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SHORT GEODESICS
AND GRAVITATIONAL INSTANTONS

MICHAEL T. ANDERSON

1. Introduction

In [3], Cheeger proved a basic estimate on the length of the short-
est closed geodesic l(γ) in a compact Riemannian manifold M, namely,
l(ϊ) ^ C(^J v> ^ ) J where c is a constant depending only on a lower bound on
the sectional curvature KM > -λ, a lower bound on the volume VO\M > v
and an upper bound on the diameter diamΛ/ < D. Combined with Klin-
genberg's estimate [11], one obtains a lower bound on the injectivity radius
iM of M in terms of a bound on \KM\, VOIΛ/ and diarn^/. This gives a good
control over the local geometry and topology of M, and is a basic step
in the proof of Cheeger's finiteness theorem, that there are only finitely
many diffeomorphism classes of compact ^-manifolds such that \KM\ < Λ,
VOIΛ/ > v and diam^ < D.

Recently, Grove-Petersen [9] have proved an analogue of Cheeger's
finiteness theorem assuming only a lower bound on the sectional curva-
ture, namely, there are only finitely many homotopy types among compact
^-manifolds satisfying KM > -λ9 VOIM > v and diam^ < D. Crucial to
their proof of this result is a generalization of Cheeger's estimate to critical
points of the distance function p: M x M -+R.

If one drops the lower bound on the volume, Gromov [7] proved that all
Betti numbers of M, with respect to any coefficient field, are bounded from
above by a constant depending only on a lower curvature bound KM > -A
and an upper diameter bound. If λ > 0, then one has an absolute bound,
depending only on dimension, since the diameter may be scaled to one.
Note for example that the family of 3-dimensional lens spaces L(p9q) gives
infinitely many homotopy types of manifolds satisfying these bounds.

In this paper we consider these and related questions for the class of
compact ^-dimensional Riemannian manifolds such that

(1.1) RΪCΛ/ > -{n- l)k2, voW > v, diamM < D.
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We show first that a Cheeger-type estimate holds under these bounds for
curves which are sufficiently nontrivial in π\(M). More precisely, there is
an explicit lower bound

(1.2) DV

• vk(2D)

on the length of a closed loop γ in M, provided [γ] e π\(M) satisfies
[γ]p φθ,Vp < N = vk(2D)/υ. Here vk(r) is the volume of a geodesic ball
of radius r in the space form of curvature -k. The same argument shows
that the subgroup of π\(M) generated by the short loops, i.e., the loops
not satisfying (1.2), is a finite group of order < N. Using an argument of
Gromov [8], we then show that there are only finitely many possibilities
for 7i\(M) among compact /?-manifolds satisfying (1.1).

Is there a bound on the length of the shortest closed geodesic depending
only on the bounds (1.1)? This question was raised for instance in [4].
In §3, we show that the answer is no by constructing examples based on
the Eguchi-Hanson metric. In particular, it follows that there is a compact
simply connected 4-manifold M\ (the double of T(S2) or equivalently
S2 x S2) with a family of metrics of positive Ricci curvature, vol > v,
diam < Z), with closed geodesies of arbitrarily small length. This shows
for instance that the method of proof of the finiteness results of Grove-
Peterson [9] or Cheeger [3] will not generalize to handle similar questions
under the bounds (1.1).

We also construct two families of Riemannian manifolds Mk and Nk

based on the family of gravitational instantons of Gibbons-Hawking [6]
with the following properties: Each Mk, k = 2,3, , is homeomorphic to
#{ S2 x S2 and has a (family of) Riemannian metrics with R i c ^ > 0,
diamΛ/fc < 1, but volMk < c/k. Similarly, Nk is homeomorphic to
#! CP2 and has metrics with the same properties. These examples show
that one cannot improve Gromov's theorem to positive Ricci curvature
in place of sectional curvature. Note however that since vol Mk —• 0 and
volΛ^ —• 0 as k —> oo, these manifolds do not satisfy the bounds (1.1).
Sha-Yang [13] have independently constructed different metrics on Mk and
other simply connected 4-manifolds with the same properties. Previously
[14], they have also constructed metrics with similar properties in dimen-
sion seven. In the final section, we list a number of further remarks and
open questions along these lines.

