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COLLAPSING RIEMANNIAN MANIFOLDS WHILE
KEEPING THEIR CURVATURE BOUNDED. II

JEFF CHEEGER & MIKHAEL GROMOV

0. Introduction

This is the second of two papers concerned with the situation in which
the injectivity radius at certain points of a riemannian manifold is "small"
compared to the curvature.

In Part I [3], we introduced the concept of an F-structure of positive
rank. This generalizes the notion of a torus action, for which all orbits
have positive dimension. We showed that if a compact manifold, Yn ,
admits an F-structure of positive rank, then it also admits a family of rie-
mannian metrics, gδ , whose sectional curvatures are uniformly bounded
independent of δ and for which the injectivity radius, i (gδ) goes uni-
formly to zero at all points y e Yn , as δ -» 0. Such a sequence is said to
collapse with bounded curvature (see Part I for variants and refinements of
the above result).

In the present paper, we prove a kind of strengthened converse to the
collapsing theorem. If y e Yn , let \K(y)\ denote the maximum of the
absolute value of the sectional curvature over τ e A2(Ty(Yn)).

Theorem 0.1. There exist constants c{(n), c2(n) > 0 such that if Yn

is a complete riemannian manifold, then Yn = Yjt u Y£, where

(1) Yp is an open set which admits an F-structure of positive rank,
whose orbits, @y, have diameter satisfying diam(^) <cx{n)iy,

(2) for all y eY£ , there exists w in the ball Bt jc^n){y) with

(0.2) \K(w)\l/2iy>c2(n).

Remark 0.3. For the F-structure we construct, the local actions almost
preserve the metric. By applying Lemma 1.3 of [3], we can replace the
metric on Yn by a nearby metric which is invariant for the F-structure
o n Yn
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Remark 0.4. The set Yp can be taken to be the interior of a subman-
ifold with boundary.

Remark 0.5. The constants cx(n) and c2(n) can be estimated explic-
itly, although we do not do this here. But there is one point in our construc-
tion, Proposition 3.4, which is considerably easier to treat by a noneffective
argument based on the compactness theorem in riemannian geometry [2],
[13], [11], [17]. For completeness, we indicate a second proof of Proposi-
tion 3.4, which yields explicit constants.

Remark 0.6. If \K(y)\ is uniformly bounded, say \K(y)\ < 1, then
the set Yg has bounded geometry. In this case, roughly speaking, by the
compactness theorem, all geometrical and topological measurements of
YQ can be estimated in terms of its size. Thus, the thrust of Theorem 0.1
for the case of bounded curvature is that Yn admits a decomposition into
two pieces, on each of which there is a certain kind of control. Earlier
versions of this decomposition were known to Margulis (unpublished) for
manifolds of negative curvature, in which case they can be obtained much
more directly by special arguments; see [18] for an exposition in the case
of 3-manifolds of constant negative curvature.

Remark 0.7. The hypothesis of completeness in Theorem 0.1 is just
a convenience since, for an arbitrary manifold, the same decomposition
holds sufficiently far from Ύn\Yn (here Ύn is the completion of Yn).

Remark 0.8. Although there is an essentially canonical set of choices
for the F-structure on MF (which are dictated by the local geometry)
there is a certain ambiguity in the construction which cannot be entirely
removed. In fact, if the F-structure were uniquely determined, it would
vary continuously with the local geometry. Then, of necessity, it would
always be pure (see Part I, §1). But this would contradict the results of
Part I (see Theorems 4.1 and A.I).

By combining Theorem 0.1 with the main results of Part I [3] we obtain
corollaries such as the following.

Corollary 0.9. {Critical radius) If a compact manifold Yn admits a
metric which is sufficiently collapsed at all points (say \K(y)\ < 1, iy <
c2(n)), then Yn admits a family of metrics which collapses with bounded
curvature.

The proof of Theorem 0.1 will be given in the remaining sections.
^-structures are discussed in § 1.
An F-structure, &, on U consists of a sheaf, / , on U whose stalk,

/x , at each point x e U, is isomorphic to some torus and a local action,
μ, of / on U, for which certain additional conditions are satisfied.
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Suppose we are given a finite normal covering U of U and a represen-
tation p: Γ -> Sl(fc, Z) of the covering group Γ. Then p determines a
flat Tk bundle, /, over U. Given an action of the semidirect product,
Γ xp Tk, on £/, which extends the action of Γ, we obtain a local ac-
tion μ of / on {7. The pair ( / , μ) determines a so-called elementary
F-structure, &.

Typically, an F-structure is specified by a locally finite collection of
open sets, {Va}, each of which carries an elementary F-structure, ^ .
On nonempty intersections, Va Π Va, we require that /ζ agrees with a
sub-bundle of Λ , or vice versa, that the corresponding local actions agree,
and that Va n Vβ is saturated for the local action of the larger of /a , /^ .
In this situation, / = \Ja/a.

There is a stability result for elementary structures which follows from
a simple generalization of the stability theorem for compact group actions.
As a consequence, a collection, {(Va, ^a)} as above, for which the cor-
responding local actions on intersections only agree to a high degree of
approximation, can be perturbed to one which determines an F-structure.
This observation (see Lemma 1.5) provides the framework for the proof
of Theorem 0.1. (Actually, Lemma 1.5 will be formulated in terms of the
concept of weak F-structure, since this turns out to be more convenient
for the application to the proof of Theorem 0.1; see §1 for details.)

In proving Theorem 0.1, first we find a covering of the sufficiently col-
lapsed part of Yn by a collection of sets which are the homeomorphic im-
ages of certain subsets of complete flat manifolds. The homeomorphisms
are almost isometries. Then, we transfer to Yn , certain elementary F-
structures which are defined over these subsets. Finally, we fit together the
transferred elementary F-structures, using Lemma 1.5.

The relevant discussion of elementary F-structures on complete flat
manifolds is given in §2. First we describe a class of elementary F-
structures of positive rank, which are carried by a noncontractible flat
manifold, Xn for these manifolds |ΛΓ(x)|ι/2 iχ = 0. Each such structure
is determined by a union of conjugacy classes, {y.} , of geodesic loops γ..
The γj lie in the canonical normal abelian subgroup, A c nχ(Xn), whose
existence follows from the Bieberbach Theorem (and the Soul Theorem).
In particular, a loop γ lies in A if the rotational angles of its holonomy
are not too big.

Next we describe the elementary F-structures which are utilized in the
proof of Theorem 0.1. Each of these is specified by a collection of loops
at x which lie in A, with the following property. A loop γ is in the
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collection if and only if every loop at x with the same length and iso-
morphic holonomy transformation is also included. These collections are
not necessarily invariant under conjugation by elements of πχ (Xn) and, in
general, the corresponding elementary F-structures are only defined over
proper open subsets, V c Xn .

In §3, we show that if \K(w)\1^2 / is sufficiently small for w near
y eYn , then we can find an open neighborhood U of y, a complete flat
manifold Y* and a quasi-isometry / : £ / - > Tu(Sm). Here Tu(Sm) is the
w-tubular neighborhood of a soul, Sm c Y. The quasi-isometry, / , is
almost an isometry if \K(w)\1^2 i is sufficiently small.

In §4, this approximation is regularized so that holonomies Pγ and Py

of corresponding loops γ and γ in U and Tu{Sm) are close if the loops
are not too long.

With the results of §§3 and 4, we can transfer an elementary F-structure
from a subset of Tu(Sm) to a subset of U. Moreover, a structure so
obtained has an approximate description in terms of geodesic loops of
Yn.

The proof of Theorem 0.1 is carried out in §5, by implementing Lemma
1.5.

If y e Yn is a point such that \K(w)\ι/2iy is small for w near y, then
there exist various local flat approximations to (Yn, y) as in §§3 and 4.
To each such point y , we assign a flat approximation fy: Uy —• Tu (Sy),

a thin subset Vy , with y e Vy c Uy , and an elementary F-structure, ^ ,
as above, over V .

