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Γ-EQUIVARIANT ^-THEORY
OF GENERALIZED FLAG VARIETIES

BERTRAM KOSTANT & SHRAWAN KUMAR

0. Introduction

To any (not necessarily symmetrizable) generalized / x / Cartan ma-
trix A , one associates a Kac-Moody algebra g = g(A) over C and group
G = G(A). G has a "standard unitary form" K. If A is a classical Cartan
matrix, then G is a finite dimensional semi-simple simply-connected alge-
braic group over C and K is a maximal compact subgroup of G. We refer
to this as the finite case. In general, one has subalgebras of g: f) c b C p,
the Cartan subalgebra, the Borel subalgebra, and a parabolic subalgebra,
respectively. One also has the corresponding subgroups: H c B C P, the
complex maximal torus, the Borel subgroup, and a parabolic subgroup,
respectively. We denote by T the compact maximal torus H Π K of
K. Let W be the Weyl group associated to (g, ί)) and let {^}1 < κ /

denote the set of simple reflections. The group W operates on the com-
pact maximal torus T (as well as on H) and hence on the group algebra
R{T) := Z[X(T)] of the character group X(T) of T and also on the
quotient field Q{T) of R(T).

For any W-field F , we can form the smash product Fw of the group
algebra Z[W] with F. In [19] we took, for F, the field Q = ζ?(ϊ)*) of all
the rational functions on f) and defined an appropriate subring R c Qw ,
and showed that R and its "appropriate" dual Λ, along with a certain
Λ-module structure on Λ, replace the study of the cohomology algebra of
G/B together with the various operators defined on H*(G/B). Hence the
problem of understanding H*(G/B), especially the cup product structure
and other operators on H*(G/B), reduced to a purely combinatorial (and
hopefully more tractable) problem of understanding the ring R and its
"dual" Λ, defined purely and explicitly in terms of the Coxeΐer group W
and its representation on ()*.
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Our aim in this paper is to prove similar results for the Γ-equivariant
A^-theory of G/B as well as the ΛΓ-theory of G/B, where T acts on
G/B by the left multiplication. A parallel approach for other cohomology
theories is not possible, as is shown by Bressler-Evens and Gutkin [4, 10,
13].

We replace β(ϊj*) by the JF-field Q(T) and analogously define a cer-
tain subring Y of Q(T)W, again purely and explicitly, in terms of the
Coxeter group W and its action on the torus T. We prove a structure the-
orem for Y analogous to the corresponding structure theorem for R [19,
Theorem 4.6]. Our next main result is that the dual Ψ of Y, which is also
a F-module, is "canonically" isomorphic with KT(G/B) and, moreover,
under this isomorphism, the Weyl group action as well as certain operators
{Dw}w€W on KT(G/B), which are similar to the Demazure operators de-
fined on R(T), correspond to the action of certain well-defined elements
in Y. The ring Ψ "evaluated" at 1 does the same for K{G/B). Similar
results are true for any G/P and in fact for any Schubert subvariety of
G/P.

As a particular case, we obtain the above-mentioned results in the finite
case. We believe that the main results of this paper are new in the finite
case as well. As an application of our results in this case, we can easily
deduce some of the important (though known) results.

Now let us describe the contents of the paper in more detail.
§1 is devoted to recalling some standard facts from Kac-Moody theory

and setting up the notation to be followed throughout the paper.
In §2 we let Qw = Q(T)W be the smash product of the J^-field Q =

Q(T) with the group ring Z[W] (cf. §2.1). Then Qw is an associative
ring with identity, which is an algebra over the W-invariants Qw (but
not over Q). The ring Qw admits an involuntary anti-automorphism t
(cf. (I 2)). For any simple reflection ri e W, we define a certain element
yi - yr € Qw (cf. (I4)). These elements satisfy the braid relations (cf.
Proposition 2.4), and as a consequence we have a well-defined element
yw e Qw for any w e W.

The ring Qw has a natural representation in Q (cf. (I3)). We define
our basic subring Y c Qw as the stabilizer of the subring R(T) of Q.
It is easy to see that yw eY, and moreover Y is stable under the left (as
well as the right) multiplication with R(T). But conversely, we prove the
crucial structure theorem for Y (Theorem 2.9); which asserts that Y is a
free i?(Γ)-module under left (as well as right) multiplication, with a basis
{yw}wew (and this is our first main theorem). This theorem is analogous
to our structure theorem for the ring R [19, Theorem 4.6] and its proof
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also is similar. But let us point out that the structure theorem for Y is
proved here even 'over Z ' in contrast to [19], where the corresponding
theorem for R was proved only 'over C (or Q)' . In fact, in the appendix
of this paper, we show that this is false Over Z ' already in the finite case.
We analyze this question in somewhat more detail in the appendix. We
introduce a coproduct structure Δ in Qw (in §2.14) which is used to study
the product in KT(G/B).

We dualize the above objects and define Ω = Ω(Γ) := HomQ(Qw, Q),
where Qw is considered as a β-module under the right multiplication.
The coproduct Δ in Qw makes Ω into an associative and commuta-
tive algebra over Q. Since Qw has a Q-basis {δw}wew, Ω can also be
thought of as the space of all the functions W -> Q. Under this identifi-
cation, the algebra structure on Ω is nothing but the pointwise addition,
scalar multiplication, and pointwise multiplication of functions. Using
the involution t of Qw , Ω gets equipped with a natural left β^-module
structure defined in ( I 1 7 ) . Now'dualizing' 7 , we get an i?(Γ)-subalgebra
Ψ := {ψ <E Ω: ψ{Yt) C R(T)} of Ω, which will play an important role in
the paper. It is easy to see that the action of Y c Qw on Ω keeps Ψ sta-
ble, in particular, the elements δw and yw act on Ψ . The i?(Γ)-algebra
Ψ has a'basis' {ψw}weW dual to the basis {yw} of Y. (Actually Ψ is
the direct product \[weWR{T)ψw (cf. Proposition 2.20).) We introduce
the Wx W matrix E = (ev'w)υwGψ , where eυ'w := ψv(δj . We collect
various properties of the matrix E in Proposition 2.22. In particular it is
'upper triangular'. We show (cf. Proposition 2.22(e)) that the '/(ι )th de-
gree component' of eViW is precisely equal to {-\)ι<^v)dv w , where dv w

is as in [19, §4.21]. So the Zwnatrix determines the Z)-matrix of [19].
The action of yr on Ψ is explicitly given by Proposition 2.22(d), and
moreover the action of δw as well as the product in Ψ is explicitly writ-
ten down (in the {y/™}-'basis') in terms of the ^-matrix (cf. Proposition
2.25).

Finally we show (cf. Proposition 2.30) that the ring Ψ has a 'natural'
filtered ring structure, such that the associated graded ring Gr(Ψ) (rather
C ® z Gr(Ψ)) is canonically isomorphic with the ring Λ introduced in
[19]. (We recall that the ring Λ is the 'cohomological analogue' of the
ring Ψ.) In particular, by the results of §3, we get that C®ZKT(G/B) has
a filtration such that the associated graded ring is canonically isomorphic
with the equivariant cohomology (over C) Hj{G/B).

§3 is devoted to the study of Γ-equivariant Λ>theory of G/P, where
G is any Kac-Moody group with any parabolic subgroup P and T acts
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on G/P by the left multiplication. In particular, the results apply to the
based loop group Ωe(GQ) of a compact simply-connected Lie group GQ.

Motivated by the Demazure operators on R(T), we define certain op-
erators {Dw}w£W on KT(G/B) (and K{G/B)). It may be mentioned
that Kazhdan and Lusztig have recently defined similar but more general
operators in the finite case (acting on equivariant ^-theory of Springer fi-
bres) and used them to prove the Deligne-Langlands conjecture [18]. The
Weyl group W, being isomorphic with NK(T)/T, acts on K/T « G/B
(cf. §3.11). Moreover the W-acύon commutes with the action of T on
G/B, and hence we get an action of W on KT{G/B) (and K(G/B)).

Our second main theorem of the paper (Theorem 3.13) is that there
is a 'canonical' i?(Γ)-algebra isomorphism γ: KT(G/B) —• Ψ, such that
the action of the Weyl group element w (resp. the operator Dw) on
KT(G/B) corresponds, under γ, to the action of the element δw (resp.
yw) on Ψ . About the proof; we only mention that it crucially uses the
localization theorem of Atiyah-Segal, and a certain consequence of the
equivariant Thorn isomorphism (which can be viewed as a generalization
of Bott-periodicity). We also prove (Theorem 3.28) that γ induces an
isomorphism γ{: K(G/B) -» Z <S>R{T) Ψ, where Z is considered as an
i?(Γ)-module under the standard augmentation map. Similar results are
also obtained for KT(G/P) (and K(G/P)) and, in fact, even more gener-
ally for any left 5-stable closed subspace Vβ of G/P (cf. Corollary 3.20
and Theorems 3.23 and 3.29). By transporting the 'basis' {ψw} of Ψ via
γ~{, we get a 'basis' {τw} of KT(G/B). In particular, the Weyl group
action, the product, and the action of the operators Dw on KT(G/B) can
be explicitly written down in the {τw} 'basis' in terms of the ^-matrix.
We give a characterization of this 'basis' in Proposition 3.39. As a con-
sequence we show that, in the finite case, the basis {e(τw)} of K(G/B)
(where ε is the canonical map KT(G/B) —• K(G/B)) is essentially the
basis given by Demazure in [7],

§4 is devoted to specializing the earlier results to the finite case. We
show that some of the important (though known) results can be easily de-
duced from our Theorem 3.13 (which identities KT(G/B) with Ψ). In
particular, for any compact simply-connected Lie group Go with maximal
torus Γ, we deduce that: (a) KT(GO/T) is canonically isomorphic with
R{T) ®R(G ) R{T) (cf. Theorem 4.4), and (b) the Atiyah-Hirzebruch ho-
momorphism R{T) —• K(GQ/T) is surjective (cf. Theorem 4.6). The fact
that K*(GQ) is torsion free can also be easily deduced from our Theorem
3.13.
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The main results of this paper are announced in [20].
The second named author has proved that, for any v < w e W, the

ring of functions of the tangent cone TV(XW) at v for Xw, which is
canonically a Γ-module, has character (defined appropriately) *bw-ι -i

(cf. (I 5)), where * is the involution of Q(T) induced by the map eλ ι->

e~λ for any eλ eX(T)9 and Xw is the Schubert variety Bw B/B c G/B.
This result is used to connect the singularity of the Schubert varieties

with the 5-matrix (cf. §2.7), which in turn 'controls' the Γ-equivariant
^-theory of the flag variety G/B .

As another consequence, one obtains that bw υ φ 0 if and only if
w > v . The details will appear elsewhere.
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1. Preliminaries and notation

(1.1) Kae-Moody algebra (definitions and basic properties) [16, 25].
Let A = {ai:)ι<i < 7 be any generalized Cartan matrix (i.e., aH = 2,
-a{. € Z+ for aϊl i ^ j , where Z + is the set of nonnegative integers, and
ay = 0 if and only if ajt = 0). Choose a triple (ί>, π, π v ) , unique
up to isomorphism, where f) is a vector space over C of dimension
(2/ - rankΛ), π = {<*,•},<,•</ c ϊ)*, and π v = {A,-}^^/ c ί) are linearly
independent indexed sets satisfying α^A,.) = aij. The Kac-Moody algebra
g = Q(A) is the Lie algebra over C, generated by f) and the symbols et and
fi (1 < / < /) with the defining relations [f}, ί)] = 0, [A, e(] = ^.(A)^.,
[A, ft] = -a^fi for A E f) and all 1 < i < /, [enfj] = δ^h. for all
1 < /, j < I, and

(ad^ ) 1 " ^ ^ ) = 0 = (adtf-'Hfj) for all \<iφj<l.

In the above, we can replace C by any field k of characteristic 0 and
obtain a Kac-Moody Lie algebra ĝ  over the field k. If k is a subfield
of C, then of course gk <8>k C = g.
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ί) is canonically embedded in g and is called the Cartan subalgebra of

One has the root space decomposition g = ί) Θ ΣaeA (ββ

 φ fl-tt)

for any λ e ϊ)*, gΛ := {x € g: [Λ,x] = λ(h)x, for all A e ί)}, and
Δ + : = i a € E ί = i Z + α f : α ̂  0 and gα φ 0} . Define Δ = Δ+ U Δ_ , where

Δ_ := - Δ + . The subset Δ+ (resp. Δ_) of f)* is called the set of positive

(resp. negative) roots. The roots {<*/}!</</ are called the simple roots and

the elements A (1 < / < /) are called tίϊe simple coroots.

We fix a subset S (including S = 0) of {1, , /}. Put Δ^ = Δ+ Π

s r^jOί\) * a n c * define the following Lie subalgebras of Q :

n = Σ β α ' u = U5 =

Since [ts, u5] c us , r 5 acts on u 5 .
Associated to (g, ίj) there is the Wey/ ^rowp PΓ c Aut(ί)*), generated

by the 'simple' reflections {^}1 < κ /, where r.(λ) := λ - λ(hi)ai for any
λ e ί)*. As is known, (W, {^}1<κ/) is a Coxeter group, and hence we can
talk of the Bruhat ordering < and /engίΛ of elements of W. We denote
the length of w by l{w). The Weyl group W preserves Δ . The set of
real roots Δre is defined to be W π, and the set of imaginary roots Δ i m

is, by definition, Δ\Δ r e . For a e Δ r e, dimgα = 1. We set ΔΓ

+

e = Δ r e nΔ +

similarly A™ := Δre ΠΔ_ .By dualizing, we get a representation of W in
ί). Explicitly r.(A) = A - α/(A)A/ for A G ί) and 1 < / < /.

For any 5 c {1, , /} , let W$ be the subgroup of W generated by

{rihes a n c ^ define a subset W$ , of the Weyl group W, by W$ = {w e

W: Δ+ Π wA_ c Δ+ \ Δ^} . Then W$ can be characterized as the set

of elements of minimal length in the cosets Wsw (w e W) (each coset

contains a unique element of minimal length).
There is a (C-linear) involution ω of g defined (uniquely) by ω{ft) =

-e( for all 1 < / < /, and ω(h) = -h for all A e ί). It is easy to see that
ω leaves gΛ stable (where R c C is the subfield of real numbers). Let
ω 0 be the conjugate-linear involution of g, which coincides with ω on

(1.2) Integral form of the Cartan subalgebra. We fix, once and for
all, an integral lattice f)z c ϊ) (i.e. ί)z ® z C = f>) satisfying:

( p i) Λ / € ί ) z f o r a 1 1 ! ^ ^ ^
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(P2) ί)z/ Σ/=i ZAf. is torsion free, and
(P3) f>* := Hom z (ί) z , Z) (c f)*j contains {α,} .

