. Two
piecewise-monotonic paths y and 7’ in X will be said to be equivalent if
(i) u(y) = u(y") and (ii) for any leaf L of (X, u) we have LN|y| # D if
and only if LN|y'|#@.

5.14. Let (X, u) be a measured foliated singular surface, and let
y:[0,1] — X be a path. We shall say that y is taut if y_'(L) is a
connected subset of [0, 1] for every leaf L of (X, u). It is easy to see
that any taut path is piecewise monotonic.

5.15. Our next result, Lemma 5.16, gives a local characterization of
taut paths up to equivalence; it depends on the following definition, which
generalizes the one given in [5, Exposé 5].

Let y be a path in the measured foliated singular surface (X, u). We
shall say that y is quasi-transverse if it has a reparametrization y, *---*y,,
where each y; is either a strictly monotonic path or a parametrized arc
in a leaf, and for each i < n there exists an & > 0 such that one of the
following alternatives holds:

(i) »([1 —¢&,1]) and y,, ([0, &]) lie in distinct local branches at
7:(1); or
(ii) there is a standard neighborhood Z of y,(1) in a two-dimensional
local branch of Z such that
(a) »/([1—¢,1]) and y,,,([0, €]) are interior to different sectors
of Z or
(b) one of y,([1—¢,1]) and y, ([0, &]) lies in a prong of Z
and the other is interior to a sector not containing that prong.

It is obvious that any quasi-transverse arc is piecewise monotonic.

5.16. Lemma. A piecewise-monotonic path in a I-connected measured
JSoliated singular surface (X, u) is taut if and only if it is equivalent to a
quasi-transverse arc.

Proof. Let us say that a piecewise-monotonic path is in standard po-
sition if it is PL and has the form y = y, *--- x y,, where each y, is
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either a strictly monotonic arc or an arc whose interior is contained in a
classical leaf. The integer n will be called the complexity of y. Given any
piecewise-monotonic path, we can obtain an equivalent path in standard
position by approximation and reparametrization. On the other hand, it
follows from the definitions that a taut path which is in standard posi-
tion, and has minimal complexity among all paths in its equivalence class,
is a quasi-transverse arc. Hence any taut path is equivalent to a quasi-
transverse arc.

To prove the converse, it suffices to show that every quasi-transverse arc
y istaut. If y is not taut then there exist a subarc 8 of y,aleaf L,andan
arc a C L having the same endpoints as f#, such that |y|nja| = ({0, 1}).
Since X is a l-connected singular surface, the PL simple closed curve
|a|U|B| bounds a disk D C X.

Let E be the disk obtained by doubling D along |#|. (Thus E is
the union of two copies of D, with the two copies of |f| identified.)
Then E has a natural decomposition: it is the unique decomposition
that induces on each copy of D the decomposition that is induced by the
foliation of X. Likewise, the 2-sphere S obtained by doubling E along
its boundary has a natural decomposition. Since |a| is contained in a leaf
and B is quasi-transverse, the natural decomposition of F is a foliation
with nondegenerate singularities. But it follows from [5, Exposé 5, §1.6]
that no such foliation exists on a 2-sphere. (This argument is a slight
generalization of the one given on p. 77 of [5], where |a| is assumed to
be contained in a classical leaf.)

5.17. Lemma. Ina l-connected measured foliated singular surface, ev-
ery quasi-transverse path is an arc.

Proof. Let y be a quasi-transverse path in (X, u). It is clear from the
definition that the map y: [0, 1] — X is locally one-to-one. Hence if y is
not an arc there is a subpath 3’ of y which is a simple loop; that is, we
have y'(0) = y'(1), but y|(0, 1) is one-to-one. Now we argue as in the
proof of 5.16: the 1-sphere |y| must bound a disk D C X; doubling D
along its boundary we obtain a 2-sphere whose natural decomposition is a
foliation, and again we have a contradiction to [5, Exposé 5, §1.6]

5.18. Proposition. Let L, and L, be leaves in a 1-connected mea-
sured foliated singular surface (X, u). Let y and y' be taut paths with
y(i), y'(i) €L, for i=0, 1. Then y and y' are equivalent.

Proof. According to 5.16 we may assume that y and y' are quasi-
transverse arcs. Let us first consider the case in which [y|N|y’| = &. For
i=0,1,let a;, be an arc in L; joining y(i) to »'(i). The PL 1-sphere
la,|U|7|U e, |Uy'| must bound a disk R C Z; doubling R along [7[U]y|
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gives an annulus A4, and doubling 4 along its boundary gives a torus 7 .
The natural decomposition of T is a foliation with nondegenerate singu-
larities. By [5, Exposé 5, §1.6], T has no singularities. Hence the natural
decomposition of A is a foliation in which the boundary curves are leaves;
according to [5, Exposé 6, §1.1], this is a product decomposition. There-
fore the induced decomposition of R is also a product decomposition; it
follows at once that y and y’ are equivalent in this case.

Now let us replace the assumption |y|N|y’'| = @ by the weaker assump-
tion that |y| and |y’| have disjoint interiors. For i = 0, 1, the endpoints
(i) and y'(i) have neighborhoods in |y| and |y'| which are respectively
contained in sectors D, and D; in local branches of Z. If D, # Dj, then
77 is a quasi-transverse path; by 5.16 and 5.17 it is taut. Since 7 %y’
has its endpoints in the leaf L,, it must be entirely supported in L, ;
hence y and y’' are supported in L, and are therefore equivalent. Thus
we may assume that D, = Dj; similarly we may assume that D, = D|.
This allows us to approximate y and 7' by equivalent quasi-transverse
arcs which are disjoint from each other, thus reducing the argument in
this case to the case already proved.

Finally we turn to the general case where y and 7' are arbitrary quasi-
transverse arcs. We may assume that |y| and [y’| meet in finitely many
subarcs; hence after reparametrization we may write y =y, *---xy, and
Y =y, %y, , where for each i the arcs |y,| and || either have
disjoint interiors or are equal. By the case already proved, y; and y; are
equivalent. Hence y and y’' are equivalent.

5.19. A measured foliated singular surface (X, u) will be called com-
plete if for every piecewise-monotonic path y in Z there is a taut path y,
such that u(y,) < u(y) and y,(i) = (i) for i =0, 1. (By 5.16, we may
take y, to be a quasi-transverse PL arc.)

Now consider a measured foliated singular surface (X, u) which is 1-
connected and complete. Let L and L' be leaves of (X, u). By com-
pleteness, there exists a taut path joining a point of L to a point of L.
By 5.18 any two such paths have the same length. We define the distance
between the leaves L and L' to be the length of a taut path joining a
point of L to a point of L.

It follows from 5.18 and the definition of completeness that the distance
between L and L' is the minimum length of any piecewise-monotonic
path joining a point of L to a point of L’.

It is therefore clear that with this definition of distance the set 7 = T#
of leaves of (X, u) is a metric space. We call T the leaf space of (X, u).
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There is a natural continuous map y = x u X — T which maps each point
to the leaf containing it.

5.20. Theorem. Let (X, u) be a measured foliated singular surface
which is complete and 1-connected. Then T = T, is an R-tree. Ify
is a taut path in X with endpoints u and v, then X, 07 isa (weakly)
monotone map of [0, 1] onto the segment [x”(u), x#(v)]T. Furthermore,
if V is any nonempty subset of T containing all the singular points of u,
then T, = x#(V) is an R-pretree.

Proof. Set x = X, - Let & denote the set of all subsets of T of the
form x(|y|) where y is a taut path in X. We shall show that every set in
® is a segment and that & satisfies conditions (1), (23) and (3) of 1.2.
This will prove that 7 is an R-tree.

Let y be any taut path in £. We define a map f:[0, 1] - R by
f(t) =1(y|[0, #]). The definition of the distance function on 7" shows that
|f(s) = f(t)| =d(x(s), x(¢t)) forany s, t€[0, 1]. Hence there is a well-
defined isometric embedding f of x(|y|) into R given by f(x(7(?)) =.
f(t). Thus x(|y|) is a segment. This shows that the sets in & are seg-
ments.

To check condition (1) of 1.2, we consider two points x, y € T. By
completeness there is a segment in & having x and y as endpoints. It
follows from 5.18 that such a segment is unique. This establishes condition
(1).

Condition (2) follows from the observation that a subpath of a taut
path is taut.

To prove (3) we consider three points x, y, z € T such that S(x, y)n
Sy, z) ={y}. Thus if we write x = y(¥), y = x(v) and z = y(w), and
if y and { are taut paths joining # to v and v to w respectively, then
the only leaf meeting both |y| and |{] is the leaf containing v . It therefore
follows directly from the definition of tautness (5.14) that y x { is taut.
Hence S(x, z) = x(ly «{|) = S(x, y)US(y, z), and (iii) is established.

This completes the proof that T is an R-tree. It also follows from this
proof that if y is a taut path in ¥ with endpoints u and v, then X, 07
is a monotonic map of [0, 1] onto [x#(u) , X,,(U)]T-

To prove the last assertion of the proposition, we must show that if x,,
X,, X, and y are points of 7 such that [x,, x;]1N[x,, x,] =[xy, ¥],
and if the x; belong to x”(V) ,then y € xﬂ(V) . Set x; = xﬂ(vi) , where
v; € V. By completeness, there are quasi-transverse arcs , joining v, to
v, for i =1,2. We have xﬂ(lyl.l) = [x,, x;]; hence x”(y,.(z,.)) =y for
some ¢, € [0, 1].
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Assume that y ¢ x#(V). Then we have 0 < ¢, <1 for i=1,2,and
the leaf containing the y,(z;) contains no singular points of the foliation.
Hence if a is an arc in this leaf having the y,(¢,) as endpoints, o has a
neighborhood Z in X whose induced decomposition is a product decom-
position. Hence for some & > 0, the y,|(z,—¢, t,+¢) are strictly monotone
in Z . It follows that y is an interior poirt of [x,, x,;]1N[x;, X,]; this is
a contradiction. q.e.d.

5.21. A foliation % of a singular surface X will be called tame if
no simplex of X is contained in a leaf, and if for every 2-simplex J of
X, the decomposition of intd induced by ¥ is a product decomposition
in which the elements form a parallel family of open line segments in the
affine structure of J . In particular, if .# is tame then every singular point
of u is a vertex of X. A leaf of a tame foliated singular surface will be
called O-tame if it contains at least one vertex.

Now let A be a subgroup of R. By a A-foliated singular surface we shall
mean a measured foliated singular surface (X, #) such that the underlying
foliation of u is tame, and such that for any taut path y in ¥ whose
endpoints are vertices, we have u(y) € A. Note that the notion of an R-
foliated singular surface is slightly stronger than the notion of a measured
foliated singular surface, since tameness is built into the definition.

5.22. If (Z, u) is a A-foliated singular surface which is 1-connected
and complete, then it follows from 5.20 and 5.21 that T, = x#(skO(E)) is
a A-pretree. We shall call T} the preleaf space of (X, u).

The tree Tﬂ is an R-completion of 7. Indeed, it follows from the
definition of a tame foliation that every point lies on a monotone arc
which is contained in a simplex and has its endpoints at vertices. Hence
by 5.16 and 5.20, every point of Tﬂ lies in a segment whose endpoints are
in 7.

5.23. Suppose that (Z,, u) and (X, u,) are A-foliated singular
surfaces. By a morphism from (X, ;) to (L,, #,) we will mean a 0-
tame map W: X, — X, with the property that every taut path y in X,
may be reparametrized as a composition y, *--- %y, , where

(1) 7,(1) lies in a O-tame leaf for i=1,--- ,n—1, and
(i) each path Woyp, (1 <i < n) istautin X, and has the same
length as 7. .

]

This defines the category of A-foliated singular surfaces.

If (£, u) is any A-foliated singular surface, we denote by Aut(Z, u)
the group of automorphisms of (X, u) in the category of A-foliated singu-
lar surfaces. An element of Aut(X, u) is a O-tame self-homeomorphism
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of ¥ which maps each piecewise-monotonic path in I to a piecewise-
monotonic path of the same length. In particular an automorphism maps
leaves to leaves. We denote by AutS(Z, u) the subgroup of Aut(X, u)
consisting of those automorphisms which are simplicial self-homeomor-
phisms of X.

By 1.15, we have a category of A-foliated singular surfaces with sym-
metry. An object in the latter category is a quadruple . = (£, u, I', p)
consisting of a A-foliated complex and an action of a group by automor-
phisms. If I' acts by simplicial automorphisms, i.e., if p(I") C AutS(X , 1),
we call & a A-foliated singular surface with simplicial symmetry. We re-
gard such objects as forming a full subcategory of the category of measured
foliated complexes with symmetry (cf. 3.3).

5.24. Proposition. Let (X, u,) and (X,, u,) be A-foliated singular
surfaces which are complete and I-connected. Let T, denote the preleaf
space of (Z,, L;), and set x; = Xy, X, - T, Let W:X,— X, bea0-
tame map. Then W is a morphism from (X, u,) to (X, u,) if and only
if there is a morphism of A-pretrees f: T, — T, such that the diagram

w
L, — I

a |«

RT, L, RT,
commutes. Furthermore, if W is a morphism then f is uniquely deter-
mined by W .

Proof. First suppose that W is a morphism. If y is a path in a leaf
of X, then the definition of morphism implies that Woy isa piecewise-
monotonic path of length 0 in X, ; thus W maps each leaf of X into a
leaf of X,. Hence there is a (unique) map of sets f: RT, — RT, such
that the diagram

Zo_u_/_’zl

o u|
RT, —L— RT,

commutes. Since the morphism W is by definition O-tame, it maps
sky(Z,) into sky(Z,); hence f restricts to a map f[:T,—T,.
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To prove that f is a morphism of A-pretrees, we consider any non-
degenerate presegment [x,y] C T,. We may write x = x,(v) and
y = xo(w) for some vertices v and w of X,. By completeness, there
is a taut path y joining v to w. We may take y to have the form
7, *---*y,, where the y; satisfy conditions (i) and (ii) of 5.23. The seg-
ment [x, y] = x,(|7]) is the union of the subsegments o, = x,(|7;]) . If {
is any subpath of |y,| then W o( is taut, and since W is a morphism,
W o { has the same length as {. Hence f|o; is an isometry for each i.
This shows that f is a morphism. _

A similar argument shows that f is a morphism of R-trees. Since f
extends f it follows that f = Rf. The proves the existence of a morphism
f making the diagram in the statement of the proposition commute. The
uniqueness of f is clear.

Conversely, suppose that there is a morphism f such that the diagram
in the statement of the proposition commutes. Let y be any taut path in
Z,. Then x,oy is a monotonic map of [0, 1] onto a segment [x, y]RT0 .
Since f is a morphism of A-pretrees, we may write [x, y]M0 as a union of
subsegments [x;_,, x;] for i=1,--- ,n,where x,=x, x, =y, X, €T
for 0<i<n,and f|[x;_,, x;] is an isometric embedding for 1 <i < n.
Furthermore we may choose the x; so that [x,_,, x,]N[x;, x;,,]1 = {x;}
for 0 < i < n. Let us reparametrize y in the form p, *---xy, so that
X(7;(1)) =x; for i=1,---, n. Then the y, are at once seen to satisfy
conditions (i) and (ii) of 5.23. Hence W is a morphism. q.e.d.

The morphism f given by the above proposition will be said to be
induced by W .

5.25. A A-foliated singular surface with simplicial symmetry, . =
(Z, u, T, p), will be said to be uniform if X is finite modI.

Proposition. Any uniform l-connected R-foliated singular surface with
symmetry is complete.

5.26. The main step in proving 5.25 is the

Lemma. Let ¥ = (X, u, T, p) be a uniform, 1-connected R-foliated
singular surface with points at infinity. Let x, y and z be points of X,
and suppose that there exist piecewise-linear quasi-transverse arcs o and
B joining z to x and to y respectively. Then there is a piecewise-linear
quasi-transverse arc y joining x to y, with u(y) < u(a) + u(B).

Proof of Lemma. The proof is based on the results on [5]. The first
step is to show that the measured foliated singular surface (X, x) has
a good atlas. We define the notion of a good atlas as in [5, Exposé 5],
using standard neighborhoods in place of domaines de cartes (cf. 5.7).
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It is observed on pp. 73-74 of [5] that every compact measured foliated
surface has a good atlas; we shall produce a good atlas on (X, u) by lifting
one from an appropriate compact quotient surface.

We may assume that the action of I" on X is effective. Thus we may
regard I' as a planar discontinuous group. It follows from Theorem 4.10.1
of [17] that T" is residually finite and has a torsion-free subgroup [, of
finite index. The subgroup I'; acts freely on the interior }OZ (see 5.4). Set
E=Z-%.

We assert that I'; has a finite-index subgroup I'; such that for every
x € E there are at least two orbits for the action of the stabilizer I’ NT
on the set of prongs in a standard R -prong neighborhood of x . Indeed,
let S be a finite complete set of orbit representatives for the action of
I, on E. For each x € § we choose two distinct prongs P, and P;
in a standard neighborhood Z, . The infinite cyclic or dihedral group
I', contains only finitely many elements that map P_ to P)'C . Hence by
residual finiteness there is a normal subgroup I'; of I'; such that for any
x€S andany y eI, NT, wehave y- P, # P,. Itis clear that I', has
the asserted property.

The first barycentric subdivision of X induces a triangulation of the
quotient set X/I',. Since the action of I', on Y is free, IT, is a
compact triangulated surface. The foliation of X induces a decomposition
of Z/T’,; we claim that this is a foliation of X/I'; . Indeed, any point of
2’ has the form p(x), where x € Z'US. If x € £’ then the induced
decomposition of a small neighborhood of p(x) is PL homeomorphic
to the induced decomposition of a small neighborhood of x. On the
other hand, if x € S, the defining property of I', implies that some
neighborhood of p(x) has a standard k-prong decomposition for some
k > 2. Thus the decomposition of Z/I"; is indeed a foliation.

It is clear that the transverse measure y induces a transverse measure
7 on the induced foliation of X/, . According to [5], (£/I';, &) has a
good atlas. Clearly (X, u) inherits one.

Now suppose that we have points x, y and z, and arcs o and S,
satisfying the hypotheses of the lemma. If @* § is quasi-transverse there
is nothing to prove; thus we assume that it is not. Similarly we assume
that x # y. After passing to subarcs of a and B, we may assume that
lal N Bl ={z}.

We may also assume that z is a regular point of (X, u). Indeed, since
a*f is not quasi-transverse, there are neighborhoods of z in |a| and |B]
which lie in the same sector D of a standard neighborhood of z in Z. If
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z, is an interior point of D sufficiently close to z, then there are quasi-
transverse PL arcs o, and f, joining z, to x and to y respectively, and
such that (o) < u(a) and u(B,) < u(B). Replacing z, o and B by
z,, a; and ﬂl , we reduce the argument to the case where z is regular.