The main point is to make these choices such that on all intersections,
Vy Π V , either / D / or vice versa. This condition is called property
(F{) compare the discussion above, of the contents of §1.

Since the corresponding local actions for both / and / have an
approximate description in terms of geodesic loops of Y, these actions
will be close if the maps f and fy are sufficiently close to being isome-
tries. In fact, were it not for the fact that {Vy} has infinite multiplicity,

iy

{(V , &)} would actually satisfy the hypothesis of Lemma 1.5.

Thus, if we choose a locally finite subcollection, {Vy }, with suitably

bounded multiplicity, then the full hypothesis of Lemma 1.5 is satisfied forthe collection {(V , «^)} and we obtain a weak F-structure (of positive
rank). Our particular method of selecting {(Vy9&^)} (which guarantees
that property (F{) holds) will also enable us to conclude that our weak
F-structure is actually an F-structure.
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A more detailed outline of the argument is given at the beginning of §5.
In the Appendix to §2 we give some examples which show that the

elementary F-structures discussed in §2 which are defined over all of Xn

do not satisfy the hypothesis of §1, since the size of their orbits grows too
rapidly at infinity.

Let us mention that by replacing the compactness theorem used in §3 by
one proved recently by M. Anderson (see his preprint "Convergence and
Rigidity of Manifolds under Ricci Curvature Bounds") the hypothesis of
Theorem 0.1 can be replaced by the following assumptions: In (0.2), one
can substitute "Ricci curvature" for "sectional curvature," provided one
also assumes that for some sufficiently small constant, c 3(n),

(0.10) / \R\nβ < c3(n).
J

Finally, we point out that K. Fukaya has obtained a number of remark-
able results on collapsing in the case of bounded curvature and diameter;
see [7]—[10]. His techniques are rather different from those employed here
and in [4]. In recent joint work with Fukaya, a common generalization of a
portion of his work and ours is obtained by combining the two approaches.

1. F-structures and their stability

Before beginning we recall an elementary fact which is used (sometimes
without further mention) in this section and the next.

Let G be a connected topological group which acts on a space Z . Then
this action lifts (necessarily uniquely) to the action of a covering group,
G, on a covering space, (Z , z), if and only if

where φz{g) = f g(z).

Equivalently, let G, the universal covering of G, act on Z , the uni-
versal covering of Z . If G = G/H and Z = Z/Γ then the action of G
on Z descends to an action of G on Z if and only if the action of G
normalizes that of Γ and H c Γ.

For the convenience of the reader, we begin by reviewing some defini-
tions from [3] (to which we refer for further details).

A partial action, A , of a topological group, G, on a Hausdorίf space,
X , is given by
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(1) a neighborhood ^ c G x ! of e x X , where e is the identity of
G, and a continuous map A: 2) -• Λf, also written (#, c) -+ gx,
such that

(2) {g{g2)x = gx(g2x) whenever (gχg2, x) and (^ , g2x) lie in ^ ,
and such that ex = x for all x.

Two partial actions (Aχ,3ίχ) and (Λ2,i^2) are called equivalent if
there is a neighborhood i^ c 3fχ, i^2 containing exX, such that ^ | ^ =
A2\3f . A /oca/ action, {A} , is an equivalence class of partial actions.

Assume G is connected.
A subset Xo c X is called {^-invariant if for some (equivalently, any)

representative we have gx e Xo for all x e Xo with (g, *) £ 3 . It is
easy to see that the X is partitioned into minimal invariant sets called
orbits. Let <9χ denote the orbit of X.

A local action can be restricted to any open set U c X by restricting the
domain, 31, of some representative to 21 D e x X, such that gx £ U for
(g, x) e 3!1. Similarly a local action can be pulled back under a locally
homeomorphic map.

Now consider a sheaf, ^ , of connected topological groups over X.
Let #(U) denote the group of sections over U. An action of / on I
is a local action of #(U) on U, for every connected open set U c X,
such that the structure homomorphisms #(U) —• ^(ί/ ; ) (for C/; c t/)
commute with the restriction of local actions.

A set is invariant if its intersection with U is invariant for all U.
Again, X is partitioned into minimal invariant subsets called orbits. A
set is called saturated if it is a union of orbits. The rank of the action at
x G X is the dimension of the orbit, (9X . The action has positive rank if
dim^f. > 0, for all x e X.

An action of p is called complete if for all x e X there is an open
neighborhood, V(x), of x and a locally homeomorphic map, F(x) —•
V(x) (V(x) Hausdorff), such that:

(1) If π(jc) = x, then for any open neighborhood W c K(JC) of
* def

x , the structure homomorphism, π (#){W) —• pχ = #x is an
isomorphism.

(2) The local action of π*(^) comes from a global action of

Definition 1.1. A &-structure on Λf is given by the complete action of
a sheaf of connected topological groups, p, on ΛΓ, such that the neigh-
borhood, V(x), can be chosen to satisfy:

(1) π: V(x) —• F(x) is a normal covering.
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(2) For all x, V(x) is saturated.

(3) For an orbit, (9, if x, y e (9, then V(x) = V(y).

Definition 1.2. A ^-structure is called an F-structure if

(1) For all x, the stalk, pχ , is isomorphic to a torus.
(2) For all x , the normal covering, V{x) —• F(jt), can be chosen to

be finite.

A structure satisfying (1) and (3) of Definition 1.2 (but not necessarily
(2)) is called a weak &-structure. A weak ^-structure which satisfies the
additional conditions of Definition 1.2 is called a weak F-structure.

We emphasize that the existence of a weak F-structure of positive rank
does not guarantee that we can perform the collapsing constructions of [3].
However, we will formulate Lemma 1.5 in terms of this concept, since this
turns out to be convenient for the application to the proof of Theorem 0.1.

For the remainder of this section we restrict attention to F-structures
(although everything we say generalizes to ^-structures).

Definition 1.3. An F-structure is called elementary if V(x) —• V(x)
can be chosen independent of x.

Note that in Definition 1.3, necessarily, we have V(x) = X. Also, as
indicated in the introduction, the concept of elementary F-structure can
be reformulated as follows.

Suppose we are given

(1) a (possibly disconnected) finite normal covering, X —• X, with
covering group Γ,

(2) a representation, p: Γ —• Aut(tk), for some torus Tk ,

(3) an action of the semidirect product, ΓxpT
k , extending the action

of γcΓxpT
k.

The above data determines an elementary F-structure, ^ on X, for

which the sheaf, / , is the associated flat bundle on X, with fiber iso-

morphic to Tk and holonomy representation isomorphic to p. The action

of Tk c Γ x Tk on X determines an obvious action of ^ on X.

For y as above, let / ' c / be a sub-bundle with fiber Tk> c Tk.
Then the action of / restricts to an action of / ' . Moreover, the re-
striction of / ' to any set U' which is saturated by the orbits of / ;

determines an elementary F-structure over Uf.

Typically, an F-structure is determined by specifying the following

data.
Let {Va} be a locally finite collection of open subsets of X and, for

each a, let ^ = {/a, μa) be an elementary F-structure over Va . Assume



276 JEFF CHEEGER & MIKHAEL GROMOV

that

(Fγ) for all a,β, either /a\VaΠVβ is a sub-bundle of /β\Va Π Vβ or
vice versa;

(F2) in the former case, μa is obtained restricting μβ and Va n Vβ is
saturated for μ^ .

Note that in (Fx) above, we allow /a\VanVβ to coincide with /β\VaΠ
Vβ

Obviously, a collection, {Va, &~a} , satisfying (Fx) and (F2) determines
an F-structure, &, over (J V , for which the associated sheaf, /, is

If we replace condition (F2) by

(F 2 ) w in the former case, μa is obtained by restricting μβ and Fα n Vβ

is saturated for μa ,

then a collection satisfying (Fj) and (F 2 ) w determines a weak F-structure.
In the proof of Theorem 0.1, we will apply Lemma 1.5 to obtain a col-

lection satisfying (F{) and (F 2 ) w . But, it will turn out that two additional
conditions ((F3) and (F4)) are satisfied. These guarantee that the weak
F-structure is actually an F-structure.