(The choice of f)z , as above, is possible.) Clearly ί)z is W-stable. It is
called the weight lattice and its elements integral weights.

We make a choice of the fundamental weights pi e ί)z (1 < / < /)
satisfying p^hj) = δt ., for all 1 < /, j < I. This is possible because

of (P 2 ) . We further set p = ΣJi=x p{. Of course in the case when A is
nondegenerate (i.e., rank,4 = /) \)z = Σl

i=ι

 rLhi and the /?, 's are uniquely
determined.

(1.3) Kac-Moody group and its parabolic subgroups. The construc-

tion, given below, is due to Kac-Peterson [17]. It should be mentioned
that there are other constructions of the group(s) associated to any Kac-
Moody Lie algebra Q , due to Moody-Teo, Marcuson, Tits, Slodowy, etc.
Even though these groups may differ from each other, the corresponding
'generalized flag varieties G/P' are 'essentially' the same. Since, in this
paper, we will mainly be interested in the flag varieties G/P, we could
have used either of these constructions.

A 0-module (V, π) (π: g —• EndK) is called integrable if π(x) is
locally nilpotent whenever x E ga for a e Δre and, as an (^-module, V
decomposes as the (direct) sum Σ^G f )* Vχ of its weight spaces, with the ad-
ditional requirement that any χ such that V Φ 0 belongs to f)z. Observe
that for any integrable g-module (V, π), the ί)-module structure on V in-
tegrates to give a representation of the multiplicative group H := f)z®zC*
on V, which we again denote by π . Let G* be the free product of the
additive groups {0α}αeΔre and the group H, with canonical inclusions
ia: gα -+ G* and /: H -> G*. For any integrable g-module ( F , π), de-
fine a homomorphism π*: G* -> Autc V by π*(ia(x)) = exp(π(x)) for
x E gα and π*(i(ή) = π(t) for t e H. Let N* be the intersection of all
Kerπ*, where π ranges over all the integrable representations of g. Put
G = G* /N*. Let q be the canonical homomorphism G* —• G. It can be
seen that the canonical map H -* G is injective. For x G g α (α e Δ r e ),
put exp( c) = q(iax), so that Ua := expgα is an additive one-parameter
subgroup of G. Denote by U (resp. ί/~) the subgroup of (7 generated by
the £/α's with α G Δ^ (resp. a e Δ^). We put a topology on G as given
in [17, 4(G)]. Then G becomes a (Hausdorff) topological group, which
may also be viewed as an (possibly infinite dimensional) affine algebraic
group in the sense of Safarevic with Lie algebra g [17]. (Actually Kac-
Peterson constructed a slightly different group which corresponds to the
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commutator subalgebra gι.) We call G the Kac-Moody group {associated
to the Kac-Moody Lie algebra g).

The conjugate-linear involution ω 0 of g, on 'integration', gives rise
to an involution ώQ of G. Let K denote the fixed point set of this
involution. Then K is called the standard unitary form of G.

For each 1 < / < /, there exists a unique homomorphism βi: SL2(C) —•
G, satisfying

βi\0 j | = e x p ( z e . ) and β.\ j I = exp(z./;.)

(for all z e C), where ei and fi are as in §1.1. Define

N. = Normalizer of //, in G z, and N the normalizer of H in G. We
call // the complex maximal torus of G. Of course its Lie algebra is ί).
There is a group isomorphism τ\ W ^ N/H, such that τ(rz) is the coset
«,//, where nt is the (unique) nontrivial element of N. (mod H.). ϊfί?
wι7/, sometimes, identify W with N/H under τ and hence w e W can
also be thought of as an element of N (mod H).

Put B = HU and P = Ps = BWSB. Then 5 is called the standard
Borel subgroup and Ps the standard parabolic subgroup of G (associated
to the subset S). (Since H normalizes U, B is a subgroup and P^ is
a subgroup because ( 5 , N) is a Tits system, in G.) Define T = B Π
K then Γ is compact connected and is contained in H. Moreover the
complexified Lie algebra of T = Lie H = \). We call Γ as the (standard)
compact maximal torus of Â  (or G).

The canonical inclusion K/Ks ^ G/Ps, where Ks is (by definition)
KnPs and K is given the subspace topology, is a (surjective) homeomor-
phism [17, Theorem 4(d)].

(1.4) Bruhat decomposition. Fix any subset S c { l , > /} Then
G can be written as a disjoint union

G = U (C/tiΓ1/^), s o t h a t G / P s = ( J (Uw~lPs/Ps).

Further G//^ is a CW complex with cells {Uw~ιPs/Ps}weW^ , and

moreover dimR(ί7w;~1Ps./P5) = 2l(w).

2. Definition of the basic ring Y and its structure

Throughout this section (and the next) G denotes any (not necessarily
symmetrizable) Kac-Moody group over C, with the standard unitary form
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K, the standard Borel subgroup B, the complex maximal torus H c B,
and the compact maximal torus T = H Γ)K. Let W be the Weyl group
associated to (G,H) and let {^}1<z</ denote the set of simple reflections
in W (cf. §1). Let R(T) := Z[X(T)] be the group algebra /Z of the
character group X(T) of Γ (i.e. Λ(Γ) is the representation ring of the
torus T) and Q = Q(T) be its quotient field. Of course C<g>zi?(Γ) can
also be viewed as the ring of regular functions C[H] on the complex affine
variety H. For any integral weight λ (cf. §1.2), the notation eλ means
the corresponding character of T (or H).

The treatment in this section is parallel to the one in [19, §4].

(2.1) Definition of the ring Qw . The Weyl group W operates on

the torus T and hence on R(T) and its quotient field Q = Q(T) (by

field automorphisms). Let Qw = Q(T)W be the smash product of the

W-field Q with the group algebra Z[W], i.e., Qw := Z[W] ®ZQ, and

the multiplication1 is given by:

di)

(δw9Mδw92) = δww^w2 {q0^2 f o r Q^^e

where we write (here and henceforth) δwq for δw ® q . This makes Qw

into an associative ring with identity δe. Since Q = δeQ is not central

in Qw , Q ^ is not an algebra over Q, but clearly Qw is an algebra over

the ΐF-invariants Qw in Q.
The ring β ^ admits an involuntary anti-automorphism t, defined by

(12) (δwq)1 =δw-i(wq) for w eW and qeQ.

Clearly Q has a natural left β^-module structure, given explicitly by

(13) (δwq) q = w(qq') forweW and q, q e Q.

For any simple reflection ri9 1 < / < /, define a certain element

(i4) y,=yr, •= ^+<V (fZ7=o= r ^ ( ^ " ^ ^ ^ e β - '
where αf is the (positive) simple root associated with the simple reflection

(2.2) Remark. The notation Q and Qw in this paper, and also the
subsequent notation Ω (§2.17), should not be confused with the corre-
sponding notation in [19, §4], where they have somewhat different mean-
ing.

!We will often drop the dot for multiplication.
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We record the following s imple l e m m a .
(2.3) Lemma, (a) y] = yi for any 1 < / < /.

(b) y . q = {riq)yi + ((q - r ^ ) / ( l - e~a'))δe for any qeQ.

(c) δr y. = eayj + (1 - eOίi)yiyj for any l<i,j<l.

(d)

yj '' \(i+e

a')δe-e*>yi ifi = j.

One has the following very useful proposition.
(2.4) Proposition. Let w e W and let w = r. r be a reduced

1 fn

decomposition. Then the element y. y{ e Qw does not depend upon
1 m

the particular choice of the reduced decomposition of w .
We define yw=y( yz Ξ Qw - W e further denote yw=yt

w~i .
Proof. By a result of Matsumoto [6, Proposition 5, p. 16], it suffices

to check the braid relations:
For any two simple reflections τi, r. [iφ }) such that r{r. is of finite

order m / ; , we need to check that

m.. factors m.. factors '

Now, as is well known [16, Proposition 3.13], the only possibilities for
m.j are 2, 3, 4, 6, and oo. The proof of the proposition can now be
completed by an explicit case by case checking (cf. [7], [10], [13] or [18,

§3]). •

As an immediate consequence of the above proposition, together with
Lemma 2.3, we have the following.

(2.5) Corollary, (a) yvyw = yvw if l(vw) = l(v) + l(w).
(b) yvyr =yv if /(vrf.) < l(v).

(c) Σw'£WR(T)yw = Σwewyw

R(τ)>
and it is a subring of Qw.

(2.6) Proposition. For any v e W, write

(h) JV 1 =Σbv,wδw-1 for some (unique)bv w e Q.
w

Then

(a) bv w = 0, unless w < v .

( b ) V ^ 1

In particular, bv υ Φ 0.



Γ-EQUIVARIANT ^-THEORY 559

Proof, (a) is an easy consequence of [8, Theorem 1.1] and (b) follows
from [26, §2].

(2.7) Corollary. Define the W x W-matrix B = (bυw)υweW, where
bυw is as in (I 5 ).

By the above proposition, B is a lower triangular matrix {with respect to
the usual Bruhat partial ordering < in W) with nonzero diagonal entries,
and hence {yv}veW is a left (as well as right) Q-basis for Qw.

The notation B as above is not likely to cause any confusion with the
same notation used for Borel subgroups.

(2.8) Definition. Recall from (I3) that Q is naturally a left Qw-
module. Now we define our very basic subring Y c Qw by

Y = {yeQw:yR(T)cR(T)}.

It is easy to see that yt, for any 1 < / < / (and hence any yw ),
belongs to Y, and of course Y is stable under the left (as well as the
right) multiplication by the elements of R(T). Conversely, we have the
following crucial structure theorem analogous to [19, Theorem 4.6]. The
proof given below also is similar; but we give the details for completeness.

(2.9) Theorem. With the notation as above, the ring

In particular the elements {yw}weW form a R(T)-basis of Y under the
left (as well as the right) multiplication.

(2.10) Remark. See the appendix.
Recall that the affine ring C[H] of the complex torus H is a unique fac-

torization domain. Also recall that C[H] can be identified with
C®ZR(T).

As a preparation for the proof of Theorem 2.9, we prove the following
lemmas.

(2.11) Lemma. Let f e C[H] be irreducible and let {fw\l{w)<k be
certain elements in C[H], such that any nonzero fw is coprime to f,
fwφQ for some w of length k, and (Σί{w)<k fwyw)' C[H] c fC[H].

Then Z(f) c Iv rv-\ for some voeW and some simple reflection rt,

where Z(f) is the zero set c H of f and, for any v e W, Iv := {t e

H:υtv~ι =t}.
In particular, f divides (\-e~v°a<). (Observe that in general \-e~v°ai

is not an irreducible element of C[H].)
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Proof. W r i t e y = Σι{w)<kfwyw = Σm<kQjw f o r s o m e qweQ.

By Proposition 2.6,

Define V = \Jυ^eIy. We claim that Z ( / ) c F . For, if not, choose any
toe Z(f)\V. Fix any wQ of length /c and choose f0 e R{T) such that
(wofo)(tQ) = 1 and {wfQ)(tQ) = 0 for all those (finitely many) w Φ wQ

satisfying qwφ0. (This is possible since the point t0 has no PF-isotropy.)
Evaluating y f0 at tQ , we get qw (tQ) = 0 (observe that for any real root

β and any t0 not in F , (1 - eβ)(t0) Φ 0 and hence any qw does not
have a pole at ί 0 ), i.e., by (I 6 ), fWQ{t0) = 0. Hence / divides / ^ . A
contradiction to the assumption of the lemma! So we obtain that Z(f) c
V 9 and since / is irreducible, we actually have Z(f) c Iυ for some
v φ e e W. In particular, Z(/) being a hypersurface, /w is of codim. 1
in H, i.e., the element v fixes pointwise a hyperplane (the Lie algebra:
Lie Iυ of Iυ) in Lie //. Hence, by [19, Lemma 4.8], v = v^r^1 for
some vQ e W and some simple reflection r{, and of course Lie Iυ -

N o w we prove that / r-ι c Z(l-e~v°ai). Take t e I -ι a n d write
υ0riυ0 υ0riv0

t = exp/z for h E Lie H. Since / e Iy rv-ι , we get r/

/*;~1a>or/ = f o " 1 ^ ,

i.e., txp(r.VQ 1/z) = exp(f^"1Λ). Hence exp(-α/(^1Λ)A/) = 1, where hi

is the / th simple coroot. Taking ePi (where p. is an / th fundamental

weight; cf. §1.2) of both the sides, we get e~ai<"v° h) = 1. This proves the
lemma.

(2.12) Lemma. Let {fw}ιM<k and f be certain elements in C[H]

such that (Σι{w)<k fwyw) -C[H] cfC[H]. Assume further that f is irre-

ducible and Z(f) c Ir for some simple reflection ri. Then f divides all

the fw 's.

Proof. Denote y = jΣfwyw and write y = y*+y , where y+ (resp.

y~) = \{y + δrγ) (resp. \{y - δry)). Now y+ also satisfies y+ C[H] c

C[H], and y+ is again of the form j Σf'wyw

 f<>r some f'w e C[H] (use

Lemma 2.3 and the fact that Z(/) is rz-fixed and hence f/r.f e C[H]).

(A similar statement is true for y~ .) So we can assume that either δr y = y

or -y.
Fix w0 of length k such that fw φθ, and write:

(J7) />=
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where

( V «w0 = fwo

bw-\w^1 ( b^ Proposition 2.6),

^0 = Σ Qwδw f 0 Γ S O m e Qw

 e Q' a n d

«;£ {wo,riwo}

qrw is some element in Q.

