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EINSTEIN MANIFOLDS OF DIMENSION FIVE
WITH SMALL FIRST EIGENVALUE
OF THE DIRAC OPERATOR

TH. FRIEDRICH & 1. KATH

1. Introduction

Let M™ be a compact Einstein spin manifold with positive scalar curvature
R > 0 and denote by D: I'(S) — I'(S) the Dirac operator acting on sections
of the spinor bundle. If \; is the first eigenvalue of this operator we have
1n-R

2
> -
A1 n-—1

(see e.g. [4]). Thus, there arises the interesting problem to classify all those

Einstein spaces where the lower bound :t% ((::-TR& actually is an eigenvalue
of the Dirac operator. The corresponding eigenspinor 1 satisfies the stronger

equation
1 R
VXU =F o amen Y

(see e.g. [4]) and these spinors are sometimes called Killing spinors (see e.g.
[9], [16]). In case n = 4 the only possible manifold is M* = S* (see e.g. [5]).

In dimension six each solution of the equation Dy = %\/ (6 - R)/5¢ defines
a (nonintegrable) almost complex structure (see e.g. [8]). Furthermore, the
assumption that £3+/(n- R)/(n — 1) is an eigenvalue of the Dirac operator
imposes algebraic conditions on the Weyl tensor of the space (see e.g. [5])
as well as on the covariant derivative of the curvature tensor and the har-
monic forms on M™ (see e.g. [9]). On the other hand, in the dimensions
5,6,7 examples of Einstein spaces different from the sphere are known for
which +1+/(n-R)/(n —1) is an eigenvalue of the Dirac operator (see e.g.
(4], [7], [17]). Moreover, if M™ is a Kéhler manifold, K.D. Kirchberg proved
the stronger inequality A? > X(n + 2)R/n (see e.g. [12]) and solved in the
complex dimension n/2 = 3 the corresponding classification problem (see e.g.
[13]); the only possible Einstein-Kahler spaces of complex dimension three

realizing /2R as an eigenvalue of the Dirac operator are P?(C) and F(1,2)
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with their canonical metrics. The aim of this paper is to study the above men-
tioned classification problem in the case of 5-dimensional real Einstein spaces.
First of all we prove that any solution of the equation Dy = :i:%\/5R1,b defines
an Einstein-Sasaki structure on M5. Conversely, if M? is a simply-connected
Einstein-Sasaki space then the equation under consideration has a nontrivial
solution. In the next step we classify all regular contact metric structures aris-
ing from a nontrivial solution of the equation Dy = %\/@w. The regularity
assumption implies that M5 is a fiber bundle over a four-dimensional Einstein-
Kihler manifold X* with positive scalar curvature. Therefore, we know the
possible X* (= S% x S2, P2(C) or the del Pezzo surfaces P 3 < k < 8)
as well as the topological type of the fibration 7: M® — X*. In particular,
if M?® is a simply-connected, compact 5-dimensional Einstein spin manifold
such that Dy — %\/S_Ew admits a nontrivial solution and the corresponding
Sasaki structure is regular, then M3 is isometric to the sphere S°, or to the
Stiefel manifold V4 2 with the Einstein metric considered in [11], [4], or M5 is
the simply-connected S*-bundle with Chern class ¢} = ¢;(Px) over one of the
del Pezzo surfaces Py, (3 < k < 8). In the last case M? is diffeomorphic to the
connected sum M35 ~ (S% x S%)# .- #(S? x S2) and there is a one-to-one
correspondence between Killing spinors on M5 and Einstein-Kahler metrics
on the del Pezzo surface P;. The existence of Einstein-Kahler structures on
Py has been recently proved by Tian and Yau (see [21], [22]).

2. Einstein-Sasaki manifolds in dimension 5

We introduce some notation concerning contact structures. A general ref-
erence is [3]. A contact metric structure on a manifold M3 consists of a 1-form
n, a vector field £, a (1,1)-tensor ¢ and a Riemannian metric g such that the
following conditions are satisfied:

(a) n A (dn)* #0.

(b) n(§) =1, p(&) =0.

() p!=-Id+nQE.

(d) 9(p(X), o(Y)) = 9(X,Y) — n(X)n(Y).

(e) dn(X,Y) = 2¢(X,p(Y)) with dn(X,Y) = X(n(Y)) - Y(n(X)) -
n[X,Y].

