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THE STABLE TOPOLOGY
OF SELF-DUAL MODULI SPACES
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1. Introduction

Let M be a compact, oriented, Riemannian 4-manifold, and let G be a
compact, simple Lie group. Consider a principal G-bundle, P —• M. Let
$/{P) denote the space of all smooth connections on P and let 2?{P) denote
the space of smooth automorphisms of P. The group &(P) acts on J/(P),
but not always freely. However, &{P) does act freely on P\x x srf(P), with
x E M a fixed point; the quotient 3&'{P) = [P\x x sf(P))/&(P) defines a
principal 2?{P)-bundle. The space &'(P) has the weak homotopy type of the
space Mapsp(M, BG) of smooth, based maps from M into BG (the classifying
space for the group G) which pull-back the bundle P.

There exists a set of fiducial connections on P; these being the connections
whose curvature 2-form is self-dual with respect to the Hodge star of the
Riemannian metric (see, e.g., [2] or [13]). This set, m(P), will be nonempty
if the first Pontrj agin number of the associated bundle AdP = P XAUG 9
is sufficiently positive (g denotes the Lie algebra of G). If said Pontrjagin
number, pi(AdP), is negative, then m(P) will be empty.

As m(P) is invariant under the action of «^(P), the quotient, Wl'(P) =
(P| x x m(P))/«^(P) can be taken. Typically, the space OT'(P) sits in £B'(P)
as a real algebraic variety. When P and P' are isomorphic principal bundles,
there are natural identifications of&'(P) and 3§'{P1) which identify OJt'(P)

Simon Donaldson ([8], [9], [11], [12]) defined from 9Jl'(P) an equivariant ho-
mology class in £§'{P) (under that action of G/Center(G) which is induced
by the action of G on P\ x). Suitably defined, this class is independent of the
original choice of Riemannian metric on M and so depends only on the differ-
ential structure on M. Donaldson proved that there is a well-defined pairing
oϊTV(P) with suitable equivariant cocycles in H*(&'(P)). He (and now oth-
ers) have exploited this discovery to build a profound and powerful tool with
which to investigate the differential topology of 4-dimensional manifolds.
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Donaldson's program indicates that the inclusion map

(1.1) i:ίW(P)->,δg"(P)

induces a map of the respective homology and homotopy groups which is well
worth studying.

When M is the 4-sphere with its standard metric, the effect of the map i
on homology was first studied by Atiyah and Jones [3] who established that
for G = SU(2), the induced map ύ on homology maps onto the homology of
&'{P) up to a dimension which depends on the Pontrjagin number of AdP,
and which increases as this Pontrjagin number gets large. Recently, Boyer and
Mann [6] have obtained additional information on the homology of 9Jΐ'(P) and
the map ύ for P —• S4 a principal SU(2)-bundle. Their results were obtained
by defining and studying homology loop sum operations on a countable, dis-
joint union, {Jk9R'(Pk), where Pk —• S4 is a principal SU(2)-bundle with
4 k equaling the first Pontrjagin number of AdP. Frances Kirwan, using
her technology for studying symplectic quotients [15], and Graham Segal [19],
using techniques from analytic loop groups, have also studied the map ύ for
P —> S4 a principal G-bundle.

Still unproved is the eight-year-old conjecture of Atiyah and Jones; that the
map 2* is an isomorphism on the respective #-dimensional homotopy groups
for all q less than some q(k) with q(k) increasing with the instanton number
k. However, Boyer and Mann have shown that q(k) < k.

The purpose of this article is to study the map ύ in the general context
where M is not restricted to be S4 with its standard metric, and where G is
not restricted to be SU(2). The first result of this study is

Theorem 1. Let M be a compact, connected, oriented, Riemannian 4-
manifold, and let G be a simple, connected Lie group. Fix an integer q < oo.
Then, there exists m(q) < oo with the following significance: Let P -* M be a
principal G-bundle with pi(AdP) > m(q). Then the inclusion map i of (1.1)
induces an epimorphism on the respective homology and homotopy groups in
all dimensions less than or equal to q.

The principal G-bundles over a compact, oriented 4-manifold are classified
up to isomorphism by two characteristic classes. The first is the Pontrjagin
number, pχ(AdP). The second is a class, η{P) G H2(M,π1(G)). When
Pi(AdP) = k and η{P) = η, it is convenient to denote &'(P). by &'{k,η)
and WV(P) by 9Tί'(A;, η) in order to stress the fact that these spaces depend
only on the isomorphism class of P.

In §4, a positive constant c(G) (c(SU(2)) = 4) and natural homotopy equiv-
alences between <3?'(k,η) and 38*(k + c(G),η) are described. (These maps
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are the gluing maps which were introduced in [21] and exploited in [20]; see
also §4 of [22].)

Theorem 2. Let G be a compact, simple Lie group, and let M be a
compact, connected, oriented Riemannian 4-manifold. Let (A;, η) be charac-
teristic classes for a principal G-bundle over M for which UJV(k,η) is not
empty. There exists j(k) > 0 such that for any j > j(k), VJl'(k + c(G) j,η)
is nonempty, and there exists a map of pairs

T(j,k): (^\k,η),ΐΰϊ{k,η)) -+ {<%'{k + c{G) j,η), W(k + c(G) j,η))

with the following properties:
(1) T(j, k): 38'[k, η) -• < '̂(fc + c{G) j , η) is a homotopy equivalence.
(2) Ifji > j(k) and if j 2 > j{k + c{G) j \ ) , then T(j2 +ji,k) is homotopic

to T(y2, k + c(G) jι) o T(jι,k) as maps of pairs

(3) Let z G π4&'{k,η),m'(k,η)) or z G H*(&'(k,η),ΰJl'{k,η)). There
exists J(z) > j(k) such that for all j > J{z), T(k,j)*{z) = 0 in

or

When the metric on TM is assumed to be generic in a suitable sense (see
§7), Theorem 2 can be strengthened; the reader is referred to §7. The proofs of
Theorems 1 and 2 are outlined in the next section, and occupy the remainder
of this article.

Theorem 2 can be restated as a topological "stability" assertion. For this
purpose, use the set of maps {T(fc,y)} of Theorem 2 to define the obvious
direct limits of pairs:

(1.2) 0$g"(oo, η), 9Jl;(oo, η)) = dir lim(^(A:, r/)OT'(fc, η)).
k—•oo

Since each T(k,j) is a homotopy equivalence, the space ^ '(oo,^) has the
weak homotopy type of any 38'(k, η) with finite k.