The author would like to thank Jeff Cheeger and Detlef Gromoll for
interesting discussion related to this work.
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2. Estimates of the 1-systole

In this section, we derive some estimates on the systole of a compact
manifold and discuss some applications to finiteness theorems. Recall that
the 1-systole sys^Af) of a compact Riemannian manifold M is the length
of the shortest noncontractible curve in M. Throughout this section, M
will be a compact, connected ^-dimensional Riemannian manifold satis-
fying the bounds

(2.1) RICΛ/ > -(n- l)k2, volM > v, diamM < D.

The basic estimate is contained in the following result. The volume of a
geodesic ball of radius r in the space form of constant curvature -k will
be denoted by vk(r).

Theorem 2.1. Let M be a compact n-manifold satisfying the bounds
(2.1). Ifγ is a curve in M with [γ]k φ 0 in πx(M) for allk<N = vk(2D)/v,
then

Proof. We present a proof simplifying the original proof of the author,
suggested by J. Cheeger. Let Γ = π\(M) = π\(M9xo) be the subgroup
generated by [γ], so that |Γ| > N. We let M be the universal cover of M
and let F c M be a fundamental domain for the action of π\(M) on M.
For example, one may choose F to be a Dirichlet fundamental domain,
i.e.,

F= f] {xeM:dist(x,xo)<dist(x,gxQ)}.

Let B^(r) (resp. B^(r)) be the geodesic ball of radius r in M (M) about
XQ, where we abuse notation slightly and denote a lift of Xo to M by xo
also. Then it is easily verified that B^(r) Π F is mapped isometrically
under the covering projection onto B**(r), modulo a set of measure zero
corresponding to dF. In particular, vol(B^o(r) ΠF)= vol(2J£f(r)).

Let U(r) = {g e Γ: g = g^\i\ < r}, where g0 is the generator of Γ
(go = [y] e π{(M)). Note that dist(^o-^o^o) < /(y), so that dist(£XOj*o) <
r - l(y) for all g € U(r). Choose the smallest r = r$ such that # U{r0) > N,
and consider the domain

(2.3) U g(B*(D)nF)cB*(Nl(γ) + D).(D)nF)cB

Taking the volume of both sides of (2.3), we obtain,

ξ(2.4) TV volM < volBξ(Nl(γ) + D) < vk(Nl(γ) + D),



268 MICHAEL T. ANDERSON

where the last inequality follows from the well-known Bishop comparison
theorem. Now suppose (2.2) were false, i.e., l(γ) < D/N. Then (2.4)
implies that

(2.5) N v < N - YOIM < υk(2D),

that is,

v

which contradicts the definition of N. Thus the estimate (2.2) is estab-
lished.

Remarks 2.2. (1) The result above can easily be localized. Namely, let
γ be a closed curve in M, satisfying the bounds (2.1), and let T(εo) = {χ Ξ
M: dist(x, γ) < £Q) be the BQ tubular neighborhood of γ in M. In the proof
above, if we replace M by Γ(eo), and define the number TV as before, then
the same argument gives the estimate

(2.6) N vol T(ε0) < vk(Nl(γ) + D).

Note that volΓ(ε0) > volBXo(ε0) > v/vk{D) υk(ε0), where the last in-
equality follows from the Bishop comparison theorem. Thus, from (2.6),
we obtain,

Solving this for l(γ) gives a lower bound for l(γ) of the form l(γ) >
ε0v/vk(2D).

Thus, if γ is a very short curve in M, a multiple of γ must bound a disc
in a small tubular neighborhood.

(2) Instead of considering subgroups generated by one element, we
may also consider subgroups generated by several elements. Let Γ be
the subgroup of π\(M) = πi(M,jco) generated by elements {#,}, and let
y, be loops in M, based at XQ, representing these classes. As in The-
orem 2.1, we let U(r) = {g e Γ: g = g{1 - gjf ,Σ\ij\ < r}9 so that
dist(gJCo,JCo) < r ' max/(yz) for g e U(r). Then exactly the same argu-
ment shows that

provided |Γ| > vk(2D)/v.