Formal consequences of conditions (b) and (d) are the equations n(X) =
9(X, €),p(§) = 0.

In case ¢ is a Killing vector field we call the given structure on M?® a
K-contact structure. This is equivalent to

(f) Vx§ = —p(X).
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A Sasaki manifold is a K-contact structure satisfying the integrability con-

dition
[e,0] +dné =0
or, equivalently,

(8) (Vxp)(Y) =g(X,Y)¢ —n(Y)X.

The curvature tensor of a Sasaki manifold commutes with ¢ and has the
following special property:

R(X,Y)& = n(Y)X — n(X)Y.
In particular, if M?® is a 5-dimensional Einstein-Sasaki manifold we obtain
for the scalar curvature the value R = 20, and the Weyl tensor W satisfies
W(X,Y)¢ = 0. Denote by T" C T(M?) the bundle of all vectors orthogonal
to €. According to W(X,Y )& = 0 we can consider the Weyl tensor of M?® as
a linear transformation
w: N — N\,

T" is an oriented 4-dimensional bundle and, consequently, we have the al-
gebraic Hodge operator *: A%(T") — A*(T"), obviously different from the
Hodge operator of M.

Proposition 1. Let (M5;p,£,n,9) be a 5-dimensional Einstein-Sasaki
manifold. Denote by W: A*(T") — A%(T") the Weyl tensor on the hori-
zontal bundle. Then W is anti-selfdual with respect to the algebraic Hodge
operator of the bundle T, i.e. *+W = -W.

Proof. We fix an orthonormal basis e;,e2 = p(e;), e3,e4 = p(e3) in Th.
By the rule (X AY) = p(X)Ap(Y), ¢ acts on A*(T") = /\i(T")@/\i (T™)
and we see immediately that in the basis {e; Aea+e3Aeq,e1 Aes—eaAes,e1 A
es+ea Neg} of /\i(T") the matrix representation of ¢ is given by

1 0 0
p=]10 -1 0].
0 0 -1

Since the curvature tensor commutes with the transformation ¢ in a Sasaki
manifold, the Weyl tensor W: A*(T") — A*(T*) also commutes with .
Consequently, we obtain for W.: A (T*) — A%(T") the matrix representa-
tion

A0 0
W,=[0 B D
0 D C

with
A =Wig12 + 2Wi234 + Wagas, B = Wi313 — 2Wi324 + Waga4,
C = Wig14 + 2W 423 + Wazas, D = —2(Wa414 + Wa423).
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We prove A = B=C = D = 0, In fact, since M® is an Einstein space with
scalar curvature R = 20, we have
Wig12 = Ri212 +1, Waqzq = Raqza +1, Wizzq = Ri234,
and taking into account Rys51 = 1 (e5 = €) we obtain
A = Ri212 + R3434 + 2R1234 +2
= (—Ri221 — R1331 — Ria41 — Riss1)
+ (—R4114 — R4224 — R4334 — Ras54)
+ Ri331 + Ri441 + Ra114 + Ra224 + 2R1234 + 4
= — Ry1 — Ryq +2(R1331 + R1441 + Ri1234) +4
= — 8+ 2(Ry1331 + Ri441 + Ri234) + 4.
The Muskal-Okumara lemma (see e.g. [3, p. 93]) now yields
Ri234 + Ri331 + R1441 = —dn(es, es)g(e1, €1) = —2g(es, p(es)) =2

and we finally have A = 0. In the same way we prove B = C = 0. Finally, we
calculate D—using once again the Einstein equation and the Muskal-Okumara
formula—

D = —2(Wa414 + Wag23) = —2(R2414 + R2423) = 0.

3. The SU(2)-reduction defined by a nonvanishing spinor

Consider the group Spin(5) and its complex spinor representation «: Spin(5)
— GL(As5). Spin(5) acts transitively on the 7-dimensional sphere S(As) =
{# € As: || = 1}. The isotropy group H(%) of a fixed spinor ¥ # 0
is a subgroup H (¥) c Spin(5) which projects one-to-one onto a subgroup
H () € SO(5) which is conjugate to SU(2) C SO(5). We fix an orthonormal
basis €1, ,e5 in RS and identify As with C? ® C2. Let us introduce the
basis u(e;,€2) in A5 (see e.g. [4]):