Theorem 2*. Let G be a compact, simple Lie group, and let M be a
compact, oriented Riemannian A-manifold. Let (A:, η) be characteristic classes
for a principal G-bundle over M. Using the set of maps {T(k,j)} of Theorem
2, define the direct limit of pairs, (&'(oo,η),W(oo, η)). Then, the inclusion
Wl'(oc,η) C ̂ "(00,77) induces a weak homotopy equivalence.

A final remark: Assume that M is a complex manifold of real dimension 4
with a Kaehler metric. According to Donaldson [10], the moduli spaces of anti-
self-dual connections on principal U(n) bundles over M, and the moduli spaces
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of holomorphic, and stable, rank-n vector bundles over M are essentially
identical. For Kaehler M, Theorems 1 and 2 describe, via [10], the topology
of the spaces of stable, holomorphic vector bundles over M with first Chern
class zero. For stable, holomorphic bundles with nonzero first Chern class,
construct from the rank-n vector bundle the principal U(n) bundle of frames,
and then apply Theorems 1 and 2 to the moduli space of self-dual connections
on the associated principal PU(n) bundle.

2. Strategy

Both Theorems 1 and 2 are proved via Morse theoretic arguments using
the Yang-Mills functional. Fix a principal G-bundle P —• M, and let (fc, η)
denote the characteristic classes that classify P. By subtracting a multiple
of pi (Ad P) from the Yang-Mills functional, a function on stf (P) is obtained
which assigns to a connection A on P the number

(2.1) a(A) = f \P.FA\\
JM

where FA denotes the curvature of the connection A, a section of the bun-
dle Ω2(AdP) = AdP ® /\2T*M. (In general, Ω*(AdP) denotes AdP 0
l\kT*M.) The projection, P_ = (1 - *)/2 is defined with the Riemannian
metric's Hodge *-operator. Thus, P-FA is a section of P_Ω2(AdP). (Also,
P+ = (1 + *)/2).) The norm in (2.1) is defined via the Riemannian metric
and the usual inner product on Ad P which is induced from the Killing form
on 0. The integration measure in (2.1) is defined by the Riemannian metric.
The functional α is «^(P) equivariant, and so it descends to a functional on
&'(k,η). By construction, oΓ^O) = 9Jl;(fc,r/), and 0 is achieved by α only
when Wlf(k,η) is nonempty.

Min-max theory for α is described in §2 and in the Appendix of [22]. The
theory concerns homotopy invariant families of compact subsets of ^'(A;,r/),
and more generally, for e > 0, families of compact subsets of ^'(fc,r/) which
are invariant under homotopies of &'(k,η) which map ^(k,η) = {b G
&'(k,η): o(6) < e} into itself. For example, let z G Hm(&'lk,η)&{k,η))
be a relative class. This class can be represented by a singular m-dimensional
chain in 3§'(k, η) whose boundary lies in ^/(fc, η). The class z defines a fam-
ily F(z) of compact subsets of 3S'(k, η) which are invariant rel^^fc, η): F(z)
is the family of compact singular chains which represent z. For a second ex-
ample, let z G πn(^'(fc, 77),^'(λ;, 77)); thus, z is represented by a map of the
unit m-dimensional ball, Bn, into 3§'{k,r]) which sends the boundary sphere
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Sn-χ into^fc,//). Then,

F(z) = {Imaged): φ G C°((£", S""1); {<%'{k,η)^{k,η))) and [φ] = z}.

For a given homotopy invariant (re\^(k, η)) family #, the min-max pro-
cedure attempts to produce a critical point of the Yang-Mills functional. Such
a critical point may or may not exist; in either case, there is still the "critical
value", the number

(2.2) ad= inf' {supα(6)l.

If αj > e, then no set in 5 lies in ^'(A;, η). If α̂  = ε, it may or may not be
the case that a set in £ lies in ^ f ( M ) ( s e e [22]).

Let j > 0 be an integer, and suppose that T: £B'(h, η)-+£B'(k+c(G)-j\ η)
is a homotopy equivalence. Let e,e' > 0 be given, and suppose that T maps
3§l(k, η) into 3S[\k + c(G) j , η). If £ is a homotopy invariant (rel^/(fc, η))
family of compact subsets of 3§f(k,Y]), then Γ defines, by push forward,
a homotopy invariant (rel^//(A:, η)) family of compact subsets T# of
38'{k + c(G) j,η). It makes sense here to compare α# with aτ$.

The gluing construction of [20] as described in §4 of [22] provides a fam-
ily of homotopy equivalences, T: &'(k,η) —* &'(k + c(G).?]). To describe
these homotopy equivalences (see §4 for details), fix a base point Jo £ Λf,
and let φ(xo) denote the space of maps from [0,1] into M which send 0
to xo and which maps 1 to M\x0. Let Hom*(SU(2);G) denote the space
of homomorphisms of SU(2) into G which generate ττs{G). (Choose one
such homomorphism, /?o, which defines a fiducial SU(2) subgroup of G and
serves to identify the space of all such homomorphisms with G/G', where
G' = {geG: Ad{g)\SU(2) = Identity|su(2)} )

The space of homotopy equivalences T: £$'{k,η) —• £$'(k + c(G),η) under
consideration is parametrized by φ(zo) x Hom*(SU(2);G) x (0,1). Loosely
speaking, this parametrization works as follows: Let Fr M denote the principal
SO(4) bundle of orthonormal frames in T*M. Think of a point / G Fr M\ x as
defining a Gaussian coordinate system on a neighborhood of x. Let 7 G φ(xo)
have end point x. The Levi-Civita connection plus a choice of fiducial frame,
/o, for T*M\Xo defines, by parallel transport from x0 along 7, a frame for
T*M| x , and hence a Gaussian coordinate system on a ball about x. Likewise,
a choice of a point h G P\ Xo and a connection, A, on P defines a point in
P\x. By parallel transport out along the radial geodesies through x, this
data defines a trivialization of the bundle P over the coordinate ball which is
centered at x.

On S4, there is a fiducial, centered (in the sense of §3 of [22]) self-dual
orbit [A\] on the principal SU(2) bundle which is defined by the fibration
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S 7 —• S4. A conformal scaling, λ G (0,1], and a choice of homomorphism,

p: SU(2) —• G, defines a new connection A! (= A + AMi) on a bundle P' —•

M with characteristic classes (fc + c(G),η). The pair (P', A1) is canonically

isomorphic to (P, A) on the complement of a ball of radius <^(λ) about x.

Inside the ball of radius λ about z, the connection A' is canonically isomorphic

to a conformal scaling of the self-dual connection A\ from S4.

