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LOCAL DIFFERENTIAL GEOMETRY AND
GENERIC PROJECTIONS OF THREEFOLDS

ZIV RAN

The purpose of this note is to prove a result concerning the 4-secant
lines of a nondegenerate irreducible, say smooth, threefold

XcP, r>9;

namely we prove essentially that all these lines together fill up at most a
fourfold (see Theorem 1 below); equivalently, the generic projection of
X to P* has no fourfold points that come from collinear quadruples of
points on X .

The (very classical) subject of generic projections of n folds to P
and the multiple points of such projections has recently come into focus
in connection with work of Pinkham [4], Lazarsfeld [2], and Peskine [3],
which has shown how certain properties (both known and conjectural) of
such projections can be used to establish various cohomological properties
of the nfolds in question, in particular Castelnuovo regularity. Indeed,
Lazarsfeld’s paper [2] shows, among other things, that the above statement
concerning fourfold points of projections to P! is exactly what is needed to
establish a sharp Castelnuovo regularity bound for smooth nondegenerate
threefolds in P, r > 9 (see Corollary 3 below).

We now proceed with a precise statement.

Theorem 1. Let X be an irreducible nondegenerate three-dimensional
subvariety of P, r > 9, whose tangent variety is six-dimensional, and let
{L,:y€Y} bea family of lines in P with the property that for any general
y € Y, the part of the scheme-theoretic intersection L,NX supported at
smooth points of X has length at least 4. Then we have

dim (U Ly) <4
yeY

Remarks 2.1. Any smooth threefold has six-dimensional tangent vari-
ety (cf. [1]). The hypothesis that X has six-dimensional tangent variety

n+1
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is presumably unnecessary, especially in view of the fact that the three-
folds with tangent variety of dimension < 6 have been classified in [1];
this hypothesis enters in the proof only to help handle certain ‘degenerate’
cases.

2.2. It seems likely that the theorem is true for r = 7, 8 as well, but
the proof does not yield this.

2.3. It is reasonable to expect that the analogue of the theorem is true
for (nondegenerate) n folds X in P’, r > 2n+1: namely that the (n+1)-
secant lines of X fill up at most an (n+ 1) fold. The proof below ‘almost’
shows this for r > 2n + 3, but breaks down at some degenerate cases.
In any event, Corollary 3 below would not follow from the analogue of
Theorem 1 for n > 4. For surfaces, on the other hand, the proof does
work for all r > 6, and this result is apparently new (notwithstanding
some assertions to the contrary in the literature). Actually, the analogue
of Theorem 1 is in fact true for r = 5 as well, but the proof of that case
is considerably more difficult.

24, Forany n>2, r>2n+1,and k > n+ 1, it is easy to construct
examples of smooth nondegenerate n folds X in P’ whose k-secant lines
fill up an (n+ 1) fold: e.g., unions of 0o’ plane curves of degree k. Thus
Theorem 1 is essentially sharp.

Corollary 3. Let X be a smooth nondegenerate irreducible threefold of
degree d in ', r>9. Then X is (d —r+4)-regular, i.e., the ideal sheaf
I =1y, satisfies H(P',1(d—r+4—1i)=0 for i >0.

Proof. Given Theorem 1, this essentially follows from Lazarsfeld’s pa-
per [2]. Namely Lazarsfeld shows, at least implicitly, that X is (d —r+4)-
regular provided the following statement is true:

If Z C X is any fibre of a generic projection
n: X > X cP*,

(+) then Z imposes independent conditions on quadrics, i.e.,
the restriction map

0 0
H (Op«(2)) » H (0,(2))
is surjective .
Now in our case, it follows from [5] that no fibres Z can exist having
length > 5; on the other hand, it is trivial that any scheme of length < 3
imposes independent conditions on quadrics. As for fibres of length 4,

Theorem 1 implies that Z cannot be contained in a line, and if Z were to
span a p’ , it would impose independent conditions on linear forms, hence
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a fortiori on quadrics. It remains to consider the case where Z is a length-
4 subscheme of a plane. If Z failed to impose independent conditions
on quadrics, there would exist three independent (possibly singular) conics
C,, C,, C; through Z . By Noether’s 4f + Bg theorem, it follows that
the C; must have a common component, which clearly must be a line
M . But then C,NC,NC; = M scheme-theoretically, so that Z C M,
which cannot be. This completes the proof of statement (*), hence that
of Corollary 3.