. 1 1
u(e1,€2) = u(e1) @ (e2), with u(1) = (—i)’ u(-1)= (z)
Denote by g1, g2 and T the matrices
i 0 0 ¢ 0 -1
1=lo =) #=\i o) T799={1 o)
The Clifford multiplication of a vector by a spinor is then defined by

e1=1®g;, e2=IQgs, e3=19:1®T,
e4=192T, es=—1TQRT.
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The Lie algebra h of the isotropy group of the spinor 1 = u(1,1) is given by
b= {aespin(5): a-u(l,1) = 0}

- Z wioeie,: W12 Twse =0 wig+ w3 =0
= i7€i€5 : _ _ _ _ _ _ .
1<iTi<s w13 — w24 =0 w15 = wos = w3s = wys =0

Using this concrete realization of the spin-representation one immediately
proves

Lemma 1. (a) Let ¥1,%2 € S(As) be two orthogonal spinors of length
one and suppose that for the corresponding Lie algebras h(w1) Nh(w2) # {0}.
Then for each vector X € R5 it holds that

(d’laX * ¢2) = 0,

where X -1y denotes the Clifford multiplication of the vector X by the spinor
¥2.

(b) For each spinor 1 # 0 there exists a unique vector ¢ € R® of length
one such that £ - ¢ = 1.

Denote by 7: @ — M?® the frame bundle of the oriented Riemannian man-
ifold (M3, g) and let 7: P — M? be a spin-structure. If 9 € T'(S) is a section
of length one in the spinor-bundle S = P X, As, then we consider

P°= {p € P: %((p)) = [p,u(1,1)]}.
Since Spin(5) acts transitively on S(As) with isotropy group H (o) = SU(2),
PO is a SU(2)-principal fiber bundle over M5. Denote by A: P — Q the two-
fold covering of the spin structure over the frame bundle. Then A| po: P? —
A(P%) = Q° is bijective and, consequently, we obtain an SU(2)-reduction
Q° C Q of the frame bundle Q. We now investigate the topological type of this
reduction in the case that M® is simply-connected. The classifying space of
the group SU(2) = Sp(1) is P> (H), a CW-complex of the type e®Ue?UeBU- - - .
Since M? is a 5-dimensional CW-complex we see that the isomorphy classes
of SU(2)-bundles over M® correspond to the set [M5, P®(H)] = [M®,S4].
Using the classification theorem of Steenrod (see e.g. [18]) we obtain
5(0f5.
;54 = U2
Sq°u.H3(M?5; Z)

where p.: H3(M3;Z) — H3(MS5; Z,) is the Zy-reduction and Sq> denotes
the second Steenrod square. Since M3 is a spin-manifold its second Stiefel-
Whitney class vanishes and, consequently, (look, for example, into the Wu-
formula!) Sq? = 0. Therefore, on a 5-dimensional, compact, simply-connected
spin-manifold M3 there are precisely two SU(2)-principal fiber bundles:

[M5,8%] = HY(M?®; Z,) = Z,.
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Theorem 1. Let M® be a 5-dimensional, compact simply-connected spin-
manifold with a nowhere vanishing spinor field ¢ € T'(S). Then the following
conditions are equivalent:

(1) QO is the trivial SU(2)-principal fiber bundle.

(2) The subbundle T" = Q° xgy(2) R* C TM? is trivial.

(3) M3 is parallelizable.

(4) dim Hy(M?®; Z3) = 1 mod 2.

On the other hand Q° is a nontrivial SU(2)-principal fiber bundle if and
only if dim Hy(M?3; Z2) = 0 mod 2.

Proof. The implications (1)=(2)=>(3) are trivial, (3) = (4) follows from
classical results concerning vector fields on spin-manifolds (see [20]). Sup-
pose now that dim Hy(M®; Z;) = 1 mod2 and fix a point mg € M®. The
space M3\{mg} has the homotopy type of a 4-dimensional CW-complex and
m1(M?®) = 0 implies H*(M®\{mo}; Z) = 0. Using the Hopf Classification
Theorem we obtain

[M*\{mo}; P*(H)] = [M°\{mo}; $*] = H*(M°\{mo}; Z) = 0.