The construction just outlined associates to each point (7, />, λ) G V(χo) χ

Hom*(SU(2); G) x (0,1] a homotopy equivalence, T[η, p, A], from ^'(fc, r?) to

&'(k + c(G),η). Since the parameter space φ(z 0 ) x Hom*(SU(2);G) x (0,1)

is connected, any pair of these homotopy equivalences are homotopic through

homotopy equivalences.

It follows from calculations in [20] that for any fixed b G £&'(k,η)-,

(2.3) a(T[1:p,X}(b)) = a(b)+<?(X2).

Equation (2.3) implies that aτ$ < α^ for every homotopy invariant

(rel«^/(fc,ry)) family of compact subsets of &'(k,η).

The aforementioned calculations also show that for fixed ί>, it is possible to

choose 7 and p in such a way that when A is sufficiently small,

(2.4) a(T[Ί,p,X](b))<a(b).

Unfortunately, there are obstructions to choosing (7, /?, A) to vary continuously

over a compact set U C £8'(k,η) in such a way that (2.4) will hold for all

points b in U.

Notice, however, that if (2.4) is obeyed for a given (7, p, A) and b G 3§'(k, r/),

then it will hold for all b' in some small neighborhood of b. For a given compact

f/, one can find a finite set {{^i,Pi,λi)}i<N such that for any b G t/, there

exist an index i for which (2.4) will hold for (7,/?, A) = (7i,Pι,λi). There is

no loss of generality in requiring that the points { ^ ( l ) } c M b e distinct, and

that for i φ j\ (A* + λj) < const dist(7»(l), 7^(1)).

Now, allow each λ̂  to be a continuous function on £§'(k,η) with values in

(0,1]. To determine the behavior of the function λ;, put (7, p, A) = (7;, pi, A*)

in (2.3). When the correction term is positive for a given 6 G cέl"(fc, 77),

require that λ^(6) be very small. When the correction term in (2.3) is slightly

negative, make A* (6) relatively large.

By requiring the variation in the functions Xi(-) as described above, a ho-

motopy equivalence Tυ: 3§'{k, η) —> &'(k + c(G)-N, η) has been constructed

which has the property that the supremum of α on the given compact set U

is strictly greater than said supremum on T{U).

A constant z < 1 can be derived from the group G and from the properties

of the Riemannian metric on M with the following property: Choose e > 0.
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Let U G 3§'{k,τi) be a compact set. With a little care (see §4 and Propo-

sition 4.2), an integer N < oo and a homotopy equivalence Tv: &'{k,η) —•

&'{k+c{G)-N, η) can be found with the property that Tυ maps ^(k, η) into

^{k {G)N,η). Also,

(2.5) sup α < z sup α + e.
T(ί/) £7

This last equation has the following implication (Proposition 4.2): Given

e > 0, and a homotopy invariant (rel^/(A;, 77)) family of compact subsets

of &'(k,η)i #, there exists TV < oo, and there exists a homotopy

equivalence T: &'{k,η) -• £B'(k + c{G) N,η) which maps ^ ' ( M ) into

^2e(^ + c(G0 * ̂ ^ ) Ϊ a n d there exists a compact set {/ G T# which lies in
2e( ( ) )

On S4 with its standard metric, the facts in the preceding paragraph imply

Theorems 1 and 2. Indeed, the pointwise positivity of a part of the Rieman-

nian curvature tensor (as a section of End(P_ /\2 T*)) can be used to construct

€o > 0 (which is independent of k and η) together with a strong deformation

retraction of ̂ /0(fc, η) onto TV(k, η). This deformation is a somewhat refined

version of one which is constructed in [22]. (In [22], the e > 0 which defined

the domain of the retraction was not independent of the Pontrjagin class of

the bundle.)

In the general case, there is typically no retraction of all of ^'(fc, η) onto

UJV(k,η) when e > 0. As in [21], the obstruction to constructing such a re-

traction can be thought of, locally, as a vector bundle over 3&[{k,r\) which

can be identified, over a small open set in ^/(A:,r/), with the vector bun-

dle whose fiber at [A, h] is spanned by the L2-eigenvectors of the operator

P_dA(P-dA)*: C°°(P_Ω2(AdP)) -+ C°°(P_Ω2(AdP)) with small eigenval-

ues (see §§1-3 of [21]). Indeed, if [A, h] e «#/(*, r/), and if [A+a, h] e Wlf(k, 77),

then a G Co o(Ω 1(AdP)) must obey the differential equation

(2.6) P-dAa + P-{a A a) + P-FA = 0.

The obstruction to inverting the operator

P.dA: C ^ Ω ^ A d P ) ) -> C°°(P_Ω2(AdP))

are precisely the elements in the kernel of P-dA(P-dA)*. Since (2.6) is non-

linear, one finds all eigenvectors with small eigenvalue (small is determined

by the L2-norm of P-FA) to be obstructions.

The local vector bundle structure for these obstructions is a consequence of

the fact that the L2-eigenvalues of P-dA(P-dA)* vary continuously with the

orbit [A, h] (see §5). Thus, if// > 0 is not an eigenvalue of P-dA(P-dA)*, then

μ is not an eigenvalue of P-dA>(P-dA')* for any [Af,hf] which is sufficiently
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close to [A,h]. For each μ G (0,1], one can define the open set ίl(μ) =
{[A, h]: μ is not an eigenvalue of P_GU(P_GU)*} Over each such open set, one
has the finite-dimensional vector bundle, 9J(μ), whose fiber over [A, h] G U(μ)
is the span of the eigenvectors of P_cU(P_cU)* with eigenvalue less than
μ. If μ < μ', then over il(μ) nil(μ'), there is the natural vector bundle
inclusion p(μ, μ'): 9J(μ) —• 9J(μ'). For any 0 < μi < 1, the family of open sets
{ίl(μ)}μG(μi?1) form an open cover oi&'{k,η).

The equations for self-duality naturally define e0, μi > 0, and, for μ G
(μi, 1), a section sμ of 2J(μ) over iί(μ) Γ\&<!0(k,η). The numbers e0 and μi
are independent of (&,//). The construction of sμ is described in §5. The
set {sμ}μ€(μi,i) has the property that over ίί(μ) niί(μ'), sμ> = p(μ,μ') sμ.
Furthermore, if [A, h] G ίί(μ) Π Wl'(k, η), then sμ([A, A]) = 0.

From the {sμ}μe(μι,i), a smooth homotopy of 38'{k, 77) is constructed in §5
which maps ^^o(k,η) into ^^eQ(k^η) for fixed z < 00, which fixes W(A:,ry),
and which homotopes \Jμe/μi u $μ

 x{0) onto UJl'(k, η).