(F3) If VQ , , Va is any sequence such that, for / = 0, , / - 1,

V Γ\V Φ<Z and / is properly contained in / on V f)V ,

then /a extends over \Jι

0 Va .

(F4) If Vβ , ••• , F^7 is a second such sequence and Va Γ\Vβ/ ^ 0

then the extensions of / , A to V , VR satisfy / c /R or
/ ao ' Po aι Pi' Λao ~ ΛPo

vice versa on F nVR .

Note that the extension of /£ , assumed to exist in (F 3 ), is necessarily

unique.
Let s(a) denote those β for which there exists a sequence as in (F3)

with a = aQ and β = a(. Put WQ = U/?€5(α) ^ τ h e n i f (^3) a n d

(F4) hold, we claim that {(Wa,/a)} satisfies (F{) and (F 2 ). Hence
{(Wa, /ζ)} , or, equivalently, {(J^, ^ ) } , determines an F-structure.

Observe that the part of condition (F2) which relates to the actions is
automatic. Also, W ΠWR is a union of sets, V Π VR as in (FJ , and

α o "0 aι Pi'

we can assume that /a = /β t . For if, say, /a is properly contained in

/β t , then Vβ f c Wa and we can replace the sequence Va , , Va by

v , , V , VR . Thus, V Γ\VR is saturated for / = Λ and hence

for /^ and Λ . Therefore, (F2) holds. (F,) is obvious from (F 4 ) .



COLLAPSING RIEMANNIAN MANIFOLDS 277

The main result of this section, Lemma 1.5, says essentially that if (Fχ)
is satisfied and (F2)

v/ holds to a high degree of approximation, then the
collection can be perturbed to one for which both {Fχ) and (F 2 ) w hold.
This is a consequence of the stability theorem for compact group actions,
in the form given in [14] (compare also [16]).

We begin by adapting their theorem to our context.
Let Vj c X be open sets, j = 1, 2. Let (Vj9 /., μ.) be an elementary

F-structure such that μ is induced by an action of Γ x Tk on a normal
J J Pj

covering space, Vj-^Vj- We suppose that /[\VχnV2 agrees with a sub-

bundle, / 2 , o f /2\VxnV2.

Let Tk = Sι X' xS1 and let d(g) denote the distance of g e Tk

from the identity element, under the metric obtained by averaging the

product metric under the holonomy of /χ \ Vχ n V2. Assume that V. has a

metric ( , ) . , which is invariant for μ. and let Vp c V. denote the set of

points at distance > p from dV. for the metric ( , )•. Assume that the

injectivity radius for ( , ) is bounded below by \ and that the sectional

curvature is bounded by 1 in absolute value. Finally, assume there is a

\-quasi-isometry between ( , )χ and ( , ) 2 (see (3.3).

Let x0 e Vχ n V2 and let μx, μ2 be representative partial actions for

μχ, μ2 on some contractible neighborhood W of i 0 . If d(g) is suffi-

ciently small, we define η(g): W —> X by η(g) = μ2(g~l)Mι(g) - We say

that (μx,/ι) (μ2, /n) are δ\ enclose) on Vχ Π V2 , if for all such x0, g

the map η(g) is d(g)δ (C1-close) to the inclusion, W^+S.

Let φ: Vχ -> Vχ be an imbedding which is ε (C1-close) (in the sense

of [14]) to the inclusion, with ε < \ . Since the injectivity radius of the

metric ( , )x is > \ , there is a natural identification of (Φ~l)*{/[Vχ

p)

with /x\Φ{Vχ). This identification is understood implicitly in (2) and (4)

of Lemma 1.4 below.

Lemma 1.4. For all 1 > p > 2ε > 0, there exists δ = δ(p, ε, N) > 0

such that if (μx, /χ) and (μ2, /2) are δ (C1 -close), and the coverings

V. —• V have order N. < N, then there exists an embedding, φ: Vχ —• Vχ,

with the following properties'.

(1) φ is ε (C1 -close) to the inclusion Vχ

p ^ Vχ and φ(x) = x for

xeVx\ V2

P/2.

(2) ( / , φμxφ~l) agrees with (/χ2 , μ2) on φ{Vχ) n V2 .

(3) If for some xeφ(Vχ

p) and all g with d(g) sufficiently small, we
have η(g)(x) - x, then x e Vp and φ(x) = x.
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(4) (Φ(VP), /x, φμxφ~X) and (Vp, / 2 , μ2) determine an F-struc-
ture over φ(Vp)uV2

p.

Proof. Consider the subset μχ(π~ι(Vp/4 n V2

p/4)) c V, the saturation

of π~\vp'4 Π F/ / 4) by the action of Tk which lifts μχ . By writing an

arbitrary element g e Tk as g e hm , where h is sufficiently close to the

identity, and then comparing with the local action of the lift of μ2, we

easily find that for δ sufficiently small,

We also obtain the corresponding statement with the roles of μχ and μ2

reversed (for the action of μ 2 (/J 2 )) .

Let Vχ Π V2 -£-> Vχ n V2 be a common covering of n~\vχ n K2). We

can assume VχnV2 is normal and of order N < TV2. Put N/JV. = /..

The action of Tk = Rk/Zk on μj(π~ι{V{

p/4 n F// 4)) lifts to an action

of Rk/ljZk on the inverse images of μ.{π~\vpl4 n F// 4)) in ^ n V2.

By composing with the homomorphisms fk = Rkllλl2Z
k -> Rk/ljZk , we

obtain actions /ij and /i2 of the same torus on these inverse images (in

general, these actions are noneffective). Let Γ and Γ denote the cover-

ing groups of π~ι(V{Γ\V2) and V{nV2. By using the homomorphisms
p

pj.T -> Γ. — ^ Sl(fc, Z), we extend /i7 to an action of the semidirect

product Γ x * Tk .
"j

Since the order of the covering fk —• Tk is bounded (by TV2) it is

clear that if μ{ and μ2 are C1-close, then μχ and μ2 are C1-close on

the intersection of their domains (write g = hm as above).

If δ is sufficiently small, we can restrict the domains of the μ. to obtain

domains W. for μ. such that

π~\vp n vp) cw{cw2c π-\vpβ n κ//2)

and the boundaries of these sets are at mutual distance at least /?/24 for
( , )j . Again, for δ sufficiently small, the argument of [14] gives an em-
bedding, ψ: Wχ —> ίV2, as C!-close as we like to the inclusion, satisfying
ψμχ = μ2ψ. Moreover, ψ is the identity at points at which μχ and μ2

agree locally.
Put π(Wj) = W.. The embedding ψ induces ψ\Wχ^W2, satisfying

ψμχ = μ2ψ with ψ as C1-close to the inclusion as we like. Let Ux be
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invariant for μχ and satisfy Vf Π Vf c Ux c Wχ , with the boundaries of
these sets at mutual distance at least pj 100 for the metric ( , ) χ . By using
the Isotopy Extension Theorem, we can find an embedding φ\Wχ-±Wχ,
as enclose to ψ as we like, such that φ\Ux = ψ\Uχ , φ is the identity
near dWχ, and φ(x) = x if ψ(x) = x. Then we can extend φ to all of
Vχ by making it the identity off Wχ . Finally, we can assume that φ is
close enough to the inclusion so that φ(Vχ) n Vζ c φ(Uχ). The resulting
map satisfies (l)-(4). q.e.d.

Let {Va} be a covering. Assume there are at most Nχ of those sets
whose intersection with any fixed Va is nonempty. Let ^ = {,/, μa}
be a collection of elementary F-structures over the sets {Va} such that
condition (Fχ) above holds. Assume that the orders of the coverings Va —•
Va are all < N2 and that the fibers of the /a all have dimension < N3.
Finally, assume that each Va carries an invariant metric for μa, with
injectivity radius > j and curvature < 1 in absolute value and that these
metrics are ^-quasi-isometric on intersections.