Fix any r0 e Z(f) c /Γ with the property that the set {t; e JF: t^ f " 1 =

ί0} coincides with {e, r.} and (1 - e ' " ) ^ ) / 0 for any positive real root
v Φ ar Such a choice is possible:

If possible, assume that Z(f) c /w for some v0 Φ ri and ̂ . Then for

some h0 e Lie//, exp(Kerα/ + Λo) c Iυ . This implies that

exp(vo(h + Ao) - ( A H - AO)) = 1 for all A € Kerαf.,

which is possible only if voh = h for all A e Kerα^. A contradiction!
Similarly, if possible, assume that Z ( / ) c Z ( l - ^ - i / ) for some positive
real root vφar Then exp(Keraf. + Ao) c Z(l - O , i.e., e"

l/(A+Λ°) = 1
for all A e Kerα z , which is possible only if v{h) = 0 for all A G Kerα / .
Again a contradiction (since v Φ aι.)!

Now choose /0 € C[//] , such that / o ^ ^ o ^ o ) = J a n d Mw~ltow) =

0 (in fact a zero of sufficiently high multiplicity) for all those w Φ w0 and
r(w0, satisfying qwφ0.

In the case when δry = y (resp. ί r y = -y), we have

In particular, in either case, Γ^Q < w0 . Denote by α = Z / ^ / or - / / ^ /
according as we are in the first or the second case, respectively. Of course
a e C[H]. We have, by (I7) and (I g ), in either case:

Take a reduced expression w0 = r[ri - r. (starting with rf.). Then,

by Proposition 2.6 and (I 8 )- (I 9 ), we get

(I10) (1 - e-a')fy = (1 - e~a')y0 - f ^ W ' δ ^ + a^Qbδ^ ,

where ft = Π , 6 { β ί ϊ . V l j , . . . v , l β _ i β | i i ) ( l - * T I .

Evaluating ((1-e a')fy) f0 at t0, we get from (I | 0 ) :

0 = -b(tQ)fWn(t0) + Hto)a(to)f(to) (since e~a'(t0) = 1).
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But, by the choice of tQ, b(to)^O. Hence

From (I 1 0 ) , we have

Applying it to the function (1 - e~w° ai)f0, we get

f y . ( ( 1 _ e-<ta')f0) = y0 • ((1 - e-w°~'

Evaluating at t0, we get

^ = f W o ( t

But since b{t0) Φ 0, we get

Adding ( I π ) - (I 1 2 ) , we get fw (tQ) = 0. This proves the lemma.

(2.13) Proof of Theorem 2.9? Let y e Y. By Corollary 2.7, we can

write y = jΣfwyw , where f,fwe R(T) ^ C[H]. We can further as-

sume, without loss of generality, that / e C[H] is irreducible. By Lemma

2.11, Z(f) C Ivrv-\ = vo^rvol ^ 0 Γ s o m e ^o G ^ a n <^ s o m e simple

reflection rf.. Siiϊce° ^ 7 = T and, by Lemma 2.3, <ϊv ( Σ ^ ^ ί ^ ) ^ ) =

^ ^ ( Γ ) ^ , we can assume that Z(f) C Ir . But then Lemma 2.12

proves that y e Σw

We next observe that

where Q is the field of rational numbers, and Q[H] := Q ® z

The inclusion Σ ^ Q I ^ K c Qw n(ΣwC[H]yJ is obviously true.

To prove the reverse inclusion, take y = Σi(W)<k Swyw

 i n Qw» where

{^}/(w;)<^ c C[H]. Then it suffices to show that g e Q[H] for any

w0 with l(w0) = k: Write y = Σi{w)<k Qwδw , where ^ G Q(Γ) (since

y € β ^ ) . Then, by Proposition 2.6, ^ = gwJ>w-\ w-\ . But since

\ ' , V G β ( Γ ) ' w e o b t a i n t h a t 8w0

 e C [ ^ ί n β ( ^ ) -further (as is easy
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to see, e.g., by taking a basis of the Q-vector space C) C[H] Γ\Q(T) =
Q[H]. This proves the assertion (*). In particular we obtain that Y c

So finally it suffices to show that if there is a prime integer p and
elements fw e R(T) such that

y R(T)cpR(T), where y= £ / Λ ,

then £/ w itself is in Λ(Γ) for all w.
Fix any field F of characteristic /?. Write

1 \ •>

where aw e R(T) and / is of the form Πβ{l - e^) for β running over
some finite set of (not necessarily distinct) real roots. (This is possible, as
is easy to see.) Moreover, by Proposition 2.6,

(Ji4) γaw0=fw0 Π O - e T 1 for any w0 with l(w0) = k.
J veA+Πw0A_

Of course (fy) R(T) c pR(T). But, by (I 1 3 ) , fy = Σι{w)<kaJw

and hence (Σ,(w)<k aw{p)δw{p)) F[H] = 0, where F[H] := F 0 Z Λ(Γ),
fl^ίp) denotes the reduction modp of the element aw e R{T), and
<^(p) denotes the reduction mod p of the operator δw: R(T) —»• -R(Γ).
But the canonical representation ίF —• Aut(F[.ir]), given by w \-^ δw(p),
is clearly injective and hence by [2, Corollary on p. 35], aw(p) = 0 for all
w . (Even though this corollary is stated for fields, the same proof gives
its validity for integral domains, i.e., when, in the notation of loc. cit., E
and E1 are integral domains.) In particular, by (I 1 4 ) , fw (p) = 0 since

a

F[H] is a domain and, for any real root β , (l—e) is a nonzero element
of F[H]. This proves the theorem completely.

(2.14) Coproduct structure in Qw . Let Δ: Qw —• QW®QQW (where
the tensor product over Q is taken with respect to the Q-module structure
given by the right multiplication by Q on both the copies of Qw) be the
diagonal map defined by

(I 1 5) Δ(δwQ) = δw®δwq = δwq®δw for w e W and q e Q.

Clearly Δ is β-linear and it is easy to see that the coproduct Δ is asso-
ciative and commutative with a counit defined by ε(δwq) = q .

We introduce an associative product structure, denoted by Θ, in

Qw ®<2 Qw ' m a king Δ into a ring homomorphism:
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Observe that the product Θ introduces a left (resp. right) (^-module
structure on Qw ®Q Qw by the left (resp. right) multiplication under the
ring homomorphism Δ . The right β^-module structure takes a particu-
larly simple form:

(y®z).(δwq) = yδwq®zδw fory,zeQw, weW, and q e Q.

Recall the definition of yw from Proposition 2.4. The following propo-
sition describes the Δ-map in terms of the {yw} basis.

(2.15) Proposition. For any w eW,

A/— \ V " ^ — — W

u,v<w

for some (unique) a™ v e R(T). Moreover aζ v , considered as an element

of C[H], has a zero of multiplicity2 > l(u) + l(v) - l(w) at 1.
Proof. We prove the proposition by induction on l(w). By the defi-

nition,
, i

So

16/ Δ ( y r ) = de(l — e ') ®δe + όr®δr(\—eι)

= y®y (1 — ea') + δo ® y e*1

ri ri e ri

+ yr®δee
ai -δe® δee

a'.

Now write w = w'rj, with w' <w . Then

A(yJ = A(yw,)ΘA(yr)

T y.y ®ya

-δr®δr

(by the induction hypothesis)

This, by definition, is the multiplicity at 1 of the divisor of / .
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= Σ y^^-^fh^ Σ yΛ
u ,v'<w' u ,v'<w'

= - Σ J7

U'®v^(^,-(w','))
'''

Σ yu'yrl®yv'yrιv-ea')(riau ,v')
u ,v'<

+ Σ yu'yη®yv'eai(r<a™',v>
u , v'<w'

u ,υ'<

where is as in (I 3 ) .
Now the proposition follows by using Corollary 2.5 and the fact that,

for any / e C[H], yr - f has zero (at 1) of multiplicity > (multiplicity
of zero at 1 for /) - 1.

(2.16) Remark. We will determine the coefficients aζ v explicitly in
Proposition 2.25.

(2.17) Dualizing Qw. Regarding Qw as a β-module under the
right multiplication, define Ω = Ω(Γ) := H o m ^ ζ ? ^ , Q). Then Ω is
canonically a β-module under (qψ)(y) = q.ψ(y) for q e Q, y € Qw and
ψ eΩ. Further the coproduct structure Δ in Qw , defined in §2.14, makes
Ω into an associative and commutative algebra over Q with identity (since
Δ has the corresponding properties).

Since any ψ e Ω is determined uniquely by its restriction to the basis
{δw} (and conversely), we can (and often will) regard Ω as the space of all
the functions W —• Q. It is easy to see that (under this correspondence)
the addition, scalar multiplication (by elements of Q), and the multi-
plication in Ω correspond respectively to the pointwise addition, scalar
multiplication, and pointwise multiplication of functions W —• Q. The
(multiplicative) identity, denoted by 1, (under this correspondence) is the
function which takes any w e W to 1.

We also introduce the structure of a left Qw -module on Ω as follows:

(I17) (y ψ ) y = ψ { y . y ' ) f o r ψ e Ω a n d y , y e Qw.

(Observe that the action of y is (Minear.)
In particular Ω gets equipped with the Weyl group action (which is

the action of δw e Y c Qw) and also the Hecke operators (which is the
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action of yw e Y c Qw). Let us describe the action of Yr , for a simple

reflection r , explicitly:

1 - * - " " * /

(2.18) Remark. Observe that Ω has two β-module structures, one
coming from the scalar multiplication by elements of Q (viewing Ω as
the space of functions W —• Q) and the other coming from the action
of Qδe = δeQ c Qw defined in (I 1 7 ) . We caution that these two β-
module structures are in general different. Whenever we speak of Ω as
a Q-module, we will always mean the first Q-module structure. The other
Q-structure is distinguished by denoting it with a solid dot.

Now we are ready to define the dual of the ring Y, which will play an
important role in the whole paper.

(2.19) Definition. Let Ψ={ψ eΩ: ψ(Yι) c R(T)}\ recall that Y
is the ring defined in Definition 2.8.

(Notice the difference in the definition of Ψ with the definition of the
analogous ring Λ in [ 19, §4.19], where we put, in addition, some finiteness
condition.)

Define certain elements ψw eΨ (for any w eW) by

(I1 9) ψW(yv) = δv,w for υ,weW,

where yv is as defined in Proposition 2.4.
By Corollary 2.7, ψ = Σw qw ψw is a well-defined element of Ω for

arbitrary (infinitely many of them are allowed to be nonzero) choices of
qw eQ. Of course if all the qw 's belong to R(T), then ψ e Ψ.

We have the following proposition on the structure of Ψ.
(2.20) Proposition, (a) Ψ (as defined above) is an R(T)-subalgebra

pfa.
(b) Ψ is stable under the (left) action of Y c Qw . In particular, for any

w e IV, the elements δw and yw act on Ψ.
(c) Ψ is the direct product Y[w R(T)ψw , i.e., any element of'Ψ can be

uniquely written as J2W fw ψw , with fw £ R(T), where infinitely many of
fw 's are allowed to be nonzero.

Proof, (a) follows from Proposition 2.15, (b) follows from the fact
that Y is a subring of Qw, and (c) follows from the structure theorem
(Theorem 2.9) for Y.
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(2.21) Definition of the matrix E. Define the W x W matrix E =
(ev>w)byev>w = ψv(δw).

The relevance of the matrix E to the study of Γ-equivariant ^-theory
of generalized flag varieties will be clear in the next section.

Recall the definition of the associative algebra £$••= 38w over Q from
[19, §4.23]. We collect some of the basic properties of the 'basis' {ψw\ in
the following:

(2.22) Proposition. For any v , w eW, we have:
(a) ev'w belongs to R{T). Moreover they are uniquely determined by

the following:
ί»-' = Σ e v

(b) e°'w = 0, unless υ <w and

In particular, the matrix E is upper triangular {and hence E€L38W). Fur-
ther, since E has nonzero diagonal entries, E is invertible as an element

w

(c) Bι = E~ι, where the matrix B is as in Corollary 2.7, and Bt

denotes its transpose. (Observe that, by Proposition 2.6(a), Bl e &w.)
(d) For any simple reflection r{,we have

w ί Ψw + Ψnw ifrAϋ < w,
r< I 0 otherwise.

(e) The element ev'w e R(T) c C[H] has a zero of multiplicity > l(v)

at the point 1. Moreover the I(v)th homogeneous component3 of ev'w is

precisely equal to (-l)ι^dv w, where dv w is as defined in [19, §4.21].

(f) w\SJ = e"-w'Xp.

(g) (e pδr ep) ψw = ψw provided rtw > w .

(h) ψvψw = Συ w<ual wΨU > w h e r e av w is a s defined in Proposition
2.15.

(i) For any ψl9ψ2eΩ,

yr. - (ψ\ Ψ2)
 = ψ\(yri Ψi)+ (yη ψ\

3For any / = Z^ef)* ΛA^Λ e Q^J an<^ a n y '& e ^+ » by ι ^ e ^ ^ degree homogeneous

component (f)d of / , we mean the element J2χ nλλ
d /d\ of S{t)*). Recall that the smallest

t/ , such that (f)d Φ 0 . is multiplicity multj (/) of the zero of / at 1.
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Proof, (a) follows from the definition of ev'w .
(b) Assume that v ^ w and assume further, by induction, that for any

u <w , we have eVfU := ψv(Su) = 0. By Proposition 2.6, we can write

Σ «A- for
s o m e

Taking / and then taking ^" (and </") of both the sides of (I 2 0 ) , we
get (b).

(c) follows from (a) and (I 5 ) .

(d) For any v e W, (yr ψw)(yv) = ψw((yυ-tyr)'). Hence by Corollary

2.5

d21) ^ ^ ) ( ^ ) = { ^ ( ^ ) otherwise.

In particular, (yr . ψw)(yυ) = 0, unless v = w or rtw .

Case I. r.w < w : In this case ( ^ ψw)(yj = (yr. ^υ;)(57

r/.υ;) = 1

C α ^ II. ηw > w : In this case (yr, ^ ) ( y w ; ) = (yΓ. ^ J ί y ^ ) = 0

This proves (d).
(e) Assume, by induction, that eVχ"Wχ satisfies the assertions in (e),

provided either I(vx) < l(v) or vχ = v and l{wλ) < l(w). (The induction
starts by (b).) Write w = riw[, such that wλ < w . By (I 1 8 ) ,

Now there are two cases to consider:
Case I. r(v > υ : In this case, by (d) and (I 2 2 ) ,

- 1

(I 2 3 ) e ι =e e ι '.