Given that z is regular and that |a|N|f| = {z}, we may perturb a and
B slightly to obtain parametrized arcs o' and B’ which are equivalent to
a and B respectively, and which satisfy |o'| N |'| = @. In particular,
o'(1) and B'(1) are distinct but lie on the same leaf.

Let A denote the largest subarc of |o'| which has o(1) as an endpoint
and has only regular points of (Z, x) in its interior. Let a” denote the
unique PL homeomorphism of [0, x(A)] onto 4 such that o”'(0) = z and
u(a”([0, 1])) =t forevery t. Let B and B” be defined similarly. Then
o" and B” are transverse to the foliation in the sense of [5]. Since (Z, u)
has a good atlas, the proof of the “stability lemma” of [5, p. 80], shows
that there exist a number ¢, € [0, min(u(4), #(B))] and an immersion
H: [0, 1]1x[0, t,] — X such that (i) H(0, t) =«a"(¢) and H(1, 1) = B"(?)
for every t € [0, 1], (ii) H([0, 1] x {¢}) is contained in a leaf (cf. 5.8) of
(T, u) for every t € [0, 1], and (iii) either 7, = min(u(a”), u(B")), or
the arc 7, joining a’(t,) and B”(t,) in L, contains a singular point. It
is now easy to check that o ([¢,, 1) UH([0, 1]x {t,})U B"([t,, 1]) is the
support of a PL quasi-transverse arc from x to y.

5.27. Proofof5.25. Let ¥ = (X, u, I, p) be auniform, 1-connected
R-foliated singular surface with symmetry. We must show that if r is a
real number, and if x and y are points of £ which are joined by some
piecewise-monotonic path of length < r, then there is a taut path of length
<r joining x to y.

Any piecewise-monotonic path joining x and y may be written in the
form { = *---*({, , where each {; is a path in a global branch %, of X.
Among all such paths having length < r, suppose that { has been chosen
so as to minimize the integer n. Then &, # %, for i=1,--- ,n—1.
By 5.3, each %, is either an arc or a 1-connected surface with points at
infinity; and the definition of tautness implies that if y; is a path in %,
which has the same endpoints as {; and is taut with respect to u|%,, then
Y =y, *---*y, is taut with respect to 4. Hence, without loss of generality,
we may assume that X is an arc or a surface with points at infinity. When
X is an arc the result is trivial.

Now suppose that X is a surface with points at infinity. A piecewise-
monotonic path joining x to y and having length < r may be written in
the form { = n *---*7,, where each 7, is taut. We argue by induction
on n to show that x and y may be joined by a taut path of length <r.
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For n =1 this is trivial, and the induction step follows immediately from
5.26. q.e.d.

5.28. Suppose that . = (£, u,T", p) is a uniform, 1-connected
A-foliated singular surface with symmetry. Then according to 5.25 and
5.19-5.20, the leaf space T of (X, u) is defined and is an R-tree. It
is also clear that I admits a natural action (by isometries) on 7. This
gives an R-tree with symmetry .7 = (T, ', p) which we call the leaf
space of .. The map X, X — T is T'-equivariant. The preleaf space
T, C T is clearly I'-invariant; hence we have a A-pretree with symmetry
Iy = (T, ', py) . We call it the preleaf space of 7.

5.29. Suppose for i = 0, 1 that ] is a A-foliated singular surface
with simplicial symmetry which is uniform and 1-connected. Let .7, de-
note the preleaf space of .. It follows from 5.24 that any morphism
7 = (W, w): ¥ — & induces a morphism of pretrees with symmetry
=, 0):9-.

5.30. Proposition. Let 7 = (T, T, p) be the leaf space of a uniform
1-connected A-foliated surface with simplicial symmetry. Then no point of
T is fixed by T.

Proof Let ¥ = (X, u,T', p) be the given A-foliated surface with
symmetry. Since % is uniform, I" has a finite generating set S. By
Theorem 4.10.1 of [5], the planar discontinuous group I" has a torsion-
free finite-index subgroup Iy, and I, acts freely on X. The quotient
set T =X/ ', has the structure of a closed PL surface, and u induces a
measured foliation Z on X.

If T fixes a point of T then some leaf L in X is invariant under I".
Let x be a point of L. Let y,,---, 7, be generators for I', and let K
be a compact connected subpolyhedron of L containing y,-x, -+, 7,-X.
Then the image K of K in X carries 7,(Z). Hence for any component

C of £—K, there is a PL map of the disk D* onto C which maps int D’
homeomorphically onto C. Since the boundary of C is contained in a
leaf of X, we can pull back the foliation of X to D? and use the doubling
argument from the proof of 5.16 to obtain a contradiction. q.e.d.

5.31. Now let us consider a measured foliation (¥ , u) on a compact
surface F . The universal cover F of F inherits a measured foliation fi;
thus if p is the inclusion of the covering group I' ~ x,(F) in Aut(Z, u),
then ¥ = (X, u, T, p) is a uniform, l-connected R-foliated singular
surface with symmetry. Its leaf space is an R-tree 7 on which I' acts in
a natural way; by 5.30, the action is nontrivial. We call T the dual tree
of the measured foliation u.
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The stabilizer of any segment in 7 is a cyclic subgroup of I'; thus the
action of I" on T is “small” in the sense of the introduction. (Indeed, the
stabilizer of any segment is contained in the stabilizer of some nonsingular
leaf of F ; the latter group is easily seen to be cyclic.)

Let 9 be a base point in F, and let x and v denote the images
of ¥ in T and X respectively. For any g € I', the definition of the
distance on T implies that d(x, g-x) = min u(a), where a ranges over
all based loops representing the element of 7,(Z, v) corresponding to g .
Hence the length function determined by the action of I on T is given
by /(g) = minu(a), where a ranges over all closed curves in the free
homotopy class o corresponding to the conjugacy class of g. Thus in the
terminology of [5], /(g) is the geometric intersection number /(¥ , u; ).
We call [ the length function determined by p and denote it lu' (When
u is defined by the construction of [5, Exposé S, §III] from a compact
two-sided 1-manifold C c F with no homotopically trivial components,
we have lﬂ = I, in the notation of 2.10.)

5.32. We conclude this section with a few remarks about groups that
act on measured foliated surfaces, or on measured foliated surfaces with
points at infinity.

For most planar discontinuous groups I", it follows from the classifi-
cation in [17] that " splits (2.7) over a cyclic or dihedral subgroup. The
exceptional cases arise when I' has a presentation of the form

(1) (a,b:a1=bm=(ab)"=l> or
i) (x,y,z:x"=p"=2"=(xp) =(y2)" =1).

(Groups of type (i) are triangle groups if I, m, n > 1; otherwise they
are finite cyclic groups. Groups of type (ii) contain groups of type (i) as
subgroups of index 2.)

On the other hand, a group of type (i) or (ii) does not split at all; this
is a consequence of [15, Chapter I, Theorem 13] and the following result.

Proposition. Let I" be a group which admits a presentation of the form
(i) or (ii). Let A be any ordered abelian group and let T act without
inversions on a A-tree T. Then T has a fixed point in T .

Proof. First suppose that I" has a presentation of the form (i). Then
it follows from Theorem II1.2.3 of [12] that each of the elements a, b
and ab has a fixed point in 7. Hence by the proof of [12, Proposition
I1.2.15], there is a point of T that is fixed by all of I". Now suppose that
" has a presentation of the form (ii). Then some subgroup I" of index 2
in T has a presentation of the form (i). Hence I" has a fixed point x in
T. It follows that T" has a fixed point as well. q.e.d.
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We shall call a planar discontinuous group I' splittable if it does not
have a presentation of the form (i) or (ii).

5.33.  The following result can be proved by a direct geometric argu-
ment, but it is interesting as well as convenient to derive it from Proposi-
tion 5.32.

Proposition. Let (X, u) be a nondegenerate, 1-connected A-foliated
singular surface with points at infinity. Let T be a group that acts on
(Z, u) by automorphisms, and suppose that X is finite modI". Then T is
a splittable planar discontinuous group.

Proof. By definition F is a planar discontinuous group

Recall from 5.4 that Z is a 1-connected surface. If Z # X, then T

acts on Z with a noncompact fundamental domain; it follows from the
classification given in [17] that T" is splittable in this case.

Now suppose that X = X, so that X is a surface. By 5.30, I' admits
an action on an R-tree T such that no point of T is fixed by I". Hence
by 5.32, I' is splittable.

6. The rank-2 case: statements of results

In this section we state the structure theorem (Theorem 6.2) for certain
group actions on A-trees in the case where A C R has Q-rank 2. This
theorem was explained informally in the introduction. We also give formal
statements of Theorems A, B, C and D of the introduction for the
rank-2 case, a simplified version of the structure theorem in the finitely
presented case (6.4), and a partial reinterpretation (6.5) of the structure
theorem in terms of graphs of groups analogous to 2.6. In this section we
show that the latter results follow from the structure theorem; the theorem
itself will be proved in §11.

6.1. Aswe indicated in the introduction, the structure theorem applies
to a countable A-tree T and an action of a group I' on T that satisfies
the following condition:

Ascending Chain Condition for segment stabilizers. Let

[xg, Yol 2 [x; ¥ 1D+

be a monotone decreasing sequence of segments in T . Suppose that the seg-
ments all have the same midpoint in RT , or equivalently that d(x;, x;,,) =
Ay Vi) for all i. Suppose also that lim;_, _ d(x;,y,) =0. Then there

exists an m > 0 such that I"[X‘ ] F[xm, 1 forall i>m.
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6.2. Theorem. Let A be a subgroup of R whose Q-rank is 2, and let
T = (T,T, p) be a countable A-gree with symmetry. Suppose that the
action of T on T satisfies the Ascending Chain Condition 6.1. Then S
is the limit of a strongly convergent direct system (7;: /, j) in the category
of A-pretrees with symmetry, indexed by the positive integers, where each
. is the preleaf space (5.28) of a 1-connected, uniform L -foliated singular
surface with symmetry &, for some rank-2 free abelian subgroup L, of
A. Furthermore, we have L; C L, whenever | < j, and the morphisms
/;]. are induced (5.25) by morphisms Wij = (W, w;)): S - 5”1 of A-
foliated singular surfaces with symmetry. Finally, for each i, the kernel of
the canonical homomorphism w,;:T'; =T acts freely on X, .

In the above statement it is understood (see 1.29) that the direct system
T /4 ;) is indexed by the natural numbers. The theorem would remain
true if T were not assumed to be countable, except that the direct sys-
tem would in general be indexed by some filtered preordered set. This
generalization would require only minor changes in the proof.

For the remainder of this section, Theorem 6.2 will be assumed.

6.3. The following result is the rank-2 case of Theorem A of the
introduction.

Proposition. Let A be a subgroup of R whose Q-rank is 2. Let T
be a finitely generated group which acts freely, without inversions, on some
A-tree T. Then T is a free product of infinite cyclic groups and surface
groups.

Furthermore, T is the limit of a strongly convergent system (T, f; j) in
the category of A-pretrees, where each T, is the leaf space of a complete,
1-connected, A-foliaied singular surface (X, u,); there exist free actions
without inversions of T' on the T, such that f i and the canonical mor-
phisms f;: T, — T are T-equivariant. The actions of T on the T, are
induced by free actions by simplicial automorphisms on the (Z,, u;), and
the X, are finite modI". Finally, each p; takes its values in a rank-2 free
abelian subgroup L; of A, so that T, is an L;-pretree.

Proof. Since I' and A are countable, T has some countable, I'-
invariant subset which is a A-tree. Hence we may assume that T is
countable.

Since I" acts freely and without inversions on T, it acts freely on RT
by 1.18. Also, since the action of I on T is free, the Ascending Chain
Condition 6.1 trivially holds.

Let (7], / j) be the direct system given by Theorem 6.2; set J, =
(T;,T;, p,) and /;.j = ( o wij). Let & = (Z;, u;,T;, p;) be the sin-
gular surfaces with symmetry given by 6.2. For i = 1,2, ... there is
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a canonical morphism /j = (f;, w;): Z — 7 of A-pretrees with sym-
metry. By 1.17 there is a corresponding morphism R//: RI, — RI of
R-trees with symmetry. Since x, = Xy %, — RT, is I'-equivariant, it
follows that £, = (Rf; o x;, ;) is a morphism of sets with symmetry.
Since the action of I' on RT is free it follows that any element of I ;
that fixes a point of X, lies in the kernel of w,. But by 6.2, the kernel of
w; acts freely on X, . Therefore the action of I'; on X, is free.

Any subgroup of I'; acts freely and simplicially on the singular surface
X, and is therefore isomorphic to the fundamental group of a singular
surface. Hence any subgroup of I'; is a free product of infinite cyclic
groups and surface groups.

It follows for example from Theorem 1 of [16] that a finitely generated
free product of surface groups and infinite cyclic groups is isomorphic to
a subgroup of GL,(C). Thus every finitely generated subgroup of I, is
isomorphic to a subgroup of GL,(C).

By the definition of the limit of a strongly convergent system, I' is the
direct limit of the direct system of groups (I';, w; ,') . Hence we can apply
Lemma 2.3 to conclude that I" is isomorphic to a subgroup of one of
the I'; and is therefore itself a free product of surface groups and infinite
cyclic groups.

The last assertion of the proposition is proved in the same way as the
last assertion of 2.2.

6.4. The following result is a simplified version of the structure the-
orem in the case where I' is finitely presented.

Proposition. Let A be a subgroup of R whose Q-rank is 2, and let T be
a finitely presented group that acts on a A-tree T . Suppose that the action of
I" on T satisfies the Ascending Chain Condition 6.1. Then T is the limit of
a strongly convergent system (T, f; j) in the category of A-pretrees, where
each T; is the leaf space of a complete, 1-connected, A-foliated singular
surface (X;, u,); there exist actions of T' on the T, such that the f ; and
the canonical morphisms f.: T, — T are T-equivariant. The actions of
T on the T; are induced by actions by simplicial automorphisms on the
(Z;, 1;), and the X, are finite modT . Finally, each u, takes its values in
a rank-2 free abelian subgroup A, of A, so that T, is a A-pretree.

Proof. As in the proof of 6.3, we may assume that T is countable.

Let (J; / ;) be the direct system given by Theorem 6.2. Let us write
I, = (T;,T;, p;) and /], = (f;;, w;;). By the definition of the limit
of a strongly convergent direct system, I is the direct limit of the direct
system of groups (I';, w, j) . Since T is finitely presented, we can apply 2.3
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to show that for all sufficiently large i, say for i > m, there is a subgroup
F}‘ of some I'; such that the natural homomorphism w;: I', — I' maps
F;‘ isomorphically onto I'. As in the last step of the proof of 2.2 we
can then conclude that there is an action of I on T,, such that f is
I'-equivariant. The result follows at once. q.e.d.

6.5. The next result is the analogue of 2.6 for the rank-2 case.

Proposition. Let A be a subgroup of R whose Q-rank is 2, and let T
be a finitely presented group that acts without inversions on a A-tree T .
Suppose that the action of T on T satisfies the Ascending Chain Condition
6.1. Then T can be identified isomorphically with the fundamental group
of a graph of groups & whose vertex set can be expressed as a disjoint union
V1LV, in such a way that the following conditions hold.

(i) Foreach v € V| the vertex group & (v) is contained in the stabilizer
of a point in T .
(ii) For each v €V, there is an exact sequence

1-N,-Zw) 20, -1,

where Q, is a splittable planar discontinuous group, and N, is a
subgroup of T which fixes some nondegenerate segment in T .

(ii1) For each edge e of & whose endpoints are both in V,, the edge
group % (e) fixes some nondegenerate segment in T .

(iv) For each edge e of & that has at least one endpoint v in V,, we
have Z(e) C p, "(Z), where Z C Q, is an elliptic or parabolic
subgroup.

6.6. The proof of 6.5 uses the following general construction.

Let £ be any 1-connected singular surface. We can associate to X an
abstract simplicial complex K of dimension < 1 in the following way.
The vertex set of K is a disjoint union SII.S", where S is a set in 1-1
correspondence with the set of global branches of X, and S’ is in 1-1
correspondence with the set of all vertices of X which lie in at least two
distinct global branches of X . A 1-simplex of K is a pair {v, w}, where
veS, wesS,and the vertex of X corresponding to w lies in the global
branch corresponding to v .

Since X is l-connected it is easy to show that K is also 1-connected;
that is, K is a simplicial tree.

6.7. Proof of Proposition 6.5. It follows from 6.4 that I" acts by auto-
morphisms on a simply connected A-foliated singular surface (X, u) so
that X is finite modI', and that there is a I'-equivariant morphism f of
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A-pretrees from the preleaf space T, of (£, u) to T. Set x = XX
RT,. Since f and y are I'-equivariant, sois k = Rf ox: £ — RT. By
definition we have x(sky(Z)) = T ; hence k(sk,(Z))cC T.

Let K be the simplicial tree associated to X be the construction of 6.6.
In the notation of 6.6, the vertex set of K is a disjoint union SII.S'. An
element of the set S corresponds by definition to a global branch % of
2. By 5.3, each global branch is either an isolated 1-simplex or a surface
with points at infinity. We write S = S| I1.S,, where every vertex in S,
corresponds to an isolated 1-simplex and every vertex in S, corresponds
to a surface with points at infinity.

The simplicial action of I' on X induces a simplicial action on XK.
Moreover, the sets S and S’ are invariant under I'; in view of the def-
inition of the l-simplices of K, it follows that I" acts on K without
inversions in the sense of [15]. Hence by [15, Chapter I, Theorem 13],
there is a natural isomorphic identification of I" with the fundamental
group of a graph of groups ¥ whose underlying graph is G = K/I". For
each cell ¢ of G, the subgroup Z(c) of I', which is defined up to con-
jugacy, is the stabilizer of a simplex of K which maps to ¢ under the
projection p: K — G.

The vertex set of K is SII.S' = (S, 11 S S, . Hence the vertex set
of G is the disjoint union of V| = p(S, II S’) and V, =p(S,). We claim
that conditions (i)-(iv) of the statement of Proposition 6.5 hold with these
choices of ¥, and V,.

Given v € V;, we have either v € p(S’) or v € p(S,). If v € p(S')
then Z(v) is the stabilizer of a vertex s € S’ . By the definition of S’ this
means that Z'(v) is the stabilizer of a vertex x of Z. Since k: £ — RT is
I'-equivariant, G(v) is contained in the stabilizer of k(x);but k(x)e T
since k(X°) C T. This proves (i) in the case v € p(S’).

Now suppose that v € p(S,). Then Z(s) is the stabilizer of an isolated
I-simplex t of £. Let x and y denote the endpoints of 7. Since k
is T-equivariant, the set {k(x), k(y)} is invariant under &(s). We have
k(x), k(y) € T since k(ZO) c T, and the segment [k(x),k(y)]C T
must be invariant under Z(s). Since I' acts on 7 without inversions it
follows that G(s) has a fixed point in 7. This completes the proof of (i).