In the following lemma we identify (Φ~l)*(/a\V*) with /a\φa(V*) as
in (2) and (4) of Lemma 1.4.

Lemma 1.5. For all 1 > p > 2ε > 0, there exists δ = Nχ2
Nι

δ(p, ε, N2, N3) > 0 such that if for all a, β (say) /a\VaΓιVβ agrees
™ith Δ,β\Va^Vβ (where/aβc/β),and(/a,μa) and(/aβ,μβ) are
δ (C1 -close), then there are embeddings φa: Vf —• Va, with p < p, such
that the following holds:

(1) For all a, the embedding φa is ε (C -close) to the inclusion

Vp' ^V .
a a

(2) Thecollection {(φa(Va

p>), / „ , ΦaμJΓX)} satisfies (F.) and (F2)
w,

and hence determines a weak F-structure over \Jn Φn{V£ ) .

Proof Consider the collections α = (α0, , α.) of indices such that
V Π Π V is maximal with respect to the property of having nonempty
intersection. Choose an enumeration, ctχ, α 2 , ... , of these. For each
α , we can reorder the subscripts, ak e ex. such that on Vn n Γ\Va ,
w e h a v e / a | c / ; 2 c . . . c / n / .

Now we go through the α. in order and for each one we do the follow-
ing. Order the pairs (ak, ak>) with k < k' by (ak, ak>) < (α/? αy) if
k! < I1 or k' = l' and k < I. Then run through these pairs in descend-
ing order. At each stage apply Lemma 1.4, with p/(Nχ2

N[), ε/(Nχ2
N>)
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in place of p, ε to the subsets V' , V' of V , V , which have pro-
ak ak' • ak ak'

duced possible previous applications of Lemma 1.4, at earlier stages of the
process.

We claim that the above process produces a collection for which (1) and
(2) hold.

To see this let x e (Ja Φa(V^ ) and let a(x) be the set of those a with

x E Va, Let α < α < where j \ < j 2 < , be those α which

contain a(x) and put OL(X) = α . . By referring to (3) of Lemma 1.4 we

see that if the actions on those V%

a with α E α(x) agree at the point x,
after the stage of the process corresponding to ct(x) has been concluded,
then they do not change during the remainder of the process.

It suffices to check that after this stage has been concluded, all of these
actions agree at x. Recall that Lemma 1.4 is applied for each pair of
subscripts ak, ak> e ct(x), with k < k'. Moreover, these pairs are con-
sidered in descending order and the action is changed only on a subset
of V%

a . Thus, we can assume that for some α/ with / > k', the actions
for the pairs (ak , α ;) and (ak>, αz) are compatible before the step corre-
sponding to {ak , ak,) but the actions corresponding to (ak , α ;) are not
compatible after this step. However, by (3) of Lemma 1.4 (and induction)
this does not happen, q.e.d.

2. Elementary F-structures on complete flat manifolds

(a) Preliminaries; short loops. Let Mn be a complete riemannian man-
ifold. For c a curve in Mn , let L[c] denote the length of c.

Given curves c{ and c2 with the same end points, we say that c{ and
c2 are short homotopic, if they are homotopic keeping end points fixed,
through curves of length at most max L[Cj].

Let meMn . Let Rm be the largest number such that expw \BR (0) c

Mn

m is nonsingular. If c is closed with c(0) = m, L[c] < Rm , then
c is short homotopic to a unique geodesic loop γ on m. Suppose, in
particular, that c = γ and that τ is a curve with τ(0) = m. Let τs

denote τ|[0, s]. As long as the closed curve τs U γ U -τs, on τ(s), is
homotopic to a geodesic loop γs on τ(s), with L[γs] < Rτ(^s), then γs is
unique. We say that γs is obtained from γ0 = γ by sliding along τ . The
map, γ0 —• γs, is compatible with the isomorphism between πx(Xn , τ(0))
and πι(Xn

9τ(s)) induced by τ 5 .
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If γ{ and γ2 are geodesic loops on m with L[γ{] + L[γ2] < Rm , then
γ{uγ2 is short homotopic to a unique geodesic loop, yx *y2 . In particular,
if Rm = oo, then πι(Mn, m) is isomorphic to the group of geodesic
loops on m with the product *. In this case, a loop at m gives rise to
a collection of loops {γ}m at each point mx e Mn , each of which is
free homotopic to γ. The collection {γ}m represents a conjugacy class
in π{(Mn , m{).

Let im denote the injectivity radius at m .
Lemma 2.1. There is a constant c(n) such that if the sectional curvature

of Mn satisfies \K\ < 1 and Aim < π/2 (Λ > 0), then there are at most
c(n)An geodesic loops on m of length < Aim .

Proof. Each loop γ lifts to a segment of a ray, γ, through the origin
in Mn

m. Clearly, there exists c{n) such that if there are more than Λ"
geodesies of length at most Λ im then endpoints of some pair y{, y2 are
at distance less than 2/w(Λ/m/sinhΛ/m). It follows that the loop which
is short homotopic to γι * γ2

ι has length < 2/m . This is a contradiction.
(b) Geometry of complete flat manifolds. Let Xn be a complete flat

manifold. Write Xn = X x R , isometrically, where X has no Eu-
clidean factor. Then X contains a unique compact flat totally geodesic
submanifold, Sm , the soul, such that X is isometric to the total space
of the normal bundle v{Sm) (see [3; 19, Theorem 3.3]). There the metric
on v{Sm) is induced by its natural flat connection.

Note that any tubular neighborhood Tu(Sm) (u > 0) is totally convex,
i.e., any geodesic with endpoints in Tu(Sm) lies in Tu(Sm).

From now on we assume k < n , or, equivalently, m > 0.
Let Sm be a soul of Xn and let Sm A Sm denote the holonomy

covering of the compact flat manifold Sm . By Bieberbach's theorem, Sm

is isometric to a flat torus and Sm -* Sm has order at most λ(n), for
some constant λ{n) depending only on n (> m). Since Sm ^ Xn is
a homotopy equivalence, we can regard Z ~ A = π{(Sm) as a normal
subgroup of π{(Xn). Clearly, A is independent of the particular choice

Let γ be a geodesic loop with orientation preserving holonomy, having

all its rotational angles < π/λ(n) in absolute value. We write rot(Py) <

π/λ(n). In this case γ e A. In fact, let τ be a minimal geodesic with

τ(/) = y(0) and τ(0) the point on Sm closest to y(0). By sliding γ along

τ we obtain a geodesic loop γs c Γ^S"1) at τ(s). In particular, Pyo ~ Pγ

(since Z " is flat), Pγ c Sm, and the claim follows from Bieberbach's

theorem.
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Note that L[γs] is given by the increasing function

(2.2) L[γs] = (L2[γ0) + (2sinθ/2)V) 1 / 2

5

where Pv rotates τ'(0) through an angle θ . This follows by an elemen-

tary argument after one lifts γ0 to the universal covering space of Xn .
If γ0 G A, then γ0 is automatically smooth closed since it lifts to a loop

γ0 contained in the torus Sm .
(c) Elementary F-stnictures. We will explain how a finite subset of A

which is invariant under conjugation by elements of π{ (Xn) and for which
the corresponding holonomy transformations are orientation preserving,
gives rise to an elementary F-structure. This construction depends on a
suitable set of choices of logarithms for the holonomy transformations.

Let (w, eB) represent an isometry of Rn , with translational part w .

Put w = w + w" , where eB(w') = w' and w" is orthogonal to the +1-

eigenspace of e . Let (1 — e )~ w" denote the unique inverse image of

w" orthogonal to ker(l - eB). Then the curve

(2.3) t->(tw + ( l - e ) ( l - e ) w ,e )

is a 1-parameter subgroup passing through (w , eB) at / = 1. The orbit,
&, of the origin, is the curve t -> tw + (1 - eBt)(l - eB)~xw" . Let L be
the length of the restriction of this curve to the interval 0 < t < 1. An
elementary computation shows that

where λ is the largest eigenvalue of B which is not an integral multiple
of 2π/.