Case II. r(v <v: In this case, again by (d) and ( I 2 2 ) ,

v w, v.w — w, a.

v w r v w € — e e '

i.e.,

(I24) ^ ' - ( 1 - ^ ' ')(e ' + e ' ') = e e ' '.

So in either case, by the induction hypothesis, the first part of assertion
(e) follows. The second part follows similarly by using the analogous result
for dv w's as deduced from [19, Proposition 4.24(b) and I52 ].
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(f) follows by induction on l(w), using (I 2 3 ) .
(g) follows trivially from the (d) part, if we use the identity

(h) is a consequence of Proposition 2.15.
(i) follows from direct calculation by using the right Qw-module struc-

ture on Qw ®Q Qw , as given in §2.14, and the identity

A(yr) =

(2.23) Remark. The elements {ψw}w£W are uniquely determined
if we assume that they satisfy (d) and (f) of the above proposition and, in
addition, ψw(δe) = 0 for all wφe.

The proof of this remark is similar to the proof of the (e) part of the
above proposition.

(2.24) Lemma. For any u, v eW, write

(J2s) δu'ψV = Σcv,wΨW for some {unique) cu

v w e R{T)
w

(which is possible by Proposition 2.20). Then c" w = 0 unless l(w) >
l(v) - l(u), and moreover cu

v w, as an element of C[H], has a zero at 1
of multiplicity > l(υ) — l(w).

Proof. Choose a w0 such that w0 is of minimal length among those
w satisfying cu

vwφΰ. Then

(by Proposition 2.22(b) and (I 2 5 )), i.e., ψυ(δu-ιWQ) = cu

υwψ
w»{δW{).

Thus, again by Proposition 2.22(b), v < u~ιw0 and hence l{wQ) >

The assertion about multiplicity follows similarly (by induction on l(w))
using Proposition 2.22(e). D

Recall the definition of aζ υ (resp. c™ v) from Proposition 2.15 (resp.

Lemma 2.24). Even though aζ υ was defined only for w, v < w, we

extend it for all w, v, w e W by putting aζ v = 0 otherwise (i.e., if

at least one of u or v violates the condition u, v < w). Now we will

determine {a™ υ} and {c™ υ} explicitly in terms of the .E-matrix.
(2.25) Proposition. Fix w eW.

(a) Define two W x W matrices A w and Ew by A w ( u , υ ) = awu

and Ew(u,υ) = δuve
w'v for any u,veW. (By P r o p o s i t i o n 2 . 1 5 , A w
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is upper triangular and hence A e 3$w , and of course E e 38w .) Then

Aw=E.Ew.E

(b) Similarly define two matrices Cw and Sw e £MW by Cw(u, v) =

C andSw{u,v) = δWUtV. Then

(Observe that Cw e &w , by Lemma 2.24.)
Proof.

(Aw.E)(u,υ)=Σaw,ue

W

W
= (ψ ψ){δυ) (by Proposition 2.22(h))

W ,V U.V / r n \ / \

= e e =(E.EJ(u,v),
proving (a).

The proof of (b) is similar.

(2.26) Definition. Let S c {1, , /} be any subset. Recall the

definition of Ws and W* from §1.1. We define Ψs = ΨWs to be the set

of all the W^-invariants in Ψ, i.e., Ψs := {ψ e Ψ: δr ψ = ψ, for all the

simple reflections r. with i e S} .

We have the following lemma describing the structure of Ψ .

(2.27) Lemma. Ψs = UweW> R(T)(ep ψw).

Proof. By Proposition 2.22(g), for any w e W^ , ep ψw eΨs . Hence

Conversely, take any ψ € Ψ 5 and write

(I 2 6 ) Ψ = Σf(ep ψw) for some fw € R(T).
W

By the definition of Ψs and the identity used in the proof of Proposition
2.22(g), we get (yre~p) ψ = 0 for any i e S. Now, by Proposition
2.22(d) and (I 2 6 ) , we get

(y r^ ") ψ = J^ / (^ + ψ ).

Hence, by Proposition 2.20, / " = 0 for all those w such that r(w < w
for some simple reflection r with i eS. This proves the lemma. D

Finally we show that the ring Ψ admits a 'natural' filtration such that
the associated graded ring is isomorphic with the ring Λ defined in [19].
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Recall the definition of Ω from [19, §4.17]. (We denote this Ω by
Ω(ί)) here to distinguish it from the Ω defined in §2.17.)

(2.28) Definition. Define a decreasing filtration {Fn = Fn(Ψ)}n>0

of the ring Ψ by

Fn = {ψ e Ψ: m u l t ^ ^ J J ) > n for all w e W},

where, for any element / e C[H], we denote by multj (/) the multiplicity
of the zero of / at 1 in particular for ψ e Ψ, since ψ{δw) e R(T) c
C[H]9 mult1(v/((Jw;)) makes sense.

We clearly have

Fn-
Fm^Fn+m f o r a l l « , m e Z + .

We define the associated graded ring Gr(Ψ) := Σn>oFn/Fn+\ Further
we define a map ln: Fn —• Ω(ίj) by

( W ) ( < U = (v(<U)Λ

 f 0 Γ Ψ € Fn and w e W,

where (ψ(δw))n is the «-th homogeneous component of ψ(δw) (cf. Propo-
sition 2.22(e)). The map ln obviously factors through Fn/Fn+ι to give a
map ϊn: Fn/Fn+ι —• Ω(ίj). These maps give rise to a ring homomorphism
e: Gr(Ψ) -> Ω(fj) defined by elf/? //Γ v = e for all n > 0.

(2.29) Lemma. Image e c Λ , where A is the subring ofΏ(ί>) defined
m[19, §4.19].

We denote the map e considered as a map Gr(Ψ) —• Λ by e.

Proof, Let Ψ = Σwf
WψW € Fn (w i t h / " G Λ ( Γ ) ) τ h e n w e a s s e n

that

(*) mult{(fw) > n - l(w) for any w e W.

For, otherwise, let w0 be of minimal length violating (*). By Propo-

sition 2.22(b), ψ(δw ) = fWQψw°{δw ) . But, by assumption, Ψ e Fn and

by Proposition 2.22(b), m\ut^w°{S )) = l(w0). Hence mult^/^ 0) >

A2 - l(w0), contradicting the assumption! This proves (*).
As a consequence of (*) and Proposition 2.22(e), we obtain that tn(ψ)

= Σιiw)<n(fW)n-ι{w)(- lfW)ξW , where Γ € A is as defined in [19, Propo-
sition 4.20]. In particular in(ψ) e Λ. This proves the lemma. D

Since Λ is a C-vector space, by extension of scalars, we get a map

e c : C ® z G r ( Ψ ) - + Λ .

Now we have the following.
(2.30) Proposition. The map e c : C <8>z Gr(Ψ) -• Λ defined above is a

ring isomorphism.
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Proof. Of course ec is a ring homomorphism. We first prove the
surjectivity of e c :

For any w e W, by Proposition 2.22(e), ψw e Fl{w). Let ψw denote

ψw mod F / ( u ; ) + 1 . Then t{ψw) = {-lfw)ζw (see the proof of the above
lemma). Also for any p e Sn(ϊ)*), there exists / e C[H] w C ® z Λ(Γ)
such that multj / > w and (/)π = p . In particular p i e Image(ec). So
the surjectivity of ec follows from the structure of Λ [19, Proposition
4.20].

The injectivity of ec is easy to see.

3. Identification of Ψ with the Γ-equivariant ^-theory KT{G/B)

We continue to use the same notation and assumptions as in the first
paragraph of §2.

(3.1) Definition. Let X be a compact (Hausdorff) topological space
on which a compact group Go acts. For any p E Z, recall the definition
of the G0-equivariant ΛΓ-group KP

G (X) from [29]. In the sequel KG (X)

(without a superscript) will always mean KG (X). Let us just recall that

KG (X) is the Grothendieck group associated to the semigroup, whose

elements are the isomorphism classes of the G0-equivariant complex vector

bundles on the G0-space X.
Now let X be a Hausdorff (not necessarily compact) topological space

on which the compact group Go acts. Assume further that X has a filtra-
tion / : 0 = l _ 1 c l o c l 1 c , such that

(1) each Xn is a compact subspace of X which is G0-stable, and
(2) topology of X is the limit topology induced from the filtration

Then we define, for any p e Z,

It is easy to see that KG (X) does not depend (up to a 'canonical'
isomorphism) upon the particular choice of the filtration satisfying (1)
and (2) as above (since any such filtration is cofinal in any other). Of
course KG (X) is a graded algebra over KG (pt.), where pt. denotes a
one point space.

In particular, for any Kac-Moody group G and any standard parabolic
subgroup P = PS (cf. §1.3), K*T(G/P) makes sense, where T is the stan-
dard compact maximal torus which acts on G/P by the left multiplication.
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Moreover K^(G/P) is an algebra over Kτ(pt.) « R(T). (The Bruhat de-
composition, cf. §1.4, provides a desired filtration of G/P as below.)

(I 2 7 ) Xn(
p) = U (BwP/P).

wew
l(w)<n

We often abbreviate Xn(B) by Xn itself, where B is the standard Borel
subgroup of G.

(3.2) Definition. Fix a simple reflection ri, and let P{ := B U (BηB)
be the corresponding (standard) minimal parabolic subgroup. The group
Pz has a natural two-dimensional representation V. (V. also denotes the
underlying representation space) such that the 'unipotent radical' of Pi

(with Lie algebras Σtt€Δ\{α.}βα) a c t s trivially o n ^ > a n d the 'standard
maximal reductive subgroup' of Pt (of rank 1) (with Lie algebra ϊ ) Θ θ z Θ
C/;, cf. §1.1) acts by the highest weight p{ (cf. §1.2).

(3.3) Lemma. With the notation as above, the canonical Pι-fibration
πt: G/B —• G/Pi is G-equivariantly isomorphic with the projective bundle
of the rank-two vector bundle on G/Pi, which is obtained from the principal
Pfbundle G —• G/Pi by the representation V{ defined above.

Proof. We have the following commutative diagram:

G/P,

where πi is the canonical projection, and Bi is defined by θ^g mod B) =
[g -> vί\ (where vi is some fixed nonzero highest weight vector in V( and
[g, vt] denotes the class of the element (g, vt) in P(G xp V^).

It is easy to see that Q{ is a G-equivariant homeomoφhism. D
Let us recall the following consequence of the equivariant Thorn iso-

morphism (which can be viewed as a generalization of Bott-periodicity).
(Even though a more general statement is true, the version given below is
sufficient for our purposes.)

(3.4) Proposition [29, Proposition 3.9]. Let p: E -> X be a T-
equivariant rank-two vector bundle on a compact space X, and let P(E) de-
note the corresponding projective bundle. Then KT(P(E)) is a free module
over KT(X) with (free) generators 1 and the Hopf bundle H e KT(P(E)),
where, recall that, the Hopf bundle H is the dual of the canonical line
bundle on P(E).

In particular, the canonical map KT(X) -• KT(V(E)) is injective.
So we can identify KT(X) with its image in KT(P(E)).
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As a consequence of the above proposition and Lemma 3.3, we get the
following:

(3.5) Corollary. For any n e Z+ and 1 < i < I, tf^πΓ1 (*„(/>,.)))
is a free module over Kτ(Xn(P.)) with (free) generators 1 and the Hopf
bundle H((n), where Xn(P^) is defined in (I27)

(3.6) Definition. F o r any n e Z + a n d 1 < / ' < / , define a n o p e r a t o r

Dr{n): Kτ{π-\XΛ{Pi)))^Kτ{πj\

by
Z)Γi(Λ)(σ + fl;(Λ)τ) = σ for σ, τ E # Γ

(3.7) Lemma. For any n e Z + am/ <z«>> 1 < i < ϊ, the following
diagram is commutative:

KT(π7\Xn(P.)))

^ horizontal maps are the canonical restriction maps.
Proof. It suffices to show that //.(n + l)\π7^x W) = //,•(«). But this

is clear from Lemma 3.3.
(3.8) Definition. For any simple reflection r., define an operator

Dr: KT(G/B) -> KT{G/B) as the inverse limit of the operators Dr(n):

Kγiπ-'iX^))) -+ Kτ(π7\XH(P.))) (cf. Lemma 3.7).
It can be easily seen that the operator Dr does not depend upon the

particular choice of the / th fundamental weight pt, even though the iso-
morphism of Lemma 3.3 does depend on the choice of p. (as V. depends
upon the choice of p.).

Now, for w eW, define Dw: KT(G/B) -• KT(G/B) as the composite
Dw = Dr o' o ΰ , where w = r. r. is a reduced decomposition.

Ί ιm ' m

We will see, during the proof of Theorem 3.13, that Dw does not depend
upon the choice of the reduced decomposition of w .

Of course, quite analogously, one can also define the operators (again
denoted by) Dw: K(G/B) - K(G/B).

(3.9) Remark. Similar operators on R(T) (see Definition 3.17(b)),
introduced by Demazure [7, §5], provided motivation for our definition
of the Dr 's.

ri

Clearly Dr satisfies the following:
(3.10) Lemma, D) = Dr .
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(3.11) Definition (Weyl group action on KT(G/B)). Recall that the
Weyl group W can be canonically identified with NK(T)/T, where NK(T)
denotes the normalizer of T in the standard unitary form K of G (cf.
§1.3). Now W acts on G/BπK/T by

(n mod T).(k mod T) = {kn~l) mod Γ,

for n mod T eW « NK(T)/T and i t e ί .

Clearly the action of W on G/i? commutes with the action of T on

G/i?, and hence we obtain a left action of W on KT(G/B) (and also on

K(G/B)). (Since # Γ is a contravariant functor, action of the element

w e W on KT(G/B) is induced from the action of w~ι on G/5.)

(3.12) Definition (the localization map). For any n > 0, let

γn: Kτ(Xn) —• KT(X%) be the canonical restriction map; where Xτ

n is

the set of all the Γ-fixed points in Xn, and Xn = ΛfΛ(2?) is as de-

fined in (I 2 7 ) . Since the maps {yn}n>0 are compatible, we get a map

γ:Kτ(G/B)^Kτ((G/B)τ).

Now the map /: W « NK(T)/T -• (G/B)τ, given by w H^ tt;"1

mod J?, induces a homeomorphism; provided we put the discrete topol-
ogy on Jf. Moreover, by [29, Proposition 2.2], KT{W) can be canoni-
cally identified (as an algebra over R(T)) with the i?(Γ)-subalgebra of Ω
(cf. §2.17) consisting of precisely those maps W -> Q which have image
c R(T). Hence, on composition of γ with the induced map /*, we get
an i?(Γ)-algebra homomoφhism

γ:Kτ(G/B)-+Ω.