This means that the bundle QO is trivial over M5\{mg}. Consider a section
X* = (X1, -+ ,Xs) in Q° over M3\{mo}. The index Ind(X*) is an element
of m4(SU(2)) = Z,. Furthermore, if Ind(X*) = 0 then QO is a trivial bundle
over M5. We calculate the index of X* in the following way: Look at the pair
(X1, X2) of vector fields on M3\{mg} and its index Ind(X;, X2) € m4(Vs,2) =
Z3. An easy homotopy argument shows that the map f: SU(2) — SO(4) —
SO(5) — V5,2 = SO(5)/SO(2) induces an isomorphism fg: m4(SU(2)) —
m4(Vs,2). Consequently, Ind(X*) vanishes in m4(SU(2)) if and only if
Ind(X;,X2) vanishes in m4(V5,2). Now the index of a pair of vector fields
with isolated singularities is well known (see e.g. [20]):

2
Ind(X1, X) = Y dim Hy(M®; Z,)
i=0
=1+dim Hy(M%;Z;) mod?2.
This proves the implication (4) = (1).
Remark. Using similar techniques one can show that in case the SU(2)-

reduction Q° C Q is nontrivial it does not admit a reduction to the subgroup
U(1) C SU(2).

4. The Einstein-Sasaki structure defined by a Killing spinor

Let 9 € I'(S) be an eigenspinor of the Dirac operator corresponding to the
eigenvalue :E% 5R on a compact, 5-dimensional Einstein spin-manifold M?®
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with positive scalar curvature R,

Dy = :t%\/SRw.
Then ¢ satisfies a stronger equation, namely
VR
Vxyp=F—=X -1,
xY=7F 5 (

where X - 9 denotes the Clifford multiplication of the vector X by the spinor
% (see e.g. [4]). Such spinor fields are sometimes called Killing spinors (see
e.g. [9]). It is well known that the length [¢| of 9 is constant.

Denote by E C L%(S) the eigenspace of the Dirac operator corresponding
to the eigenvalues :I:%\/S_R, respectively.

Proposition 2. If M3 is not conformally flat then dim E4 < 1.

Proof. Suppose we have two solutions 1,9 satisfying

1
Vx; = ——=VRX -¢;  (i=1,2).
sz 4\/5 '(»b ( )
Without loss of generality we can assume that (¢1,12) = 0 since X (¢1,2) =
(Vx1,%2) + (%1, Vxipe) = 0.

Fix a point mg € M?® such that the Weyl tensor does not vanish at mq.
Then we have for any 2-form n? € A2

W(n?) -1 =0 =W(n?) - s,

where W: A2(TM®) — A*(TM?®) is the Weyl tensor (see e.g. [5]). Since
W # 0 at mg we apply Lemma 1 and conclude (¢1,X - 92) = 0 for any
vector X € Ty,,(M5). Consider a local frame s = (sy,--- ,85) in the SU(2)-
bundle Q° C Q corresponding to v; as well as the section s* in the reduction
PO of the spin-structure P. Then we have (locally) ¥; = [s*,u(1,1)] and
(11, X - 93) = 0 for each vector X implies ¥ = [s*,2 - u(—1,—-1)] with a
complex valued function z. Consequently, we obtain

1 1
Vxts =5 > wi(X)eseju(l,1) = —m\/ﬁx ~u(1,1),
1<y

1
Ve = dz(X) -u(-1,-1) + 3 ;, wij(X)eieju(—1,-1)

1
= —m\/}_%X-u(—l,—l),

where w;; are the connection forms of the Riemannian manifold M ® with
respect to the frame s. Using the formulas for the Clifford multiplication
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given above we conclude in particular (X = s1)

1
lm\/}_z,
— wys(81) — fwas(s1) = Zﬁg\/f_ﬁ,

—wys(81) +twas(s1) =1

thus a contradiction.
Remark. Consider a Killing spinor ¢ with

_ __VR
Vxt$h=AX -9 (A_im)

and the corresponding SU(2)-reduction Q° of the frame bundle Q. If s is a
local section in Q° we have

1
3 Y wij(X)eieju(1,1) = AX - u(l, 1).
i<j
Denote by o!,---,0% the dual frame to s;,---,85. Then an algebraic calcu-
lation yields the following formulas:

w12 + W3g = 2/\05, wig — weg =0, wig4 + wos =0,
wis = —200%, w5 = 2\0t, w35 = —2A0?, wss = 2A\0°.