To prove (ii) we must consider a vertex v € V, = p(S,). The group
Z(v) is the stabilizer of a global branch & of L which is a surface with
points at infinity. Since X is simply connected, so is & . Clearly &
is invariant under ¥ (v). Let N, denote the normal subgroup of Z(v)
consisting of elements that fix.Z (pointwise). Then Q, = £(v)/N, acts
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effectively on &% . Hence we may regard Q, as a planar discontinuous
group (5.4); the elliptic and parabolic subgroups of Q, are the stabilizers
of simplices of % . Since the A-foliation x| is invariant under the
action of @, on &, it follows from 5.33 that Q, is splittable.

By definition, N, fixes % and hence fixes x (%) C RT". Since (%)
contains a nondegenerate segment, and since f is a morphism of A-
pretrees, f(x(#)) also contains a nondegenerate segment, which is again
fixed by N, . This proves (ii).

To prove (iii) we must consider an edge e of £ whose endpoints are
both in V] =p(S'I_IS1). Thus e = p(é), where € is an edge of K whose
endpoints are in S’ II.S| . The definition of the complex K implies that
one endpoint of &, say ¥, must lie in S, and the other, say @', must
lie in S, . Thus ¥ corresponds to a vertex w of X and 9’ corresponds
to an isolated edge 7 of X. Furthermore, w must be an endpoint of 7.
The edge group Z(e) is conjugate to the subgroup of I' consisting of all
elements that fix w and leave 7 invariant; this is the same as the subgroup
consisting of all elements that fix 7 pointwise. Since f is a morphism of
A-pretrees, Rf(7) contains a nondegenerate segment [x, y] C T . Since f
is I'-equivariant, Z(e) is conjugate to a subgroup of I' that fixes [x, y].
This proves (iii).

Similarly, if an edge e of & has at least one endpoint v in V,, then
v = p(¥), where ¥ corresponds to a global branch % of X which is
a singular surface. Furthermore, the other endpoint of e has the form
p(it) , where @ corresponds to a vertex w of % ; and after a conjugation
we may take Z(e) to be the subgroup of I' consisting of all elements that
fix w and leave % invariant. Hence in the notation of the proof of (ii)
we have Z(e) C p, (%), where Z is the stabilizer of w in Q, . This
proves (iv). q.e.d.

6.8. We next turn to the rank-2 version of Theorem D of the intro-
duction.

Proposition. Let A be a subgroup of R whose Q-rank is 2. Suppose
that a finitely presented group T admits a nontrivial action, without in-
versions, on a A-tree, and that the action satisfies the Ascending Chain
Condition 6.1. Then T" splits over some subgroup.

Proof. By 6.5, we can identify I' with the fundamental group of a
graph of groups % in such a way that each vertex group is either con-
tained in the stabilizer of a point of 7' or admits a homomorphism onto
a splittable planar discontinuous group. If all the vertex groups are proper
subgroups, it follows from 2.8 that I' splits. If one of the vertex groups is
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equal to I', then I' either has a fixed point in 7T—a contradiction to the
hypothesis that the action is nontrivial—or admits a homomorphism onto
a splittable planar discontinuous group Q. In the latter case, Q splits by
the discussion in 5.32, and hence so does I". q.e.d.

6.9. The following result is the rank-2 case of Theorem C of the
introduction.

Proposition. Let A be a subgroup of R whose Q-rank is?2. Let T bea
finitely presented group with the property that every small subgroup of T is
finitely generated. Suppose that T' admits a nontrivial action, without inver-
sions, on a A-tree T and that the stabilizer of every nondegenerate segment
in T is a small subgroup of I'. Then T splits over a small subgroup.

Proof. First note that the action of I' on T satisfies the Ascending
Chain Condition 6.1; for a monotone union of small subgroups of I' is
small and hence finitely generated by the hypothesis.

Let us apply Proposition 6.5 to the action of I' on 7. Thus we identify
' with the fundamental group of a graph of groups with vertex set V, 11V,
in such a way that conditions (i)-(iv) of 6.5 hold.

We claim that the edge groups in I = n,(¥) are all small subgroups.
If e is an edge whose endpoints both belong to V|, then by (iii), & (e)
is contained in the stabilizer of a nondegenerate segment in 7 and is
therefore small by hypothesis. If at least one of the endpoints of e, say
v, belongs to V,, then by (iv), & (e) is an extension of a cyclic or dihedral
group by the group N, . By (ii), N, fixes a nondegenerate segment and is
therefore small. Hence Z(e) is small in this case as well.

If the vertex groups in 7,(¥) are all proper, the conclusion of the
proposition now follows from 2.8. If one of the vertex groups Z(v) is
equal to I', then since the action of I on T is nontrivial we must have
v € V,. Thus I' admits a homomorphism onto a splittable planar discon-
tinuous group Q, . As we observed above, the kernel N, is small. By the
discussion in 5.32, Q, splits over a small subgroup. Now I' inherits a
splitting from Q, ; and the group over which I' splits is an extension of
a small group by the small group N, and is therefore small. g.e.d.

Finally, here is the rank-2 case of Theorem B of the introduction.

6.10. Proposition. Let F be a compact surface without boundary, let
A be a subgroup of R whose Q-rank is at most 2, and let n,(F) act ona
A-tree T in such a way that the stabilizer of every nondegenerate segment
in T is a cyclic subgroup of A. Then the length function defined by the
action has the form | for some measured foliation u on F .

6.11. The proof of 6.10 will use both 6.2 and the following general
fact.
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Proposition. Let F be a compact surface without boundary and let
& = (X, u,T, p) be a uniform, 1-connected measured foliated singular
surface with symmetry, where I = n (F). Let = (T, T, p) denote the
leaf of ., and suppose that the stabilizer of every nondegenerate segment
in T is a cyclic subgroup of A. Then the length function defined by
has the form lﬂ for some measured foliation u on F .

6.12. Proof that 6.2 and 6.11 imply 6.10. The action of I" on T sat-
isfies the Ascending Chain Condition 6.1, since any ascending chain of
cyclic subgroups in the surface group I' must terminate. Thus the action
satisfies the hypothesis of 6.2; let (T}, f; ;) be the strongly convergent sys-
tem given by 6.2. Let / and /; denote the length function defined by the
actions of I' on T and 7, respectively. It follows from 6.11 that /; is the
length function associated to some measured foliation x; on F. Since T’
acts nontrivially on T, the function / is not identically zero. By 1.28, the
I, converge strongly to /.

Recall from 5.31 that /, assigns to each g € I" the intersection num-
bers I(u;, o), where o is the homotopy class of curves corresponding
to the conjugacy class of g. It follows from [5, Exposé 6, §IV.5 and Ap-
pendix], that there are a finite number of simple closed curves a,, -+ , g,
of T such that any two measured foliations x and ' which satisfy
I(u, aj) = Iy, aj) for i = 1,---, n are equivalent via Whitehead
moves [5, Exposé 5; this implies that u and u' satisfy I(u, o) =I(4', o)
for every closed curve ¢ in X. Hence if i and i’ are positive integers
such that /, and /,; agree on elements g, --- , g, of I' whose conjugacy
classes correspond to o, --- , g, then /, = [,. Since the /, converge
strongly to /, it follows that /, =/ for some /. q.e.d.

The rest of this section is devoted to the proof of 6.11.

The proof will involve the notion of a measured foliation of a (PL) sur-
face with boundary. This may be defined as in [5], except that as usual we
take the coordinate charts to be PL rather than smooth. The definition of
a taut path (5.14) goes through without change for the case of a measured
foliated surface with boundary.

6.13. Let (%, 4,) be a measured foliated surface with boundary and
let (X,, u,) be a measured foliated singular surface. By a taut map from
(Zy» #4g) to (£,, u;) we shall mean a continuous map W: X, — X, which
maps each leaf in X into a leaf in X, and such that for every taut path
7 in X, the path W oy is also taut and has the same length as ».

6.14.  For the rest of this section, the hypotheses of 6.11 will be un-
derstood to hold. Let K be the simplicial tree associated to X by the
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construction of 6.6. In the notation of 6.6, the vertex set of K is a dis-
joint union SII S’ .

By [1] or [4], K has a minimal I-invariant subtree K,. Let X, denote
the union of all global branches of X corresponding to vertices in K,NS.
Then T, = x ﬂ(Zo) is a I'-invariant subtree of T ; by [1] or [4], the actions
of ' on T and T, define the same length function. Hence we may
assume that K is already minimal.

As in the proof of 6.5, we write S = S| II.S, , where every vertex in S,
corresponds to an isolated 1-simplex and every vertex in S, corresponds
to a surface with points at infinity. It follows from the proof of 6.5 and
6.9 that the stabilizers of the edges in K are small subgroups of I'; since
I' is a surface group, and since the edge stabilizers have infinite index in
I', they are in fact cyclic.

It now follows from [12, Theorem III.2.6] that the action of I on the
simplicial tree K is “ F-geometric”. This means that there is a compact
two-sided l-mamfold C C F, with no homotopically trivial components,
such that if C denotes the preimage of C in the universal cover F of
F , then the vertices of K are in 1-1 correspondence with the components
of 17: — C, the edges of K are in 1-1 correspondence with the components
of C, and an edge is incident to a vertex if and only if the corresponding
component of~€‘ is contained in the closure of the corresponding compo-
nent of F — C. The action of T on T is induced by its natural action
on F . In particular, the stabilizer of every edge of K is an infinite cyclic
subgroup of I'. N

For each edge e of K, welet C, denote the corresponding component
of C. For every vertex v of K, we let R, denote the closure of the
corresponding component of F — C. Note that each R, is 1-connected
and that its boundary components are homeomorphic to R. We set Fo =
Uyes R, - For each v € S, we let %, denote the global branch of X
corresponding to v . For each w € S’ we let X, denote the vertex of X
corresponding to w .

6.15. For each v € S, the stabilizer I', is also the stabilizer of %, .

Lemma. For each vertex v € S,, the group T, is noncyclic and torsion-
free, and the action of T, on &, is effective.

Proof. Let Q denote the normal subgroup of I', consisting of all ele-
ments that fix &, (pointwise). Then T, /Q acts effectively on %, . Since
& is uniform, & is finite modI"; hence it follows from 5.33 that I, /Q
is a splittable planar discontinuous group. In particular it is noncyclic.
Hence I, is noncyclic.
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Since I, is a subgroup of I' = x,(F), it is itself the fundamental group
of a surface. Any surface except RP? has a torsion-free fundamental
group. Since I', is noncyclic, it must be torsion-free.

To show that I', acts effectively on %, we must show that Q = {1}.
Assume that Q # {1}. Note that Q fixes xu(%]). In particular, Q
fixes a nondegenerate segment in 7" and is therefore cyclic. But I') is
the fundamental group of a surface; since it contains a nontrivial cyclic
normal subgroup, I', must itself be either cyclic or free abelian of rank 2.
Hence I',/Q is cyclic. This is a contradiction.

6.16. Lemma. For any v € S, the action of T, on the interior &

of &, is free. Furthermore, & is contractible.
Proof. 1t follows from 6.15 that I', is torsion-free and acts effectively

o
on % . But any effective, properly discontinuous action of a torsion-free
group on a surface is free.
It also follows from 6.15 that I', is infinite. Since I', acts properly

discontinuously on év it follows that (9:? , 1s noncompact. But any non-
compact, 1-connected surface is contractible.

6.17. Lemma. Supposethat v €S, and w € S’ are joined by an edge
in K. Then x,, is a point at infinity in %, .

Proof. By 6.15, T, acts effectively and simplicially on %, ; hence it

acts properly discontinuously on %, . But the stabilizer of the point x,
in ') is I, N[, which is the stabilizer of an edge in K and is therefore

infinite cyclic according to 6.14. Therefore x, ¢ %, .

6.18. Lemma. There exist a I'-invariant measured foliation v, on Fo
and a T-equivariant taut map f: (fo, vy) — (X, ). Furthermore, for
every v € § we have f(R,) = %, , and if e is any edge of K with
endpoints ve S and we S, then f,(C,) = {x,}.

Proof.:  We shall show that for every v € S there exist a I -invariant
measured foliation v, of R, and a I -equivariant taut map f; : (R,,v,)
— (%, , ul%,) such that if e is any edge of K having v as one endpoint,
and if w € $’ denotes the other endpoint of e, then j;(ée) = {x,}. This
will imply the lemma; for if S* is a complete set of orbit representatives
for the action of T' on § we may then define f and 7, by setting f|R, =
f, and 7y|R, =v, foreach v € S* and extending I'-equivariantly. The

I’ -equivariance of f, and v, guarantees that these extensions are well
defined.
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To define f, we first consider the case where v € S;. Then % is
an arc with endpoints x,, w, and x, , where the w, are vertices in N
the edges incident to v are ¢, and e where e, {'u w, } Hence
the boundary components of R, are C and C1 , where C C . Thus

R, /T, is a compact surface w1th boundary whose universal cover, R , has
exactly two boundary components; hence R, /I’v is PL homeomorphic to
an annulus or a Mobius band. It follows that R, admits a trivial fibration
over [0, 1] which is invariant under the infinite cyclic covering group T,
and has fiber R. We may take the projection p: R, — [0, 1] to map Q
toifori=0, 1.

If R /T, is an annulus then each fiber in R is I -invariant. Hence
if h:[0, 1] — &, is any PL homeomorphism such that h(C~‘,.) =x, for
i=0, 1,then f = hop is T -equivariant. Furthermore, since fU is
a trivial fibration of R, over %, it is clear that there is a I -invariant
measured foliation (¥, v,) that makes f taut: the leaves of & are the
fibers of f , and v, is defined by v, (y) = u(f, oy) for any piecewise-
monotone path y.

If R,/T, is a Mobius band, and if g is a generator of I',, we may
choose the fibration p so that p(g-x)=1-p(x) forevery x e R,. In
particular g interchanges the two boundary components of R, . Hence
g interchanges ¢, and e, , and therefore also interchanges Xy, and x,

1
Hence there is a PL homeomorphism 4: [0, 1] — %, such that h(a',.) =
x, for i=0, 1, and such that A(1-1¢) = g-h(t) for every ¢t €[0, 1].
We again set f, = hop; once again, f, is a trivial fibration and is T-
equivariant, and we proceed as in the case of an annulus.

Now consider the case v € S, . Since the action of I, on R is free
and properly discontinuous, there is a I' -invariant boundary collar H in
R, . We set R; =R, — H. Let M denote the link of v in K. For each
w € M, we write e( ) for the l-simplex {v, w}, and H, denotes the

component of H containing Ce(w) yweset Y = H mR . Thus R isa
surface with boundary, and the Y, are the components of 6Rv .

If w is any vertex in M , then by 6.17, x, isa point at infinity in &, .
We choose a standard neighborhood Z, of x, in &, , andlet X, denote
the frontier of Z in & . Since I, acts simplicially on % , and acts

o
freely on % , we may choose the Z for weM sothat Z=U,pZ,
is F—invariant, and so that when w 9é w’ we have either Z,=2, or

Z,NZ,=90. Weset B, =(B,-Z)NA,;clearly B, isa I -invariant
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surface with boundary, and the X are its boundary components. The
action of I', on ﬂ; is free and properly discontinuous.

Now let M™ be a complete set of orbit representatives for the action
of ', on M. Foreach w ¢ M *, the infinite cyclic group I‘e(w) =
I',NT,, acts freely and properly discontinuously on each of the connected
l-manifolds Y, and X, . Hence there is a Fe(w)-equivariant PL homeo-
morphism 4,: Y, — X, . Define a T, -equivariant map h,: R, — 0.5,
by setting 4,|Y, = h, for each w € M * and extending equivariantly.
For each w € M we have hy(Y,)C X,,.

Since I', acts freely and properly discontinuously on R;, and since
%‘; is contractible by 6.16, we may extend h, to a I’ -equivariant PL
map h: R, — %, . Consider the induced map %: R, — &, , where R, =
R,/T, and &, = &, /T, . Since the action of T, on &, is also properly
discontinuous, and is free by 6.16, it follows from covering space theory
that 4 induces an isomorphism of fundamental groups. By construction,
h is boundary-preserving, i.e., Z(aﬁ;) C 8?; )

It follows from Theorem 13.1 of [7] that if a boundary-preserving map
between surfaces with boundary induces an isomorphism of fundamental
groups, and if the domain surface is compact and has noncyclic funda-
mental group, then the map is homotopic, through a family of boundary-
preserving maps, to a PL homeomorphism. Since F; may be identified
with a subsurface of F bounded by certain components of C, it is com-
pact; and by 6.15, =, (_R;) =T, is noncyclic. Hence h is homotopic by a
boundary-preserving homotopy to a PL homeomorphism B F; — ?; .

By the covering homotopy property for covering spaces, %' is covered by a
I',-equivariant PL homeomorphism 4': R — &, such that h,(Y,) = X,
for each w e M.

We wish to extend 4’ to a map f,: R, — %, . For this purpose we
consider an arbitrary vertex w in M", and fix a generator g, of l"e(w) .
Let 4 be an arc which is a fundamental domain for the action of T’ e(w)
on Y, . We may suppose A4 to be chosen so that its endpoints belong
to prongs in Z . Then A is the intersection of Z  with unions of n
sectors, where n is some positive integer.

We identify H, via a PL homeomorphism with the product R x [0, 1]
so that R x {0} = f’e(w) and Rx {1} =Y, , and so that g |H  is the
translation (s, ) — (s +n, t). We make this identification in such a way
that for 1 <i<n wehave h'([i—1, i]) x{1}) = D,nX,, for some sector
D, in Z.
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Let P, denote the prong in Z, containing h'(i, 1). Note that D; is
a PL disk whose boundary consists of the arcs P,_,, P, and D,N X, .
Hence we may extend h'|Yw toa T y-equivariant continuous map f,

e(w
from H, = Rx[0,1] to Z, whié:h maps R x {0} to {x,}, maps
{i}x[0, 1] by a PL homeomorphism onto P,,and maps (i—1, i)x (0, 1)
homeomorphically onto intD,, for each i € Z.

Foreach i € Z, the map j; defines a decomposition of [i—1, {]x[0, 1]
whose elements are the preimages of the elements of the decomposition
of D, induced by the underlying foliation of x. While f cannot be
PL, it follows from the construction that the induced decomposition of
[i-1,i] %[0, 1] is a product decomposition in the topological category.
Hence after precomposing f, with a Fe(w)-equivariant self-homeomor-
phism of H, , we may assume that the decomposition of [i—1, i]x[0, 1]
defined by f, is a PL product decomposition.