Now we can state our second main theorem of this paper.
(3.13) Theorem. Let G be an arbitrary (not necessarily symmetriz-

able) Kac-Moody group with Borelsubgroup B. Then the map γ: KT(G/B)
—• Ω, defined above, has its image precisely equal to Ψ (see Definition
2.19).

Let γ be the map y, considered as a map KT(G/B) —• Ψ. Then the
map y is an R(T)-algebra isomorphism. Further the action of the Weyl
group element w e W (Definition 3.11) and the operator Dw (Definition
3.8) correspond, under γ, to the action of δw and yw respectively (cf.
Proposition 2.20).

Moreover KP

T(G/B) = 0 for odd values of p .
(3.14) Remark. A characterization of the i?(Γ)-ςbasis'

{τ

w ;= y~\ψw)}wew of KT(G/B) (cf. Proposition 2.20) will be given
in Proposition 3.39.
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As a preparation for the proof of the above theorem, we have the fol-
lowing.

(3.15) Lemma. For any n > 0, Kp

τ(Xn, Xn_x) = 0 for p odd, and

Kp

τ{Xn,Xn_{) is a free R{T)-module for p even.

In particular, Kp

τ{Xn) = 0 for p odd, and Kp

τ(Xn) is a free module over
R(T) for p even.

Moreover, V&vkR{T)KT{Xn) = #{w e W\ l(w) < n} .

Proof. By [29, Proposition 2.9],

4(^^ Λ -i)«4(^\^-i)« Θ KP

τ{BwBIB).
l{w)=n

Further the Γ-space BwB/B is Γ-equivariantly homeomorphic with
the Γ-module nw := 0 α € Δ ΠwA Qa . (The homeomorphism is established
by the exponential map.) Hence, by the Thorn isomorphism [29, Propo-
sition 3.2], Kp,(BwB/B)^K^(pt.) as i?(7>modules. This gives the first
part of the lemma.

The second part follows from the first by induction on n and the long
exact sequence associated to the pair (Xn , Xn_x) [29, §2]. D

(3.16) Remark. Let P be any standard parabolic subgroup of G.
Then the above lemma remains true (by the same proof; in view of the
Bruhat decomposition for G/P) for Xn replaced by Xn(P) (cf. (I27))
In this case

RankΛ ( : r ) Kτ{Xn{P)) = #{w e Wι

s : l{w) < n}.

We recall the following:
(3.17) Definitions, (a) Atiyah-Hirzebruch homomorphism . Let

β: R(T) -• KT(G/B) be the additive map, which takes eλ e X{T) to
the G-equivariant (in particular a Γ-equivariant) line bundle on G/B as-
sociated to the principal 5-bundle G —• G/B by the character eλ: B —̂
C\{0} . (Although eλ is a character of H, it is extended to the whole of B
by defining it to be identically one on the commutator subgroup [B, B].)
Of course β is a ring homomorphism, but it is not an i?(Γ)-algebra ho-
momorphism. One also has βx: R{T) —• K(G/B), which is the composite
of β with the canonical homomorphism KT(G/B) -*• K(G/B).

Further, we define a map ~β : R{T) -> Ψ c Ω by /?(/) = / 1 where
1 is the multiplicative identity of Ψ and is as defined in (I 1 7 ) . Let
~βχ: R(T) -• Z® Λ ( Γ ) Ψ be the composite of ~β with the canonical map Ψ -•
Z®R(T) ^» where Z is a i?(Γ)-module under the standard augmentation
map er : R(T)->Z (which takes every /
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It is easy to see that

(128) J(f)(y) = y<. f for any y e Qw and feR(T).

In particular,

(129) -β{f){δj = w'xf for weW.

By (I 2 9 ) , β is an injective ring homomorphism.

(b) Demazure operators [7]. For any simple reflection r., define

Ly):=yrre
λ = e~/e_^ foreλeX(T),

and extend additively to R{T). (It is easy to see that Lr{eλ) e R(T).)

Now set, for any w e W, Lw = Lr o • oLr where w = r. r. is any

reduced decomposition. Then, by Proposition 2.4, Lw does not depend
upon the particular choice of the reduced decomposition of w .

Now we have the following
(3.18) Lemma. The following diagram is commutative:

R(T) JU KT(G/B)

Further the maps β and β commute with the Weyl group actions and
moreover, for any w eW and a e R{T), ~β(Lwa) = yw (βa).

(As a consequence of §3.19—Assertions I and III, we also have βoLw =

Proof. Fix any v e W and a representative ϋ for v in NK(T). For

any integral weight λ, let Cλ denote the one-dimensional representation

of B with the character eλ . Then for any t e T and x e C ^ (in the line

bundle β(eλ))9

t.(ϋ, x) = (tϋ ,x) = (ϋ, (ϋ~ιtϋ).x) = (ϋ, eυ\t)x).

This gives that (γ o β(eλ))(δυ-ι) = eυλ. In particular, by (I 2 9 ) , the
commutativity of the above triangle follows.

The assertion that β commutes with W-actions follows from (I 2 9 ) ,
and the assertion yw (βa) = β{Lwa) follows from (I29) and (I 1 8 ) . Of
course the map β commutes with the W-actions.
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With these preparations, we now come to the

(3.19) Proof of Theorem 3.13. The proof is slightly long and will be
broken up into several subassertions:

Assertion I. The map γ is injective: It suffices to show that yn: Kτ{Xn)

-* Kτ(Xζ) is injective for all n e Z + : By the localization theorem [29,

Proposition 4.1], the localized map yn: Q®mτ\Kτ(Xn) Q^^A^^

iis an isomorphism, where (as in §2) Q — Q(T) is the quotient field of
R(T). But, by Lemma 3.15, Kτ{Xn) isafree i?(Γ)-module, and hence the
canonical map Kτ(Xn) —• Q®R<T\Kτ{Xn) is injective. Now the following
commutative diagram proves the assertion:

f
Q9R{T)κT(xn)

Corresponding to any 1 < / < /, there is a Hopf bundle Hi e KT(G/B),

which is the inverse limit (over ή) of Ht(n) e ^ Γ ( π ~ 1 ( ^ ( P / ) ) ) (see

the proof of Lemma 3.7). Also recall the definition of the map β from

Definition 3.17(a).
Assertion II. The element Hi e KT{G/B) is the same as β{e~Pi),

where pt is the i th fundamental weight (cf. §1.2): Let us fix a nonzero
highest weight vector v. € Vέ, where V. is as defined in Definition 3.2.
Consider the following commutative diagram:

where the maps θi and πi are as defined in the proof of Lemma 3.3, the
vertical maps are the canonical projections, π*{GxpV.) is the pull-back of

the bundle GxpVi via the map ni, and θt is induced from the canonical

inclusion G xB Cvt <-+ GxBVr

Now, from the definition of the Hopf bundle, it is easy to see that
Image θi c H* (where H* is the dual of the Hopf bundle). Further,
since 6\ is an injective map, we have Image (?/ = H*, i.e., the bundle
G xB Cvt represents the element H* G KT(G/B). But Cvi has character
(as a 5-module) ePi. This proves Assertion II.
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Assertion III. For any simple reflection ri and τ e KT(G/B), γ{Dr τ)

= yr " (Vτ): We ^ a v e ^ e following commutative diagram:

KT{GIPt) - ^ - > KT((G/Pf)

i i
KT(G/B) —γ—+ KT((G/B)T).

Let τ e KT(G/B) be in the image of K^G/P^. Then Drτ = τ .

Also, by the above diagram, γ{τ)(w mod B) = γ(τ)(wrimod B), i.e.,

Hτ)(<U = y(τ)(δ

nw) f o r any tί; G ̂ . Hence, by (I 1 8 ) , yη (yτ) = y(τ).

Further define Ώ r ' = { | ^ G Ω : ^ ( ί^) = ψ(δηw) for all ίy 6 H^}. Now

yr (ψψ') = Ψ(yr ' ψ')' f°Γ a n y ^ G ^Γ / a n c ^ a n y V; ^ Ω (by Proposition
2.22(i)). In particular, to establish Assertion III, it suffices to show that
yr (yiHj)) = 0, where Hi is the Hopf bundle as in Assertion II:

By Assertion II, Lemma 3.18, and the identity (I 2 9 ) , we get

(I 3 0 ) γ(Hi)(δw) = e-w~lp< for any weW.

Hence, by (I1 8), y^r (y(fl.)) = 0.

Remark. Since the map γ is injective (by Assertion I), we get (by
Proposition 2.4) that the operator Dw (see Definition 3.8) is well defined,
i.e., it does not depend upon the particular choice of a reduced decompo-
sition of w .

Assertion IV. Imaged c Ψ : Fix any τ e KT{G/B) and w e W. By
making successive use of Assertion III, we get that

yw - (yτ) = y{Dwτ).

In particular, [yw-{γτ)]{δe) = y{Dwτ){δe). But, of course, γ(Dwτ)(δe) e
R{T) and hence y(τ) E Ψ by the definition of Ψ (cf. Definition 2.19)
and the structure theorem (Theorem 2.9).

Assertion V. Given any w e W, there exists an element ϋw e KT(G/B)

such that y($w)(δj = Γ L e Λ ^ - Δ j 1 " O and γ(ϋw){δυ) = 0 if l(v) <

l(w) and v φ w : Let l(w) = n and consider the exact sequence

0 -> K°τ(Xn , X") - K°τ(Xn) - K°T(XUJ) - 0,

where x:J:=[Jl{v)<nv^(BvB/B).
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(The facts that Kι

τ{Xn, X™) and K~\x™) are zero follow from the
proof of Lemma 3.15.)

Now Kτ{Xn,X") » Kτ(Bw~ιB/B) « ^ - i ) (see the proof of
Lemma 3.15). Recall from [29, §3] that there is the Thorn isomorphism
φ+: Kτ(pt.) -^ Kτ(nw-ή. By the definition ^ ( 1 ) = Λ^, where E = nw-ι ,
p: E —• pt. is the projection, φ: pt. —• E is the zero section, and Λ^ is
the Koszul complex on E formed from p*(E) and the diagonal map
δ:E-+p*{E).

Since ^ ( n ^ - i ) « ^A^n >^O» w e c a n t ^ k °f ΨΛ^) a s a n element
of Kτ{Xn, X™) and hence, by restriction, we get an element ^ ( 1 ) €
Kτ(Xn). Lift Ίpjϊj to an element d w of KT(G/B) (which is possible
by Lemma 3.15). By the projection formula [29, §3], φ*φ+f — f.λ_x(E),
for any / e KT{$\.), where

Now it is easy to see that

Π ( i -o
+ Πiϋ" 1 Δ_

(where ch denotes the character) and by the choice of ϋw , y(ΰw)(δv) =

~φjJ)\ _ = 0 if l(υ) < l(w) and v Φ w .
'{υ ' mod B}

Assertion VI. γ{Kτ(G/B)) D Ψ : Fix any ψ eΨ. We will construct,
by induction on n , certain elements τn e KT(Xn) satisfying:

C{(n) (y(τn)-ψ)(δw) = 0 for all l(w) < n, and

Existence of τ 0 satisfying Cj(O) and C2(0) is trivial. Assume (by

induction) the existence of τπ (satisfying C{(n) and C2(«)). Arbitrarily

choose an element τn e KT(Xn+ι) such that ϊn\X = xn (use Lemma

3.15). Now, for any v e W of length n + 1, we have (from Assertion

IV and Propositions 2.20 and 2.22(b)) (y(τΛ) - ^)( ί v ) = feυ'υ for some

/ υ e R(T)9 where ^ ' υ = Γ U Λ ^ - Δ J 1 ~ ̂ ) N o w P u t V i = f« "

Σ/(V)=n+i /^(^r ) 9 where ϋv is as constructed in Assertion V. It is easy

to see that τn+{ satisfies Cx(n + 1) and C2(n + 1).
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By property (C2), the sequence (τΛ) r t > 0 defines an element τ e
KT(G/B). Further γ(τ) = ψ , since

(γ(τ) - ψ)(δj = (γ(τn) - ψ){δj for any n > l(w)

= 0 byCx(n).

Assertion VII. γ commutes with the Weyl group actions: Observe that,
for any w eW, one has a commutative diagram:

KT(G/B) —L-> KT((G/B)T)

KT(G/B) —L-> KT((G/B)T)

where w* (resp. w*) denotes the map induced from the action of w on
G/B (resp. the action of w on (G/B)τ). This easily proves the assertion.

Now putting Assertions I-VII together, we get Theorem 3.13. D
As corollaries of Theorem 3.13, we deduce the following results.
(3.20) Corollary. With the notation and assumptions as in Theorem

3.13, let P = Ps be the standard parabolic subgroup of G correspond-
ing to any subset S c {1, , /}. Then there is a unique R(T)-algebra
isomorphism γP making the following diagram commutative:

KT(G/P)

f
KT(G/B) —^ Ψ

where Ψs is as defined in Definition 2.26, and π*p is induced from the
canonical projection πp: G/B —• G/P.

In particular, the map π*p is injective with its image exactly equal to the

Ws-invariants in KT(G/B). Taking P = G, we get that [KT(G/B)]W ~

R(T).
Further KP

T(G/P) = 0 for odd p.
Proof. The assertion, that KP

T{G/P) = 0 for odd p, follows from
Remark 3.16.

Since the map γ commutes with the Weyl group actions, it suffices
to show that the map π*p is injective with its image exactly equal to the
^-invariants in KT(G/B):
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For any w e Ws, we have the commutative triangle:

G/B

G/P

where w. denotes the action of w on G/B as in Definition 3.11. In

particular, Image π* c [Kτ(G/B)]Ws.
We first prove the injectivity of π* : We have the following commuta-

tive diagram, in which both the horizontal maps are injective (by §3.19—
Assertion I):

KT(G/P) c _ _ KT((G/P)T)

[
KT((G/B)T)

where τCp is induced from the map πp : {G/B)T -*+ (G/P)τ. But the map

Tip is Isurjective; in fact under the isomorphism /: W —• (G/B)τ (given

in Definition 3.12) and a similar isomorphism is: WS\W -»{G/P)τ , the

map iίp is the canonical projection W-+.WS\W . In particular, the map

π*p is injective and hence, by the above diagram, π*p itself is injective.