Let {(Wj, eBj)} be a collection of mutually commuting isometries, such
that the {B.} are mutually commuting skew symmetric transformations
with no eigenvalue of the form 2πik, for k φ 0. By a trivial calculation,
for all j , k, we have

(2.5) (1 =eBk)Wj = (l-eBj)wk,

(2.6) (1 - eBk)w'j = (1 - eBj)wk = 0.

It follows easily that the subgroups given by (2.4) are mutually commuting.
Conversely, let {gj} be mutually commuting elements of SO(/i). Then

we can find skew symmetric transformations, {Bj}, such that e J = gj ,
the {Bj} are mutually commuting, and each B. has no eigenvalue of
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the form 2πik for k Φ 0. In particular, if rot(^) < π , then the Bj
are uniquely determined if we require ||2?.|| < π . In any case, given a
mutually commuting set {(it;., gj)} , we can obtain mutually commuting
1-parameter subgroups as above.

Now assume that the {(w.9 eBj)} form a group A c^ Zk of covering

transformations of Rn . Given a finite subset {(it;., eBj)} , j = 1, - - , N,
we obtain an action of the Cartesian product of the corresponding 1-
parameter subgroups on Rn , which descends to a TN action on Rn/A
(see the discussion at the beginning of §1). This action need not be effec-
tive, but an effective action can be obtained by passing to a quotient of

Example 2.7. Let (w , eB("θ)) denote the isometry of R3 such that w
is a translation in the direction of a unit vector along the x-axis and B(θ)
is given by the matrix

(2.8) B(θ)={θ Q

in the y,z-plane. The isometries (w, eB<"θ)) and (2w, eB{2θ)) generate
a group Λ = Δ ~ Z (we assume θ , 20 ^ 0 mod 2π). The construction
above gives a noneffective Γ 2 action on R3/A, inducing an effective action
of Tι. If we use B(2Θ - In) in place of B(2Θ), we obtain an effective
T2 action. Note for 0 < θ < π/2, \2Θ\ < π while for π/2 < θ < π,
\(2θ-2π)\<π.

Now suppose that πx is a group of covering transformations and that
Ac^Zk is a normal subgroup of finite index < λ(n). Suppose {(it;., eBj)} ,
j = 1, , TV, is invariant under conjugation by elements of π{. Then
there is an induced representation p: πχ/A —• Aut(ΓΛΓ), which together
with the action of ΓΠ on Rn/A determines an elementary ^-structure on
R"/πt .

The F-structure just constructed can also be described in terms of geo-
desic loops on Xn = Rn/π{ . Identify X" ~ Rn with the universal cover-
ing space of Xn . Then the group of isometric covering transformations
is isomorphic to the group of geodesic loops at x. The element corre-
sponding to a loop, γ, can be recovered as (Vγ, P_y) where Vy denotes
translation by L[γ] /(0) and -γ denotes γ transversed in the opposite
sense.

A collection {ϊj}x , j = 1, , N, of conjugacy class of loops, y}: e A ,
determines an elementary ^-structure, &, on Xn. In the sequel we are
always concerned with the case rot(P,) < π/λ(n). Note that for any
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γj e A, the conjugacy class {ϊj}x contains at most λ(n) loops. The fiber,

/χ , at an arbitrary point xχ e Xn of the sheaf (flat TN bundle) /,

associated to &, can be identified with the Cartesian product of loops in

We now describe a class of elementary F-structures which, in general,
are defined only over proper subsets of Xn. These will be used in the
construction of the F-structure of Theorem 0.1.

Let [Pγ] denote the isomorphism class of Pγ.

Let γx, , γN be loops at x e Xn which lie in A. Fix ε > 0.
Assume that if γ e A and γ Φ γ. for any /, then for all /, at least one
of the following holds:

(2.9) \L[γ]-L[γi]\>ε

or

Let &"' be any elementary F-structure as above on Xn and let TB{(^X)

denote the open tubular neighborhood of the orbit, ^ , of radius ε.

Lemma 2.11. (1) At each xλ e T,4({f^) there are exactly N loops, γ,

which, for some i, satisfy

(2.12) \L[γ]-L[γi]<ε/2, [Pf] = [Pγ}

(2) The collection yχ, ,γN of such loops is the collection obtained

from γχ, ,yN under homotopy in Tε/4(^) i.e., sliding a loop, γiffrom

x to JCj along any curve c c Te,4(^) gives a loop, γ., for some j .

Proof. Note first that sliding a loop, γ, does not change [Pγ]. Then,
by an obvious continuity argument, (2) implies (1).

Since A c nx(Xn) is normal, the collection of loops at x lying in A
can be obtained by sliding the collection of loops lying in A at x along
any curve c. If xx e Te,4(^), there is a minimal geodesic σ of length
s < ε/4 connecting xχ to a point on <?χ. Since sliding a loop along σ
changes its length by at most 2s < e/2, it suffices to assume xx e @'x and
to show that for some curve c, from xχ to x2 , sliding loops of A along
c leaves their lengths unchanged.

Let x e X be a lift of x , let γ be a loop at x lifting γ e A, and let Tι

be the torus corresponding to &1, which acts on Xn . We can find a curve
g(t) c Tι with g(0) the identity element and g(l)x = xχ a lift of xχ .
The curve g(i) projects to a curve c from x to xx and by an obvious
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continuity argument, g{ί){γ) projects to the loop obtained by sliding γ
along c. Since g{\) is an isometry, our claim follows, q.e.d.

Let y{9 -" , γN, γN+{, ,γN* be a collection of loops at x which lie
in A and let &1 be the elementary F-structure determined by the union
of conjugacy classes, {yj)x , 1 < j < Nf. Assume that γχ, ,γN satisfy
(2.9) and (2.10) above. Then Lemma 2.11 implies

Corollary 2.13. The set γ{, , γN is invariant under conjugation in
π 1 ( Γ ε / 4 ( ^ ) ) and hence defines an elementary F-structure, SF', over

τφ«) •

Let γ G A be a loop at x, with lift γ at x. For the circle action on
Xn corresponding to γ, the orbit of x (counted with multiplicities) is
homotopic to γ (see (2.3)). Since L[γ] > 0 is of shortest length in its
homotopy class, the orbit of x has positive length. Thus, the elementary
F-structures constructed above all have positive rank.

Clearly, an orbit of any elementary structure as above lies at constant
distance from any soul, Sm . The maximum size of an orbit is controlled
by the upper bound in (2.4). If | |5 . | | < π for all j , then the orbit in Xn

corresponding to the j th circle in TN = Sι x x Sι, has length at most

Remark 2.14. The injectivity radius need not be constant on orbits.
However, in view of the obvious relation

(2.15) iχ<iχ<λ(n)iχ,

the ratio of the maximum value of the injectivity radius to the minimum
value, on an orbit, is bounded by λ(n).

Appendix to §2: Growth of the injectivity radius

We claim that it is not possible to assign to each complete flat manifold,
Xn, an elementary F-structure, ^(Xn), of the type considered in §2,
in such a way the ratio of the diameter of the orbit, diam(^.), to the
injectivity radius, iχ , remains uniformly bounded as x and Xn vary.

Suppose first that the rotational angles of P are all rational multiples

of 2π, for some loop γQ on z e Sm . Then

N
/ — ^ ^ def Λ ΓγQ * * γQ = N γ Q

has trivial holonomy, for some smallest integer N. Let τ be a geodesic
normal to Sm with τ(0) = z. Let Nγs be the geodesic at τ(s) obtained
by sliding Nγ0 along τ . Then L[Nγχ] = L[Nσ0].
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On the other hand, if σ0 is any loop on z with <(Pγ(τ(0)), τ'(0)) =
θ > 0 then L[σs] grows linearly along τ (see (2.1)).

It follows that those elementary F-structures constructed in §2, for
which the diameter of the orbits does not grow linearly in almost all di-
rections, are precisely the ones generated by loops with trivial holonomy.