Remark 4. It seems likely that the foregoing argument extends to the
case n = 4 as well; the case n > 5 however seems more difficult, inasmuch
as it would eventually involve dealing with fibres Z of length 6 contained
in a plane, for which one would have to show Z is not on any conic, a
property which at the moment seems too subtle to handle.

We now turn to the proof of Theorem 1. Let {Ly: y € Y} be a family
of four-secant lines of X as in the statement of the theorem. Without
loss of generality, we may assume Y is an irreducible four-dimensional
subvariety of the Grassmannian G = G(1, P') such that UyGYLy is a
fivefold. We fix a general member L =L, of the family and work locally
in an analytic neighborhood of y on Y. We will assume, to begin with,

that LNX contains four distinct points p,, --- , p, smooth on X . By [5]
it follows that p, , --- , p, are general on X , that L meets X transversely
at p,, i=1, .-, 4, and moreover that there are no further smooth points

of X on L. Put T=TyY, L=P(4), P =P(B),and N = B/A. Then
we have
TC TyG=Hom(A, N),

whence a map 4 — Hom(7T', N), which must be injective, hence induces
0: L=P(4A) - P(Hom(T, N)) =: P.

Let D C P denote the determinantal variety of singular (i.e., noninjective)
homomorphisms. As in [5], we see that d(p;) € D, i =1, .-, 4, and
moreover that the J(p;) must have rank exactly 3. Let u, € T be a basis
for Ker(d(p;)), i=1,---,4.

LemmaS. (i) u,,--- , u, are linearly independent.

(ii) There is a four-dimensional subspace Ny C N, and none smaller,
such that d factors through P(Hom(T', N;)).

Proof. (i)If u ,---, u, weretospanasubspace 7, C T of dimension
k <4,let N, be a generic k-dimensional quotient of N and

6,: L - P(Hom(T,, N,)) =: P,

the induced map. Then (L) must be entirely contained in the analogous
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determinantal variety D, C P, (because d(p,) € D;, i = 1,---,4),
and because N, was generic this implies that J(L) C D also, which then
implies that the lines L, only fill up a fourfold, which is a contradiction.

(ii) Let N, be the span of im(u;), i =1, --- , 4 (considering the u,
as rank-1 homomorphisms 4 — N ). Then clearly we have dim N, < 4
and J factors as indicated; on the other hand, if § were to factor through
a subspace of dimension < 3, it would follow as above that J(L) C D,
which is not the case.

To formulate the conclusion of part (ii) of the lemma in a slightly more
intuitive way, there is a five-dimensional linear subspace R = Ry cP,
containing L, such that the first order deformations of L in Y stay
within, and in fact span R.

Now consider the embedded tangent spaces

T=TpX, i=1,-,4

As p; was general on X, any first order deformation of p; in X lifts to
a deformation of L in Y, hence we have

T,cR, i=1,---,4

Moreover, for any i # j, T, and T] together must span R: indeed, a
deformation of a line is determined by that of any two distinct points on

it, so if 7. and Tj span R’ C R, then the first order deformations of L

1

must stay within R’, so that R' = R. Now set

(1) M,;=T,NnT,CR,
which is therefore a P'. Moreover b, D, ¢ Hl. b because L was trans-
verse to X , hence M, ; corresponds to a two-dimensional subspace M, ; C
TP’_ X.

Now let K(p j) be the two-dimensional cone obtained by varying L
within Y while keeping p; fixed, and let S, be the embedded tangent
plane to K(p j) at a general point g € L (this is independent of ¢ ). Thus

S ; is the P? containing L corresponding to the one-dimensional subspace
im(u j) C N encountered above. Note that S , meets T, in a line through
p; forall i # j andlet v, ;=Y , € T, X be the corresponding direction

(defined up to scalar multiple). Note that
(2) v;; € My,

whenever i, j, k are all distinct. By Lemma 5, the v, ; for any fixed i
are independent.
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The idea now will be to differentiate the identity (1) in the various
directions u, , thus obtaining various identities involving the second fun-
damental form of X , for whose definition and basic properties we refer to
[1]; we will just set up some notation. We denote the second fundamental
form of X at a point p by IIp , and view it as a symmetric bilinear form
on the tangent space Tp(X ), whose values are vectors in the vector space

B corresponding to P”, well defined modulo TPX (more precisely, mod-
ulo the corresponding linear subspace of B, but we will allow ourselves
the luxury of such abuses of terminology).