The formal codimension of a connected component of 5~1(0) Π^/0(A:,r/)
is equal to the dimension, for fixed [A, h] in that component, of the span
of the L2-eigenvectors of P-dA{P-d>A)* with eigenvalue less than μ. This
dimension is bounded a priori, given the group G and the Riemannian metric;
a fact which indicates that the inclusion of s~x(0) Π^0(k,η) into 3§lQ{k,η)
is responsible for more and more of the topology of <3$lQ{k,η).

Such an a priori dimension bound is established in the Appendix. There,
operators of the form

V*V + R: C°° (Hermitian vector bundle) -+ C°° (Hermitian vector bundle)

are considered when V is a metric compatible connection, and R is a section of
the associated bundle of endomorphisms. The principle result in the Appendix
is a proof of the assertion that the dimension of the span of the L2-eigenvectors
V*V + R with eigenvalue less than some E < 00 is bounded a priori by a
function of the Riemannian metric, of E and of the L2-norm of R. A similar
result was announced by Berard and Besson [4] using a theorem of Cwickel-
Lieb-Rosenbljum [18].

Let b = [A,h] e ^0{k,η) be an orbit which is not in Sμ^O). (One
knows a priori that ||sμ(δ)||L2 is £f(e0).) Fix a point (7, p, λ) G φ(xo) x
Hom*(SU(2);G) x (0,1). As discussed, such a point determines a homotopy
equivalence T[η,p,\]\ 3S\k,r\) -> 3&'{k + c{G),η). For small λ, one can
compare $μ(T[η, p, λ]{A, h)) with sμ([A,h\). The calculations generalize cal-
culations in [21].

The calculations are tractable for the following reason: For a large open
set of μ G (μ, 1), the homotopy equivalence T[η, p, λ] defines an isomorphism,
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which is an isometry to <^(λ2), between the vector space []

the vector space ςV{μ)\τ[1,p,x}(A,h)' The isomorphism in question is con-

structed by exploiting the two facts. The first is the fact that the orbits

[A, h] and T[η, p, λ](Λ, h) have a canonical identification on the exterior of a

ball of radius λ about 7(1). The second is the fact that the I?-eigenvectors

of P-dA{P-d>A)* with eigenvalue less than 1 obey (A;,η)-independent a pri-

ori estimates when [A, h] G 33^{k,r\). So, a linear map from 9J(μ)| [A,h] to

y}(μ)\τ[η,p,x](A,h) i s obtained by first deforming a given eigenvector (section

of P_Ω2(AdP)) to be zero near 7(1). Second, identifying the vector bundles

P_Ω2(AdP) and P_Ω2(AdP') in the complement of 7(1). Finally, project

onto 9J(μ)| τ[Ί,p,x]{A,h) with the L2-orthogonal projection (see §6).

The calculation yields the identity

, 9 7λ *μ(T[η,p, λ}(A, h)) = T[Ί, p, λ] • (sμ([A, h]) + λ2 r(Ί, p; [A, h})*
[ ' +X5^-e(η,p,λ,[A,h})),

where r(η, p; [A, h})* is the adjoint of a linear functional, r(η,pi[A,h]):

5J(μ)l [A,h] —*• R which is defined as follows: The choice of a fiducial frame /o

for T*M| Xo identifies P_T*M| Xo with su(2), the Lie algebra of SU(2). Simi-

larly, the choice of h G P\ Xo identifies AdP | XQ with g. A unit length vector

ω(p) in P_Ω 2(AdP)| Xo is then defined by the homomorphism p. Parallel

transport of ω(p) along 7 via the Levi-Civita connection and the connection

A defines a unit vector in P_Ω 2(AdP)| Ί(χy Finally, the linear functional r is

obtained by evaluating an eigenvector at 7(1) and then contracting with this

unit vector. The λ5/2 e( ) term in (2.7) is a uniformly bounded correction

term.

Let {rα}α =i3 be an orthonormal basis for su(2). A linear algebra argument

shows that m-points {pi} G Hom*(SU(2);G) can be found so that the map

T: (0, oo)m -+ g 0 su(2) which assigns to t = {tu , tm)

m 3

(2.8)

is a surjection from a compact set onto a neighborhood of 0 in 9 0su(2).

This last fact, plus the uniform a priori estimates on the eigenvectors which

span 9J(μ), and the uniform bound on their number allow the construction,

from a compact set U C 3B^ (fc, 77), of TV < 00 points {(7;, pi)} and TV smooth

functions {λ;( ): 38\k,η) —• (0,1)} with the following properties: First, the

endpoints {7;(1)} are distinct, and |λt( ) + λj( )| < dist(ηft (l),7j(l)) for i φ j.

Second, for each b G U and for each μ G (μi, 1),

N

(2.9) 0 = Sμ(b)+
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Third, the data {(7;, p, λ;( ))} defines a homotopy equivalence T: &'{k, η) —•
&f(k + c(G) TV, η) which maps 38^ (fc, 77) into 38'ztQ (A;, 17) with z independent
of U and (fc, 77). These observations are made in §6.

Due to (2.9), the map T sends U into L ^ e ^ i ) 5 ^ 0 ) * T h i s l a s t o b s e r v a -
tion essentially completes the proofs of Theorems 1 and 2. The final arguments
are given in §7.

The next section provides a short summary of background facts which will
be assumed, and an introduction to the notation which will be used in this
article.

3. Preliminaries

A proper beginning introduces the minimal notation and background mate-
rial which a reasonable reader might require. This section presumes to serve;
the reader is also referred to [22] and to [13].

It is convenient to consider the affine space j / (P) of smooth connections
on a principal G-bundle P —> M as a dense subset of the affine Banach
manifold, 2l(P), of L^-connections on P [13]. The gauge group &{P) of
smooth automorphisms of P is a dense subgroup of the Banach Lie group,
®(P), of L\ automorphisms of P. The group ®(P) contains the pointed L\-
gauge group 0o(P) = {9 £ ®: g{s) = 1} Suppose that P has characteristic
classes (fc, η). Then, as described in [13], <8'(fc, η) = 05'(P) = a(P)/β o (P) is a
smooth Banach manifold with an L^-Sobolev space for its model. Alternately,
fixing a base point x0 € M identifies 93'(Λ;, η) with (2t(P) x P\ l 0 ) / β ( P ) . The
projection π: 2l(P) —• 95'(A;, η) defines a principal 0o(P) bundle.

Let 95(fe,̂ ) = 95(P) = Sl(P)/β(P) be defined as a topological space with
the quotient topology. It is not quite a Banach manifold; but denote by
0\(P) the infinite codimensional set of reducible connections on P and let
21* (P) ΞΞ a(P)\SR(P). Then, S3* = a11/® is a smooth Banach manifold and
the quotient map TΓ: 21 —• 93 defines a smooth principal Φ/Center 0-bundle
over 93**, and the projection 93'(A;,r/) —> 93 defines a principal G/CenterG
bundle over 93*.