Thus, the subgroup of π{(M) generated by 'short loops', i.e., loops of
length < Dυ/υk(2D), has order bounded by N.

One consequence of these results is the following.
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Theorem 2.3. In the class of compact n-dimensional Riemannian man-
ifolds M such that Ric^ > -k2, YO\M > v and diamΛ/ < D, there are only
finitely many isomorphism classes ofπ\(M).

Proof This follows by combining the estimates above with some ar-
guments of Gromov [8]. Namely, Gromov [8, 5.15] shows that, given M
as above, there is a system of generators {g{\ of π\(M) = π\(M,x0) and
representatives yz of gι such that /(y, ) < ID and all relations among the
generators are of the form gigjgj^1 = 1. Clearly, it suffices to prove there
is a bound on the number p of generators, since the isomorphism class of
7Γi is determined by p and the set of relations in {1,2, ,/?}3.

By Remark 2.2(2) above, there is a bound TV = Vjc(2D)/υ on the number
of classes [γ] in π\(M) such that l(γ) < δ = D/N. Consider the geodesic
balls BgkXo(δ/2), k=l, ~,p. If x € f)U BgJiVP)> then the s(s - l ) /2
classes gj. g~ι have representatives γ^ with l(γnc) <δ. Thus s(s- l)/2 <
JV, so that there is a bound on the multiplicity of intersections of balls
Bgk(δ/2). Since these balls are all contained in the ball BXo(2D + δ), the
(relative) Bishop comparison theorem implies that the number of such
balls is uniformly bounded above, q.e.d.

It is clear that an explicit upper bound, depending on «, k, v,D, can be
derived for the number of isomorphism classes of π\(M).

3. Examples of manifolds of positive Ricci curvature

In this section, we construct several examples of compact 4-manifolds
with metrics of positive Ricci curvature. These show that some of the
topological and metric bounds mentioned in §1, obtained under a lower
bound on the sectional curvature, do not remain valid assuming a lower
bound on the Ricci curvature.

We first turn to the question of whether Cheeger's estimate on the length
of the shortest closed geodesic remains valid under a lower bound on Ricci
curvature. Theorem 2.1 shows that the answer is yes if the geodesic is
sufficiently nontrivial in π\(M). On the other hand, we have the following.

Proposition 3.1. There is a family of metrics ds2, a e (0,1], on M\ -
S2 x S2 with RICΛ/, > 0, VOIM, > j and diamM, < 5, and with closed
geodesies of length 2πa.

Proof First we note that S2 x S2 is diffeomorphic to the double of
the tangent bundle of S2, i.e., Mλ = TS2 ΌdTS2 (-TS2), where -TS2

denotes TS2 with the opposite orientation. This follows from the fact
that TS2 UdTS2 (-TS2) is naturally an S2 bundle over S2, of which there
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are only two isomorphism classes since πi(SO(3)) = Z2. Since for instance
the intersection form of TS2 VdTs

2 {-TS2) is congruent to that of S2xS2,
it follows that these manifolds are diffeomorphic. The metrics on M\ are
modifications of the Eguchi-Hanson metrics [5]. This is a complete metric
on the tangent bundle of S2 given by

(3.1) ds2 = ( 1 + ^ / r ) 4 ) 2 + u2σ2 + r\a\ + σj).

Here a e R+ is a free parameter, and σx,σy,σz are the standard left-
invariant coframing of IRP3 with dσx = 2σy Λ σ^ etc. (Note that the
dual left-invariant vector fields have half the length of the standard or-
thonormal framing of S3(l).) Further, r e [α,oo) and u = r[\ - {a/r)4]χf2,
so u = 0 when r = a. Recall that the sphere bundle in TS2 is naturally
diffeomorphic to IRP3 so that TS2 is a family of IRP3's, parametrized by u,
with u = 0 corresponding to a collapse of IRP3 to S2 (the zero-section). It
is clear that the metric is invariant under the natural SO(3) action. The
1-form

is the unit length 1-form dual to the gradient of the distance function / to
S2.