Now define amap fy,: H — Z by setting f,|H, = f, foreach we M
and extending I’ -equivariantly. We define f : R, — %, to agree with
h' on R, and with f,, on H. It is now straightforward to verify that
the preimages under f, of the leaves of u|%, form a (PL) foliation &
of R, . The diagram depicts & in the neighborhood of a component of
OR, .

] a [

It is also straightforward to show that for each path y in R, which
is piecewise-monotonic with respect to &, the path f oy is piecewise-
monotonic; and that the function v, defined by v, (7) = u(f, o7) is a
transverse measure for & . Thus f: (R, ,v,) — (X, u) is taut. q.e.d.

6.19. Let 7, be the foliation, and f the map, given by the preceding
lemma. Since 7, is I'-invariant it induces a measured foliation v, on
the surface F, = 1::0/1'. We regard the surface-with-boundary F; as a
subsurface of F whose boundary is C. It follows from the proof of
the lemma that every component of C is a union of classical leaves and
singular points of the foliation ;. Thus C is an invariant set of v, in
the sense of [5].

As in [5, Exposé 5, §III.1], using the measured foliation v, on F,
we can obtain a measured foliation v on F by élargissement. Recall
that v is constructed by using a surjective (PL) immersion j: F; — F
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which maps 9F, onto a spine & of F — F,, maps the interior of F;
homeomorphically onto F — &, and is the identity outside a boundary
collar in F;. One defines a measured foliation on F — & by pushing
v,|int F, forward via the homeomorphism j|int F; this pushed-forward
measured foliation admits a unique extension to F, which we denote by
V.

Since j is homotopic to the inclusion map F, — F, the covermg ho-
motopy property for covermg spaces glves a F-equlvarlant map J: F —F
covering ] Furthermore, ]lm = j|1ntF is a homeomorphism of th

onto F—-% , where G denotes the preimage of & in F.

We define amap W: F — X as follows. We set W|f—€~5 = fo(}im)"] .
To define W|é3 , note that each component of F = ﬁo contains a unique
component of ® , and that any component of F - ﬁo has the form R,
for some w € .S'. We let 6w denote the component of & contained in
R, , and define W|® by setting W(QNSM) ={x,}-

The properties of f stated in Lemma 6.18 imply that W is continuous.
It is clear that W is F—equlvarlant The continuity of W implies that
Wo _] = f,since Woj and f obviously agree on the dense subset F-&
of F. N

6.20. Lemma. The map W is a taut map from (F, D) to (L, u).

Proof. Since Woj=f: (fo » y) — (X, u) is taut, it is clear that W
maps leaves into leaves. We must show that if y is any taut path in F then
W oy is taut and has the same length as y. By 5.16 we may assume that y
is quasi-transverse. After reparametrization we may further assume that y
has the form y,*---*y, , where each y; is a path supported in the closure of
some component of F — & . Thus for each i we have l7;] C ]’(R ), where
R, =R, for some v, € S. Among all reparametrizations of thls type we
choose one for Wthh n has the smallest possible value; this guarantees
that v, #v,,, for I <i<n.

Since f is a taut map from (F 7,) to (Z, u), it follows from the
definition of & that W|j(R,): (J(R,), P|j(R,)) — (Z, u) is taut for every
v € §. Taking v = v; we conclude that for each i, the path Woy, is taut
and has the same length as ;. In particular, Woy is piecewise-monotonic
and has the same length as y.

It remains to show that W oy is taut. Set y = X, 2 — RT. We must
show that d = y o W oy is a monotonic map of [0, 1] onto a segment in
RT. We have § =4, *---+J,, where 6, = y o W oy,. For each i, since
each Woy, is taut, 6, is a monotonic map of [0, 1] onto a segment in



DENDROLOGY OF GROUPS IN LOW Q-RANKS 677

RT. Since RT is an R-tree, we need only show that |4,/ N|d,,,| = J,(1)
for 1<i<n.

Note that for 1 < i < n, the path W oy, is supported in the global
branch &, = %, of X, so that |[§,|] C %,. For 1 < i < n, we have
v, # v, and therefore &, # %,,,. The point z = W(y,(1)) lies in
both %, and %, ,. Since X is 1-connected, we must have BNE,, | =
{z}, and any path in X that meets both %, and %, , must contain
z. Hence any leaf of u that meets %, and %, , must contain z; thus
X(%) N x(%,,,) = {z}. In particular we have |5,/ N|J,,,| = {z}, as
required. q.e.d.

Proof of 6.11, concluded. Let T' denote the dual tree of v. Since W
is taut, it maps each leaf in F into a leaf in X; hence there is a unique
map 1 of the leaf space T’ of (F, ©) into the leaf space RT of (Z, u
such that 10y, = x, 0 W . The definition of a taut map implies that
i1s an isometric embedding of R-trees. Since W is I'-equivariant, so is
1. In particular, the minimal I'-invariant subtrees of RT and 7" are I'-
equivariantly isometric. Hence the actions of I' on R7 and on 7" define
the same length function. q.e.d.

Proposition 6.10 has a relative version (cf. [12, III.1.6]) for the case
where I' is the fundamental group of a surface with boundary. We leave
the details to the reader.

7. T-complexes as foliated objects

In §5 we showed how a A-foliated singular surface can define a A-
tree. In this section we shall show that if T is a A-tree then certain
T-complexes can be regarded as A-foliated singular surfaces.

71. Let X be a complex, and let / be a function that assigns a
positive real number to each 1-simplex of X. We shall call / a length
system for X if for every 2-simplex ¢, the edges of J can be labelled 7,
7', and 7" in such a way that /(t) = /(7)) + I(z"). The edge 7, which is
uniquely determined by / and J, is called the long edge of & .

Let / be a length system on a complex X . Let A be any simplex of X .
There is an affine map f: A — R which maps each edge t of A onto an
interval of length /(1) ; such a map will be called an /-decomposing function
on A. An [/-decomposing function is unique up to composition with an
isometry of R. In particular, the sets f —l(s) for s € f(A) constitute a
decomposition of A which is independent of the choice of /-decomposing
function f; we call it the decomposition of A defined by .
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7.2. Now let us consider a length system / on a singular surface X.
If B is a 2-dimensional local branch at a vertex v of X, we define the
order of B to the cardinality of the set of all 2-simplices § C f such
that x is not incident to the longest edge of B. We shall say that / is
nondegenerate if the following conditions hold for every vertex v of X:

(i) each 2-dimensional local branch at v has order at least 2; and
(ii) each noncompact 2-dimensional local branch at v has infinite or-
der.

7.3. Proposition. Let | be a nondegenerate length system on a singu-
lar surface . Then there is a unique O-tame measured foliation (¥ , u)
on X such that for each simplex A of X,

(i) the decomposition of A induced by & is the decomposition defined
by I, and

(i) the length u(y) of any monotonic path y in A is the length of the
interval f(|y|), where f is an I-decomposing function on A.

Proof. We shall describe the measured foliation (¥ , u) by local data
as in 5.11. For every point x of X and every local branch # at x we
must define a neighborhood Uﬂ of x in g, a standard decomposition
57,; of Uﬁ , and a standard measure u, on each sector D of 'Uﬂ .

If B is 1-dimensional then it consists of a single 1-simplex 7; in this
case we set Uy = 7. An [-decomposing function on 7 is a homeomor-
phism of 7 onto an interval in R, and hence defines a standard measure
on 7.

If x is an interior point of a 2-simplex J of X then the decompo-
sition of J defined by / induces a product decomposition 5"‘; of some
neighborhood Uy of x in ¢. Furthermore, an /-decomposing function
on ¢ induces a homeomorphism of the quotient of this product decom-
position onto an interval in R, and hence defines a standard measure on
each sector of Ug.

Now suppose that x is an interior point of a 1-simplex 7 which has
valence 2 in X. Let 6, and J, denote the 2-simplices incident to 7, let
f; be [-decomposing functions on the J; such that f||t = f,|7, and define
amap f:6,Ud, —» R by f|d; = f;. Then the fibers of f constitute a
decomposition of J, UJ,, which induces a product decomposition 97, of
some neighborhood Uﬁ of x in ¢ . Again, f induces a homeomorphism
of the quotient of this product decomposition onto an interval in R, and
hence defines a standard measure on each of the two sectors of Uﬁ .

Finally, suppose that x is a vertex of X. For each 2-simplex J in
B, let f; be an [-decomposing function on J such that f;(x) =0 and
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f5(6) € [0, 00). Then there is a map f: f — R such that f|d = f; for
each 2-simplex ¢ in S.

If § ¢ B is a 2-simplex whose longest edge is incident to x, then
13"1(0) = {x}; on the other hand, if the longest edge 7 of J is not
incident to x, then f;l(O) is a line segment having one endpoint at x
and the other in the interior of 7. Hence, if we regard # as the cone over
a component L of the link of x, then f~' (0) is the cone over a discrete
subset K of L; the number of points in K is the order k£ of B with
respect to /. By condition (i) of 7.2 we have k > 2; by condition (ii),
each component of L — K is relatively compact.

For each component E of 8 — f '1(0) , we choose a number ¢, > 0
such that each 1-simplex contained in E has length < &¢. We set D, =

Enf7Y([0, €]). We define U, to be the union of the D, as E ranges

over the components of § — f _1(0). The fibers of f| U, constitute a
decomposition of Uﬂ. It is easily seen that for each component E of

B — £71(0), the decomposition &, induces a product decomposition of
Dy . Hence 5",; is a standard k-prong decomposition of U,, and the
sets D, are the sectors of Uﬁ. Furthermore, for each sector D, of
U 5> the map f induces a homeomorphism of the quotient of the product
decomposition of D, onto an interval in R, and hence defines a standard
measure on D .

The compatibility conditions of 5.11 are straightforward to verify; thus
we have defined a measured foliation (¥ , u). It is immediate from the
construction that (¥ , u) is tame and satisfies conditions (i) and (ii) of
the proposition. The uniqueness assertion is also clear. q.e.d.

7.4. Proposition. Let X be a singular surface, let A be a subgroup
of R, let | be a nondegenerate length system for X taking values in A,
and let u denote the measured foliation defined by |. Then (X, u) is a
A-foliated singular surface.

Proof. We must show that for any taut path y in ¥ whose endpoints
are vertices we have u(y) € A. By 5.16 we may assume that y is a
piecewise-linear quasi-transverse arc. We may assume that y has the form
y =7y, %---*y,, where each y, is a monotonic arc in a 2-simplex J; of X
having its endpoints in the boundary of 4, , and its interior in the interior
of J,. We argue by induction on the integer 7.

If n=1 then u(y) =I(t), where 7 is the edge of J, with endpoints
y(0) and y(1). Hence in this case we have u(y) € A. If n > 1, and
if there is some j with 1 < j < n such that yj(l) is a vertex, then the
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induction hypothesis implies that u(y, *---* yj) and u(y FEEREL 7,) both
belong to A; hence their sum u(y, *---*7y,) also belongs to A.

Now suppose that # > 1 and that none of the points (1), --- , 7,_,(1)
is a vertex. We may write 6, = A(x, y, z), where x = y,(0). Then y,(1)
is interior to one of the edges A(x,y), A(x, z), A(y, z). If p(1) is
interior to A(x, y) or A(x, z) then y, *y, is equivalent to a monotonic
path 7' in J,; and we have u(y) = pu(y xp; - *y,) €A.

Now suppose that p(1) is interior to A(y, z). By symmetry we may
assume that the long edge of J, is either A(x, y) or A(y, z).

If A(x,y) is the long edge of d,, then y, is equivalent to y; 7,
where | is a parametrization of A(x, z), and | is a parametrization of
the subarc of A(y, z) having endpoints z and y,(1). We have ,u(y;) =
I(A(y, z)) € A. On the other hand, it is clear in this case that y,'*-- -y, is
taut; using the induction hypothesis we can conclude that u(y| *---*7,) €
A. Hence u(y)€A.

If A(y, z) is the long edge of J,, then x belongs to a nondegenerate
element A of the decomposition of &, ; furthermore, 4 is a line segment
having x as one endpoint. The other endpoint w of A is an interior
point w of A(y, z), which divides A(y, z) into two subarcs 4 and B,
where A has endpoints y and w, and B has endpoints z and w. The
point 4,(1) lies in either 4 or B. By symmetry we may assume that
J,(1)ed.

Let y' be a parametrized path in A(y, z) having initial point z and
terminal point w . Then the path 7' « 7, %+ -*7, is taut, and the induction
hypothesis implies that u(y') + Uy, *---*7y,) € A. On the other hand we
have u(y')—-u(y,) = I(A(x, 2)) € A, so that u(y) = u(y,)+u(r,*---*7,) €
A. qed.

7.5. Let T bea A-tree, and let (X, ¢) bea T-complex of dimension
< 2. For each 1-simplex 7 of X let us write /(t) for the length of 7 in
the sense of 3.6.

Let 6 be any closed 2-simplex of X . The definition of a geometric
T-complex implies that ¢|d is an affine map of J onto the segment |d] C
RT, and that ¢ maps two of the vertices of J, say x and z, to the
endpoints of |d|, and the third, say y, to an interior point. The edges of
6 are T =A(x, z), 7, = A(x,y) and 7, = A(y, z). Their lengths and
supports satisfy /(t) = I(7,) + (7,) and |7| = |7,|U|7,| = |d]. It follows
that / is a A-valued length system. We call [ the natural length function
for the T-complex X .

Let 6 be a 2-simplex of X. According to 7.1, the length system /
defines a decomposition of . This decomposition is readily described
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in terms of 7: the map ¢: X — RT restricts to a map of § onto the
segment |d| C RT, and the elements of the decomposition are the fibers
over points in |J].

It follows that the decomposition of X determined by / also has a sim-
ple description in terms of the tree 7 : the elements of the decomposition
are the connected components of the fibres of the map ¢: X — RT .

If y is a parametrization of a segment [x, y] € RT, and if $ is a
piecewise-monotonic lift of y to X, then we have /(y) =d(x, y).

7.6. Proposition. Let T be a A-tree and let (X, ¢) be a T-complex
which is a I-connected singular surface. Suppose that the natural length
system for T is nondegenerate and hence defines a A-foliation u on X.
Suppose also that (X, u) is complete. Let T, denote the preleaf space
of (£, u) and set y = xulsko():). Then there is a unique morphism of
A-pretrees f: T, — T such that foy=¢.

Proof. By 7.5, ¢ maps each leaf of (X, /) to a point of R7 . Since,
by the definition of a T-map, f maps vertices of X to points of 7', each
0-tame leaf of (X, /) is mapped to a point of 7. Thus there is a unique
map of sets f: T, — T such that fox =¢.

To show that f is a morphism of A-pretrees we consider two arbitrary
points x, y € T,. We may write x = x(v) and y = x(w), where v and
w are vertices of £,. We may join v to w byapath y =y *---*y, , where
each y i is a parametrization of a 1-simplex 7 i of Z,. It follows from
5.16 that y f is a taut path in X;; hence x(z ].) is a parametrized segment
in RT; . Since the endpoints of 7 ; are vertices, the endpoints of x(7;) lie
in T ; thus o, = x(t j)ﬂTO is a presegment in 7},. Furthermore, it follows
from the definition of the metric on the leaf space RT that f|x(z j) is
an isometric embedding of x(tj) in RT for each j. In particular f |aj
is an isometric embedding of o in T. By 1.8 it now follows that f is a
morphism. q.e.d.

7.7. Remark. It is easy to show that / maps 7|, isometrically onto a
subpretree of T if and only if the fibers of ¢ are all connected. In general
this need not be the case.

78. Now let 7 be a A-tree with symmetry and let ¥ be a 7 -
complex which is a uniform, 1-connected singular surface with symmetry.
Suppose that the natural length system of ¥ is nondegenerate, so that
& is a A-foliated singular surface with symmetry, and let 7, denote its
preleaf space (5.28).

Then 7.6 gives a natural morphism /:.J) — J of A-pretrees with
symmetry. We call / the natural morphism from J; to J .
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Proposition. Let T be a A-tree, and let X, and X, be T-complexes
which are singular surfaces. Suppose that the natural length systems for the
X, are nondegenerate, so that each ¥, has a natural A-foliation u;. Then
any T-map from X, to X, is a morphism between the A-foliated singular
surfaces (X, u,) and (Z,, u,). Furthermore, if T, denotes the leaf space
of (%;,u,), if f: Ty — T, denotes the morphism induced by W and if
f;: T; = T denotes the natural morphism, then we have f, o f=x5.

Proof. Let f:Z, — X, bea T-map. Let ¢;: L, —» RT be the map
defining the structure of a 7-complex on X,. Then f maps the fibers
of ¢, into fibers of ¢, ; hence by 7.5 it maps the leaves of (X, x;) into
leaves of (Z,, u,). Thus if T, denotes the preleaf space of (%,, y;), and
if we set yx, = Xy, > there is a map of sets f: R7, — RT, making the
diagram

ZOL’Zl

| |

f
RT, —— RT,

commute. It is clear from 7.6 that Rf, o f = Rf,, where f: T, - T
denotes the natural morphism.

Since W is O-tame, f restricts to a map f: T, — T,. We claim that
f is a morphism.

Consider any two points x, y € T,. We may write x = x,(v) and
y = Xo(w), where v and w are vertices of X;,. We may join v to w by
apath y =y ---%y , where each y f is a parametrization of a 1-simplex
T; of X,. It follows from 5.16 that Y is a taut path in X ; hence )(O(Tj)
is a parametrized segment in R7j,. Since the endpoints of 7 ; are vertices,
the endpoints of x(t j) lie in 7;,. According to 1.8, in order to show
that f is a morphism, it is enough to show that f]|x(zt ;) is an isometric
embedding of x(z j) in RT, for each j. This amounts to showing that
W o g is a taut path.

Since X, is a T-complex, ¢, maps T; homeomorphically onto a seg-
ment in R7 . In particular, W| | is 1-1. Hence Woyj is a parametrized
arc which meets each leaf of (X,, x,) in at most one point. It now follows
from the definitions that Woy f is taut. This shows that f is a morphism.

A similar argument shows that f is a morphism. Since f extends f
it follows that f = Rf. Hence by the above commutative diagram and
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5.24, W is a morphism and f is the morphism of A-pretrees induced by
W . Finally, since Rf, o f=Rf;, we have f o f=f,.

8. Continued fractions

8.1. Let L be a rank-two free abelian subgroup of R. A basis of L
(as a free abelian group) is called positive if both its elements are positive
in R. Let B = B(L) denote the set of all unordered positive bases of L.
If B is any element of %, we may write B uniquely in the form {a, 8},
where « > . We shall often indicate this by writing B = {a > £} .

If B={a>pB}eRB,then B ={a— B, B} is again an element of
% ; of course we may have a — f <  or a— f > fB. In any case, B’ is
uniquely determined by B ; we shall call B’ the successor of B.