In most of this article, the distinction between 21 and j / , 93' and 38*\ or
93 and 38 will be irrelevant to the arguments, so the spaces will generally not
be distinguished.

For q e {0,1, , 4}, let Ώq (Ad P) denote the vector bundle Ad P 0 /\qT*.
Fix a smooth connection AQ on P. With A = Ao, one defines the L^-Sobolev
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norm on Ωq(AdP) as follows: For a section ψ set

live* = ,

where VA is the covariant derivative from the connection A on P and from
the given Riemannian metric's Levi-Civita connection on tensor bundles that
are constructed from the tangent and cotangent bundles of M. In (3.1),
^ A = VΛ . VΛ, a total of j-times. The norm above is defined with the
metric on Ad P which comes from the Killing metric on g and with the metric
on the tensor bundles which is induced by the standard Riemannian metric
on the tangent bundle of M.

Let L1

k(Ωq(AdP)) denote the Banach space which is obtained by com-
pleting the space of smooth sections of Ωα(AdP) in the norm of (3.1). (A
different choice of smooth connection in 2l(P), or a different choice of met-
ric with which to define the norm in (3.1), will yield the same Banach space
but with an equivalent norm.) Thus, for smooth A, VA' Ll(Ωq(AdP)) —•
Ll_x{(lq(AdP) 0 T*M) is a bounded operator. For A G &(P), this is only
true for k = 1,2,3.

The choice of metric on TM also allows for the definition of the formal
L2 adjoint of VΛ, the operator V^ which sends L|(Ω9(AdP) ® T*M) to
L2

k_x(Ωq(AdP)). For A G »(P) such is the case only for k = 1,2,3.
The choice of a smooth connection A G 2l(P) defines the covariant exterior

derivative dA' L2

k(Ωq(AdP)) -+ L2

k_^q+1(AdP)). The fixed metric on
TM allows the definition of the formal L2 adjoint of d^, this is the operator
d\\ L2

k(Ωq(AdP)) -- L\_^q-l(AdP)). Again, if A G 2t(P), then such is
the case only for k = 1,2,3.

The metric on TM defines the self-dual, P+, and anti-self-dual, P_,
projections on Ω2(AdP). These decompose Ω2(AdP) as P+Ω2(AdP) 0
P_Ω2(AdP).

For a connection A in 2l(P), its curvature FA is in L?(Ω2(AdP)). Thus,
the functional α in (2.1) is finite on ©(A;,r/), and one can check easily that it
is a smooth functional on *&'(k, η) and on ^(fc, η).

In studying the geometry of 93'(fc, η) or <8(fc, 77), it is convenient to intro-
duce various infinite dimensional vector bundles over 93'(A;, η) whose fibers
are Banach spaces of sections of Ad P-valued differential forms. Define %F —•
<B'(fc,r7) to be the vector bundle (2t(P) x P\Xo x L|(ΩP(AdP)))/β(P). One
also defines vector bundles (»(P) x P\Xo x L2

2(P±Ω2(AdP)))/G(P) over
©'(A:, η). Note that these vector bundles are the pull-backs of the obvious
vector bundles over (
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The vector bundle OF has a convenient fiber metric: Let u = [A,h,υ] and

v = [A, A, φ] be a points in W over [A] in 93' (A, //). Then, set

(3.2) <w, V ) [ A ] = / { ( V ^ , VAV) + (i&, t;)}.
./M

The assignment of 6 € 0** to ( , •)& defines a smoothly varying metric and
associated norm (|| ||δ) on the vector bundle W. This fact is a straightforward

application of the 4-dimensional Sobolev inclusion L\ —• L4 together with

Kato's inequality. Recall that Kato's inequality asserts that for a L\Xoc-

connection, A, and for an L\λoc — AdP valued differential form, ψ, one has

(3.3) | V Λ ^ | > \d\φ\ I almost everywhere.

This inequality implies (see (2.14) in [20])

(3.4) \\φ\\2

A = \\VAφ\\2

L2 + \\φ\\2

L2 > zo (\\φ\\l4 + sup

with ZQ depending only on the Riemannian metric on TM.

The affine structure of the space of connections induces a smooth map

/ : QJ1 —• 55;(fc, η) which is the canonical projection when restricted to the

canonical zero section of 9J1. This map sends v = [A, h, φ] to f(v) = [A+φ, A].

One final piece of notation: An L^-connection on a principal bundle P —+

S4 is called centered when

(3.5) / (yu, 1 - \y\2) \Φ*FA\
2{y) dry = 0G R ,

where Φ: R 4 —»- Sί4\{south pole} is the inverse to a stereographic projection

(see §3 of [22]).

4. The topology of 93 ;(M) f o r l a r S e k

The main purpose of this section is to analyze how the topology in ©'(fc7, η)

behaves as k increases; specifically, this section contains the proofs of Propo-

sitions 4.1 and 4.2 below.

Proposition 4.1. Let G be a compact, simple Lie group. Then, there

exists an integer c(G) > 0 with the following significance: Let (fc, η) € Z x
H2(M;πι(G)) be admissible as characteristic classes for a principal G-bundle

over M. Then (kάic{G),η) is admissible as characteristic classes for a prin-

cipal G-bundle over M, and there is a homotopy equivalence between 93'(A;, r/)

and <B'(/c + c(G), 77). Given a smooth function f: *B'(k,η) —> (0,oo), there is

a homotopy equivalence θ: 95;(A;,ry) —• <B'(k + c(G), η) which has the property

that a(θ(b)) < a(b) 4- f(6) for any b e »'(*;, η).
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Since the space of relative homotopy equivalences between (93' (fc, 77),

<B'δ(k,η)) and (93'(A; + c(G), 77), 93'^ (A;+ c(G), 77)) may not be connected, one

must be careful when identifying the relative topology in (QS'ίA:, 77), Q5̂ (A;, 77))

with that in (93'(A; 4- c(G),η),B'z,δ(k + c(G),η)). Such an identification can

be made once a homotopy class of homotopy equivalences is specified. Sup-

pose that £ is a homotopy invariant family of compact subsets of Q3/(Λ;, 77)

(rel93'6(fc,i7)). Let T : <B'(k,η) -• 93'(fc + c(G),77) be a homotopy equivalence

which maps 25 (̂fc, ry) into 93'2.6(fc + c(G), 77)). Then no ambiguity arises by

defining Γ# to be that homotopy invariant (re\*B'z.δ(k + c(G), 77)) family of

compact subsets of 93'(A;+ c(G), 77) which consists of the compact sets U of the

form Φ(1,T(V)), where F G £, and where Φ( , ) : [0,1] x 93'(A; + c(G), 77) ->

93'(fc + c(G), 77) is a continuous homotopy (rel93/

2r.6(A: + c(G), 77)).