The basic feature of this metric is that it is Ricci-flat (in fact self-dual)
and locally asymptotically Euclidean. If (e°, eι,e2,e3) are the orthonormal
coframing corresponding to (du2,σ2,σ2,σ2), then the components of the
curvature tensor are

(3.2) Rθ =
=

Thus the sectional curvature decays at a rate of l/r6 and outside com-
pact sets the metric approaches the flat metric on the cone C(IRP3) at a rate
l/r4. There is a Killing field Z dual to the 1-form σz with \Z\ = 0 on the
zero-section. Thus the zero-section is a totally geodesic embedding of a
constant curvature S2 of curvature \/a2 into TS2. In particular, we have a
family of Ricci-flat, locally asymptotically Euclidean metrics on TS2, with
arbitrarily short closed geodesies.

In order to construct compact manifolds, we will take the double of
the domain B = Γ{[0,1] c TS2 and thus obtain a compact 4-manifold
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M\ = BUOB(-B) - TS2URP(-TS2). The metric however must be rounded
off in a neighborhood of dB in order to obtain a smooth metric on M{.

We first show there is a conformal deformation of the metric ds2 on B
to a metric of nonnegative Ricci curvature, which near dB is arbitrarily
close (depending on a), in the C°° topology, to a neighborhood of the
totally geodesic embedding of RP3 in an RP4 of constant curvature +4.
Thus, consider conformally related metrics ds\ = (l/fι2)ds2 on B, where
h = h{t), t = fdu/l + (a/r)4. We note that / is a convex function on
(TS2,ds2). Thus, the zero-section S2 —• TS2 corresponding to t~~ι(0) is a
soul in the terminology of Cheeger-Gromoll. In fact, the Hessian D2t is
diagonal in the framing (eo,el,e2,e3) and one computes

ί 0, i = 0,

(3.3) D2t(eι,ei)=l | ( 1 - ( f ) 4 ) 1 / 2 ( l + (f )4), / = 1,2,

I ^(1 + ( f ) 4 ) 2 ( l ~ (f ) 4 )~ 1 / 2

? i = 3.
One also computes that

(3.4) RicΛ(jt, x) = h2Ric(x,x) + hAh + 2hD2h{x,x) - 3\dh\2.

We now assume h is a C°° convex function of t, with A(ί) = 1 for t < ^,
and h(t) = \+t2 ϊor t near 1. From (3.3) and (3.4), we may then estimate

(3.5) RicΛ(x, JC) > hh'At + hh" - 3(/z')2 > — - 3(A/)2 + hh".

Clearly, this can be made nonnegative for an appropriate choice of h\
near dB, Ric/, is very close (depending on a) to 127, where / is the identity
matrix, i.e., the metric ds\. If 11̂  and II denote the 2nd fundamental forms
of dB in the metrics ds\ and ds2, then one calculates that

Thus, II/j is close (depending on a) to 0.
We see that the metric ds\, for an appropriate choice of h as above, is of

nonnegative Ricci curvature and near dB is C°° close to the neighborhood
N of the standard embedding RP3 c RP4(+4). Thus, we may perturb
the metric ds\ slightly to a metric ds2 = ds\ + E, where E is of compact
support near dB, ||2?||c°° < ε> a n d ^ α i s isometric to N c IRP4(+4) near
dB. Clearly, the metric ds2 is still of nonnegative Ricci curvature on
B and of positive Ricci curvature near dB. This metric then extends
to give a smooth metric of nonnegative Ricci curvature on the double
Mx = B \JdB {-B). It is clear from the construction that diam(Mi) < 5
and vol(ΛZi) > w4/5, where w4 is the volume of the unit ball in R4.
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Remarks 3.2. (1) It is interesting to note that the metrics ds2 have
a pair of totally geodesic 2-spheres S2 -> TS2 c Mi, of constant cur-
vature a~2, and thus of arbitrarily small area. These 2-spheres generate
Hι{MuT) ~ Z θ Z and therefore there is no lower bound for the 2-systole
sys2(Λ/) = inf{area(Σ): Σ G 7?2(Af,Z)}, for compact 4-manifolds satisfy-
ing the bounds (2.1). Theorem 2.1 gives of course a lower bound for the
lengths of curves γ e H\(M9 Z) which are nonzero in H\(M, R). Similarly,
if Σ c M4 is a compact minimal hypersurface, then it is well known that
vol(Λf) < c(infRic,diam) vol(Σ), so that there is a lower bound for the
3-systole of nonzero classes in H^M, R) in this class of manifolds.