We define a partial order on the set B by writing B’ < B if there exists
a finite sequence B =B, B,, - , B, = B’ of elements of B such that
B, is the successor of B, | for i =1, ---, n. Reflexivity and transitivity
are obvious; antisymmetry follows from the observation that if B > B’
then the greater element of B is greater than either element of B'.

8.2. The main purpose of this section is to prove the following slight
refinement of a standard result [6, Theorem 175] on continued fractions,
which will be needed in §9.

Proposition. Given any B, B' € B, there exists B"' € B such that
B"<B and B"<B'.

8.3.  Our proof of 8.2 will be self-contained and elementary. Lemmas
8.4-8.6 below are needed for the proof.

Since A C R, any ordered basis {a, f} of A determines a vector
v=(3)€ R’.

For any integer n we shall let Q(n) denote the matrix (7} ]) € GL,(Z).

If B={a > B} is any element of % , there is a unique positive integer
n suchthat 0 <a—-nf < f. Ifweset o' = and B = a—np, then
we have B' = {0/ > B’} € #, and it is clear from the definition of the
partial order on Z that B' < B. We; call B’ the canonical descendant of
B. The vectors v = () and v’ = (§/) satisfy v =Q(n)-v".

On the other hand, if B' = {a' > /3'} € % is given, and if n is any
positive integer, and if we set v’ = (3) and v = (3) = Q(n) - v’ then it
is clear that B = {a > B} € & and that B’ is the canonical descendant
of B.

8.4. The following result is somewhat more subtle.

Lemma. Let B={a>p}ec B and B ={d > B'} € B be given.

’

Set v = (;) and v' = (;) , and suppose that v = Q(n)-v' for some n € L.

Then n >0, and hence v’ is the canonical descendant of v .
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Proof. Setting x = a/f and x' = o//B’, we have x = n + (1/x').
Since x and x’ are > 1 we must have n > 0. q.e.d.

The next two lemmas are elementary facts about GL,(Z), and do not
involve the order structure of A.

8.5. Lemma. Let M = (2%) bean element of GL,(Z) such that ¢ >
d > 0. Then M may be written in the form Q(n,)---Q(n,), where k isa
nonnegative integer, n,, --- , n, are integers, and n; >0 for 1 <i<k.

Proof. We argue by induction on the positive integer d . We first con-
sider the case d = 1. Since detM = +1 we have a = bc £ 1. If
a=>bc+1 then M = Q(b) - Q(c), and if a —bc = —1 then M =
Qb -1)-Q(1)-Q(c—1). Furthermore, we have ¢ > 1 by hypothesis.
Thus the lemma is verified in this case.

Now suppose that d > 1. Let us write ¢ = nd +r, where n is a
positive integer and 0 < r < d. Then M = M'-Q(n), where M’ is the
matrix (%9-7%). By the induction hypothesis we may write M’ in the
form Q(n,)---Q(n,.), where n, >0 for 1 <i < k’. We thus obtain the
conclusion by setting k =k’ +1 and n, =n. q.e.d.

8.6. Lemma. Let M be any element of GL,(Z), and let (n;);, be
a sequence of (strictly) positive integers. For each i > 0 set M, =M.
Q(n,)---Q(n;), and write

Then we have either c; > d, > 0 for all sufficiently large i, or ¢, <d, <0
for all sufficiently large i.

Proof. For each i we have ¢, =n,c;+d; and d, | = c,. It follows
that if for a given i the integers ¢; and d; are both positive, then ¢, , >
d;., =0. Likewise, if ¢; and d; are both negative, then ¢, , <d;,, <0.
Hence to prove the lemma we need only show that for some i the integers
¢; and d; are both positive or both negative.

We first consider the case that for some i we have d; = 0. Since M, €
GL,(Z) it follows that ¢, = £1. Since n; > 0, the integers ¢, , = n,c;
and d;,, = c; are either both positive or both negative.

Next suppose that for some i we have ¢; = 0. Then d,,, = 0, and
hence by the argument just given, ¢, , and d, , are both positive or both
negative.

Thus we may assume that c; # 0 # d, for every i. Hence x; = ¢,;/d,
is always a nonzero rational number. We must show that x; > 0 for some

l.



DENDROLOGY OF GROUPS IN LOW Q-RANKS 685

For each i we have x, , =n; +xi_l . If for some i we have |x,|>1,
then x

is1 21, —12>0;since x;, ; #0 we must have x,,, > 0, and we
are done. It remains to consider the case that |x;| < 1 for every i. In this
case we have |¢;| < |d;| = |c,_,| for every i > 1. This means that (|c;|)>,
is a strictly monotone decreasing sequence of positive integers. Hence this
case cannot occur.

8.7. Proof of 8.2. Letus write B={y >dJ} and B’ = {a > f}. Set
v=(3) and w=(}) € R’. Since B and B’ are both bases for A, there
is a matrix M € GL,(Z) such that M -w =v.

We recursively define a sequence B, B,, ... of elements of & by
setting B, = B, and defining B, +1 to be the canonical descendant of B, .
Thus B; < B for every i > 0. We write B, = {y, > J,}.

For each i > 0 we set w, = (}) € R>. Thus w, = w, and according
to 8.3, for each i > 0 there is a positive integer n, , such that w; =
Q(n,,,) - w, . Hence for each i we have v = M -w = M, - w;, where
Mi =M'Q("[)"‘Q(”,’)'

Let us write

Then by 8.6 we have either ¢; > d, > 0 for all sufficiently large i, or
¢; < d; <0 for all sufficiently large i. Since M, -w; = v, and since v
and w,; have positive entries, the alternative ¢; < d; < 0 cannot occur.
Thus we may fix an index / such that ¢, > d, > 0. We shall complete the
proof of 8.2 by showing that B, < B.

Set P = M,. By 8.5 we may write P = Q(n})---Q(n;), where the
n; are integers and n;, cee n;( are positive. For i =0, --- , k we set
M, = Q(n})---Q(n}), so that M; is the identity and M, = P. Since
M € GL,(Z), there is a unique vector

li
w; = (;’,) cR’

1

! ’ / ! / !
such that v = M, - w;. Thus w, = v, and w; = Q(n,,,) - w,, for

0<i<k.Since v=M w, =P w, wehave w, =w,, ie, 7, =7,
and J, = d,. In particular we have 0 < &, <7} .

For 0 < i < k, we have a basis B, = {7},d,} of A. Since w; =
Q(n,,) - w;,, , and since n,, >0 for 1 <i< k, it follows from 8.3,
using induction on k — i, that 0 < d; <y, for 1 <i <k, and that B], |
is the canonical descendant of B; whenever 1 <i<k.
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On the other hand, by the hypothesis of the proposition, B(', =B is
also a positive basis, and y(') =a>f= 5('). Hence by Lemma 8.4 we
have n, > 0, and B, is the canonical descendant of B . It follows that
B, < B, =B', as required.

8.8. We conclude this brief section with an easy lemma that will also
be needed in §9.

Lemma. Let L be a rank-2 free abelian subgroup of R. Let o be a
positive unimodular element of L. Then there is a unique element 8 of L
such that (i) 0< B < /2 and (ii) a and B form a basis of L.

Proof. If B, is an element of L such that a and B; form a basis,
then any B for which o and B form a basis has the form ¢f; + na for
some n €Z and ¢ = £1. There is a unique way of choosing n and € so
that 0 <ef,+na<a/2.

9. A natural T-complex for the rank-2 case

In this section A will denote a subgroup of R, and T will denote a
A-tree. From 9.15 onward it will be assumed that A has Q-rank 2.

9.1. Let L bearank-2 free abelian subgroup of A. We shall associate
to L a natural abstract T-complex (3.6) which we denote (X(L), <I>L) .

The complex X(L) will have dimension at most 2, and its 1-skeleton
will be the complex U(L) defined in 3.10. Thus a vertex of X is a point
of T, and a l-simplex is a two-element subset {x, y} of T such that
d(x,y) is a unimodular element of L.

It remains to define the 2-simplices of X(L). A three-element subset of
T is called a 2-simplex if it has the form {x, y, z}, where (i) y € [x, z]
and (ii) the distances d(x, y) and d(y, z) form a basis of L. (It follows
that d(x,y) and d(x, z) also form a basis of L, as do d(x, z) and
d(y, z). In particular, {x, y}, {x, z} and {y, z} are 1-simplices. Thus
X(L) is indeed an abstract simplicial complex.)

We define @~ to be the identity map of T . It is clear that (X(L), o )
is a natural abstract T-complex. Thus the geometric realization of
(%(L), ®") is a natural geometric T-complex (X(L), ot ).

Recall that by 7.5, X(L) has a natural length system /, and / defines
a decomposition of each closed 2-simplex of X(L). By the definition of
X(L), the function / takes its values in L.

9.2. The complex X(L) has the following fundamental property.

Proposition. For any I-simplex 1 of X(L), there are exactly two 2-
simplices of which t is the longest edge.
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Proof. Let T be the 1-simplex A(x, z), let o =d(x, z) be the length
of 7, and let & denote the unique isometry of [0, a] C A onto the
segment [x, y] C T which maps 0 to x and a to y. A 2-simplex J has
7 as its longest edge if and only if 6 = A(x, y, z), where (i) y € [x, z]
and (ii) « and d(x, y) form a basis of L. The only possible choices of
y are h(f) and h(a — B), where B is given by Lemma 8.8. q.e.d.

Note that the assumption that L has rank 2 is crucial in the above
proof.

In §10, Proposition 9.2 will be the starting point for a construction
for producing subcomplexes of the complexes X (L), for free abelian sub-
groups L of A, that are singular surfaces. The singular surfaces appearing
in the statement of Theorem 6.2 will be constructed as covering spaces of
these singular surfaces in the complexes X (L).

The main goal of this section is to develop analogues of 3.12, 4.3 and
4.5 for the complex X(L). These results depend on a number-theoretic
investigation of homotopies between 1-tame lifts to X (L) of parametrized
segments in T .

In 9.3-9.10, L will denote a fixed rank-2 abelian subgroup of A. We
shall write (X, ¢) = (X(L), ¢5).

9.3. Let y be a parametrized segment in R7". Since U = sk, (X),
a l-tame lift of y to X is the same thing as a 1-tame lift of y to U.
In particular, it follows from 3.11 that y admits a 1-tame lift to X if
and only if the endpoints x and y of y belongto T and d(x,y)e L.
On the other hand, homotopy (or 7-homotopy) of 1-tame liftsin X isa
weaker notion than homotopy (or 7-homotopy) in U .

Proposition. Any two 1-tame lifts of y to X are tamely T-homotopic
39 in X.

9.4. The next four lemmas are needed for the proof of Proposition
9.3. In these lemmas it is understood that L is a rank-two free abelian
subgroup of A.

Let d = A(x, y, z) be a2-simplex of X whose longest edge is A(x, z).
The definition of X implies that ¢ maps each of the topological intervals
A(x, z) and A(x, y) UA(y, z) homeomorphically onto [x, z]. Hence a
parametrized segment in T joining x to z admits exactly two 1-tame
lifts to X whose images are contained in the boundary of 4.

95. Lemma. Let 6 =A(x,y, z) be a 2-simplex of X whose longest
edge is A(x, z). Let y be a parametrized segment in T joining x to z.
Then the two tame lifts of y whose images are contained in the boundary
of & are tamely T-homotopic.
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Proof. Set a = d(x,y) and B = d(y, z). Then the edges 7 =
A(x,z), T =A(x,y) and " = A(y, z) of & have respectively lengths
a, B,and a+ f.

Write $ for the lift of y with image 7, and ' for the lift with image
7ut’. If t €[0, 1] is given, 7(¢) is the unique point of 7 which is
mapped by ¢ to y(z). Likewise, '(¢) is the unique point of 7' U t”
which is mapped by ¢ to y(¢). Thus 7(z) and §'(¢) are the endpoints of
a line segment A, in the decomposition of ¢ defined by /.

We define a homotopy =: [0, 1] x [0, 1] — & as follows. For each ¢ €
[0, 1] we define Z|{t} x [0, 1] to be the unique affine map of {7} x [0, 1]
onto A, that maps (¢, 0) to 7(¢) and (z, 1) to '(r). We have E =7,
E = 7", and ¢oZE, =y forall ¢t €[0, 1]. Furthermore, E([0, 1]1x [0, 1])
is the closed simplex ¢, a subcomplex of X(L). q.e.d.

9.6. As in §8, we denote the partially ordered set of all positive bases
of L by B(L).

Let y be a parametrized segment in R7, with endpoints x and y.
Recall that y admits a 1-tame lift to U—or, equivalently, a 1-tame lift
to X—ifand only if x, y € T and d(x, y) € L. If these conditions do
hold, then by 3.11, the lifts of y are in 1-1 correspondence with the ordered
partitions of d(x, y) into positive unimodular elements of L. Recall how
the correspondence is defined: if y isaliftof y,let 0=q,<---<a, =1
be the points of [0, 1] that are mapped by 7 to vertices of X . Set
x; = Y(a;) and o; = d(x;_,, x;). Then d(x,y) = a; + - +a, is the
partition corresponding to 7.

If the terms in the partition corresponding to a given lift § of y are
all elements of a fixed basis B € B(L), we shall say that § is defined in
terms of B.

9.7. Lemma. Let y be an parametrized segment in T, let  be a
tame lift of y to X which is defined in terms of a basis B € B(L), and
let B' be an element of B(L) such that B' < B. Then ¥ is tamely
T-homotopic to a subdivision of [x, y] defined in terms of B'.

Proof. Tt is enough to prove the lemma in the case where B’ is the
successor (8.1) of B. Write B = {a, 8} where a > f#; thus B’ =
{a - ﬂ s ﬂ} .

Define a; and x; as in 9.6. Then o, = d(x,_,,x;) € B for 1 <
i < n. We need only show that, for i =1, -, n, the lift j|[a,_,, a,]
of y|la;,_,, a;] is tamely T-homotopic to a lift of y|[a a;] defined in
terms of B'.

If d(x,_,,x;) =B, then y|[a,_,, a;] is itself defined in terms of B'.
Now suppose that d(x X)) = a. Let x" denote the unique point

=127

-1’
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of RT such that d(x,_,,x') = B and d(x', x;) = @ — B. By defini-
tion, § = A(x,_,, x’, x,) is a 2-simplex of X. Hence by Lemma 9.5,
?lla;_,, a;] is tamely T-homotopic to the lift of y|[a,_,, a,] whose im-
age is A(x;_,, xYUA(X', X;) . But this lift corresponds to the partition
a = B+ (a— B) and is therefore defined in terms of B’.

9.8. Let y be a parametrized segment in 7" with endpoints x and
y, and let § be a l-tame lift of y to X. Let d(x,y) = a, + - +aq,
be the ordered partition corresponding to 5. A basis B € B(L) will be
called a mesh for the lift $ if there exist B, --- , B, € B(L) such that
@, € B, and B< B, for i =1,---,n. It follows from 8.2 that every
1-tame lift has a mesh.

Lemma. Let § be a tame lift to X of a parametrized segment y in
T. If B is a mesh for $ then % is tamely T-homotopic to some tame lift
of y which is defined in terms of B.

Proof. Define a, and x; asin 9.6. It is enough to prove that for 1 <
i <n,thelift |[a,_,, a;] is tamely T-homotopic to a lift of y|[a,_,, a,]
defined in terms of B. Choose B; € B(L) such that o, = d(x,_,, x;) € B,
and B < B,. In particular the lift $|[a;_,, a;] is defined in terms of B, .
Hence it follows from 9.7 that J|[a a;] is tamely T-homotopic to a
lift defined in terms of B.

9.9. Lemma. Let y be a parametrized segment in T, and let 9 and
9" be two lifis of y defined in terms of the same basis B € B(L). Then
and ' are tamely T-homotopic.

Proof. Asin9.6,let 0 =g, < ---<a, =1 be the points of [0, 1] that
are mapped by 7 to vertices of X . Set x; = §(a;) and o, =d(x,_,, X;).
Similarly, let 0 = b, < -+ < b, = 1 be the points of [0, 1] that are
mapped by 7' to vertices of X ; set y, = 7'(b,) and B, =d(y,_,,»,).
Then the o, and B; belong to B, and dx,y)=a,+ - +a,=p+
4 ﬂn' .

Since B is a basis we must have n = n’ and ﬂj = Qg for 1<j<mn,
where 7 is some permutation of {l,---,n}. In proving that y and
7' are tamely T-homotopic, we may assume that 7 is a transposition of
the form (k, k + 1) with 1 < k < n, since transpositions of this form
generate the symmetric group on » letters. In this case, for i # k we have
a,=b; and x; = y,, and we need only prove that the lifts p|la,_,, a;,,]
and )‘»'|[ai_l , a;,,] of ylla;,_,, a;,,] are tamely T-homotopic.

If a; = a,,, then x, = y,, and the two lifts coincide. If o,
# o, then B = {o;,qa,,,}, and therefore A(x,_,, x;,x,,,) and
A(X,_, ¥y »X;,,) are 2-simplices of X. Thusby 9.5, thelifts |[a,_,,a,,,]

i—1°
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and 77'|[ai_l , a;,,] are both tamely 7-homotopic to the lift of y whose
image is A(X,_,, X;,,) -

9.10. Proof of Proposition 9.3. Let 9 and 7' be two 1-tame lifts of .
It follows from 8.2 that # and 7 have a common mesh B. Hence by 9.8,
they are tamely 7-homotopic to 1-tame lifts §, and )‘1; defined in terms
of B. By 9.9, the paths §, and ;‘)i are tamely 7-homotopic. q.e.d.

9.11. In the above discussion, L has been a fixed rank-two free
abelian subgroup of A. Now let L and L' be rank-two free abelian
subgroups of A with L c L'. Recall from 3.12 that there is a canonical
T-map H =H, ; from U(L)=sk (X(L)) to U(L') =sk,(X(L')), and
that H is Aut(7)-equivariant.

Proposition. The map H; ;. may be extended to a 2-tame Aut(T)-
equivariant T-map J: X(L) — X(L').

The next two lemmas are needed for the proof of this proposition. We
shall write H = H L~

9.12. Lemma. Let d be a closed 2-simplex of X(L). The map H|0J

may be extended to a continuous map J .5 X (L) such that ¢L, oJ =
ot |6, and such that J? (8) is a subcomplex of X(L').

Proof. By definition, ¢ has the form A(x, y, z), where y € [x, z].
The longest edge of d is 7 = A(x, z); the others are 7 = A(x, y) and
7 = A(y, z). Let y be any homeomorphism of [0, 1] onto |7| =
[x, zlgy- Then y has a unique 1-tame lift $, to X(L) whose image
is 7, and a unique 1-tame lift §, whose imageis 7 Ut". Since H is a
1-tame T-map, Ho$, and Hoy, are 1-tame lifts of y to X(L').