It will be implicit in this article that any equivalence between 93' (fc, 77)

—• 93'(fc + c(G), 77) will be chosen from a specific, connected space, X, of

homotopy equivalences. Any such equivalence which maps ^(k.η) into

93'2.6(fc + c(G),77)) will be chosen from a connected subspace, X(<5,2 <S), of

homotopy equivalences which is connected as a space of homotopy equiva-

lences which map *B'δ(k,η) into ^z δi^ + c(G),77)). With this understood,

there is no ambiguity in writing 5(1) for T$ when T G X (or X(<S, z δ)),

and when 5 is a homotopy invariant family of compact subsets of 93'(fc, 77)

(rel93^(fc, 77)). A specific, connected set, Xo, of homotopy equivalences be-

tween 93'(fc, 77) and 93'(fc -I- c(G), 77) is constructed for the proof of Proposition

4.1; and the space X is the space of all maps from 93'(A;, 77) to 93'(A; + c(G), η)

which are homotopic to those in Xo

Proposition 4.2. Let {ko,η) be admissible characteristic classes for a

principal G-bundle over M. Fix e > 0. Let 5 denote a homotopy invari-

ant family of compact subsets of 93'(A:o,77) (rel 93'e(A;,77))7 and for each inte-

ger j > 0, let #(y) = Tj(Tj-ι(...Ti($)...)) denote the homotopy equiva-

lent, homotopy invariant family of compact subsets o/93'(A;o + c(G) j , η) {rel

93'2e (A: + c(G)-j, 77)). Here Tk: 93'(A:O + c(G) (k- 1), 77) -+ B'(ko + c(G) • fc, 77)

is a homotopy equivalence in X((l + (A: - l)/j) e, (1 + k/j) e). For each j ,

define o 5 ( i ) by (2.2). Then α 5 ( i + i ) < aUj) and l im^oo α 5 ( i ) < 2 e.

Proo/ of Proposition 4.1. Let Po —*• Λf be a principal G-bundle with charac-

teristic classes (fc, 77). Let P± —• S4 be a principal SU(2)-bundle with charac-

teristic number k = ±4. (In fact, P± —• S 4 is topologically the Hopf fibration

S7 -+ S4. Let H denote the quaternion algebra, and think of 5 7 as the unit

sphere in H 2 . Think of SU(2) as the group of quaternions with norm 1. Then

SU(2) acts freely on S7 by the right or the left action; depending upon one's

convention, one action gives P+ and the other gives P_.) Let i: SU(2) —• G

be a group homomorphism which generates π 3 (G). Let PQ± = P± Xi G. By
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gluing PQ± to P o as specified in §4 of [22] or §6 in [20], one obtains a principal
G-bundle with characteristic class (k ± c(G), η), where

c(G) = 4 x sup (i * σ, i * σ)G/{σ, σ)su(2),
σesu(2)

and ( , )G is the Casimir inner product on g (see [2]). This proves the first
assertion of the proposition.

Let [Aι = A±] E 93(P±) denote the unique orbit of a centered (in the
sense of (3.5)), self-dual connection on P+ or anti-self-dual connection on
P_; here, self-dual is with respect to the standard metric on S4. (See [2]
for a proof of the uniqueness of this orbit.) In a natural way, [A±] defines
an orbit in 93(PG±) since there are natural maps of pairs (2l(P±),6(P±)) —•
(21(PG ± ) ,®(PG±)) which commute with the group actions. Choose a point
[i4i,Λi] in (a(P σ ± ) * PG±\S)/<S>(PG±) over [Ax]. Here, s = south pole.

Let xo G M be the base point. Fix a frame /o E FrM| ̂  and a smooth
path <p G ?J(xo) (as defined in §2). Choosing smooth function ί( ): 93'(fc, 77) —•
(0,1/8] and s( ): 93'(A:, r/) -• (0,1] allows the definition of a map

(4.1) θ± = θ(t, s)± : ®'(fc, η) - 93'(fc ± c(G), r/).

The map θ± is defined to send [Ao, h0] G 93'(fc, η) to [̂ 4(w), Λo]? where A(w) is
a connection on a bundle P(w) —• M with characteristic classes (fc±c(G),r/).
Here, w = [[Ao, Λo], /o, ̂  «([^o, Λo]), ί([A0, Ao]), [Au hi]].

The bundle P(w) and the connection yl(tί ) are defined as follows: Parallel
transport /o along <p using the Levi-Civita connection to define a frame / in
Fr M\ x where x = <p(l). The frame / defines a Gaussian coordinate system on
a ball B in M which is centered at x; use this coordinate system to identify the
ball with its image in R4. Parallel transport h0 along φ using the connection
Ao to define a point h in P\x. Then, parallel transport h along the radial
geodesies through x to define a section φ(Ao,ho,(p) of P\B- This section
identifies P\ B with B xG.

The inverse to stereographic projection, Φ: R 4 —• 54\s, defines a conformal
diffeomorphism. Use this to pull A\ back to R 4 as a self-dual connection on
Φ * P G ± A positive number, λ, defines a conformal diffeomorphism of R 4 by
pulling back the coordinate functions, y, to X*y = y/λ. For λ > 0, λ*ΦMi is
a self-dual connection on A * Φ * P G ± .

Let λ = s(Ao,ho) t(Ao,ho). By parallel transport of h\ by the con-
nection λ*ΦMχ along the radial geodesies through the south pole on S 4, a
section φ(Aι,huλ) of A*Φ*PG ± |R4\O is defined; and thus, an identification
of λ*Φ*PG ± | R4\0 with R4\0 x G is made.

Let /?(•) E C°°([0,oo),[0,l]) obey β(r) = 1 if r < 1/2, and β(r) = 0 if
r > 1. For p > 0 and yeM, set /?p(y) = β(dist(y, x)/ρ).



THE STABLE TOPOLOGY OF SELF-DUAL MODULI SPACES 177

Define (P(w),A(w)) as follows: If dist(x, •) < λ/2, identify P(w) with
X*Φ*PG±\ R4 using the Gaussian coordinate system, and set

(4.2a) j4(u;;t)Ξλ*ΦMi.

If dist(z, •) > λ/ί, identify P(w) with P and set

(4.2b) A{w,t) = Ao.