(2) By taking for instance products with spheres Sn(l), one obtains
compact Riemannian manifolds in any dimension > 4 with the properties
of Proposition 3.1 and the Remark above.

(3) One may view CP2 with a ball removed as a 2-fold branched cover
of TS2 = T(CPι), branched over the zero-section. The Eguchi-Hanson
metric (3.1) lifts to a singular Riemannian metric on CP2\B. In fact, one
may verify that the following metric on CP2\B

is a smooth complete metric with nonnegative Ricci curvature which is
(weakly) asymptotically flat; the curvature decays as c/r2 as r -> oo, but
not faster. Here σXiσy,σz are now the standard left-invariant coframing
of 53(1) and r, u,a are as in (3.1). There is a totally geodesic constant
curvature S2 c CP2\B in this metric, and one may alter the metric near
d(CP2\B) as above to produce complete metrics of nonnegative Ricci cur-
vature on CP2# - CP2 with arbitrarily short closed geodesies.

In a similar fashion, one may construct metrics of positive Ricci curva-
ture on compact 4-manifolds of higher topological type, using the gravita-
tional multi-instantons of Gibbons-Hawking [6], Hitchin [10].

Proposition 3.3. For each k > 2, the compact simply connected mani-
folds Mk = #k

χS
2x S2 and Nk = # f CP2 have a (3k - 3)-parameter family

of metrics with

(3.6) Ric(Λ4) > 0, diam(Λ4) < 5, vol(Mk) < £ .

and similarly for Nk.

Proof Let m = k+1, let l m act on C 2 in the standard fashion (z\, zj) —•

(e2πin/mZue-iπin/mZ2^ n e I ^ m o d m^ and consider the quotient C 2 / Z w .

This is isometric to the cone C(S3/lm) on the lens space S3/lm. Following
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Hitchin [10], C2/lm may be viewed as the complex surface

xy = zm

in C3 and the singularity at the origin may be resolved by adding on lower
order terms

The resulting surface Zk is a nonsingular complex surface, provided the
discriminant of Π(z - Λ, ) is nonzero. Zk is obtained topologically by
successively plumbing k copies of the tangent bundle of S2, as prescribed
by the Dynkin diagram of Ak. Thus, Zk has the homotopy type of a wedge
of k two-spheres and has intersection matrix B the Cartan matrix of Ak,
i.e., B(ehej) = -2, B{ehβi) = 1 if \j-i\ = 1 andtffo,*,) = Oif \j-l\ > 1,
for an appropriate basis (βj) of H2{Zk, Z) (cf. [1]). Outside a compact set,
Zk has the topology of S3/2m x R+. Gibbons-Hawking [6] and Hitchin
[10] have constructed a (3k - 3)-parameter family of complete, Ricci flat
(in fact self-dual) metrics on Zk which are asymptotic to the flat metric
on C(S3/lm) at a rate = O{r~4).

If we fix a metric g in this family, there is an Ro such that Zk\B(Ro) is
diffeomorphic, under a map F, to S3/lm x (RQ, OO) and the metric has the
form g = F*δ + A, where 5 is the flat metric on C{S3/2m) and |A(JC)| <
C|JC|~4. In particular, the function p = π2 o F : Zk\B(Ro) —• (i?θjθo) is a
strictly convex function, for i?0 sufficiently large, and the 2nd fundamental
forms II, of the hypersurfaces St = F~ι(S3/lm x {t}) satisfy |II, - I / ί | -• 0
as t —• oo.