The following example is typical.
Example A.I. Let x\ be the total space of the flat 2-plane bundle

over S{ with holonomy θ. For each θ = | π (with | < 1 in lowest
terms) there is an elementary ^-structure with sublinear (actually con-
stant) asymptotic growth with orbits, #τ^ , of length qL[Sι] = 2/T(j), for
s large. Then however,

(A 2) Φ ) ψ )

for s small. Here q can be taken arbitrarily large.
If Xn is such that there exists no geodesic loop with rational holonomy,

then for all γ0, the function L[γs] grows linearly in almost all directions.
Hence, the same holds for the orbits of any elementary F-structure arising
from the construction of §2. But the injectivity radius itself always satisfies
the following estimate (put is = i,,).

Lemma A.3. For say s > ^iQ,

(A.4) is<c(n)[\ol(Sm)]l/m+csc/m+\

where

(A.5) c = [(n- m)/2].

Proof. We can assume /τ(0) = 1. There are at least cχ(n)rm/Yo\(Sm)

geodesic loops in Sm on τ(0) of length < r, where r > / τ ( 0 ). At least

one of these, σ, has rot(Pσ) < ε π, if

(A 6) C (

Then, by (2.2),

(A.7) L[σs] < (r2 + (2s • sin b-π) J .

Given s, choose r and ε, which satisfy (A. 6) and

(A.8) r = εs.

Then

(A.9) L[σs] < (r2 + (εs)2)l/2 < sfϊr
/ \ / τ r i/nWIvvl/ffl+C CIm+C Λ

= c(n)(Vol(S )) s ' . q.e.d.
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Let Xn = X x Rn~ι. The isometry group of X1 is generated by a
collection of circle actions, one for each set of generators for nχ(Sm) ~ Z w

and the orthogonal transformations of the normal bundle v{Sm) (leaving
Sm pointwise fixed) which centralize the holonomy group. The function
iχ is constant on orbits and the isometry group is transitive on fibers of
v(Sm).

Lemma A.10. Let σ(s) be a normal geodesic in Xn and put iσ^s) = is.

Then for all s

(AM) is<i0 + 2s,

and for say s > ^i0,

(A.12) is<c(n)%e+1se/e+ί =c(n)ψ/io)
e/e+\

Proof The estimate in (A. 12) is clear. The proof of (A. 13) is com-
pletely analogous to that of (A.4). We just restrict attention to multiples
of a fixed loop.

3. Local approximation by complete noncontractible flat manifolds

Let Yn be a complete riemannian manifold and let y GYn . Set

(3.1) v(y,R)ά= sup \K(w)\ι/2i

BR.,y(y)

By Theorem 4.3 of [5] (see also [6]) it follows that

(3.2) iw > iymin(π/v(y, R), c ( « ) ) . - ( " - 1 ) / W ) .

If Ux and U2 are riemannian manifolds and / : Ux —> U2 is a C1-

smooth quasi-isometry, let M(f) denote the infimum of those ε such

that if V(y,δ~ι)<δ,

(3.3) e-gι<f{g2)<etgv

The following proposition will allow us to transfer the elementary F-
structures on complete noncontractible flat manifolds which were dis-
cussed in §2 to more general manifolds.

Proposition 3.4. Given a continuous decreasing function h: (0, oo) —•
(0, oo) and k > 0, there exist δ = δ(h,/:,«), R(h, k, ri), such that if
υ(y, δ~ι) < δ, then there exists

(i) a complete flat manifold Y" and a soul S c Y " ,

(ii) a quasi-isometry, f:U -+ Tu{Sm), with u<R(h,k, n)iy, and U

an open neighborhood of y, such that
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(iii) M(f)<h(u/iy),

(iv) maκ(iy,f(y)9S, dmm(S))<u/k,

(v) / = /

Proof. Assume the contrary. Then (after possible rescaling) there are

sequences (Y*, yβ such that i = l/v(y., j) < l/j and either there ex-

ists no / as above satisfying (iii) and (iv) or the smallest u for which there

exists such an / is > j . By the compactness theorem in riemannian ge-

ometry, there is a pointed C°° manifold (YΛ, y) with a C l α riemannian

metric (for all a > 1) such that for some infinite subsequence (Yj 9y )9

and any r, the sequence of balls Br(yj ) converges in the Lipschitz metric

to Br(y). Clearly, Yn is complete flat and noncontractible (z = 1). In

particular its metric is C°° . Since / = 1, y, Sm < oo, diam(5tW) < oo

for some soul Sm c Yn , we obtain a contradiction.

Remark 3.5. Although the fact that h can be chosen to be an arbitrary
decreasing function of r is of interest in describing the local geometry of
the manifolds considered in Proposition 3.4, for the application to the
proof of Theorem 0.1 it will suffice to choose h to be a sufficiently small
constant.

Remark 3.6. Lipschitz convergence (i.e., (iii) above) is actually not
strong enough for our purposes since we will want to compare holonomies
around corresponding loops in Yn , Yn and not just their lengths. In fact
the versions of the compactness theorem proved in [11] or [17] show that
in harmonic coordinates the convergence of metric tensors actually takes
place in the C 1 > α topology. The compactness theorem as stated in [13]
would also suffice. However, in order to emphasize the elementary nature
of our result, we show in the next section, by a simple direct argument,
that Lipschitz convergence implies C1 convergence, in case the limit is
flat. For this result we do not require a special coordinate system.

Example 3.7. Fix θ > 0 and let EQ denote the complete flat mani-

fold obtained by dividing R3 by the group of isometries generated by the

isometry (w, eB{θ)) of Example 2.7. Let S be the soul of E] . We will

show directly that Proposition 3.4 holds for the family (E3

Θ , y), where y

is a variable point in Eθ .

Observe that if γ is a shortest geodesic loop at y , then the holonomy,

P , converges to the identity transformation as y, S —• oc. This is an

immediate consequence of the discussion of the Appendix to §2.
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Let SJ denote the circle of length /. Then 0 x SJ is a soul of the

riemannian product R2 x SJ . Fix k > 0 . It follows easily from the obser-

vation above that for y, S sufficiently large there exists a neighborhood U

of y and a quasi-isometry fy:Uy-+ Γ 2 ^ (0 x Sι

2i), with f(y) eOx S^ .

Moreover, M(f) —• 0 as y, S —• oc .

Given a function h as in Proposition 3.4, choose Λ such that M(f) <

A(2fc), if y, 5 > Λ. For such points, the quasi-isometry, / , satisfies the

conditions of Proposition 3.4 (with u = 2k i , u/k = 2/ ). Moreover,

we can take R(k, h, 3) = Ik for the subfamily consisting of the {E\ , y)

with y, S > A.
The set of points for which y, S < A is compact. Thus, for all these

points, we can take f to be the identity map on a sufficiently large tubu-
lar neighborhood of S. Then we take R(k, h, 3) for the whole family
(2?0 , y) to be the larger of 2k and the radius of this tube.

In order to estimate explicitly the constants cλ(ri) and c2(n) in Theo-
rem 0.1, it is necessary to give a proof of Proposition 3.4 which does not
depend on an argument by contradiction. We now briefly outline such an
argument; details will appear elsewhere.

(1) Rescale the metric on Y such that iy = 1 and view BR(g) as the
quotient of a ball on the tangent space by an isometric pseudo-group, Γ.
In the spirit of [12] (see also [1]), we can imitate the proof of the Soul
Theorem for flat manifolds, given in [19, Theorems 3.2.8 and 3.3.3]. In
this way we obtain a group, Γ, which acts isometrically in Rn and freely
on a large ball about the origin. Moreover, Γ has an abelian subgroup,
A ~ Zk , of index < λ(n). Finally, Γ is isomorphic to a subpseudogroup
of Γ.

(2) By deforming the action of Γ slightly if necessary, we can assume
that Γ acts freely on R" .

(3) By a generalization of the argument of Example 3.7, after making
a second small deformation of the action of Γ, we can assume that the
bounds of (iv) of Proposition 3.4 hold for RΛ/Γ.