If λ/2 < dist(z, •) < λ/ί, identify P(w) with the trivial product bundle, and
set

(4.2c) A{w,t) = Γ + {l-βSχ) φ(Ao,ho,<p)*Ao + βx/t φ(A1,huλYλ*Φ*Au

where Γ is the product connection.
It is a straightforward task to check that the assignment of [Ao,^o] to

[A(u>), ho] defines a smooth map from 3§'(k, η) —• 3S'(k ± c(G), η). However,
the map is continuous from 93'(fc, η) to *8'(fc ± c(G),η) only if the former has
an L^-topology and the latter has an L^n_1 -topology.

By specifying a mollifier, one can smooth the section φ(Ao,ho,φ) over B
but still approximate φ{Ao,ho,<p) to any desired order in the L^-topology.
The closeness of the approximation can be allowed to depend on [Ao, ho]; for
the second assertion of Proposition 4.1, such an [Ao, Λo]-dependent smoothing
is required. (See below for an extended discussion on a different approach to
smoothing connections.)

After smoothing φ{-,<p), a smooth map is obtained from ©'(£,17) —•
*B'(k ± c(G), η) when both domain and range have the same L^-topology.

A slight modification of the arguments in §6 of [20] proves that the com-
positions θ+ o θ- and θ- o θ+ are both homotopic to the identity. This fact
implies the first assertion of Proposition 4.1.

By choosing the [Ao,Λo] dependence of the functions s(-) and t( ) and
the mollifior appropriately, one can obtain a homotopy equivalence which
accomplishes the requirements of the second assertion of Proposition 4.1. This
fact is implied by Proposition 6.1 in [20].

The proof of Proposition 4.2 requires finding sets in # which obey a priori
estimates. For this reason, the following digression on smoothing of connec-
tions is required.

A given connection will be smoothed on a ball J5(x, r) C M of radius r and
center x; the connection is smoothed by smoothing the connection 1-form as
defined with respect to a particular trivialization of the bundle over the ball.
This can be accomplished with a mollifier, as in the proof of Proposition 4.1,
but for the proof of Proposition 4.2 it will be accomplished by replacing the
connection 1-form by the solution of an elliptic, differential equation. The
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elliptic equation will provide the necessary a priori estimates. The equation

in question is the variational equation of a smooth functional on the Hubert

space H[x,r) = {v G L?(Ω 1 (AdP) | B (x,r)) : v\dB(χ,r) = 0}.

Define the Banach space

Ke(x,r) = {ae L\{T*B{x,r) x g: | |Vrα | |£ 2 ; β ( : C 5 r ) + \\a\\2

L2.B(Xir) < c

and which satisfy d^a = 0 and idB{x,r)(*a) = 0}

Here, Γ is the product connection. For each a G Ke(x,r), a smooth functional

on H{x, r) is defined by sending v G H(x, r) to

(4.4) sa{v) = ί (\P-FΓ+a+v\
2 + \d*Γv\2) dvol.

L e m m a 4.3. Let M be a compact, Riemannian manifold. There exist

ro, eG (0,1] and z < oo with the following significance: Let x G M, and let

r < r 0 . For each a G /f€(x, r), de/ϊne the functional sα( ) on H(x,r) by (4.4).

This functional has a critical point, vo(a), which is an absolute minimum, and

is unique in having the following properties:

(1) For all

t G [0,1], llP-ίΓ+α+tυoll^ Bίx.r) <*αftt>θ) < ll^-^Γ+α | | | 2 ; β ( : c , r ) ,

αnrf the right-hand inequality is an equality for t G (0,1] if and only ifv0 = 0.

(3) // | |P-FΓ +α+ .olli 2;B(,,r/2) ^^/)

| | P _ F Γ + α + , 0 | | | 2 ; B ( : C ) r ) < (1 + Z' e2) | |P- f r+a | |£2 . B ( i B , r )

(4) The g-valued 1-form a + vo(a) is smooth in the interior of B(x,r), and

for each m > 0, there exists ξm < oo which is independent of A, r, and x and

is such that when y G S(x, 3r/4), then

\V{

Γ

m\a + υ(a))\(y) < ξm r " m " 2 | | α | | L 2 ; B ( j B ι r ) .

(5) WhenyeB{x,3r/4), then

\P-FΓ+a+υ{a)\{y) + r | V Γ P - F r + α + υ ( α ) | ( i / ) < ζo r - 2 | | P _

(6) T/ie assignment of a l-form a to vo(a) G L^(Ω1(AdP)) defines a

smooth map from Ke(x,r) to H{x,r). In addition, if u G G, then

VQ{U a u~x) = u VQ{O) u~ι.

Proof of Lemma 4.3. The existence of a unique critical point of sα( ) in

H(x,r) which obeys assertions (1) and (2) is a straightforward application
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of the contraction mapping principle, since one can consider the variational

equation for sα( ) as the following fixed point equation for vo:

(4.5) υ0 = - ( P _ d J P _ d r

Here [P-dγP-dγ + drdf )QX is the Dirichlet inverse. (See, e.g., the proof of

Proposition 8.2 of [22].)

For the proof of the third assertion, suppose that

Expand FΓ+α+υ 0 = ί r + α + dγ+avo + vo Λ vo Thus,

(P_FΓ+α,P-dr+α^θ)L2;B(a;

which implies that

> g

- I ' \\P-FΓ+*\&2;B(x,r/2) ~ Z

This last equation implies that

\\P-dΓ+aVθ\\h;B{x,r) > § WP-FΓ+aWh Bfrr/ϊ) ~~ Z '

Meanwhile, the variational equations which VQ satisfy imply that

| P - d r + α ^ θ | | i 2 ; β ( a ; ? r ) - Z

These last two equations imply that

\ ^ ||P^Γ+\\\\P-Fτ+a+υo\\L2;B{x,r) ^ | |P-^Γ+α\\L 2 B{X,T)

| i 2 ; j B ( X r / 2 ) + Z

Finally, the preceding equation with assertion (2) yields assertion (3).

The a priori estimates in assertion (4) are standard (see [17, Chapter 6]

and the discussion in §9 of [22]). As for assertion (6), the continuity of the

assignment of vo(a) to a is a consequence of the inverse function theorem

applied to (4.5). (The argument here mimics the proof of Lemma 8.6 of [22].)

For the proof of assertion (5), look at the variational equations which are

satisfied by a' = a + v(a). Using the Bianchi identity, these can be put in the

following form:

Differentiate this equation to obtain the second order equation

P-dΓ(d*Γ+al(P-FΓ+a ))=0.