Finally we prove the surjectivity of π*p onto [Kτ(G/B)]Ws or (what

is the same as) the surjectivity of γ o π*p onto Ψ . To achieve this, we

first of all observe that in §3.19—Assertion V if we take w e W$ (cf.

§1.1), then we can in fact choose ϋw e π*p(Kτ(G/P)) (and satisfying the

requirements in Assertion V). Now the desired surjectivity of γoπ*p follows

by an argument similar to the proof of Assertion VI.
(3.21) Remark. Recall that the structure of Ψs is given in Lemma

2.27.
Actually one can improve upon the above corollary further.
(3.2.2) Definition. Fix a subset S c {1, , /} . Let θ be a subset

of W with the following properties:

(Pj) θ is left H^-stable, and

(P^) whenever w e θ and w' < w , then w' € θ .

To any such θ , we can associate a (left) ^-stable subspace Ve c G/Ps

defined by

Ve= \J{Bw~ιPs/Ps).
weθ
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By Property (P 2 ), Vθ is closed in G/Ps, and conversely any (left)
^-stable closed subspace of G/Ps is Vθ, for some appropriate choice of
θ . In particular, the Schubert varieties XP

W := BwP/P c G/P are such
examples.

Let Ω θ denote the β-algebra of all the maps θ —• Q. There is of

course the restriction map re: Ω —• Ω θ . Define Ψ^ = rθ(Ψs).
Now we have the following corollary of Corollary 3.20.
(3.23) Theorem. With the notation and assumptions as in Corollary

3.20, assume, in addition, that θ is a subset of W satisfying (P{) and

(P2) as above. Then there is a unique R(T)-algebra isomorphism γe = γ$,

making the following diagram commutative:

where j * e is induced from the inclusion j θ : Vθ *-> G/P.
Proof. We first observe that the map j*e is surjective: Fix τ e Kτ{Ve)

and construct (by induction on ή) elements ϊnέ Kτ(Xn(P)) satisfying

(1) % = τ, , and
n\χn(P)nvθ lχn{P)nvθ

(2) V,n = f - '
Having constructed τn e KT(Xn(P)) as above, let

C,^Λ(ί)u(i,+1(ί))nΛ))
be an (in fact unique) element such that τ' ,, = τM and τ ,,, =

τ. . The existence (and the uniqueness) of τ' , is guaranteed froiti
k+iίw^β . . n + ι

the following Mayer-Vietoris exact sequence:

(The exactness of the Mayer-Vietoris sequence is known for any cohomol-
ogy theory; see, e.g., [9, Chapter I]. Also use the fact that Kp

τ{Xn(P)n Ve)
as well as Kp

τ(Xn(P)U(Xn+ι(P) n Ve)) = 0 for odd p cf; the proof of
Lemma 3.15.)

Now let τ n + 1 G Kτ(Xn+ι(P)) be an arbitrary element such that

n+l\χn(P)u(Xn+i(P)nvθ)
 n + 1

This completes the induction.
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By property (1), the element τ e KT(G/P), determined by the com-
patible sequence (ϊn)n, of course satisfies τ( = τ , which proves the

surjectivity of j#.

So it suffices to prove that γp(Ktτj^) = Ker(r θ). Consider the follow-
ing commutative diagram arising from the localization maps:

KT((G/P)T)

By the localization theorem, the localization maps γp and γe are

both injective (see the proof of §3.19—Assertion I). Hence Kery^ =

(y / > )" 1 (Ker^). This readily gives that / ( K e r ^ ) = Ker(r θ).

The following lemma gives the structure of Ψ^ .

(3.24) Lemma. ^ = Π ^ n θ W M * ' " <O)
Proof. We first claim that for any w φ θ , rθ(ep ψw) = 0: For

{ep ψw)(δυ) = ψw(δv).(v-ιp) = 0, if v e θ (by Proposition 2.22(b) and

property (P2) of θ ) . Further let

(I3i) ΣfWrθ(e" ψW) = ° for some fweR(T).

(We allow infinitely many of f° 's to be nonzero.) If possible, pick a
w0 G θ such that f™0 Φ 0 and w0 is of smallest length with this property.
Now evaluating the identity (I31) at δw and applying Proposition 2.22(b),
we get a contradiction!

So the lemma follows by using Lemma 2.27. α
Now we can prove the nonequivariant analogues of Theorem 3.13,

Corollary 3.20, and Theorem 3.23 using the corresponding results in the
equivariant case.

We first prove the following:
(3.25) Proposition. The canonical map έ: Z <8>Λ(Γ) KT(G/B) —•

K(G/B) is an isomorphism, where Z is considered as an R{T)-module
under the standard augmentation map R(T) —> Z (given by the evaluation
at 1).

(3.26) Proof. We break the proof into the following four assertions:
Assertion I. The canonical map έn: Z ® Λ ( Γ ) Kτ(Xn) —• K(Xn) is an

isomorphism for any n > 0. We prove it by induction on n . We have, by
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Lemma 3.15, a commutative diagram with exact rows:

0 - Z®R{T)Kτ(XH+ι,XH) -+ Z®Λ{T)Kτ(XH+ι) - Z*R{T)KT(XH) - 0

I I I I
0 K(XX) K ( X 0 K{) 0

(The top horizontal sequence is exact because Kτ(Xn) is a free -R(Γ)-
module.) Further, by [29, Proposition 2.9],

l{w)=n+\

and the same is true with Kτ replaced by K. Hence, by induction on n
and the five lemma, it suffices to show that the canonical map

(*) Z %R{J) Kτ(BwB/B) -+ K(BwB/B)

is an isomorphism for any w EW .
We have the following commutative diagram:

Z ® Λ ( Γ ) tfr(pt.) ^ Z ® Λ ( Γ ) Kτ(BwB/B)

I " I
A:(pt.) - ^ - ^ K(BwB/B)

where the maps ^ are Thorn isomorphisms (cf. §3.19—proof of Assertion
V), and the left vertical map is an isomorphism since #Γ(pt.) « R{T).
This establishes the claim and hence Assertion I.

Assertion II. The map έ: Z ® Λ ( Γ ) KT{G/B) -• K(G/B) is surjective.
Take any cr = (απ) E K(G/B), where σrt E AXΛfJ. We assume, by
induction on n , that we have constructed τn E KT(Xn) satisfying:

where εn: KT(Xn) —• ^(Xn) is the canonical map.
One has the following commutative diagram (in which both the hori-

zontal rows are exact):

0^Kτ(Xn+ι,Xn) - * - Kτ{Xn+λ) - J ϋ - ^(ΛΓ,) »-0
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Now choose any τ n + 1 e Kτ(Xn+ι) such that η2(τn+ι) = τn . We can
w r i t e β Λ + ! ( V i ) - σ « + i = ^ ^ ( V i ) for some τ n + 1 G AΓr(Jrπ+1, JΓΛ) (since
η3 is surjective; cf. proof of Assertion I). Put τ n + 1 = τn+ι - ^ ( t ^ ) ;
then ι/2(τΛ+1) = */2(τΛ+1) - η2ηι(τn+ι) = τn , and e π + 1 (τ n + 1 ) = σrt+1 +

^4^3(f«-hi) - c

Λ+i>/i( fιi+i) = <Vi S o t h e Eduction is complete.
But then (τn)n defines an element τ e KT(G/B) such that β(l®τ) = σ.
Assertion III. Recall the definition of τw from Remark 3.14. Then

for any n>0, {τw^ }^W)<n is an R(T)-basis of KT{Xn), and τw| =

0 for any l(w) > n: Take any l(w) > n. Since the localization map

KT{Xn) -• Kτ(Xl) is injective (cf. proof of Assertion I in §3.19), to prove

that τ™, = 0, it suffices to observe that γ(τw)(δυ) = ψw(δv) = 0 for any

l{υ) < n "(by Proposition 2.22(b)).
Since the restriction mapKT(G/B) —• A^Γ(^) is surjective, {T™, }lM<n

spans (over R(T)) Kτ{Xn) (by Theorem 3.13 and Proposition 2".20(c)).
Further, by Lemma 3.15, Kτ(Xn) is a free i?(Γ)-module of rank =
#{w e W\ l(w) < ή) and hence by (a subsequent) Lemma 4.5 the as-
sertion follows.

Assertion IV. The map έ : Z ® Λ ( Γ ) KT(G/B) —• K(G/B) is injective.
One has the canonical injective maps:

δ:Kτ(G/B)^f[Kτ(Xn) and δ{: K(G/B) f
n=0 n=0

Consider the following commutative diagram:

Z®R{T)KT(G/B) Λ

where the map 0 is the canonical map, and έ = Π^Lo &n (c^ Assertion I).
By [5, p. 62, Exercise 9] the map θ is an isomorphism and, by Assertion
I, the map έ is an isomorphism, and hence έoθ is an isomorphism.

So, to prove that έ is injective, we need to show that Id ®J is injective:
Let 1 <g> τ e Ker(Id<8>5) for some τ e KT(G/B), i.e., l ® τ f l = 0

as an element of Z ® Λ ( Γ ) Kτ(Xn) for all ft, where τn is the restriction
of T to I n . By Proposition 2.20(c) and Theorem 3.13, we can write
τ = Σw fWχW f°Γ s o m e (unique) fw e R(T), where τw is as in Assertion
III. By Assertion III, we obtain that f° e R+{T) for all w eW, where
R+(T) is the standard augmentation ideal of R{T). Fix a finite set {f}
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of generators of the I?(Γ)-module R+(T), so that we can write fw =

Σj fJaLw for some aj'w e R(T). Define the element τJ = Σw aJiWτw e

KT(G/B). Then τ = Σ / V and hence 1 0 1 = ^ / ^ ^ = 0. This
proves Assertion IV.

Now putting Assertions I-IV together, we get Proposition 3.25.
(3.27) Remark. An identical proof, as above, gives the following gen-

eralization of Proposition 3.25.

The canonical map Z ® Λ ( Γ ) KT(VΘ) —• K(Ve) is an isomorphism, where

Vθ c G/P is any B-stable closed subspace as in Definition 3.22.
In fact one can similarly prove that for any subtorus T' c T, the canon-

ical map R(T') 0 Λ ( Γ ) KT(VΘ) —• KT>(VΘ) is an isomorphism.
As an immediate consequence of Theorem 3.13 and Proposition 3.25,

we get the following nonequivariant analog of Theorem 3.13.
(3.28) Theorem. With the notation and assumptions as in Theorem

3.13, there is a unique Z-algebra isomorphism γ{: K(G/B) —• Z®Λ ( Γv Ψ
making the following diagram commutative:

Ψ

K{G/B)

where the vertical maps are the canonical maps.
Moreover the action of the Weyl group element w eW (Definition 3.11)

and the operator Dw (Definition 3.8) correspond, under γχ, to the action of
Id ®δw and Idφy^ on Z ® Λ ( Γ ) Ψ respectively. (Observe that the actions
of δw and yw being 7?(Γ)-linear, Id <8>δw and ld<S>yw make sense.)

Further KP(G/B) = 0 for odd p. D
We also obtain the following nonequivariant analog of Theorem 3.23 as

a consequence of Theorem 3.23 and Remark 3.27.
(3.29) Theorem. With the notation and assumptions as in Theorem

3.23, there is a unique Z-algebra isomorphism yθ x making the following
diagram commutative:

v (V \ yβ > ψs

II-
ΘS ^^ R(T) θ

If we take θ = W, we of course get the above theorem for G/P.
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(3.30) Remark. By virtue of Theorem 3.13 (resp. Theorem 3.28),
study of the i?(7>algebra KT(G/B) (resp. Z-algebra K(G/B)), together
with the Weyl group action and the operators Dw , reduces to an algebraic
(or combinatorial) problem of understanding the /?(7>algebra Ψ along
with the action of the ring Y on ψ (which is defined purely and explicitly
in terms of the Weyl group and its action on R(T)). In particular, the
product (as well as the Weyl group action) in KT(G/B) in terms of the
{τ™}-'basis' can explicitly be determined from the U-matrix by Proposi-
tion 2.25. Further, the action of the operators Dw on KT(G/B) can be
determined by Proposition 2.22(d). Of course the structure of Ψ as an
i?(Γ)-module is given by Proposition 2.20.

Similarly, by Theorems 3.23 and 3.29, the study of KT{VΘ) (in par-
ticular KT(G/P)) and K(Ve) reduces to the understanding of the R(T)-
algebra Ψ ^ . Recall that the structure of Ψ^ (as an i?(Γ)-module) is given
by Lemma 3.24.

It may be mentioned that the proof of Theorem 3.13 (and consequently
Theorems 3.23, 3.28, 3.29, and Corollary 3.20) did not require the struc-
ture theorem (Theorem 2.9), provided we replace the i?(Γ)-algebra Ψ by
the algebra (UwelvR(T)ψw) c Ω. D

The proofs given above can be adopted to the Γ-equivariant singular
cohomology H*τ(.) = Hj(., Z) (with integer coefficients) to obtain the
following results: Recall the definition of the ring Λ and a basis {ξw}weW

of Λ from [19, §4]. Now let Λ z := ΣwSzξw c A , where Sz = S(f£) is
the symmetric algebra of the weight lattice f)z (cf. §1.2).

(3.31) Theorem. Let G be an arbitrary {not necessarily symmetriz-
able) Kac-Moody group with Borel subgroup B. Then:

(a) There is a 'natural' Sz « Hγ(pt.)-algebra isomorphism η: H^(G/B)
—• Λ z , such that the action of the Weyl group element w (resp. the analog
of the BGG operators) on Hj(G/B) corresponds under η to the action of
δw (resp. xj on Λ z defined in [19, §4.17].

More generally, there is a 'natural' Sz-algebra isomorphism

ηe: Hτ(Ve) -*• Λ z θ , where Ve is as defined in Definition 3.22, and Λ z θ

is the image of Λ z (which is the set of Ws-invariants in Λz) under the
map rθ defined in [19, §5.14].

(b) The canonical map Z®s H^(G/B) —• H*(G/B) is an isomorphism,
where Z is a Sz-module under the canonical augmentation map Sz —• Z
(given by the evaluation at 0).