(4) Finally we construct a quasi-isometry / between a slightly smaller
ball BR,(y) c BR(y) and a ball in Rπ/Γ. Here we use the result of [15]
to take care of the finite group Γ/A .

4. Regularization of the approximation

Let y eY" and let / : f/ -> Tu{Sm) be as in Proposition 3.4. Let Hf

denote the Hessian of / .
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Proposition 4.1. The constants δ(h, k, ή) and R(h, k, ή) can be cho-
sen such that there exists f satisfying (i)-(iv) of Proposition 3.4 and the
additional estimate

(4.2) \\Hf\\ < h(u/iy).

The idea of the proof is to regularize / by convolving with a suitable
smoothing kernel. For an arbitrary map, this would only have the effect
of making the Hessian bounded. But by using the fact that / maps U
to a flat space with M(f) small, it will follow that the Hessian of the
regularized map is actually small.

Proof of Proposition 4.1. We can assume iy = 1.

Let φ(s): [0, 1] —• [0, 1] be a C°° function such that ψ = 1 near
s = 0 and ψ = 0 near s = 1. Put ψλ(s) = ψ{s/λ). Let w{, w2 e Yn

and denote the distance from wχ to w2 by w{, w2. Finally, let ω denote
the volume form on Yn . Put

(4.3)

where the integration is with respect to w2.

Choose δ = δ(h{, 2k, n) where hχ < ̂  is to be determined later (see

Proposition 3.5). If v(y, δ~ι) <δ , standard estimates give

(4.4) \\dψλ\\<c{δ)λ-\

(4.5) \\Hψλ\\<c(δ)λ \

on Bδ-ι_λ{y).

Let f:U-> Tu{Sm) be the map provided by Proposition 3.4. Lemma
A.3 and Remark A. 10 give a lower bound, i0, for iz on Tu(Sm). If we
choose

(4.6) λ < i / 0 ,

then for all yχ e U, the range of f\Bλ{y{) is contained in a convex subset
of a flat space. Hence,

(4.7) fλ = J ψχ(wχ, w2)f{w2)ω

is well defined.
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Let 1 be a real valued, affine linear function, with ||1|| < 1 on Br(y) c
Tu(Sm) where r<\i0. Then

(4-8) \\Hfί\\ = \\H(lof)ι\\.

Up to a constant, any 1 as above can be written in the form

(4.9) 1 =
a~Pϊ~

where pa is the distance function from a. e Tu(Sm), and d = a{, a2 = j

Let f(yj) = cij and consider the function

(4.10)

Then by (4.4)(and (4.5)) / has differential everywhere close to 1, small
Hessian and is uniformly close to 1 o / . The explicit bounds depend on
hx. It suffices to estimate H{Xof_l) . Since \o f -I is arbitrarily small for
suitably small hχ, it is clear that given h , we can choose h{ such that fλ

will satisfy (3.2). q.e.d.
Let f:U -• Tu(Sm) be as in Propositions 3.4 and 4.1. Let γ c U

be a geodesic loop on y with L[γ] < Ry, where expy BR (0) c Y" is

nonsingular. Let γ c Y" be the unique geodesic loop which is short
homotopic to f(γ).

Corollary 4.11. Put h = A(M//y). ΓΛέW

(4.12) e-hL[γ] = L[γ]<ehL[γ],

(4.13)

(4.14)

Proof. Relation (4.12) follows from the minimizing properties of γ,
γ and (iii) Proposition 3.4. By using, in addition, (4.2), relations (4.13)
and (4.14) also follow by straightforward arguments.

Suppose that for γ as above, NL[γ] < Ry . Let Nγ denote the unique
geodesic loop which is short homotopic to the N-fold iterate of γ . Then
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we have
Corollary 4.15.

/ ^
y

Proof. This follows immediately from Corollary 4.11 and the fact that
the holonomy of a curve depends only on its homotopy class in the flat
case.

5. Construction of the F-structure

(a) Outline of the construction. In this section we prove our main result,
Theorem 0.1, by using the results of §§2, 3, and 4 to implement Lemma
1.5.

Our basic strategy was sketched in §0. Given a complete riemannian
manifold Yn , let Y£ denote the set of points at which v(y, δ~ι) < δ
(see (3.1)). To each y e Y£ (δ sufficiently small) we assign a set, Vy,
containing y, and an elementary F-structure, !? , over Vy . This is done

ii y

in such a way that {(Vy, <9p} satisfies all the conditions of Lemma 1.5,

apart from the bound, N{, on the multiplicity. Then we extract a suitable

locally finite subcover {Vy }. The collection {{Vy ,9Γ

y)) satisfies the

hypothesis of Lemma 1.5 and leads to the desired /-structure.

In this subsection, we outline the steps involved in selecting {{Vy,^y)}

and {(Vy , y )} . Further details are given in subsections (b)-(g) (which

correspond to Steps 1-6 below).

Step 1. To each point y e Y£ we assign a set of short geodesic loops

[γ.]v, with rot(P ) < π/3λ(n) (λ(n) as in §2). Our choice depends only
j y Yj

on the lengths of the short loops at y and on the isomorphism classes

of their holonomy transformations. Moreover, the following precursor of

property (Fχ) holds. If yχ, y2 are sufficiently close, then [γ ] contains

or is contained in [γj]y . (As usual we identify loops at y{ with loops at

y2 by sliding them along the unique minimal geodesic from y{ to y2.)

Step 2. Let fy: Uy —• Tu (Sy) be any map as provided by Proposition

3.4. The set of loops of Tu (Sy) corresponding to [y.] determines an

elementary F-structure, 3Γy> over a neighborhood, V^ of f (y), as in

Corollary 2.13. The fiber of the corresponding elementary /-structure,

9y, over Vy = f~l(Vy) can be identified with the Cartesian product of

the loops in [yj\y. It follows that the collection {(V , &)} satisfies a

weak version of property (F,): If y{ and y2 are sufficiently close, either

/yΊ7>/yy, or vice versa, on Fv n F .
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Step 3. Clearly, V and V can have nonempty intersection even if
yχ and y2 are not close. But by using Lemma 2.9 and Remark 2.14, we
find that property (F{) holds for {(Vy, 9^} .

Step 4. On a set V Γ\Vy the closeness of corresponding local actions

for /y and /y is determined by the deviation from isometry (in the

C2-topology) of the maps f and f . This is an immediate consequence
of the description of elementary F-structures in terms of geodesic loops,
for the flat case discussed in §2.

To apply Lemma 1.5 to a subcollection, {(V , & )} , these deviations

must be small relative to the size of the Vy and the multiplicity, Nχ, of

Step 5. By a simple variant of a standard packing construction, we select

a subcover, { Vy } , with \Ja Vy c Y% , whose multiplicity, N{, is bounded

by c{n).
Step 6. By the results of §4, the deviation from isometry (in the C2-

topology) of a map fy is controlled by the function h of Proposition
3.4. In view of the bound of Step 5, it suffices to take h{r) = ε(n),
for ε(n) > 0 sufficiently small. Then the covering {Vy } satisfies the
hypothesis of Lemma 1.5. The weak F-structure obtained by applying
Lemma 1.5 is easily seen to have properties (F3) and (F4) of §1. Hence
it is an F-structure.

(b) Assigning short loops to points. Our procedure for choosing the
collections [y.] is based on some trivial observations about sequences.

Let bχ < bx < < bM be a nondecreasing sequence such that for some
cχ < c2 and N <M

(5.1) * i < ^ i < ^ 2 <

Clearly, there exists at least one index, / < N, such that

(5.2) », + °-i^ < bM ,

(5.3) h < CΛψ.
Remark 5.4. The collection of all such / depends only on the subse-

quence, bχ < b2< -" < bN.
The following lemma is obvious.
Lemma 5.5. Let b[ < b'2 < < b'M be a second sequence and let π

be a permutation of {1, , M} such that for j < M,
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Then if J satisfies ( 5 . 2 ) , π preserves t h e sets { 0 , ••• , / } a n d {J +
1, . , M } .