By Proposition 9.3 there is a tame T-homotopy Q from j to 7'. We
shall use Q to construct the map Jo.

For any ¢ € [0, 1], the points J,(f) and §,(f) are the endpoints of a
line segment 4, in the decomposition of J defined by /. There is a unique
affine map /,: [0, 1] — 4, such that 7,(0) = 9 (¢) and I,(1) = y,(¢). Note
that /, is an affine isomorphism for ¢ #0, 1.

For any point p € J, there is a unique ¢ = ¢t(p) € [01, ] such that p €
A,. For p#x, z wehave (p) #0, 1. Forall p €6 we define J°(p) =
Q(t(p), I,?p])(p)) . Since the T-homotopy Q is by definition constant on
0 and 1, the map JI‘s is well defined. The definition of a T-homotopy
also implies that ¢L o J = ¢L |6 . Furthermore, J? agrees with H on

00 since ;=9 and Q, = 7. Since Q is a tame homotopy, J's(é) is a
subcomplex of X(L'). q.e.d.
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Note that one could conclude immediately from Lemma 9.12 that H, Y
extends to a 2-tame T-map from X (L) to X(L'). However, property
(iii) is not immediate because the construction of J° in the proof of
Lemma 9.12 is not canonical. (Indeed, the proof of 9.3 does not provide
a canonical homotopy Q.) The next lemma will allow us to deal with this
point.

9.13. Lemma. Let g€ Aut(T) be given, and let & be a 2-simplex of
X (L) which is invariant under g. Then g fixes each point of ¢ .

Proof. Let 6 =A(x,y, z), where A(x, z) is the longest edge. Clearly
A(x, z) must be invariant under g, and hence g-y =y. If g were to
interchange x and z, we would have d(x, y) = d(y, z); this is impos-
sible, since d(x, y) and d(y, z) form a basis of L by the definition of
X(L).

9.14. Proof of Proposition 9.11. We choose a set £ of orbit represen-
tatives for the action of Aut(7T) on the set of 2-simplices of X . (Thus
each 2-simplex has the form g -J for a unique J € X and for some—
not necessarily unique—g € Aut(T).) For each 6 € X, using Lemma
9.12, we fix a map J°: 5 - X(L) agreeing with H on 94, such that

or 0 J° = gL |6, and such that J°(d) is a subcomplex of X(L').

In order to extend H toa map J: X(L) — X(L'), we note that any
point of X(L) — U(L) can be written in the form g -p, where p is an
interior point of some ¢ € £ and g is an element of Aut(7). We wish
to define J(g-p)=g-J d (p) . We must check that J is well defined.

Suppose that we are given elements g, g' of Aut(T) and interior
points p, p' of 6, 6'€X,suchthat g-p=g'-p'. Then g-6=¢"-¢',
and hence d = . Lemma 9.13 implies that g and g’ agree on §.
Hence p = p'. On the other hand, since qb[" 0o J’ = ¢L |6, we have
qﬁ ( (6)) = ¢ (6) = |d|. Thus the subcomplex J‘s((S) of X(L') is a
union of closed simplices of X (L') whose supports are contained in |d].
In particular, g and g' agree on the vertices of these simplices, and
therefore agree on J°(3). Hence g-J°(p) =g -J°(p) = ¢’ -J° (p'). This
shows that J is well defined. It is clear that J is a T-map. Since H is
1-tame and since J 6(6 ) is a subcomplex of X(L') for each J € X, the
map J is 2-tame. q.e.d.

9.15. Now let us suppose that the Q-rank of A is 2. Then we can
write A = U;’=°1L,., where L, is a rank-2 free abelian subgroup of A
and L, C L. (The inclusions need not be proper.) We fix such a
sequence (L,), and for each i > 1 weset (X;, ¢;) = (X(L,), ¢L‘) Using
Proposition 9.11, we fix an Aut(7)-equivariant T-map J; ;, ,: X; — X,
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If i < j are positive integers we set J] = J_l joro Jl s X X
Thus we have a direct system ((X;, ¢,); J;;) of natural T-complexes and
2-tame Aut(7T)-equivariant T—maps We choose consistent base vertices
for this system (see 4.1); we can then form the direct limit lim 7, (X)) for
any N>0.

Theorem. For n=0, 1, we have lim 7, (X;) =0.

Proof. For n =0 the result follows from 4.3, since U, = sk,(X;). For
n =1 we shall apply Proposition 4.4. To check condmon (1) of 4. 4 note
that if y is a parametrized segment in R7 whose endpoints x and y
lie in T, then d(x,y) € A and hence d(x, y) € L; for some i; thus
7 admits a 1-tame lift to X,;. Condition (2) of 4.4 holds by virtue of
Proposition 9.3.

10. Edge-shortening

In this section we consider a A-tree T, where A is a subgroup of R,
a group I' acting on T by isometries, and a rank-2 free abelian subgroup
L of A. For any subset S of T, we denote the stabilizer of S in I'" by
I’y . We shall suppose that the action of I on T satisfies the Ascending
Chain Condition 6.1.

As in §9, we consider the geometric T-complex (X, ¢) = (X(L), ¢L ).
Recall that X is a natural 7-complex, so that in particular I" acts in a
natural way on X and ¢ is I'-equivariant.

If Y isany subcomplex of X, then (Y, ¢|Y) is a geometric T-complex.
In general when a subcomplex Y of X is given we shall refer to Y as
a geometric T-complex, the map ¢|Y being understood. In particular, if
Y and Y’ are subcomplexes of X, it makes sense to speak of a T-map
from Y to Y'.

As in §9, we shall denote by / the natural L-valued length system on the
2-dimensional geometric T-complex X . If Y is any subcomplex of X
then (Y, ¢|Y) is also a geometric T-complex. Its natural length system
is the restriction of / to the set of 1-simplices of Y ; we denote it /|Y .

10.1. Proposition. Let Y be a I'-invariant subcomplex of X which is
finite modI". Then there exists a T-equivariant T-map &:Y — X such
that

(1) ®|sk (Y) is homotopic rel sk,(Y) to the inclusion map sk (Y) —
X
(i) X =@&(Y) is a singular surface, and
(iii) the L-valued length system l|X is nondegenerate (7.2).
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To interpret condition (i) note that since X is natural, any O-tame T-
map from Y to X must fix every vertex of Y.

The proof of this proposition will be given at the end of this section.
Lemmas 10.3—10.9 involve the basic constructions used in the proof.

10.2. Let Y be any subcomplex Y of X which is I'-invariant and
finite modI", and which has dimension < 2. We shall write &(Y) for
the set of all 1-simplices of Y which are nonisolated, i.e., which are of
strictly positive valence in Y. The number of I'-orbits in &(Y) will be
denoted n(Y). Thus n(Y) > 0 if and only if Y has dimension 2.

The elements of &(Y) in a given orbit all have the same length. In
particular, if Y is 2-dimensional, then &(Y) contains an element of max-
imal length; that is, there is some w € &(Y) such that /(w) > /(t) for all
7€ &(Y). The set of all elements of maximal length in &(Y), which is
a finite union of I'-orbits, will be denoted &*(Y).

10.3. Lemma. Let Y be a T'-invariant 2-dimensional subcomplex of
X which is finite modI'. Then every 1-simplex in &*(Y) has valence 1
or2inY.

Proof. Let w be a l-simplex in &*(Y). Since w € &(Y) we have
valy (@) > 0. On the other hand, since @ has maximal length among the
1-simplices in &(Y), any 2-simplex of Y having w as an edge has w as
its longest edge. By 9.2 this means that val,(w) < 2. q.e.d.

For ¢ =1, 2, we shall write & (Y) for the set of all elements of & (Y)
that have valence ¢ in Y. Thus & (Y) =&"(Y)U &, (Y).

Given a TI-invariant subcomplex Y of X, finite modI', and a 1I-
simplex w € &*(Y), we shall see that there is a canonical I'-equivariant
T-map of Y into X determined by w. Proposition 10.1 will be proved
by composing maps of this canonical type. The construction of the canon-
ical map depends on whether w has valence 1 or 2. The case of valence
1 is relatively easy. It is contained in the following “Collapsing Lemma”.

10.4. Let Z be a subcomplex of a T-complex Y . By a T-deforma-
tion retraction of Y onto Z we mean a retraction c: Y — Z which is
also a T-map, and such that ¢, regarded as a map of Y into itself, is
homotopic to the identity. Now let Y be a I'-invariant subcomplex of
X, and let Z be a subcomplex of Y. We say that Z is an equivariant
T-deformation retract of Y if there exists a I'-equivariant T-deformation
retraction of Y onto Z . (Any equivariant 7-retract of Y is in particular
itself I'-invariant.)

Collapsing Lemma. Let Y be a I'-invariant 2-dimensional subcomplex
of X, and let w bea 1-simplexin & (Y). Then there exists an equivariant
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T-deformation retract Z of Y, such that (i) Z contains all the vertices of
Y, and (ii) £(Z) Cc &(Y)-T - w. In particular we have n(Z) < n(Y).

Proof. For each closed 2-simplex d of X we shall define a natural
continuous map K°:8 — 5. Let © denote the long edge of 4, and let 7'
and 7" denote the other two edges. Any point p € J lies in a unique line
segment A in the decomposition of § defined by /. We define K‘s(p) to
be the unique endpoint of A that liesin U1 .

Since the closed simplex J is a subcomplex of X, it may be regarded
as a geometric 7-complex; and K° is then a T-map. Note that K’ isa
retraction of § onto TUT".

We construct a map c: Y — Y as follows. On sk (Y) we define ¢ to
be the identity. Now let T be any 1-simplex of Y. If 7 is in the orbit of
 then 1€ &*(Y); thus 7 is an edge of a unique 2-simplex J, and is in
fact the longest edge of 6. We define ¢ to agree with K’ ont.If tis
not in the orbit of w we define ¢ to be the identity on 7. In either case
¢ restricts to the identity on 7.

It remains to extend ¢ to the 2-simplices of Y. Let § be any 2-simplex
of Y. Let 7 denote the longest edge of J, and let 7" and " denote its
other two edges. Then 7' and t” are not in &*(Y), and hence are not
in the orbit of w. As for 7, it may or may not be in the orbit of w.

If 7 is in the orbit of w we define c|d to be K°. Since K° is a
retraction of & onto 7’ U 7", it is clear that this definition of ¢ agrees
with the earlier one on 8J. If 7 is not in the orbit of w we define ¢ to
be the identity on . Again this agrees with the earlier definition on 89 .
Thus ¢ is well defined on Y.

Since K°: 6 — 6 isa T -map for each 2-simplex J, one sees that ¢ is
a T-map. It is clear that ¢ is a I'-equivariant deformation retraction of
Y onto Z, where Z is a subcomplex of Y having properties (i) and (ii)
in the statement of the lemma. q.e.d.

10.5. Now let Y be a I'-invariant 2-dimensional subcomplex of X,
and let @ be a 1-simplex in 8’2*(Y). We shall describe here a I'-invariant
subcomplex Z of X, determined by Y, X and w via a process we
call “edge-shortening”. Lemma 10.9 below will provide a I'-equivariant
T-map of Y onto Z.

According to 9.2, there are exactly two 2-simplices of X, say J, and
6,, of which w is the longest edge. Since w € gz*(Y), both §, and
6, must be simplices of Y, and they must be the only 2-simplices of Y
having @ as an edge.

Let x and z denote the vertices of w. Then J, = A(x, y,, z) and
6, = A(x, y,, z) for some vertices Yo and y,. We may regard x, y,,



DENDROLOGY OF GROUPS IN LOW Q-RANKS 695

y, and z as points of 7. Set a =d(x, z), and let 4 denote the unique
isometry of [0, a]N A onto [x, y] which maps 0 to x and o to y.
According to the proof of 9.2, there exists f € A, with 0 < 8 < a/2,
such that {a, B} is a basis for A, and the points y, and y, are h(p)
and h(a—f) in some order. After relabelling J, and J, if necessary, we
may assume that y, = A(B) and that y, = h(a - B).

In the tree T we have y, € [x, y,]. Furthermore, d(x, y,) = f and
d(yy,y,) =(a—B)— B =a—-2p. Since {a, B} is a basis for A, so is
{B,a—2p}. Hence the definition of X implies that p_ = A(x, Yo» V1)
is a 2-simplex of X . Similarly, p, = A(y,, y,, z) is a 2-simplex of X .
The 2-simplices p_ and p_ have the common edge v = A(y,, »,). The
I-simplex ¥ may or may not lie in the complex Y . However, the other
edges of p_ and p,_ doliein Y.

Since J, and d, are the only 2-simplices of ¥ having w as an edge,
the only 2-simplices having an edge in the orbit I'-w are those in the orbits
I'-6, and TI"-4, . Hence deleting the simplices in the set I'-wUI-6,UT -4,
from Y gives a subcomplex W . Note that ¥ contains all the 1-simplices
of Y that have length < a. Clearly W is I'-invariant.

Now consider the set of 2-simplices I'- p_UT - p_. All the edges of the
simplices in this set either belong to the orbit I' -y, or are 1-simplices of
Y which have length < o and are therefore in the subcomplex W . Hence
we can form a new subcomplex Z of X by adjoining to Y the simplices
of theset -y UT'-p_UT-p, . Again, Z is clearly I-invariant.

The complex Z is said to be obtained from Y via the edge-shortening
determined by w. The 1-simplex y is called the short edge replacing the
long edge . As we have mentioned, ¥ may or may not belong to &(Y).

10.6. Note that &(Z) = (&(Y)-T'-w)UT - w. Hence we have
n(Z) < n(Y), and the inequality is strict if and only if y € &(Y).

Note that we have [(y) = [(w) — 2/(x) for some xy € &(Y). (In fact
we have y = A(x, y,), where x and y, are defined as in 10.5.)

Note also that by the construction, the segment |y| is a subsegment of
|w| which has the same midpoint in T as |w|.

The following three lemmas express further properties of the edge-
shortening operation. In these lemmas, it is understood that Y is a I-
invariant 2-dimensional subcomplex of X, and that w € é"z*(Y). Fur-
thermore, Z denotes the subcomplex of X obtained from Y via the
edge-shortening determined by w, and y denotes the short edge replac-
ing the long edge w.

10.7. Lemma. For every 1-simplex © of Z that is not in the T-orbit
of v we have val, (1) < valy (7).



696 HENRI GILLET & P. B. SHALEN

Proof. We use the notation of 10.5.

Let 9, (resp. &, ) denote the set of all 2-simplices of Y (resp. Z)
that have 7 as an edge. Thus val,(7) and val,(7) are the cardinalities
of Z, and &, .

Consider first the case where the length of 7 is not equal to f or
a — B. In this case 7 is not in the orbit of any of the l-simplices
A(x, yy), A(¥y» 2), A(x, y;) or A(y,, z). By hypothesis it is not in the
orbit of ¥ = A(y,,y,). Hence by the definition of edge-shortening we
have &, = &, in this case, and hence val,(7) = val, (7).

Next consider the case /(7) = f. In this case we shall see that val, (1) <
valy (1) by defining a surjective map ¥: I, — 7, .

Let J be any 2-simplex in &, . If § ¢ I'-6,UT"-6,, weset £(d) =4 .
Now suppose that 6 € I'- 6, UT - J,. We wish to set Zo)=g-p_ if
0=g-0, with geT',and &(0)=g-p, if 6 =g -J, with gel'. It
is necessary to check that £(J) is well defined; a priori, the definition of
Z(9) depends on the choice of g, and—since §, and 6, may happen to
lie in the same I'-orbit—on the choice of i as well.

To show that £(d) is independent of the choice of g, we must show
that if an element of I" which leaves J, (resp. d,) invariant also leaves
p_ (resp. p, ) invariant. But if g € I' leaves J, invariant then the
segment [x, z] = |d,| C T must be pointwise fixed by g. In particular,
[x, ] = |p_| € T must be pointwise fixed by g, and hence g must
leave p_ invariant. Similarly, if g leaves J, invariant then it leaves p_
invariant.

To show that £(d) is independent of the choice of i, we must show that
if g isanelement of I' such that g-d, =4, ,then g-p_=p . If g-d, =
d,, then g must leave the segment [x, z] = |d,| = |4,| invariant and map
Yy to y,. Since y, # y,, the automorphism g cannot fix the endpoints
of [x, z]; it must therefore interchange x and z. Thus g induces an
involution of [x, z], and since g-y, =y, it follows that g -y, =g-y,.
Hence g transforms p_ = A(x, y,, y,) onto A(z,y,,¥,) = p, .

Thus &(d) is well defined for all 6 € &, . Furthermore, we have
Z(0) € &, . This is obvious if § ¢ I'-d, Uy -4, since in this case
Z@6)=0.1f 6 = g-9, for some g € ', then by definition we have
Z(0) = g-p_. Now since t has length B, and since A(x, Yp) 1s the
only edge of J, = A(x, y,, z) whose length is #, we must have 7 =g -
A(x, y,) . Hence 7 isanedgeof g-A(x, y,,y,) = Z(d),ie., Z(J) €Y,.
A precisely similar argument shows that if 6 = g-J,, for some g € T then
g0)ez,.
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To see that &: &, — Z, is surjective, let d be any 2-simplex in Z,.
If 6 ¢ T-p_UT-p, ,thenclearly 6 € Z, and 6 ¢ I'-§,UT -4, .
By the definition of & we have 0 = £(0) € £(Zy). If 6 = g- p_ for
some g € I', then since /(7) = B, and since A(x, y,) is the only edge
of p_ =A(x, y,,y,) whose length is §, we must have 7= g-A(x, y,).
Hence the 2-simplex ' = g - d, belongs to Z, . By the definition of &
wehave 6 =2(8) e & (Zy) . A precisely similar argument shows that if
6=g-p, forsome g€T then d € (). Thus ¥ is surjective.

This proves that val,(7) < val,(t) in the case where /(t) = f. In the
remaining case, where /(1) = o — f, we define a surjection &: 9, — Z,
as follows. Let 6 € &, begiven. If § ¢ T'-6,UT" -4, , weset £(d) =4.
If 6 =g 0, forsome geTI weset (0) =g-p,. If d = g9
we set Z(0) = g - p_. The proof that & is a well-defined surjection
from 2, to &, is precisely parallel to the previous argument for the
case /(1) =p. q.ed.

10.8. Lemma. Suppose that I“W| = l“|w| andthat n(Z) = n(Y). Then
v has valence 2 in Z .

Proof. We use the notation of 10.5. The 2-simplices p_ and p, are
distinct and both have y as an edge. To prove the lemma we must show
that p_ and p__ are the only 2-simplices in Z having y as an edge.