We consider now an Einstein space (M?®,g) such that R = 20 as well as a
Killing spinor 1 satisfying Vxv¢ = —%X - 1. According to Lemma 1 there
exists a unique vector field £ of length one such that € - = 2. Furthermore,
we define a 1-form 7 by n(X) = (X - ¢,%)/7 and a (1,1)-tensor p := —V¢.

Theorem 2. Let (M3, g) be an Einstein space with scalar curvature R =
20 and Killing spinor . Then (M®;p, £,n,g) is an Einstein-Sasaki manifold.

Proof. We must check the conditions (a)-(g) defining a Sasaki structure
in our situation. For the local calculations we choose a frame s in the SU(2)-
reduction. We have

dn(X,Y) = HX(Y,9) = Y(X0,9) = (IX, YI¥,9)
= Y Vx9,9) + (Y9, Vx9) — (XTr9,9) - (X9, Vr9)}
= 1 ((YX = XY),9)

and, consequently,
dn = 2(c' Ao? + 0% Ao?).
This implies immediately

n Adn Adn = 8dM°.
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The equation 7(§) = 1 follows directly from the definition of ¢ and 7. We
differentiate the equation £ - 3 = 73 and obtain

(Vx€) ¢+ EVxy =iVxy
~p(X) %~ 36Xt =~ X 4.

In particular we have ©(X)y = ¢X - 4 for each X orthogonal to £. Replacing
X by ©(X) we have

~p*(X) % = 3E0(X) = ~30(X) 9.

Combining the last two equations we obtain
1 .
—0*(X) 9 - 5(X +1EX)$ = 0.

If X is parallel to ¢ it follows that ©?(X)-% = 0 and, consequently, ©?(X) = 0.
If X is orthogonal to £ we have (X +i6X)y = 2(X—i X&)y = H(X—?X)y =
X -y and

{P*(X)+X}-¥=0.

The last formula implies ¢%(X) = —X in case X is orthogonal to £. Summing
up we proved p? = -Id +n ® £.

We prove now that ¢ is a Killing vector field, i.e. ¢ is antisymmetric. We
already know

P(X) ¥+ EXY = 1 X 4.
We multiply by Y - ¢ from the right and left side:
(X)W, Y - 9) + S(EX0,Y¥) = *(Xy, Y9),
(Y, 0(X)) + 5 (Y, EXY) = ~ > (¥, X¥).
Taking into account Y - p(X) + o(X) - Y = —2g(Y, o(X)) we obtain
20(Y, (X)) [¥I* + Re((6X¥,Y¥)) = ~Im(X, Y ¢)).

Finally we remark that the real part of (£X1,Y ) and the imaginary part of
(X4, Y1) are antisymmetric in X and Y. It follows that

9(Y, (X)) = —g(X, o(Y)),

i.e. £ is a Killing vector field.
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The equation g(p(X),p(Y)) = ¢(X,Y) — n(X)n(Y) is now a formal con-
sequence of some formulas we already proved:
9(p(X),p(Y)) = —g(p*(X),Y)
=—g(-X +n(X)¢,Y) =g(X,Y) —n(X)g(£,Y)
=9(X,Y) = n(X)n(Y).
We prove the property dn(X,Y) = 2¢(X, o(Y))—using the fact that £ is a
Killing field—as follows:
dn(X,Y) = Xn(Y) - Yn(X) - n[X, Y]
=Xg(&Y)-Yg(&§X) —9(&[X,Y]) = 9(Vx&,Y) — 9(Vy§ X)
= —g(p(X),Y) + g(X, p(Y)) = 29(X, p(Y)).
It remains to prove the integrability condition (Vyp)(X) = ¢(X,Y)€ —
n(X)Y. We again start with o(X) - ¢ = 3(¢X — £€X) - ¢ and differentiate
this equation:
Vy(e(X)) 9= 30(X)Y¢ = 3((VyX = Vy& X — EVy X) -9
+ 16X - €X)(-1Y ).
On the other hand we have
o(VyX)y = ;(1Vy X — EVy X)y.
This implies

2

First of all we consider the case that X and Y are orthogonal to £&. Then
(EXY —iXY)Y =0and o(X) - = %(iX — €X)Y = 1X7. In this situation
we have