Now differentiating (1) in the direction u ;» we obtain

3) IIpv(v M.)=0 modR, i#].

ij° ij
On the other hand, differentiating (1) in the direction u, , k # i, j, we
obtain

4 I, (vy,vy)=1L, (v, ,v;,) modR,  i,],k all distinct.
Now set
., 2
U, = Ul.’y =Span(v;; - M,;, j#1iCSym (Tp‘X)),
a three-dimensional subspace. Then (3) yields
(5) II, (U;)) CR, i=1,---,4

Assume for now that equality holds in (5) for some i; it follows in
particular that

2
(6) RCT,,

where sz denotes the second-order tangent space to X at p, considered
as a subspace of P’ (i.e., this is just the image of IL,; cf. [1]). Now (6)
clearly yields IIp](v o Vi) € T;, , and since moreover the T; all have the
same dimension, it follows by (4) that we have

2
™ r=..=T.

Now note that Sym2 (Tp X) is spanned by U, plus the v, i J#I, hence
sz X is at most a P®. Thus (7) implies that as we vary our initial y to

a nearby y' € Y while fixing any of the p;, the lines L, remain in a
fixed linear subspace of P’ of dimension < 8. The following elemen-
tary observation now yields a contradiction to our hypothesis that X was
nondegenerate in P*, r > 9, and p,, - ,p, were generalon X.
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Lemma 6 (The Goose-Step principle). For a general y € Y, let F (y)
be the set of ' € Y connectable to y by a finite chain of irreducible curves
C,U---UC, CY such that for j, as y" varies within C;, one of the points
of L.nX, which is a deformation of one of the points of L,NX, stays
fixed. Then F (y) is densein y.

Proof. If this were false, then the closures of the % (y) would form a
nontrivial foliation of (some open subspace of) Y. As y € Y is general,
there is a leaf of this foliation through y, and the vectors Uy, ooy U,
must be tangent to it, contradicting Lemma 5(i).

Next, we consider the case where the inclusion (5) is strict for all i =
1,---,4. Suppose first that for some i we have

(8) dim(7, N R) =

In particular, it follows that for all j, sz_ is at most seven-dimensional
and meets T] at least in a P? , hence a p; is kept fixed, p ; varies at most
in a fixed (dim;_ +1)-dimensional linear space, which must coincide with

sz_ + R, and as above we may conclude that
T)+R=T. +R forallj#i.
! J

Moreover by (3) and (4) the latter space, which is at most eight-dimen-

sional, stays infinitesimally fixed, hence fixed, as L varies fixing any of

the p,, so the Goose-Step Principle yields a contradiction as above.
Suppose next that we have

%) dim(TjnR)<4, i=1,--,4

In other words, we have II, (U ) = 0. Since the kernel of II, is at most
three-dimensional anyway, 1t follows that this kernel must comc1de with
U;, and in partlcular U =0 , stays fixed as L varies fixing p,; as U,
determmes the v, S =Y these stay similarly fixed, up to scalar multiple.

We may now conclude that, locally at each p,, X possesses three mu-
tually transverse one-dimensional foliations, tangent to the v, j and com-
patible with the foliations of Y tangent to the u;. Let C; ; bea local
integral arc of the v, j-foliation. Then we may conclude, e.g., that an arbi-
trary chord joining C,, and C,, is in our family {Ly} , hence meets X
elsewhere. By the trisecant lemma for analytic arcs, either C,, and C,,
are both in some P*, or they are in a P’ that meets X in a surface. The
first alternative clearly implies that our lines L, fill up only a fourfold; the
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second alternative implies that X contains a two-parameter family of sur-
faces S, each contained in a P’. Since two generic points of X will lie
on some S, the embedded tangent spaces to X at these points must meet
in a generally-positioned line, and this contradicts our hypothesis that the
tangent variety of X is six-dimensional. This completes the discussion of
the case where L is transverse to X .

It remains to consider the case where L is tangent to X at some smooth
point. First, if L is a simple bitangent, tangent at two points P, # Dy,
then, using notation introduced above, we have S, C T,. On the other
hand, obviously K(p,) C T; so S, C T,, hence T, and 7, meet in
a P’ which as we have seen cannot be. Next, if L is a flex tangent at
D, , say, then by [5] there is a two-dimensional subspace V' C TP.X such

that IIpI(TplL’ V) = 0, which implies that all first order infinitesimal
deformations of L in Y span only a P*, which again is impossible.

Finally, consider the case where L is simply tangent at p, and trans-
verse at p, # p;. As we have R C sz. , it follows as above that

2
Tpl =

and again we may apply the Goose-Step Principle to contradict the non-
degeneracy of X (the point is, goose-stepping through p,, p,, and p; is
sufficient to fill up a dense subset of X ).

2 2
sz = Tp3 ,
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