Consider the rescaled metrics gr = (l/r2)g\Dr, where £)r is the domain
in Zk with dDr = Sr. These are Ricci flat metrics of diameter < 2 on a
manifold of fixed topological type, with dDr having 2nd fundamental form
converging to /, as r —• oo. The function p is strictly convex in this metric,
with D2p2 « 21. One may now bend, i.e., conformally deform, the metric
gr as in Proposition 3.1 to a metric of nonnegative Ricci curvature on Dr,
positive Ricci curvature near dDr, and so that dDr has 2nd fundamental
form arbitrarily close (depending on r) to zero. One may perturb the
metric near dDr, preserving positive Ricci curvature, so that dDr is then
totally geodesic. We set Mk = Dr \JdDr (-A0 for r sufficiently large, and
the perturbed metric then extends smoothly over dDr to a smooth metric
on Mk.

It follows that Ric(Mk) > 0 and diam(Aί^) < 5. Since dDr c Mk

is totally geodesic, a standard volume comparison argument shows that
the s -tubular neighborhood of dDr has volume < csγo\(dDr) < C
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This gives the bounds (3.7). Finally, since the intersection form of Mk

is congruent to that of #{ S2 x S2, Mk is homeomorphic to #λ S2 x S2,

by Freedman's theory. Similarly, we may form Nk = Dr UdDr Dr and

produce metrics with the same properties on Nk. The intersection form

of Nk is seen to be congruent to that of #x CP2, so that the spaces are

homeomorphic again by Freedman's theory.

4. Further remarks and questions

4.1. The examples in §3 begin in dimension 4, and it remains an open
question what can be said in dimension 3 regarding for instance Cheeger's
estimate under the bounds (2.1).

Theorem 2.1 implies there are only finitely many possibilities for π\ (M)
under the bounds (2.1). For 3-manifolds, π\ determines a great deal of the
topology and for instance, for irreducible, sufficiently large 3-manifolds,
7Γi determines the homeomorphism type. Nevertheless, it is not known if
there are only finitely many homotopy types or homeomorphism types of
3-manifolds satisfying (2.1).

A question related to the validity of Cheeger's estimate is the follow-
ing: Does a noncompact, complete 3-manifold M of positive Ricci cur-
vature admit a closed geodesic if the volume growth υ(r) > cr3? A result
of Schoen-Yau [12] implies that M is diffeomorphic to R3. If the sec-
tional curvature of M is nonnegative, then the answer is no, since a closed
geodesic must be contained in the soul, and this forces M to have volume
growth smaller than r3.

4.2. The examples of §3 indicate a relation between compact «-mani-
folds satisfying the bounds (2.1) and complete, noncompact Riemannian
manifolds with Ric > 0 and υ(r) > crn. One might expect that if there
are infinitely many homotopy types of compact ^-manifolds satisfying the
bounds (2.1), then there should exist a complete, noncompact ^-manifold
with Ric > 0 and v(r) > crn of infinite topological type (not homeomor-
phic to the interior of a compact manifold with boundary). One also might
expect the converse to hold. Thus we raise the following:

Question 1. Is there a complete, noncompact Riemannian manifold M
of Ric > 0, and υ(r) > crn of infinite topological type.

If one assumes the sectional curvature decays as \KM\ < cr~2, then
using Gromov's Lipschitz convergence theorem, one may show that M
must have finite topological type (this has been done independently by A.
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Kasue). If however one drops the assumption on the volume growth, then
there are examples of infinite topological type due to Sha-Yang [14].

Of course, if M is of nonnegative sectional curvature, then M is of
finite topological type (regardless of volume growth), by the soul theorem
of Cheeger-Gromoll.

A related question is the following.
Question 2. Does there exist a constant ε = ε(n) such that if Mn is a

complete, noncompact manifold of Ric > 0 and v(r) > (wn - ε)rn, then
M is contractible (or diffeomorphic to Rπ)?

Here wn is the volume of the unit n-bal\ in RΛ. One expects that an an-
swer to Question 1 implies the same answer to Question 2 and conversely.
An analogous question for compact manifolds is the following: Is there an
ε = ε(n) such that if Mn is a compact manifold with Ric > (n - 1) and
volM >wn - εn, then Mn is a homotopy sphere?
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