More generally, the canonical map Z ^ Hγ(Ve) —> H*(Ve) is an iso-
morphism.
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(3.32) Remarks, (a) The fact that η is an isomorphism (as in The-
orem 3.31) has recently been obtained by Arabia [1], but he takes the
complex coefficients.

(b) Combining (a) and (b) of the above theorem, we can easily deduce
[19, Theorem (5.12), Corollaries (5.13), and Theorem (5.16)], in fact over
Z and for arbitrary Kac-Moody groups. (In [19] we had the symmetriz-
ability restriction on G.) In particular, we obtain here a very different
(and conceptually better!) proof of these results than given in [19]. D

Now we want to characterize the 'basis' {rw} of KT(G/B) given in
Remark 3.14. Recall that we are denoting the (standard) complex maximal
torus of G by H.

(3.33) Definition [33]. For a (finite-dimensional) //-algebraic vari-
ety X over C (i.e. H acts on X such that the action H x X —• X is
algebraic), we denote by K°(H, X) (resp. K0(H, X)) the Grothendieck
group constructed from the semigroup whose elements are the isomor-
phism classes of //-equivariant locally free sheaves (resp. //-equivariant
coherent sheaves) on X. (We have preferred to use the notation KQ(H, X)
instead of Thomason's G0(H, X).)

(3.34) Bott-Samelson-Demazure-Hansen varieties. Fix v € W and
a reduced decomposition υ = r. - r. . Let u denote the sequence

Ί ιm

(r. , , r. ) of simple reflections, and (for any 1 < j < m) x>[j] :=
1 lm

(7/ 9 -" > 7i) - To the sequence D, there is associated a smooth projec-
tive //-variety ZΌ over C of dimension m (called the Bott-Samelson-
Demazure-Hansen variety), and a continuous map ΘΌ: ZΌ -+ G/B (see,
e.g., [21, §2.1] in the form convenient for our purposes). Further, denot-
ing t/ = υ[m - 1], there is an //-equivariant P1-bundle πΌ>: Zo —• Zυ,,
which is the pull-back of the P1-bundle π. : G/B -+ G/P. under the

m m
θ 1θ i πi 1

composite map Z # - ^ G/B —^ G/P. . Moreover, the P -bundle π , is
m

the projective bundle of a rank- 2, //-equivariant algebraic vector bundle
(i.e. //-equivariant locally free sheaf) on Zo#.

In particular, making successive use of Proposition 3.4 for the P 1-
bundles:

and an analogous result for K°(H, •) [33, Theorem 3.1], we easily obtain
the following:

(3.35) Proposition. With the notation as above, the canonical map

K°(H, ZD) -> KT(ZΌ) is an isomorphism.
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For any //-equivariant locally free (more generally coherent) sheaf S?

on Z D , the cohomology spaces Hk{ZΌ, S?) are finite dimensional H-

modules. Let chHk(ZΌ, S?) e R(T) define its character. As is standard,

define

χ(Zΰ, S") = ̂ 2(-l)kchHk(Zϋ, '&) e R(T).
k

Clearly χ(ZΌ, •) extends to give a i?(7>linear map K°(H, Zv) -+ R(T).
Fix υ and v as in §3.34, and take any τ e KT(G/B). Then, by the

above proposition, the element 0*(τ) in Kτ(Zϋ) can also be thought of

as a (unique) element in K°(H9 Z o ) . In particular, χ(ZΌ, θ*(τ)) makes

sense. Also the operation which takes a vector bundle to its dual, gives

a map *: KT(G/B) ^ KT(G/B), Similarly the ring R(T) admits an

involution (again denoted by) * defined by eλ h-> e~λ for any eλ e X{T),
With this notation, we have the following.
(3.36) Proposition. Fix any v £ W and a reduced decomposition

v = γ . r. . Then, for any τe KT(G/B),
1 rn

where Ό is the sequence (r't , , r. ) , and the map γ is as in Theorem

3.13. In particular, χ(ZΌ, θ*{*τ))' does not depend upon the particular
choice of reduced decomposition of v . Also

for any eλ e X{T), where β and Lυ are as defined in Definition 3.17.
Proof. We first prove that

Write

/T \ * / τ r * tf
(132) τ = π f T +H( π. τ ,

m m xn

where Hi is the Hopf bundle defined in §3.19—Assertion II, and Y ,

τ'ΈKj.iG/P, ).

Let S? be an //-equivariant locally free sheaf on ZD/ (t)' := t>[m - 1]).

By the Leray spectral sequence for the P1-bundle πΌ,: Zo '-» Zo/ and the

projection formula, we get

(133) Hk(ZΌ, π* ( ^ ) ) » / / " ( Z ^ , ̂ ) for all fc.
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Further the line bundle Θ*(*H. ) on Z , which can canonically be

given the structure of an algebraic line bundle, is of degree —1 along the

fibres of πΌ> (by §3.19—Assertion II). Hence by a result of Grothendieck,

the direct images RkπΌ,*(θζ(*Hi )) = 0 for all k > 0. In particular, by

the projection formula,

So, by the Leray spectral sequence,

(I34) Hk{Z^θl{*Him)®π\{<9>)) = Q for all k > 0.

Now combining (I32)"" (I34) and using the definition of the operator
Dr (Definition 3.8), we obtain (*).

Making successive use of (*'), together with Theorem 3.13, we get the
first part of the proposition.

The assertion about χ(ZΌ, θ*(β(e~λ))) follows from Lemma 3.18 and

(I2 9)
(3.37) Definition. For any v eW and τ eKτ(G/B), define the 'vir-

tual' Euler-Poincare characteristic χ(Xv , τ) := χ(ZΌ, 0*τ) e R(T), where
v = ri ri is a reduced decomposition, D is the sequence (r , , r ),

and Xυ is the Schubert variety BυB/S cG/B.
By the above proposition, χ(Xv,τ) is well defined, i.e., it does not

depend on the particular choice of reduced decomposition of v .
(3.38) Remark. As in [21, § 1.8], we put the "stable variety structure"

on Xv . Now take τ G KT(G/B). If τ, is in the image of the canonical

map K°(H,XV) -> Kτ(Xυ) then, by [21, Theorem 2.16(3)] (or [22]),
χ(Xv , τ) = χ(Xv , τ), where τ is any element in K°(H, Xv) such that τ
goes to τ under the above map.

It is likely that, in the arbitrary Kac-Moody situation, K°(H', Xυ) —>
Kτ(Xυ) is always surjective (e.g. it is surjective in the finite case; as we
will see in the next section, Theorem 4.4). In any case, any element in the
image of the Atiyah-Hirzebruch homomorphism β of course comes from
K°(H9XΌ):

As a corollary of Proposition 3.36, we have the following characteriza-
tion of the 'basis' {τw} of KT(G/B) given in Remark 3.14:

(3.39) Proposition. The 'basis' {τw}weW of KT(G/.B) satisfies the
following:
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Moreover, if {τw} is any indexed set of elements in KT{G/B) satisfying
χ(Xv-ι, *τw)=δυw,then τw = τw for all weW.

In particular, in the finite case, the basis {%}weW of the Z-module
K{G/B) given by Demazure [1, Proposition 7] is related to our basis {τw}
as follows:

e(*τw ) = aw for any w eW,

where ε: KT(G/B) -» K(G/B) is the canonical map.

Proof. The assertion that χ(Xυ-ι, *τw) = δ v w follows from Propo-

sition 3.36 together with the definition of τw (i.e., γ(τw) = ψw). Con-

versely, write

*τ =
,W

(*τ ) for some/ eR(T).
V

Then χ(Xv-ι, *ϊw) = fv'w . But, by the assumption, χ(Xv-χ, *τw) =
w w

δv w and hence τw = τw for all w .

4. Consequences of the main results in the finite case

(4.1). Unless otherwise stated we will assume, throughout this section,
that we are in the finite case, i.e., G is a finite-dimensional, semisimple,
connected, simply-connected, complex algebraic group, and we denote by
Go (instead of K) any (fixed) maximal compact subgroup with a maximal
torus T and let H be the complex torus c G which is the complexifica-
tion of T. We denote the longest element of W by wQ .

The main aim of this section is to show that some of the important
(though known) results in AΓ-theory of G/B (in the finite case) can be
easily deduced from our Theorems 3.13 and 3.28.

(4.2) Definitions. Let R(G0) denote the representation ring of the
compact group GQ . As in [15, p. 11], define a map

φ: R(T) 0Λ ( ( ? o ) R(T) -> KT(GO/T), by φ{f®g) = f.β{g),

where β is the Atiyah-Hirzebruch homomorphism defined in Definition
3.17(a). (Of course the notation fβ(g) means the multiplication by fe
R(T) in the i?(Γ)-module KT(GO/T).) It is easy to see that the map φ
is well defined, i.e., it factors through R(T) ®Λ ( G }R{T).

We also define a map ψ: R(T) ®R{G ) R(T) -+°Ψ c Ω, by φ{f ® g) =

f~β{g), where the map ~β: R(T) -> ψ is as defined in Definition 3.17(a).
Recall the definition of the Demazure operators Lw on R(T) from

Definition 3.17(b). The action of L (and also the Weyl group action)
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clearly commutes with the R(G0) & R(T) -module structure on R(T). In
particular, we can define the operators Id®Lw and Id®δw on

R(T).
The following lemma follows fairly trivially from Lemma 3.18.
(4.3) Lemma. The following diagram is commutative:

R(T)®R{Go)R(T) -*-+ KT(GO/T)

where γ is the map given in Theorem 3.13.
MoreoverJor any w eW and x e R{T)®R{G ^(T) ,(φo(ld®δw))(x) =

w-φ{x) {resp. {φo(Id®δw)){x)_=δw-{φ{x))) and φo(Id®Lw) = Dw oφ
(resp. (ψo (ld®Lw))(x) = yw (ψ(x))), where w φ(x) denotes the action
of w on KT{GQ/T).

Now we can prove the following, which was conjectured in [15, p. 11].
We thank V. Snaith from whom we subsequently learnt that it was already
proved by John McLeod [23]. Recently Kazhdan-Lusztig [18] also have
given a proof independently.

(4.4) Theorem, With the assumptions as in §4.1, the map φ, defined
in Definition 4.2, is an isomorphism.

Proof. In view of Theorem 3.13, we need to prove that the map ~φ
is an isomorphism. Now the image of ψ is an i?(Γ)-submodule of Ψ,
which is stable under the action of yw 's. So, to prove the surjectivity of
~φ , by Proposition 2.22(d) it suffices to show that ψw° (where w0 is the
longest element of W) belongs to the Image of ψ:

Let {eυ}v€W be the basis of R(T) over R(G0) « R(T)W, given
by Steinberg [32, Theorem 2.2]. Define the matrix F = (fυ w)v weW,
where fv w := weυ . By [32, §2], the determinant of F] dtXF =

( ( - 1 ) ' M ^ ^ ) I ^ / 2 , where ^ : = Π , G Δ + ( 1 - ^ ) .
We want to find elements {pw)weW in R{T) such that

(I35) (

which is equivalent, by Proposition 2.22(b), to solving the matrix equation
in p (over R(T)):

(i36) P ̂  = q,
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where p is the row vector (pw)weW , and q is the row vector with zeros

everywhere except in the woίh column, where it is equal to ψw°(δw ) =

91. The equation (I36) has a unique solution for p as a vector over the

quotient field Q{T) of • R{T) given by

( l 3 7 ) „ / p = q ' ^ :

where F = (fv w) is the matrix with fv w equal to the (up to sign)

determinant of the matrix Fυ'w obtained from F by deleting the vth

column and the wth row.
We next observe that delFυ'w is divisible by 3{Wm~x (in R(T))

for any v , w e W. To prove this, we use the Vandermonde determinant
type argument:

Fix a positive root v, and let rυ e W be the reflection through the

hyperplane given by the root v . Write W\ {rvυ , υ} as the disjoint union

of the orbits under the left multiplication by rv . Of course there are

(\W\I2) — 1 such orbits. Since for any v , w EW, ruv'ew>— vιew> is di-

visible (in R(T)) by 1 —ev , we get (by subtracting the rvv th column from

the v1 th column) that detFv'w is divisible by ( Π ^ Λ (l-eu)){m/2)~ι =

cg(\iv\/2)-\ Observe that we have used the fact that R(T) is a unique

factorization domain and, for distinct v , v G Δ+ , the elements 1 — ev

and 1 - ev are relatively prime in R{T).)
Hence by (I37) the vector p has its entries actually in R(T), which

proves the surjectivity of the map ψ.
Replacing q by any other row vector over R(T), one easily obtains

(from I3 7) that the map ψ is injective.
(To prove the injectivity of ψ, one can also use the following general

lemma, which can easily be proved by using the determinants.)
(4.5) Lemma. A surjective linear map of any two free modules of the

same finite rank, over any commutative ring with identity, is an isomor-
phism.

Of course as an immediate consequence of Theorem 4.4 together with
Proposition 3.25 one obtains the following result, which was conjectured
by Atiyah-Hirzebruch [3, §5.7] (who had checked its validity case-by-case
for all the simple, simply-connected groups except for Eβ, EΊ, and £"8)
and later proved independently by Seymour [30], Snaith [31], and Pittie
[28]. (They all used Hodgkin's spectral sequence.)

(4.6) Theorem. Withthe assumptions as in §4.1, the AtiyahΉirzebruch
homomorphism β{: R(T) -• K{G0/T), defined in Definition 3.17(a), gives
an isomorphism Z®R{G } R(T) -> K(GJT).



Γ-EQUIVARIANT ^-THEORY 595

In particular, βχ itself is surjective.
One can also easily deduce the following result due to Hodgkin [14]

from Theorem 4.4. We do not give the details here since they would
appear elsewhere; where we intend to study K*(G0) for the unitary form
Go of a general Kac-Moody group.

(4.7) Theorem. With the assumptions as in §4.1, K* (Go) is a torsion-
free Z-module.

We give below an alternative description of the operators Dw (defined
in Definition 3.8) in the finite case: For an //-variety X, recall the defini-
tion of K°(H, X) and K0(H, X) from Definition 3.33. In particular (in
the finite case), K°{H, G/B) and K0(H, G/B) make sense; where H is
the complex torus (acting on G/B by the left multiplication). Since G/B
is smooth, as a particular case of [33, Theorem 5.7], we have the following.