Let p be any 2-simplex in Z having y as an edge. Either p is a
2-simplex of Y or it is in the orbit of p_ or p_. If p is a 2-simplex
of Y then we have y € &(Y). But by 10.6 this implies n(Z) < n(Y),
in contradiction to the hypothesis of the lemma. Hence p must lie in the
orbit of p_ or p_ . By symmetry we may assume that p is in the orbit
of p_,sothat p=g-p_ forsome geI. Since y is the unique edge
of p_ having length a« — 28, we must have g-y = y. Thus g € I“W| ,
and by hypothesis we therefore have g € 1"| ol * Thus g either fixes ||
pointwise or interchanges the endpoints of |w]|.

Suppose that g fixes |w| pointwise. Since |w| =[x, z] D [x, y,] =
|p_|, it follows that g fixes |p_| pointwise. Hence p=g-p_=p_.

Now suppose that g interchanges the endpoints of |w| =[x, z]. Thus
g-x=2zand g-z=x. Since d(x,y,) = B =d(z,y,) we must have
g ¥,=y, and g-y, =y,. Hence g transforms p_ =A(x, y,, y,) onto
P, =A(z,y,,¥,),s0 that in this case p=p, . qed.

10.9. Lemma. There exists a I'-equivariant T-map &Y — Z.
Furthermore, ®|sk,(Y) is homotopic rel sky(Y) to the inclusion map
sk, (Y)— X.

Proof. We use the notation of 10.5. The map & will be constructed
by extending the inclusion map W — Z toamap of Y into Z . This map
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will be defined so as to be simplicial with respect to appropriate simplicial
subdivisions of Y and Z.

For each 1-simplex 7 of X we shall write m_ for the midpoint of 7.

We define a subdivision Y’ of the complex Y as follows. The vertices
of Y' are the vertices of Y and the points m_ for t € I'-w. Every
simplex of W is a simplex of Y. Each 1-simplex 7 € I'- @ is subdivided
at m_ into two l-simplices of Y’. If & is a 2-simplex in I'-6, UT - §,,
and if 7 € I'"- w is the longest edge of J, then the segment in J joining
7 to the opposite vertex subdivides & into two 2-simplices of Y”.

Similarly we can define a subdivision Z' of Z . The vertices of Z' are
the vertices of Z and the points m_ for t € I'- y . Every simplex of W
is a simplex of Z'. Each 1-simplex 7 € I"- y is subdivided at m_ into
two 1-simplices of Z'. If & is a 2-simplex in I'o,ul'-6,,andif relw
is the unique edge of & having length o — 2, then the long segment in
0 ,joining T to the opposite vertex subdivides J into two 2-simplices of
Y .

We define a map &,: sky(Y’) — sky(Z') as follows. For any vertex
v of Y we set &, (v) = v. For any vertex v of Y' which is not a
vertex of Y, we may write v = g-m, for some g € I'. We wish to
define & (v) =g-m w - In order to show that & is well defined, we must
check that if an element g of I' fixes m, then it fixes m,,. Butif g
fixes m_ , then since I' acts simplicially on X, the 1-simplex @ must
be invariant under g. Hence |w| = [x, z] C T is invariant under g.
Thus |y| = [y,, »,], which is a subsegment of [x, z] having the same
midpoint as [x, z], must also be invariant under g. Since X is a natural
T-complex it follows that  is invariant under g; hence g fixes m,.
Thus &, is well defined.

It is clear from the definition that & is I'-equivariant.

We claim that &, can be extended in a unique way to a simplicial map
8,: Y' — Z'. In order to show this we must show that for any simplex A
of Y', the vertices of A are mapped by 3, to the vertices of a simplex of
Z'.If A is asimplex of W this is obvious. Thus we may assume that A
is in the T'-orbit of one of the simplices of Y’ contained in d, or J,. By
the equivariance of S, we may in fact assume that A is itself contained
in §; for i =0 or 1. Hence A is a face of either J; = A(x, y;,, m,)
or 6; ={z,y;, m,}. But then &, maps the vertices of A into either
{x,y;, mw} or {z,y,, m,,} ; by definition, each of the latter sets spans a
2-simplex of Z'.
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The map &, is clearly I'-equivariant. It is also clear that S, |W is
the identity; in particular, 8, fixes the vertices of Y, so that we may
regard it as a O-tame map from Y to Z . To show that &, isa T-map,
it suffices—in view of equivariance—to show that for i = 0, 1, the maps
¢o®, and ¢ agree on 6, =4, UJ; for i=0, 1. To see this, note that
$o® |6, and ¢|d, are affine maps of 4, into [x, z] that respectively
map x, y; and m, to x, y, and m, where m denotes the midpoint of
[x, z]. Hence ¢o0® |6, = ¢|6; . Similarly we have ¢o® |07 = ¢|J;" .

Finally, we must show that & |sk,(Y) is homotopic rel sk (Y) to the
inclusion map sk, (Y) — X . Since &, is I'-equivariant and agrees with
the identity on W, this amounts to showing that & |w is homotopic rel
the endpoints of @ to the inclusion of @ in X . But w and & (w) are
both contained in the subcomplex B = 6,Ud, Up_Up, of X. The
complex B is isomorphic to the boundary of a 3-simplex and is therefore
simply connected; thus any two paths in B having the same endpoints are
homotopic. q.e.d.

For the remainder of this section the hypothesis of Proposition 10.1 will
be understood to hold. Thus we are given a I'-invariant subcomplex Y of
X which is finite modT .

10.10 Lemma. There exist a sequence (Y,);5, of I'-invariant subcom-
plexes of X, all finite modI", and a sequence (&;: Y, — Y+1)1>0 of T-
equivariant T-maps, such that

(i) Y,=Y ;
(ii) &,|sk,(Y,) is homotopicrel sky(Y,) to the inclusion map sk (Y;) —
X;

(iii) n(Y;) =n(Y,,,) for all sufficiently large i; and

(iv) for all sufficiently large i, either Y, has dimension at most 1, or
Y,,, is obtained from Y, via the edge-shortening determined by
some w € &) (Y,).

Proof. We define the Y, and ®&; recursively. We set Y, =Y. Now
suppose that / > 0 and that Y, has been defined and is a I'-invariant
subcomplex of X, finite modI". Then either Y, has dimension at most
lor &(Y) # ¢. If dimY, <1 weset Y., = Y, and define &, to
be the identity map. Otherwise, we choose a l-simplex w; € & *(Yi) =
& (Y)UE(Y).

If w, € é’l*(Yi) , then according to the Collapsing Lemma 10.4, there
exists an equivariant 7-deformation retract Y, , of Y, such that ¥, ,
contains all the vertices of Y;, and n(Y,,,) <n(Y)). We take S, to be a
I'-equivariant Tdeformatlon retractlon of Y, onto Y, .
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If w, € gz*(Yi) , we define Y, , to be the subcomplex of X obtained
from Y, via the edge-shortening determined by ;. According to Lemma
10.9, there exists a O-tame I'-equivariant 7-map &, of Y, onto Y, .
Furthermore, &,|sk,(Y;) is homotopic rel sk;(Y;) to the inclusion map
sk,(Y;) — X.

This completes the construction of the I'-invariant subcomplexes Y,
finite modI', and the I'-equivariant T-maps &,. Conditions (i) and (ii)
of the lemma are immediate from the construction. If one of the Y,, say
Yi0 , has dimension at most 1, it follows from the construction that for all
i >1i, we have Y, = Yi0 , and hence (iii) and (iv) hold.

Now suppose that all the Y, are 2-dimensional. By the construction
of the Y, it follows that for each i, either n(Y,,) < n(Y;), or Y,
is obtained from Y, via the edge-shortening determined by some w; €
é’z*(Yi). Using 10.6 we conclude that n(Y, ) < n(Y;) for all i > i,.
Hence for sufficiently large i, say for i > i, we must have n(Y, ) =
n(Y;). In particular, for all i > i, the complex Y, , is obtained from

Y, via the edge-shortening determined by a 1-simplex w; € 8’2"‘()’}) . Thus
conditions (iii) and (iv) hold in this case as well.

10.11. For the rest of this section we fix a sequence of subcomplexes
Y;, and a sequence of maps &;, having the properties stated in Lemma
10.10. In order to prove Proposition 10.1, it is sufficient to prove that for
some [ > 0, the complex Y; is a singular surface and the length system
[|Y; is nondegenerate.

A complex of dimension < 1 is obviously a singular surface. Further-
more, any length system on such a complex is automatically nondegener-
ate. Hence we may assume that all the Y, are 2-dimensional. According
to condition (iv) of 10.10, this means that for all sufficiently large i, the
complex Y, , is obtained from Y, via the edge-shortening determined by
some 1-simplex in é’;(Yi) . After passing to a subsequence we may assume
that this is the case for all i > 1. Likewise, by virtue of condition (iii),
we may assume that »n(Y;) has a constant value n forall i>1.

Let us fix representatives t,, 7,,--- , 7, of the n distinct I-orbits of
1-simplices in &(Y,). In terms of the indexed family (z,, 7,, --- , 7,) we
shall define recursively, for i > 1, an indexed family (Tiis Taio " s Tpy)
of representatives of the n distinct I'-orbits of 1-simplices in &(Y,).

For j=1,---,n, we set T, =1;. Now suppose that | > 1 and
that the t i have been defined. Since the T, form a complete system
of representatives of the I'-orbits of 1-simplices of Y., one of them, say
;=T is a valence-2 maximal nonisolated 1-simplex of Y., such that
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Y,,, is obtained from Y, via the edge-shortening determined by w;. Let
¥;,, denote the short edge in Y, , replacmg the long edge T - (see 10.5).
We set Ty, iv1 = Yiprs and T i1 =1, - for j # ](z). The defini-

tion of edge-shortening implies that every F—orbit of 1-simplices of Y, |

contains one of the simplices Ty ivrs o Tnig - Since nY,,)=nit

follows that Ty ip1> " » T, iy TEDTESENDL distinct I'-orbits.

For i>1 and 1 < j <n we set lji = l(tﬂ). In particular we have

J),i = l(w) and 1 Ji+l T l(wz+l)

10.12. Lemma. For each j with 1 < j <n, we have lim,_, _ lﬂ = 0

Furthermore, for each j there are infinitely many i > 1 for which j(i) =

For all such values of i, the I-simplex 1 i has valence 2 in Y;.

Proof Let i > 1 be given. For all j # j(i), it follows from the

definition of the T that T =Tjio and hence that lj,i+l = ljl.. On the

other hand, according to 10.6, we have

l.

(1) Liy.is1 = Ly i = 2Ly, for some j'(i) # j(i).
In particular, it follows that
(2) lj)mglji whenever i > 1 and 1 <j<n.

Equality holds unless j = j(i).
For each / > 1 let us set »;, = min,_,, /;; and A4 = max,,,/;.
Then it follows from (1) that T T

(3) Ly, ivt < Lay,i = 2

Let us also observe that since w; € & (Y, ), we have
(4) Ligy.i =

If we set S, = E; 1 1j;» then (2) and (3) imply that
(5) Si+1 551-2’”['

Since §; > 0 for all i, it follows form (5) that »~;, — 0 as i — oo.
This means that for some j we have / ;i—0asi—oo. After reindexing
7,,--+, 1, if necessary we may assume that /;;, — 0 as i/ — oco. In
particular there are infinitely many values of i > 1 for which l1 i <l
For any such i it follows from (2) that j(i) = 1, and hence from (4) that
l,=4,.

Thus M, takes arbitrarily small values as i — oco. On the other hand, it
follows from (2) that .#, decreases monotonically. Hence hml_’oo/[i =
0. This means that for each j we have l — 0 as [ — oo. This is the
first assertion of the lemma.

i~
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In particular, given any j with 1 < j < n, there are infinitely many
values of i > 1 for which [, ;.| </, ;i - For any such i it follows from (2)
that j(i) = j, which by the definition of j(i) implies that 7 ji has valence
21in Y;. This is the second assertion of the Lemma. g.e.d.

10.13. Lemma. For each j with 1 < j < n and each i > 1, the
segment |t; ;| C T isa subsegment of |t ;| having the same midpoint
as [t

Proof. If j # j(i) then 7, = 7, , , and the assertion is trivial. If

J = Jj(i), then since Y, , is obtalnédHfrom Y, via the edge-shortening

determlned by T ,and 1, J it is the short edge replacing the long edge
, the assertion follows from 10.6. q.e.d.

10 14. Lemma. Foreach j with 1 < j < n thereis an integer iy > 1

such that T’ is independent of i for i > i,. Furthermore, for all i > io,

the valence of T,
Y.

Proof. Given j, consider the sequence |‘tjl|, I‘L'j2|, ... of segments
of T. According to Lemma 10.13 this is a monotone decreasing sequence
of segments all having the same midpoint in R7. According to Lemma
10.12, the lengths of these segments tend to 0. Thus the Ascending Chain

Condition 6.1 asserts that there is a positive integer i, such that I‘Ir | is
ji

Jisl in Y, | is less than or equal to the valence of T

independent of i for i > i,.

Now let i > i, be given. We must show that val,,m(rj’m) < valyi(rﬁ).
If j # j(i) then T it is not in the orbit of v, , ; hence it follows from
Lemma 10.7 that valY (r I +1) S val,,l_(r j,.) . On the other hand, suppose
that j = j(i). Then smce n(Y;) = n=n(Y,,) and F 0l = I“l it
follows from Lemma 10.8 that valym(rj,,.“) =2 =val ( ﬂ)

10.15.  According to Lemma 10.14, we may assume after replacing
the sequence (Y;) be a subsequence that, for every j with 1 < j <n, the
group I' is independent of i for i > 1, and val, ,(Tj,i+1) < val},‘('cj,.)

Tal?

Itl
whenever i > 1.

10.16. Lemma. For all sufficiently large i, the complex Y, is a sin-
gular surface.

Proof. Since each I'-orbit in &(Y;) contains one of the © Jis the com-
plex Y, is a singular surface if and only if 1 ji has valence 2 in Y, for
j=1,---,n. Thus we need only show that for each j with 1 < j<n,
the 1-simplex 7 i has valence 2 in Y, for all sufficiently large i.

Let j be given. For each i > 1,let ¢; denote the valence of 7 i in Y,.

By 10.15 we have ¢, , < ¢, forall i. On the other hand, by Lemma 10.12,
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we have ¢, = 2 for infinitely many /. Hence ¢, = 2 for all sufficiently
large i.

10.17.  According to Lemma 10.16, we may assume, after replacing
the sequence (Y;) by a subsequence, that Y, is a singular surface for all
i > 1. In order to complete the proof of Proposition 10.1 it is enough
to show that /|Y, is nondegenerate. The following elementary fact about
complexes will be useful.

10.18. Lemma. Letagroup I' act simplicially on a complex K . Sup-
pose that K is finite modI". Let x be any vertex of K. Then the link of
x in K is finite modulo the stabilizer T, of x in T.

Proof. Define a based simplex of K to be a pair (A, y), where A is
a simplex of K and y is a vertex of A. Since K is finite modI", and
since a simplex has only finitely many vertices, there are only finitely many
I"-orbits of based simplices in K . On the other hand, two based simplices
with base vertex x lie in the same I'-orbit only if they lie in the same
', orbit. Hence there are only finitely many I, -orbits of based simplices
with the vertex x. The conclusion follows. gq.e.d. ;

10.19. To show that /|Y, is nondegenerate we must verify conditions
(i) and (ii) of 7.2. It follows from 10.18 that every local branch £ is finite
modulo its stabilizer; this immediately implies (ii). It remains to verify
(i): that the order of /|Y, in any 2-dimensional local branch of Y, is at
least 2.

In the following lemmas, 10.20-10.26, x will denote a vertex of Y,
and B, will denote a 2-dimensional local branch at x . Recall that g, is
a subcomplex of the star of x, and is the cone over a component B, of the
link of x. Since Y, is a singular surface, B, is homeomorphic to either
S' or R. We shall write o for the order of [lY; in B,. Lemma 10.22
will assert that o # 1, and Lemma 10.26 will imply that o # 0. When
these have been proved, the proof of Proposition 10.1 will be complete.

10.20. Lemma. If B, is homeomorphic to R then o is either 0 or
R, .
OProof Let I', denote the subgroup of I' consisting of all elements
which fix x and leave B, invariant. It follows from 10.18 that B, is
finite modI', . Hence if B, is homeomorphic to R then each vertex of
B, must have an infinite orbit under T, . The assertion follows. q.e.d.

Since X is natural, we may identify sk,(X) with 7. We define an
equivalence relation = on the set of vertices of B, by writing y = y'if
and only if [x, y] . N[x, y']T # {x} . It follows from the tree axioms that
this is indeed an equivalence relation.
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10.21. Lemma. Let T bea I-simplex of B, andlet y and y' denote
the endpoints of ©. Then y %y if and only if 1 is the longest edge of the
2-simplex 6 = A(x,y,)).

Proof. Suppose that 7 is the longest edge of J. Then it follows from
the definition of the complex X that x € [y, »']; hence [x, y]N[x, y'] =
{x}, so that y 2 y'. Now suppose that 7 is not the longest edge of J;
by symmetry we may suppose that A(x, y) is the longest edge of J. By
the definition of X we have y' € [x, y]. Hence [x, y'] C [x, y], so that
vy

10.22. Lemma. We cannot have o =1.

Proof. If B, is homeomorphic to R this follows from Lemma 10.20.

Now suppose that B, is homeomorphic to S' . Then the valence ¢ of x
in B, is finite. Let the vertices of B, be labelled y,, where r ranges over
the integers modc, in such a way that y, and y, are the endpoints of a
1-simplex of B, if and only if r—s =+1. If 0 =1, there is a unique r,
say r = 0, such that the longest edge of A(x, y,,»,,,) does not contain
x . It then follows from Lemma 10.21 that y, =y, , ifand onlyif r #0.
Thus we have y, =y, =...=y =y, #,,an absurdity. q.e.d.

We now turn to the proof that o # 0. Recall from 10.11 that for each
i >1,weobtain Y, , from Y; by the edge-shortening determined by the
1-simplex w; . In particular, the subcomplexes Y, Y, ... of X all have
the same O-skeleton. Thus x is a vertex of Y; forany i > 1.

In the following lemmas, 10.23-10.26, i will denote an arbitrary integer
> 1, and B will denote an arbitrary local branch of Y; at x. We shall
denote the order of x in B by o0,(8). Lemma 10.26 will assert that
0,(B)#0; if wetake i =1 and B = B, it will follow that 0 # 0.

We shall denote by S;(8) the set of all integers j with 1 < j < n such
that the I'-orbit of 7 i in Y, contains a l-simplex in f having x as an
endpoint. We shall write m, (f) for the cardinality of the set S;(f).

10.23 Lemma. Suppose that o,(f) =0 and that j(i) ¢ S,(B). Then
B is contained in Y, | and is in fact a local branch of Y, | at x. Fur-
thermore, we have m,_,(B) = m,(f) and o, (B)=0.