(Vye)(X)y = 3{p(X)Y + p(Y)X}¥

= 2{=¥p(X) ~ 29(¥,p(X)) ~ Xe(¥) ~ 29(X, o(¥))}¥
= (=YX —iXV}$ = g(X,Y )69
and finally (Vyp)(X) = g(X,Y)¢.
The second case we want to consider is X = £. Then
(Vye)(X) = Vy (0(€)) — 0(Vy ) = 0*(Y) = =Y +n(Y)¢
IfY = £ we have

{€XY —iXY}p = {-XE —i XY ={X + X} =2X -9,

(Vyo)(X) -9 = % {so(X)Y +p(Y)X + M} 0.
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(X orthogonal to &) and it follows that
(Vyo)(X) ¥ = 3{p(X)€ + X} = 3{ip(X) + X} = ;{i’X + X}y = 0.
The last equation implies

(Vep)(X) =0=g(&, X)€ —n(X)€

for each X orthogonal to €. Last but not least we consider the case X =Y = €.
Then we have

(Vep)(€) = Ve(p(8)) — (Veé)
=0-p?(§) =0=g(& €€ —n(&)¢

and the integrability condition is proved.

Remark 1. The existence of a Killing spinor 1) imposes algebraic condi-
tions on the Weyl tensor W, namely W (n?) - 4 = 0 for any 2-forms n?. In the
case of dimension five this implies

Z Wi]-eieju(l, 1) =0.
1<i<5<5

Taking into account the structure of the Lie algebra h described in 83 we
conclude

Wis + W34 =0, Wiz —Wz =0, Wis+Wy3=0, W;5=0,
and this is precisely the anti-selfduality condition for the Weyl tensor
we N - N\,
which is satisfied automatically in any Einstein-Sasaki space (Proposition 1).

Remark 2. Using the properties of the Sasaki structure we have in par-
ticular for the Lie-derivative:

Zn=0, Z(dn) =0, Fp=0.

Remark 3. Obviously, if we start with a spinor satisfying Vxv¢ = %X X
we obtain in the same way an Einstein-Sasaki structure.

5. A simply-connected Einstein-Sasaki manifold
admits a Killing spinor

Theorem 3. Let (M5;p,&,n,9) be a simply-connected Einstein-Sasaki
manifold, with spin-structure. Then the equations Vxi = :i:%X - ¢ have
nontrivial solutions.
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Proof. Consider the subbundle E of the spinor bundle S defined by

E={¢€S: &)=, {20(X) + X —iX}p=0
for each vector X € TM°}.
Using the algebraic description of A5 given above it is easy to see that E is a

1-dimensional complex subbundle of S. We introduce a covariant derivative
V:T(E) - T(T* @ E) in E by the formula

Vxt=Vxp+1iX- 9.

First of all we must prove that ¥V x1 is a section in E if v belongs to I'(E).
Suppose that £y =iy and {2p(X) + €X —iX}9 = 0. Then

Vy& v+ EVyy =iVyy,
Vyép+ € (Vv + YY) — 36Yy =i(Vy + Y 9) — 3iY9,
$@VyE— €Y +iY)y + £(Vyy) = i(Vyy).
Since we have a Sasaki structure it holds that Vy & = —p(Y). 9 is a section
in E. This implies
E(Vyy) =i(Vyy).

In the same way we prove the second algebraic condition for Vy1. We dif-
ferentiate the equation

{20(X) +£6X —iX}y =0

with respect to Y and we use the Sasaki conditions ¢ = —V¢, (Vyp)(X) =
9(X,Y)€é — n(X)Y. After some obvious calculations we obtain

XY —iXY
{116 - 2000¥ - o0)x - g0y - LT Ly
+ {20(X) + €X —iX}Vyy =0.
The first term vanishes. Consider for example the case that X and Y are
orthogonal to £. Then we have {£XY — 1 XY }4 = 0 with respect to &y =iy
and, consequently, the first term reduces to

{20(X,Y)€ - p(Y)X — o(X)Y }9
={29(X,Y)i + (29(p(Y), X) + Xo(Y)) + (29(p(X),Y) + Yo(X)) }¥
={29(X,Y)i+ Xp(Y) + Y(X)}9.

Since 7 is a section in E, we have

{20(X) + €X — X} =0.
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If X is orthogonal to & we obtain
o(X) 9 =iX -y
The first term mentioned above thus eventually reduces to
{29(X,Y)i +iXY +3iY X} = 2i{g(X,Y) — g(X,Y )} = 0.