(4.8) Proposition. The canonical map K°(H, G/B) -> KQ(H, G/B)
is an isomorphism.

For any //-stable closed subvariety Y of //-variety X, let ffγ denote
the structure sheaf of Y extended to the whole of X by defining it to be
zero in X \ Y. Since @Ύ is an //-equivariant coherent sheaf on X, it
determines an element [<fγ] e K0(H, X). In particular, taking X = G/B
and Y = Schubert variety Xw (= BwB/B) we get, for any w e W, an
element ψw\ = \<9X\ e K0(H, G/B).

Recall the filtration given in Definition 3.1:

0 = X_ιcXocXιc---cXdimG/B

Since each Xn is a //-stable closed subvariety of G/B, Xn \Xn_{ is a
disjoint union of affine cells {BwB/B}^w)=n , and moreover the action of
H on each BwB/B can be linearized; by the //-equivariant analog (which
is available because of the equivariant machinery developed in [33]) of a
result due to Grothendieck [11, p. IV-31, Proposition 7] we get

(4.9) Lemma. The elements {[&w\}wew form a R{T)-basis for the
R(T) « R(H)-module K0(H, G/B).

In particular, K0{H,G/B) is a R{T)-free module of rank =\W\.

One of course has a canonical map ζ: K°(H, G/B) —• KT(G/B), where

KT(G/B) is the topological equivariant A -̂group as in §3.

(4.10) Proposition. The map ζ: K°{H, G/B) -+ KT{G/B) defined
above is an isomorphism.

Proof. Recall the definition of the map φ:R{T)®R{G }R(T)-+ KT{G/B)
from Definition 4.2. From the definition of φ , it is clear that Images c
Image ζ. In particular, by Theorem 4.4, ζ is a surjective map. But
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KT(G/B) (resp. K°(H, G/B)) is a R(T)-free module of rank \W\ by
Lemma 3.15 (resp. Proposition 4.8 and Lemma 4.9). Now, by Lemma
4.5, the proposition follows. D

As a consequence of Propositions 4.8 and 4.10, we can canonically iden-
tify KT(G/B), K°{H, G/B), and K0{H, G/B) with each other.

(4.11) Proposition. Fix a simple reflection rf. and let P. be the corre-

sponding minimal parabolic (cf. §3.2). Then the operator *Dr * (where *

is'as in Proposition 3.36, and Dr is as in Definition 3.8) is the composite:

K0(H, G/B) - X K0(H, G/P.) *K°(H, G//>) -ZLκ°(H, G/B),

where πz : G/B -> G/P, is the canonical projection, πu \- Y,k{-\)k[Rkni ],

β«ύ? π* w ί/ẑ  canonical pull-back.
Proof. The idea of the proof is quite similar to the proof of Proposition

3.36: For τ e K°(H, G/B), write

(I38) τ = π (τ/) + flI..<(τ//) for τ',τ" eK°(H, G/PJ.

(Recall that //z is the Hopf bundle defined in §3.19—Assertion II.)
Hence

By the projection formula, we obtain:

(139) π |.(τ) = *τ / + ( π I . ( * J

But

(140) πJ.(*/Γ/) = 0,

(see the proof of Proposition 3.36).
Combining ( I 3 8 ) - ( I 4 0 ) , we get the proposition. D
Recall the definition of the basis ([&w])w of KT(G/B) « K0(H, G/B)

from Lemma 4.9.
( 4 . 1 2 ) L e m m a . For any weW and simple reflection r(,

i *WΛ ifwr.<w,
*[0wr] otherwise.

Proof. Using the normality of Xw and π^X^ , it is easy to see that
πi\^w\ = Ψπ\χ )] a s elements of K0(H, G/Pt). Now the lemma follows
from Proposition 4.11, if we observe the following simple fact:

Let π: X —• Y be a surjective //-equivariant smooth morphism of
smooth projective //-varieties, and let Z c Y be a closed H-stable sub-
variety. Then π*\ffz\ = [^π-. ( Z )], where π*: /i:0(//, F) -^ K°(H, X) is
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the canonical map, and [&z], which is an element of K0(H, Y), can also
be thought of as an element of K (H, Y) under the canonical isomor-
phism with K0{H, Y) (cf. Proposition 4.8). D

Recall the definition of the i?(Γ)-basis {τw}wew of KT{G/B) from
Remark 3.14. In particular, we have a Z-basis {τ^ := ε(τw)} of K(G/B),
where ε: KT(G/B) —> K(G/B) is the canonical map. We also have another
Z-basis {σ™ = e(*[0w])}w of K{G/B) (in the finite case) (cf. Lemma 4.9).

The following proposition describes how the basis {σ™} transforms
with respect to the basis {τ™} of K(G/B).

(4.13) Proposition. For any υ e W,

where the matrix M = (mv,w)VyWeW is defined as mυ w = I if υ > w,
and mυ w = 0 otherwise.

In particular, σ[ = τ^°.

Recall from [8, §3] that the transpose of the inverse matrix M~x is
precisely the Mόbius function associated to the pair (W, < ) .

Proof. By Proposition 3.39,

Σ W~Xw* > a s e l e m e n t s o f K

But, by Proposition 3.36 and Remark 3.38,

042) *(X(Xwow » W)) = (yWow (ViW)We) >

where γ is the map defined in Theorem 3.13.
Further, by making successive use of Lemma 4.12 (see also the proof

of Proposition 4.16), we get

n ί.Γίf « = / * ^ " b 1 i f υ ω o < ^ " « Ό . i.e.,u/<t/,

I * [^/] f°r some v = υ (v , w) <w0, if w > υ.

Combining (I 4 1 )- (I 4 3 ) , we obtain

a\ = Σev{y{*[<?W(\){δe))xfw°+ Σeυ{y{*{&υ,(vw)}){δe))τfw\
w<v w£v

where eυ: R(T) —• Z is the augmentation map (cf. §3.17).
Now the proposition follows by the following simple lemma.
(4.14) Lemma. For any w e W, ev(γ(*[(fw\)(δe)) = 0 unless w =

wQ, in which case it is 1.
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Proof. Let us resolve the //-equivariant coherent sheaf '(9W on G/B
by //-equivariant locally free sheaves (which is possible since G/B is
smooth):

(β) O-^-^-.- -JΓ-^-^-O.

It is easy to see that

where r a n k ^ denotes its rank as a vector bundle. If w = w0, i.e.,
@w - @G,B , then «9£ can be taken to be zero for all k > 0 and ̂  = <?G.B .
Hence the assertion follows in this case. So assume that w <w0, i.e., Xw

is properly contained in G/B . Now taking a point ~g e (G/B) \ Xw and
localizing the above sequence (6) at ~g, we get the lemma.

(4.15) Remark. It will be interesting to see how the basis {*[&w]}weW

of KT(G/B) itself transforms with respect to the basis {τw} . D
Recall the definitions of the WxW matrices B and E from Corollary

2.7 and §2.21 respectively. Of course, by Proposition 2.22(c), one has
E = {B*)~~ . To conclude this section, we give another expression for
the matrix E in the finite case. Even though this expression again is in
terms of the matrix B, but an interesting feature is that it does not require
inverting B instead it involves the Mόbius function.

(4.16) Proposition. Eι = 2B1 M~x, where the matrix M is defined
in Proposition 4.13, the scalar & := Y[ue/!,{\-eu),and B' = [b'υw)vweW

is given by b'vw = v~xφw^-x ^v-y) .

Proof. Fix any v , w eW . Then, by (I 5 ), one has

(i 4 4 )

Making successive use of Corollary 2,5, we get that yv-\.yw_ι = yυ-\

for some u eW satisfying u < w~[ and l(v~ιu) = l(v~{) 4- l{ύ).

Now for any sequence of simple reflections tυ = (rf. , , rz ), one of

course has ym = yn{tΌ) for some (unique) n(to) G W, where yro is, by

definition, yr -yr . Further, by induction on k - k1, it is easy to see
Ί 'k

that if 0 = (r- , ••• , r ) is a subsequence of m, then n{p) < n(to).
n }k>

These two observations together imply that y -\.y -1 = yw if and only
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if vw0 < w~ι . Hence, equating the coefficients of δw in both the sides

°f (I44)> w e 8 e t (by Proposition 2.6):

γ ^ A - l , ί 1/^ if υwo<w~{,
^ v'Vχ W,WQV{ I Q otherwise,

i.e., (replacing w by wQw~ ),

\j2J if v >w ,

0 otherwise.

Hence &B.Bf = M. Now the proposition follows from Proposition
2.22(c).

(4.17) Remarks, (a) As mentioned in Proposition 4.13, (M ) is
precisely the Mόbius function.

(b)4 Recall the definition of the W x W matrix C from [19? Corollary

4.5], and define a matrix C' = {cυw) by c'vw = v~\cw^w-χ ^^-0 By a

proof exactly as above, one obtains that C~ι = D[ = (ΓT̂ eΔ v^' > where

D is as defined in [19, §4.21].

(4.18) Corollary (of Proposition 4.16). For any v, w eW, &.bv w

eR(T).
Proof. By Propositions 4.16 and 2.22(a), entries of the matrix 2JB'

are in R{T). Further, for any w eW, {w^)j^ e R(T). This proves
the corollary.

5. Appendix

In this section, G is an arbitrary Kac-Moody group.
The aim of this appendix is to show that the structure theorem [ 19,

Theorem 4.6] is false (in the sense made precise below) in general over Z,
unlike the corresponding structure theorem (Theorem 2.9 in this paper)
for'tf-theory'.

Let ί)^ c ί)* be the weight lattice (cf. §1.2) and, for any prime p , let

ί}̂  := Zp ® z \fz (where Zp is the prime field). Recall the definition of

Qw from [19, §4.1] and certain elements xw e Qw from [19, Proposition

4.2], and let Rz be the subring of Qw defined by

Rz = {xeQw:x-SzcSz},

where Sz := S{ϊ)z), and is defined by the same formula as (I3).

4We thank A. Lascoux for a conversation which helped us to arrive at (b).
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It is easy to see that (for any simple reflection rt) xr , and hence xw

for any w eW, belongs to Rz. Now define a Sz-submodule

Rz = X) szxw c Rz

From [19, Proposition 4.3] it follows that Rz is in fact a subring of

Rz, and by [19, Theorem 4.6] Rz/Rz is a torsion group.

The question we are interested in is whether Rz = Rz:

Let (Rz/Rz) denote the p-torsion elements in Rz/Rz, i.e.,

(Rz/Rz)p := {x e Rz/Rz: px = 0}.

By analyzing the proof of Theorem 2.9 (as given in §2.13), together with
[19, Theorem 4.6(a)], we obtain the following.

(5.1) Lemma. Fix a prime p. Then (Rz/Rz)p '= 0 if both of the
following two conditions are satisfied:

(a) none of the simple roots at are zero mod/?, i.e., no a{ considered
as an element of ty*z is 0, and

P

(b) the canonical representation W —• Aut(ί)z ) is injective.
P

We also have the following very simple lemma, which does not use our
[19, Theorem 4.6], instead uses [19, Lemma (6.2) and Remark 5.17(a)].

(5.2) Lemma. Fix a prime p. If the characteristic homomorphism
S(tfz ) -> H*{G/B, Z ) is surjective, then again (Rz/Rz) = 0 .

Also if S{\)z) -• H*{G/B, Z) is surjective, we have RZ = RZ.
Finally we have the following (classical) result due to Minkowski.
(5.3) Lemma [24].5 For any odd prime p and any n > 2, the kernel

of the map SL(Λ , Z) -*• SL(Λ , Z ) has no elements of finite order, where
SL(/i, Z) of course is the special linear group.

Now combining Lemmas 5.1-5.3, we obtain the following.
(5.4) Proposition. With the notation as above, we have the following'.

(a) Let G be of finite type. Then (Rz/Rz)p = 0 for any odd prime p.

(b) R z = R z f o r G of type A { ( / > 1 ) , C 7 ( 1 > 2 ) , D 2 M ( / > 1 ) ,
a n d E 6 .

( c ) (Rz/Rz)p φ 0 in the following cases:
( C l ) p = 2,and G of type Bι ( / > 3 ) , Z ) 2 / (1>2),G2,F4,

Eη, and £ " 8 .

We thank A. Borel for providing this reference.
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(c2) p any odd prime, and any Kac-Moody group G which is
not of finite type.

(c3) p = 2, and any Kac-Moody group G which is not of finite
type, provided no simple root is 0 mod 2.

Proof, (a) follows from Lemmas 5.1 and 5.3, and (b) follows from
Lemma 5.2 for G of type Aι, Cr To prove the result for D2l+ι and
E6 , observe that no root is 0 mod 2 and moreover φ: W —• Aut(f)^ ) is
injective for these. Injectivity of φ for D2l+ι follows from the explicit
description of W and its action on {£ see, e.g., [6, Planche IV, p. 257].
Injectivity of φ for E6 follows from the fact that the subgroup of W
consisting of all the elements of even length is a simple group (cf. [6,
Chapter VI, exercise §4-no. 2(d)]). Now use Lemma 5.1.

To prove (c), we first observe that for any prime p (including p = 2)
if the representation φ: W —• Aut(ί)^ ) is not injective but no simple root

P

is 0 mod p , then (Rz/Rz)p Φ 0:

Take w φ e e Kerφ. Then clearly ±(δw - δe) e Rz. We claim that

^(Sw-δe) $ Rz. For, otherwise, write

(*) };(*w-*e)=Σfvxv for some fveSz.

By [19, Proposition 4.3(c)], fυ = 0 for all v with l(υ) > l{w). Equating
the coefficients of δw in both the sides of (*), we get (by [19, Proposition

4.3(c)]) x- = fJΠιyewA_nA+ v)~{ , i.e., ΠvewA_nA+

 u=Pfw S o reducing
mod p , we get Π vp = 0 {vp denotes v reduced mod p), which contra-
dicts the assumption that no simple (and hence no real) root is 0 mod p .
Further δw - δe e Rz , since Rz is a ring and δr e Rz by [19, (I24) ].

Since any G, which is not of finite type, has an infinite Weyl group,
(c2) and (c3) immediately follow. In the cases covered by (Cj), no root
is 0 mod 2, whereas φ: W —• Aut(ί)^ ) has indeed nontrivial kernel since
the longest element of the Weyl group (in these cases) acts by - 1 on ί£ .
So (Cj) also follows.
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