Choose a nondecreasing function φ: [0, π] —• [0, oo), with

(5.7) 0|[O,π/6A(/i)]=l

and

(5.8) φ\[π/3λ(n),π] = 6(6λ(n))[n/2].

Define a function a(γ) on loops at y by

(5.9) α(y) = 0(rot(Py))-L[y].

Clearly, we have L[γ] < a(γ).

Lemma 5.10. For δ < δ0 sufficiently small,

(5.11) minfl(y)<2(6A(Λ))[ l i/21-iy.

The inequality

(5.12) L[γ] < a(γ) < 6(6λ(n))[n/2] iy

holds for at most N = N(n) loops. For all such loops

(5.13) rot(^) < 3 ^ .

Proof. Let γ be a shortest loop at y. Thus, L[γ] = 2iy ,. By Corollary
4.15 and the standard packing argument, if δ0 is sufficiently small, there
exists k such that

(5.14) L[kγ]<2kiy<2(6λ(n))[n/2],

Lemma 2.1 implies (5.12), and (5.13) is clear from (5.8) and (5.9). q.e.d.
From now on, we assume δ < δ0 as above.
Let y G yj1 and let γ{, γ2, . . . be an ordering of the loops at y such

that

(5.16) a(γι)<a(γ2)<"'.

It follows from Lemma 5.5 that there exists a smallest index, J < N =
N(n), such that

(5.17) α ( y . ) + ^ _ _ £ . < a ( 7 y + i ) ,

with c, = 2(6A(«))[n/2] and c2 = 2c,.
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Define [γj\y to be the set {y,, , yy} . Note that the ordering y,, y2,
... need not be uniquely determined if the numbers {a(γ )} are not all
distinct. However, the set [γj\y is independent of the choice of ordering.
Also, by (5.13), for 7j&[7j]y

(5-18) k

Lemma 5.19. There exists 0 < ε(/t) < 1 such that if y χ , y2e Y# and

y x , y 2 < ε(n)iy , then either [γj\y D [yj\y or vice versa.

Proof. Let y—γ2 < εiy^ . Let {yf yj. } = S?\ k = 1, 2, be the

loops at yk, with h(γk) < < h(yk

τj < c2. By Remark 5.4, the sets

[ϊj]y are determined by {a{yk

{ , , a(γ^)} or by any larger subsets of

{a(γk

x)9...}.
If ε < e(n), it is clear that by using (4.14), we can find subsets &k D

S? , which are identified with each other under the correspondence be-
tween loops at y{ and y2, and such that for yk. e-S^ ,

(5.20) a{γk) < 3c2 = 6(6λ(n))[n/2].

Let b{ < " < bM (M < N) be the sequence obtained by arranging the

numbers {fl(yj)}, y) €&l , in ascending order. Let b\ < ••• < b'M be
obtained similarly from 3*1. Let π be the permutation of {1, , M}

induced by the correspondence between -S^1 and 3*1. Our claim now is

a direct consequence of Lemma 5.10.
( c ) A s s i g n i n g e l e m e n t a r y F - s t r u c t u r e s t o p o i n t s . A m a p f : U - +

Tu(Sm) as in Proposition 3.4 is determined by a number k > 0 and a
decreasing function h(r). In what follows, it will suffice to choose h to
be a sufficiently small constant, and to take

(5.21) k= \S(6λ(n))[n/2\

For each y e Y# (δ < δ0 sufficiently small) we can, by Proposition 3.4,

find a map / : [ / — • Tu (Sv). Note that by our choice of k, each loop

of [7j]y

 i s contained in U. Let [Yj]f{v) denote the collection of loops

at fv{y) which are homotopic to the images of [γj]y . By Corollary 2.13

[γ ] determines an elementary F-structure, &γ, over a neighborhood

^ . Here we take

(5.22) ry = t(6λ(n)Γl"/2] min a(y),
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where the minimum is over all loops γ at y . The number t < 1 will be
specified below. Note that ry < % iy .

Let & be the elementary F-structure over V = f~l(Vy). The fiber

{/y)y of /y at y can be identified with the Cartesian product of the loops

i n \lj\y - Thus, it follows from Lemma 5.19 that if y{, y2 < 2{ry + ry )

and t < ε(n) for ε(n) > 0 sufficiently small, then /y c / ^ on ^ n V

or vice versa. This is the precursor of property (F{) of § 1.
(d) Property (Fx) for {(Vy , ̂ ) } . By Lemma 2.9, the set of values

which the function a(y) takes on loops of A c πJT (S)) is constant on
1 u

y y

orbits of the elementary F-structure & . Let TV = N(n) and let t be as
in parts (b) and (c). For each point yχ e Vy, consider the set consisting
of the iV smallest values (counted with multiplicities) of the function a .
Then if ε(n) is sufficiently small, t < ε(n), and f is sufficiently C2-close
to being an isometry, the above set of values is as close as we like to being
independent of the point yχ. Now, the argument of part (c) shows that
{(Vy,^y)} has property (Fχ).

(e) Closeness of local actions. The fiber of / at y can be identified
with the Cartesian product of at most N(n) loops (see (5.17)) of length
bounded by (5.12). By (2.3), (2.4), Corollary 4.11, and (4.16) we can
insure that the local actions of / and /y are as C1-close as we like on
Vy^Vy > provided that h of Proposition 3.4 and δ0 above are sufficiently
small. (In measuring the closeness of local actions we rescale the metric
so that, say, i — 1, to conform to the context of Lemma 1.5.)

The degree of closeness required in Lemma 1.5 depends on the max-
imum fiber dimension, N3, on the maximum order, N2, of a covering
space associated to the elementary F-structure and on the multiplicity,
N, of the covering. In our situation 7V3 < N(n) and N2 < λ(ή). In part
(f) below, we will extract a subcovering, {Vy } of {Vy}, with bounded
multiplicity.

(f) The subcover {v }. Let q{y) denote the number of loops in [y.]
and let Y%q c Y£ be the set of points, y, with q{y) = q .

Let qQ be the largest value of q for which Y£ is nonempty. Choose

a maximal set of points from Y%* such that

(5-23) 0 ,0 >±min(r ,r ) ,
; " ' β '<* *β

where ry and ry are as in (c) above. Then choose a maximal set of

points from yj1

 χ such that (5.24) continues to hold for all points (in



COLLAPSING RIEMANNIAN MANIFOLDS 297

Y^ q U Y# q _ j) selected so far. By proceeding in this way, we obtain a

set of points {ya}. Clearly, for every point y e Y£ there exist ya with

Qiya) > Q(y) and

(5.24) ^y^y -

Since q(ya) > q{y), it is clear that for δ sufficiently small, say

(5.25) yτκ<~

(and the same holds for all points of @y). Thus, {Vy } covers Y# and in

fact, {f-\TK/4(^ {v ))} still covers.

Now, by using the standard packing argument as in [13, Theorem 5.3],
the multiplicity of {Vy } can now be bounded by some Nx(n).

(g) Fitting together local F-stπictures. The collection {(V , & )} con-
structed in (f) above satisfies the hypothesis of Lemma 1.5. Thus, we
obtain a weak F-structure, y , o n a set containing Y^ , for δ < δo(n)
sufficiently small. Since the elementary ^-structures,!? , have positive
rank, so does &. The bound on the diameter of orbits (see (1) of Theo-
rem 0.1) is also satisfied.

To see that the structure we have constructed is actually an ^-structure,
we observe that property (F3) of § 1 holds if t of (5.22) is sufficiently small.
Note that the maximal length of a chain Va , , Va,, as in (F3) is, of
course, bounded by N(n), the maximal dimension of the fiber. Now it
is-clear from Corollary 2.13 that if t in (5.22) is taken to be l/4N(n)
times the value dictated by our previous considerations, then (F3) and
(^4) hold.

As mentioned in §2, the local actions might be noneffective for the struc-
ture just constructed, but this can be remedied by passing to a quotient.
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