We handle the cases where X or Y is parallel to ¢ in the same way. Then we
obtain

{20(X) + £X —iX}Vyy =0,
i.e. 6)/1/) is a section in E.

The calculation of the curvature tensor R of the connection V in the bundle
E yields the formula

R(X,Y)¥ = (VxVy ~ Vy Vx — Vixy )9 + 3 (XY — Y X}y

L 1
=3 (E Rxyijeie; + XY — YX) P = 7 EWXYijeiCj "

1,5 3]
with the Weyl tensor W. Here we use the formula
Wijke = Rijke + (6ikbje — biebjk)

valid in a 5-dimensional Einstein space with scalar curvature R = 20. Since
M? is an Einstein-Sasaki manifold, we have W (&, X) = 0 and we obtain

4
BX,YW=1Y e WX, Vi,
t=1

where {e;,ez,€3,64} is a frame in T* orthogonal to £. A simple algebraic
calculation—using Proposition 1, i.e. *W = —W in A?(T"*)—now shows

R(X,Y)y=0, v eTl(E).

Consequently, (E, V) is a flat 1-dimensional bundle over a simply-connected
manifold M3. Thus there exists a V-parallel section ¢ in E, i.e. a spinor field
satisfying the equation Vxy = —1X - ¢.

Remark. The same procedure allows us to construct a solution of the
equation Vxo = +3X - 4.

Corollary. In case M® is simply-connected we have dimE; = dimE_,
where Ex C L%(S) is the eigenspace of the Dirac operator corresponding to
the eigenvalue +3v/5R.
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6. The classification of compact Einstein spin-manifolds
admitting a Killing spinor with regular contact structure

A Sasaki manifold (M®; o, £,, g) is called regular if all integral curves of §
are closed and have the same length L (see e.g. [3]). In this situation we have
an Sl-action on M3 and the orbit space is a 4-dimensional manifold X*. The
projection m: M® — X* is a principal S'-bundle and 27in/L: TM® — R-i =
G! is a connection in this bundle. Since %g =0 and Fp =0, X* admits a
Riemannian metric and an almost complex structure which is integrable (see
e.g. [3]). Denote by Q the Kihler form of X*. Then

X, Y) = g(X, p(Y)) = %dn(Xv Y)

and we conclude dQ? = 0, i.e. X* is a Kihler manifold. Suppose now in
addition that M?® is an Einstein-Sasaki space. The O’Neill formulas yield
that X* is an Einstein-Kihler manifold with scalar curvature ® = gR = 24.
Consequently, X* is analytically isomorphic to S x $2, P%(C) or to one of
the del Pezzo surfaces Py (3 < k < 8; Py is the surface obtained by blowing
up k points in general position in P?(C), see e.g. [2]). Next we study the
topological type of the S!-fiber bundle 7: M5 — X*. The curvature form
of the connection 27in/L is O* = (2ni/L)dn. Consequently, the Chern class
¢} € H(X* R) is given by ¢} = Q*/2mi = dn/L. On the other hand, since
X* is an Einstein-Kéhler manifold its Chern class is given by the Ricci form

1 R 3 3 3L
= Q o= — —{)l= —{) = — = —c*
e =pic = 57 70 =20=grdn=5d
and we obtain the relation 3L
1= Ec’{

between the Chern class ¢; of X* and the Chern class ¢} of the S'-bundle
m: M5 — X% X* is simply connected. We now apply the Thom-Gysin
sequence of the fibration m: M® — X* and conclude:

(a) HY(M5;Z) = 0 (since c} # 0).

(b) HY(M?®; Z) = H4(X*; Z)/c; UH*(X%; 2).

(€) 0 = wa(M®) = m*wy(X?). If wa(X?) # 0 then ¢ = wy(X?)
= c; mod 2.

In case wy(X*) # 0 the spin structure of M® implies an additional condi-
tion, namely

: (1 - 2—2) c1(X*) € HA(X; Z).

(d) The Killing spinor 1 on M® defines an SU(2)-reduction Q° of the frame
bundle. Consequently, we have an isomorphism

W‘TCX4 — Th — QO XSU(‘L’) C2
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of 2-dimensional complex vector bundles. This isomorphism yields 7*c; (X*) =
0 because the first Chern class of any SU(2)-bundle vanishes. The Thom-
Gysin sequence imposes a further restriction: ¢;/c} € Z.