Proof. The local branch B is the cone over a component B of the link
of x in Y,. If 7 is any l-simplex in B, there is a unique 2-simplex ¢
in B having t as an edge. Since 0,(f) = 0, the long edge of J cannot
be 7; in particular, T ¢ &7(Y;), and so 7 cannot be in the orbit of ;.
Thus B contains no l-simplices in the orbit of w,. On the other hand,
by hypothesis we have j(i) ¢ S;(8), which means that no 1-simplex in
B having x as an endpoint belongs to the orbit of w,. In short, no 1-

simplex in B belongs to the orbit of ,. Since Y, is obtained from Y,
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by the edge-shortening determined by w,, it now follows that g, , C Y.

Hence B is contained in the link L of x in Y, . Let B’ denote the
component of L containing B. Since Y; and Y, , are singular surfaces,
each of the complexes B and B’ is a connected combinatorial 1-manifold.
Since B c B’ we must have B = B'. This shows that f is a local branch
of V..

It now follows from the definitions that m, ,(8) = m,(B) and o, ,(B)
=0.

10.24. Lemma. Suppose that o,(f) =0 and that j(i) € S;(B). Then
there is a local branch B’ of Y,,, at x such that 0i+l(/3') = 0 and
m,, (B') < m(B).

Proof. The local branch f is the cone over a component B of the link
of x in Y,. As in the proof of 10.23, the hypothesis 0,(f) = 0 implies
that B contains no 1-simplices in the orbit of w,. On the other hand,
the hypothesis that j(i) € §;(8) means that for some vertex y of B, the
1-simplex A(x, y) is in the orbit of w,.

Let Q denote the set of all vertices y of B such that A(x, y) is in
the orbit of w;. Then for any y € Q, we have A(x, y) € g;(Yi) , and
we may regard Y, , as being obtained from Y, via the edge-shortening
determined by A(x, y). The link of y in B consists of two vertices z
and w, and the star of y in B is the arc A, =A(y, z)UA(y, w). The
2-simplices of Y; incident to A(x, y) are A(x,y, z) and A(x,y, w).
Hence A(x, z) and A(x, w) are strictly shorter than A(x, y), so that the
endpoints z and w of A, do not belong to Q, and the definition of edge-
shortening implies that A(x, z, w) is a simplex of Y, ,. In particular,
e, =A(z, w) is a 1-simplex in the link of x in Y, ,. For each y € Q
we fix a homeomorphism hy of Ay onto e, which fixes the endpoints of
A, .

yIf A(u, v) isa l-simplex in B-UyeQ Ay , then no edge of A(x, u, v) is
in the orbit of w, ; hence by the definition of edge-shortening, A(x, u, v)
is a simplex of Y, , and thus A(u, v) lies in the link of x in Y, .

We definea map 4 of B intothelinkof x in Y, | bysetting |4, =h,

for every y € Q, and defining 4 to be the identity outside UyeQ A,. (To

see that £ is well defined we must know that 4, N4, =0 for any distinct

elements y and y' of Q; this follows from the above observation that
for any y € Q, the endpoints z and w of 4, lie outside Q.)

We shall show that 4 is a homeomorphism of B onto a component B’
of the link of x in Y, ,, and that the conclusions of the lemma hold for
the local branch B’ corresponding to B'.
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We must first show that 4 is 1-1. To prove this, it is enough to show (i)
that h(4)) is disjoint from B — (U, int4,) for every y € @, and (ii)
that h(intAy)nh(intAy/) = @ for any distinct elements y and y' of Q.
To prove (i), note that h(Ay) =e, is, by construction, the edge replacing
the long edge A(x, y) in the edge-shortening. Hence by 10.11, e, is in the
I-orbit of y,,,. On the other hand, each 1-simplex of B —(U,,int4,)
is the T-orbit of 7; ;,, for some j # j(i), and by 10.11, the orbits of
Ty ip1> " 5 Ty iy AT distinct. This proves (i).

To prove (ii), we must show that the 1-simplices e, and e, are dis-
tinct when y, ' € Q are distinct. We may write A(x,y) = g - w; and
Ax,y)=¢ -o, forsome g, g’ €. Then we have e, = g-y,,, and
e, = g - ¥, - Thus e, =e, would imply g_lg' € rlm,l ; by 10.15 this
would in turn imply g 'g’ € I\, - and hence A(x, y) = A(x, y'). This
is impossible if y # y'. Thus (ii) is proved, and the map # has been
shown to be 1-1.

In particular A(B) is a 1-manifold (without boundary). It is clear from
the definition of A that A(B) is a subcomplex of the link of x in Y, .
Since Y, , is a singular surface it follows that B’ = h(B) is a connected
component of the link of x in Y, . Thus B’ determines a local branch
B’ of Y., at x. We must verify the conclusions of the lemma with this
choice of g'.

To show that o, ,(8') = 0, we must show that for any 1-simplex
A(z,w) of B', the longest edge of A(x, z, w) is A(x, z) or A(x, w)
and not A(z, w). By the definition of B, either A(z, w) is a 1-simplex
of B,or A(z, w) = e, forsome y € Q. If A(z, w) is a 1-simplex of B,
then since 0,(8) = 0, the longest edge of A(x, z, w) cannot be A(z, w).
Now suppose that A(z, w) = e, for some y € Q. Then we may denote
the lengths of A(x, y), A(x, z) and A(x, w) respectively by a, b and
a — b; and after possibly changing notation so as to reverse the roles of
z and w, we may assume that b < 2a. Then the length of A(z, w) is
a—-2b<a-b. Hence A(z, w) is not the longest edge of A(x, z, w).

It remains to show that m, +1(ﬂl) <m; (B). It follows from the defi-
nition of B’ that for any 1-simplex 7 in X having x as an endpoint, ©
lies in B’ if and only if it lies in B and is not in the orbit of w; . Thus
we have S,.H(ﬂ') = S,(B) = {Jj(i)}, and hence mi+l(ﬂ') =m, (B)-1.

10.25. Lemma. Suppose that o,(f) = 0. Then there exist an integer

./

i' > i and a local branch B’ of Y, at x such that o0,(B') = 0 and
mi'(ﬂ,) < m,’(ﬂ)-
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Proof. According to Lemma 10.12, for any j with 1 < j < n, there
exists some i’ > i such that j(i'— 1) = j. In particular, since S,(8) is
nonempty, there exists some i’ > i such that j(i' — 1) € S,(8).

Let us choose the least value of i’ > i such that j(i'—1) € S;(B). Then
by i’ —i—1 applications of Lemma 10.23, B is contained in Y,_, and
is in fact a local branch of Y,_, at x. Furthermore, we have m,_,(8) =
m,_,(B) and o, _,(B) =0. Lemma 10.24 now shows that there is a local
branch B’ of Y, at x such that 0,(8') =0 and m,(8') < m,_,(B) =
m(B).

10.26. Lemma. We cannot have o0,(f) =0.

Proof. If 0,(B) =0, then 10.25 gives an i’ > i and a local branch g’
of Y, such that o,(B') =0 and m,(B’) < m,(B). Applying 10.25 again
we get an integer i > i’ and a local branch B” of Y, with 0,.,(8")=0
and m( B <m (B '). Continuing in this way we get a strictly decreasing
sequence m,(B), m,(B'), my(B"), ... of positive integers. This cannot
be. q.e.d.

10.27. The proof of Proposition 10.1 is now complete, by virtue of
the remarks in 10.19.

11. Proof of the structure theorem in the rank-2 case

This section is devoted to the proof of Theorem 6.2. Throughout the
section, A will denote a subgroup of R whose Q-rank is 2, and 9 =
(T, T, p) will denote a countable A-tree with symmetry. We write A as
a union U}’:l L;, where each L, is a rank-2 free abelian subgroup of A
and L; C Lj. whenever i < j.

11.1. Lemma. There exist a direct system (], V) in the O-tame
category of I -complexes, with #,—(Z;, T, p;, v;, 1) and #;; = (W,;, 1),
and compatible base vertices v, € Z;, for which the following conditions
hold.

(i) Each X, is a singular surface and is finite modI.
(i) The natural length system [, for the T-complex X, takes its values
in L;.
(iii) The ;ength system I, is nondegenerate.
(iv) (., %;;) is abundant.
(v) For n=0, 1 we have h_n} n,(%;,v,)=0.

Proof. As in 9.15, we can use the L; to construct a direct system
((X;, 9,); J,.j) of natural T-complexes and 2-tame Aut(7)-equivariant
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T-maps. This gives a direct system (27, 7)) in the 2-tame category of
J -complexes, where 2, = (X,, T, p;, ¢;, 1) and Zj = (J;j» 1). Since
the 1-skeleton of X, is U, = U(L)), it follows from 4.7 that (27, .%;) is
abundant.

We choose consistent base vertices v; for the X;. By Theorem 9.15 we
have lim 7, (X;,v;)=0 for n=0, 1.

Since T is countable, each X, consists of countably many simplices.
Hence we may write X, = U‘:n°=1 Z,, ,whereeach Z, isanonempty finite
subcomplex of X;,and Z;, C Z for every m > 1. We choose the
Z,, sothat v,e Z, forall i.

For the purpose of this proof we define a simplicial path in X, to be a
path of the form y = {, «---*x{ , where each {; is an affine isomorphism
of [0, 1] onto a closed 1-simplex in X;. If y(0) =y(1)=v, wecall y a
simplicial loop based at v, .

Since X; contains only countably many simplices, it contains only
countably many simplicial loops based at v;. We index these as y
Pinsonn

lee shall recursively define I'-invariant subcomplexes X, of the X ;
which are singular surfaces and are finite modI", and I'-equivariant maps
Wij: X - ZJ. for i < j. Let i > 1 be given. Suppose that for every
j such that 1 < j < i we have defined a I'-invariant singular surface
z ; CX; which is finite modI". Suppose also that for all j, k£ such that
1 < j <k < i wehave defined a I"-equivariant map ij: o, — 2, . Let
us fix a finite subcomplex M; of X, with the following properties:

(a) v,e M;;

(b) .in(Zﬁ) C M, for every j < i .

(c) if j and m are positive integers < i — 1, such that lyjml C
z ; and such that Wj i21° Vjm is null-homotopic in X,_,, then
J_,;© Wj’l._l © Vim has support contained in M, and is null-

homotopic in M, .

im?

i,m+1

i

Now let Y, be a I'-invariant subcomplex of X, which contains M, and
is finite modI'". If i > 1, we take Y; to contain Ji_y #(Z,_)). By 10.1
there exists a [-equivariant T-map &,: Y, — X, such that I, = &,(Y)) is
a singular surface. Furthermore, &,|sk,(Y;) is homotopic relsk,(Y;) to
the inclusion map sk, (Y;) — X;; and the natural L;length system [, for
the T-complex X; C X, is nondegenerate.

We define W), to be the identity mapon Z,. If i > 1 weset W,_, 0=
&, 0(J;_ J%_):Z_, - Z,and for j <i-1 we set W,=W, o

i=1,i
Wj‘ i—1 - This completes the recursive definition of the X, and the W, ;-
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Foreach i weset v, = ¢,|Z,. Since Z; isa I'-invariant subcomplex of X e
we have a 7 -complex & = (X,, T, p;, v;, 1) foreach i. It follows from
the construction that the W, ; are O-tame I'-equivariant 7-maps and that
we have W, oW, = W, for i< j<k. Hence, setting #;; = (W,;, 1),
we have a direct system (], WU) in the category of .9 -complexes. Since
the &, fix the vertices Y,, the maps J, ; and W, agree on the vertices of
%, . In particular the v, are consistent base vertices for the X,.

Note that for any i > 1, since &,[sk,(Y;) is homotopic relsk(Y;)
to the inclusion map sk,(Y;) — X,, the map &,: Y, — X, induces the
same homomorphism from 7, (Y, v,) to x,(X;, v;) as the inclusion map.
Hence J,_, y and Wi—1,i induce the same homomorphism from

(%> v;_y) to m(X;,v;). It follows that J;; and W, induce the
same homomorphism from #,(Z;, v;) to m(X;,v;) whenever /< j.

By construction, (&; WU) satisfies conditions (i)-(iii) of the lemma.
We shall complete the proof of the lemma by showing that it satisfies
conditions (iv) and (v) as well: that is, that (&, Wij) is abundant and
that h_rg n,(Z,v,)=0forn=0, 1.

To show that (&; #;;) is abundant we must check conditions (i)—
(iii) of 4.6. To check 4.6(i) we consider an arbitrary point x € T . Since
AP j) is abundant, there exist an index j and a vertex w € X, such
that ¢j(w) = x . For some i > j we have w € Zj,.. Hence v = Jj,.(w) €
M, C Y,. Since &, fixes the vertices of Y; we have v € Z;,. Now
v;(v)=¢;(v) =x, and 4.6(1) is established.

To check 4.6(ii) we consider a positive integer i, a parametrized seg-
ment y in T, and two vertices v, and v, of X, such that ¢,(v,) = y(¢)
for t =0, 1. Since (Z];.% j) is abundant, there exist an integer k > i
and a O-tame lift , of y to X, such that j(¢) = J,(v,) for t =0,
1. For some j > k we have [§;| C Z,;, so that |Jgjo %l € Y;. Now
y=6 ;° J, ;o 9, is a O-tame lift of y to X IE Furthermore, since &, fixes
the vertices of Y, we have §,(7) = Jl.j(v,) for t = 0, 1. This proves
4.6(i1).

Condition 4.6(iii) is trivial in this case since the map w,: I'; - T is the
identity for every i. Hence (&7; WU) is abundant.

To prove that m my(Z;, v;) = 0 we must show that for any / and any
vertex v of I, there is an integer j > i such that J,.j(v) = W, (v) and
J;j(v;) = W;;(v;) lie in the same connected component of X,. To show
this, we note that since 1_1£1 my(X;, v;) =0, there is an integer k > i such
that J,, (v) and J,(v,) are in the same component of X;. Hence there
exists some j > k such that J, (v) and J, (v,) are in the same component
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of Z, ;. Therefore J;;(v) and J;;(v,) are in the same component of Y.
Since 6, fixes the vertices of Y, it follows that J,.j('u) and J;;(v;) arein
the same component of X ;> as required.

It remains to prove that lim 7 (X;, v,) = 0. We must show that if
y is a simplicial loop in X,, based at v;, then W, oY is homotopically
trivial in Zj for some j > i. We have y =y, for some m. Since
li_rr_)l n,(X;,v;) = 0, there exists j > 1 + max(i, m) such that J, i j-1°
y is homotopically trivial in X Iz Since J;; and W induce the same
homomorphism from =z (X, v,) to m,(X Y, ) it follows that W, .,
y =W, e1° Vim is homotopically trivial in X fRE By property ( ) of
the set M thls implies that J _1,j° W, j-1°7 has support contained
in M, B and is homotopically tr1v1al in M, f and therefore in Yj Hence
Wijoy=8,0J,_ | ;oW , oy is homotopically trivial in Zj. = Qﬁj(Yj) ,
as required ~~

11.2 Lemma. There exist a direct system (7 ; ;) inthe O-tame cat-

egory of 9 -complexes, with eé’\j./:(fli,l"i, p;, b, ;) and % (W w;;),

~ l'l ’
and compatible base points v, € X, for which the following conditions hold.

(]

(i) Each ii is a 1-connected singular surface and is finite modT,.
(ii) The natural length system l: for the T-complex fli takes its values
in L;.
(iii) The length system l is nondegenerate.
(iv) (5” ¥ is abundant.

ij
Proof. Let (&; Wij) be the direct system given by Lemma 11.1. De-

fine (5’? ; %) to be the universal cover (4.8) of (&}; 7Z; 7). The ii are

of course 1-connected. By Proposition 4.8, (5” WU) is abundant. The

other asserted properties of (5?: ; %) follow immediately from the cor-
responding properties of (7; WU) . q.ed.

11.3. Proof of Theorem 6.2. Let (3’7; ; ?W’;) be the direct system given
by 11.2. For each i, since /; is nondegenerate, it defines an L -foliation y;
on the singular surface f,. . Thus for each i, we have a simply connected,
uniform L -foliated singular surface with symmetry (fli i, Ty, p;). Let
J; = (T;,T;,p,;) denote the preleaf space of ()~Zi, i, I, p;). By 5.28,
J; is an L -pretree with symmetry; in particular it is a A-pretree with
symmetry.

According to 7.8, the T-map W; Vi is a morphism of A-foliated singular

surfaces for all i < j. Hence W (Zl, &, p) — (ij,ﬂj,l"j,ﬁj)



DENDROLOGY OF GROUPS IN LOW Q-RANKS 711

is a morphism of L -foliated singular surfaces with symmetry. It follows
from 5.29 that W,; induces a morphism /;j = (/> 0;): T — .71 of trees
with symmetry. Thus we have a direct system (J; / ;) in the category of
A-pretrees with symmetry.

For each positive integer i, it follows from 7.6 that there is a natural
morphism / = (f;, w;): 9, - J . Furthermore, the kernel of w, is
the group of covering transformations of fl,. and therefore acts freely on
f.,.. Thus to complete the proof of Theorem 6.2 we need only show that
(T A ;) converges strongly and that its limit can be identified isomorphi-
cally with 9" is such a way that the / are the canonical morphisms. To
do this we must check that conditions (i)-(iv) of 1.26 are satisfied.

Condition 1.26(i) follows from 7.8. The verification of conditions (ii)-
(iv) of 1.26 uses the fact that the direct system (; %) is abundant.
Indeed, condition (iv) of 1.26 follows immediately from condition (iii) of
Definition 4.6. Condition 1.26(ii) follows from 4.6(i) since, by definition,

T; is the image of the sko(}NZ.) under the natural map y;: X, — 7.

lIn order to check conditiém (ii1) of 1.26 we must consider an integer
i > 1 and two points x,, x, € T;. Set y, = fi(x,) for t=0, 1. Let y
be a parametrized segment in T with »(¢) = y, for t = 0, 1. Choose
vertices v,, v, of fll. such that x, = x,(v,). Then v,(v,) = y,. By
Condition (ii) of 4.6, there exist an index j > i a O-tame lift }‘)j of y to
flj such that (t) = Wij(vt) for t=0, 1.
Since b; maps each leaf of ()~:j , /1) to apoint of T, and since bjop =y
is a parametrized segment in 7, it follows that the arc | j| meets each

leaf of (f i i j) in at most a single point. In particular, 9 is taut. Hence
7; = ;¥ is a parametrized segment in R7; joining f,.j(xo) to f, (%) -
But fj ° V=7 is g parametrized sc?gment .in T joining y, to y,. Thus
filly;l is 1-1 and is therefore an isometric embedding by 1.7. Hence
d(f;'j(xo) ) /;j(x)l)) = d(f;(-xo) ) f;(yo)) , as required.
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