We now classify all possible Einstein spaces M?.

First case: X* = P?(C). If X* is analytically isomorphic to P?(C) and
admits an Einstein-Kihler metric then X* is analytically isometric to P?(C)
(see e.g. [15]). The cohomology algebra H*(P?(C)) is isomorphic to Z[a]/(a®)
and the first Chern class is given by the ¢; = 3a, o € H?(P?(C)). Using
the restrictions (c) and (d) stated above we have two possibilities for the
Chern class ¢} = o, 3a with 7 (M%) = H*(M®) = 0, Z3 and L = 2m,27/3.
Since we know the curvature tensor of P?(C) as well as the curvature form
0* = (2mi/L)dn = 47iQ/L of the Riemannian submersion m: M® — X* we
can apply the O’Neill formulas again and conclude that M3 is conformally
flat. Consequently, M3 is isometric to S° in case ¢} = a and isometric to
85/Z3 in case ¢} = 3a. P%(C) is a homogeneous Einstein-Kihler manifold.
A simple geometric argument shows that we can lift the isometries of P%(C)
to isometries of M®, i.e. M = S§5/Z; is the homogeneous space of constant
curvature one and fundamental group m; (M5) = Z.

Second case: X* = §% x S%. Suppose that X* is analytically isomorphic
to 2 x §2 = G459 = Q; = the Klein quadric in P3(C). Moreover, X*
has an Einstein-Kahler metric with positive scalar curvature. Then the Lie
algebra b of all holomorphic vector fields on X* is the complexification of
the Lie algebra i of all Killing vector fields (see [14]) and we conclude that
dimgi = dimc h = 6, i.e. X* admits a 6-dimensional group of isometries. We
now apply a result of L. Berard Bergery (see e.g. [1]) stating in our situation
that X4 is a symmetric Einstein-Kihler structure on S2 x S2. Consequently,
X4 is analytically isometric to S x S2. The cohomology algebra of §% x §2 is
H*(S8? x 8?) = A(a, §) and its first Chern class is given by ¢; = 2(a+ ). We
again have two possibilities ¢} = (a+8), 2(a+8) with 71 (M®) = H4(M?5) =0,
Zy and L = 4m/3,27/3.

Now we study the geometry of the Riemannian submersion 7: M® — X*
and conclude that M? is isometric to the Stiefel manifold V4 2 or to V42| Z,
with the Einstein metric considered in [11]. The calculation in [4] shows that
this space admits a nontrivial Killing spinor.

Third case: X* = P,. If X* is analytically isomorphic to a del Pezzo
surface Py (3 < k < 8) there is only one possibility for M®, namely the
simply-connected S!-fiber bundle over P;. Indeed, the cohomology algebra
of Py is generated by elements o, E,--- ,Ex € H?(Py) and the first Chern
class is given by

c1(Px)=3a+E;+---+ Eg
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(see e.g. [2]). Using the restriction for ¢} given above we see that there remains
only one possibility,
ci=3a+E + - +Eg

with my (M%) = H4(M5) = H*(P;)/c; U H*(P;) = 0.

Summing up we proved the following

Theorem 4. Let (M3, g) be an Einstein space with Killing spinor ¢ and
scalar curvature R = 20. Suppose in addition that the associated contact
structure 18 regular. Then there are three possibilities:

(1) M5 is isometric to S° or S°/Z3 with the homogeneous metric of con-
stant curvature.

(2) M? is isometric to the Stiefel manifold Va9 or Vy2/Zs with the Einstein
metric considered in [11],[4].

(3) M3 is diffeomorphic to the simply-connected S*-fiber bundle with Chern
class ¢} = c1(Px) over a del Pezzo surface P (3 <k < 8).

Remark. S. Sulanke (see [19]) classified all spaces S5 /T of constant cur-
vature with a Killing spinor. It turned out that except for the case S%/Z; all
other examples defined a nonregular contact structure. The integral curves
of ¢ are all closed but have different length. It seems to be interesting, us-
ing higher-dimensional Seifert-fibrations, to classify all Einstein spaces with
Killing spinors such that the integral curves are closed, but with different
length. The orbit space X4 in this case is smooth except for a finite number
of points.
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