By commuting derivatives, rewrite the preceding equation as

(4.G) V^VΓ(P-Fr+α<) + * P-FΓ+a> + P-d*Γ(W,P-FΓ+a,}) = 0.
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In (4.6), ίK denotes a particular linear combination of the components of

the Riemann curvature of the metric on ΎM\ here, this curvature acts as an

endomorphism of P_ f\2 T*M (see Appendix C of [13]).

Using assertion (4) of Lemma 4.3, the estimate in question follows from

(4.6) with the standard techniques in [17, Chapter 6].

To apply Lemma 4.3, recall that Uhlenbeck [23] gives κ0 > 0 with the

following significance: Let P —• M be a principal G-bundle and let [A] G 3$(P)

be given. For e G (0, /c0), suppose that x G M and r > 0 are such that

(4.7) α(Λ;x,r)= f \FA\
2 dvol< e.

JB(x,r)

There exists a trivialization φ: B(x, r) x G —• P\ B(x,r) such that the g-valued

1-form a(A) = <p*A — Γ obeys

(1) dfα = O,

(4.8) (2)

(3) ; ( i ) £ ; ( , i ) ; ( i )

Here ZQ is independent of A, x, and r.

The arguments in the proof of Lemma A.I in [20] can be used to prove

that the trivialization <p is unique up to φ —• φ o u, where u G G acts on

β(x, r) x G as a constant gauge transformation. This last fact implies the

following lemma.

Lemma 4.4. Let M be a compact, oriented Riemannian 4-manifold.

There exist ro > 0 and eo > 0, and for each integer m > 0, there exists

ξm < oo, and these have the following significance: Let x G M, and let

r G (0,ro) and e G (0,eo) Let P —• M be a principal G-bundle, and let

® € (P;x , r ) = {[A] G 95(P): (4.7) Λo/rfs}. T/iere eaώte α smooth, ^-decreasing

homotopy 0(x, r) = φ: [0,1] x *B;(P) —• 55'(P) w /iic/i induces a homotopy

φ: [0,1] x <B€(P;z,r) —> ®e(P;a:,r) w zYΛ ί/ie following properties: First, if

[A] <£ Q3 e(P;z,r), then φ(t,[A,h]) = [i4,Λ] /or α// ί G [0,1]. Second, for

each [t,[A]) G [0,1] x 23e(P;x,r), 0(ί,i4) = [A + t β(a{A;x,r)/e) - v(A)],

where a(A;x,r) is given by (4.7), and where /?(•) G C°°((0,cx)), [0,1]) ώ erfen-

tically 1 on [0,1/2] and vanishes identically on [l,oo). Here [A,v(A)] defines

a smooth section of the vector bundle »(P) x 0 ( P ) L^Ω^AdP) -• Q3€(P; x, r)
it ΛzcΛ ofieys the following:

(1) TΛe 51/pporί of v{A) is in B(x,r) and \\v(A)\\2

A < ξ0 l |VθA||^ ; B ( ί B f r ),

where WV&A\\A;B(x,r) l 5 ^ e norm of the restriction o/Va^ ίo the subspace of

Lf(Ω1(AdP)) with compact support in B(x,r).

(2) If\\P-F^A)\\h,B{Xtr/2) < ^\\P-FA\\l2.BlXtr/2) for [A] € © e / a(P;x,r) f
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(3) For [A] as above, when y € £(x,3r/4), then \^l
A)
F
φ(ltA)

\{y) <

ξm-r-
m
-
2
-\\F

A
\\

L
2.

B{x
^.

(4) For [A] as above, when y G J9(x,3r/4), then

|P-^(i,Λ)l(y) + H V 0 ( i , ^

Lemma 4.4 is somewhat unsatisfactory vis-a-vis its application to the proof
of Proposition 4.2. The condition for appeal to Lemma 4.4 is a condition on
the L2-norm, over the ball, of the total curvature. The proof of Proposition
4.2 requires a condition on a norm over the ball for only the anti-self-dual
part of the curvature. This problem is circumvented with

Lemma 4.5. There exists q > 0 with the following significance: Let
M be a compact, Riemannian manifold with boundary. Let P —• M be a
principal G-bundle\ let δ > 0 be given, and let U C ®(P) be a compact set of
orbits such that \\P-FA\\2

L2 > 6 for all [A] G U. Fix e > 0. For any r > 0
sufficiently small, there exists a set of disjoint balls {B(x[j],f) C int(M)}
with the following two properties: (1) For each j , U C 23e(F;a:[y],r); (2) For
each [A] G U,

\\P-FA\\1.,B(X[3U/2) > Q • \\P-FA\\h.
3

Proof of Lemma 4.5. For r much less than the injectivity radius of M,
define a lattice Γ(r) C M to be a set of points in int(M) with the following
properties:

(1) For any pair of disjoint points x,y C Γ(r), dist(z,2/) > 2 r.
(2) Every point in M has distance less than 4 r from a point in Γ(r).
(3)dist(dM,Γ(r))>2 r.
Construct a lattice Γ(r) and let Γ(r) = {z[.?]}. Observe that the set of balls

{B(x[j]; 4 r)} forms an open cover of M.
Next, let / G L\{M) and consider u{x) = ||/||L2,B(z,r) as a function of

x G M. Observe that u is Lipschitz, and

Thus, for each j \

;β(x[jp],r/2) > z0 '

with ZQ, Z\ independent of /, x and r. Now, sum both sides of this last
equation over the set of points in Γ. The result is the following inequality
with constants z$ > 0 and z\ < oo:

(4.9) 5 3 | | / | | L * ; B 0 Φ ],Γ/2) > *o \\f\W-M - *i r \\df\\L2.
M .
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Consider the compact set U C 2ϊ. The compactness of U insures the

existence of r 0 > 0 with the property that U C 25e(P; x, r) for any a: G M and

r < ro. The compactness of C/ also insures the existence of z2 < oc with the

property that | |G? |FA| | |L 2

; M < 22 for any [A] G 17. Lemma 4.5 follows from

these last observations with (4.9).

Before beginning the proof of Proposition 4.2, it is necessary to digress and

discuss a modification of the construction of the map θ+ in (4.1). To begin, let

fco > 0 be the minimal, nonnegative integer for which (&o, η) are admissible as

characteristic classes for a principal G-bundle P —• M. The modification to

the map θ+ involves replacing the connection A(w) in (4.2) by the connection

A'(w) which differs from A(w) in the ball JB(x,4 λ/t) (recall that λ = t s).

In this ball,

(4.10) A'{w) =A{w) + υ{w).

Here, υ = v{w) = β4\/t'd*A{w)u with u G L§(P_Ω 2 (AdP(w)| B{xA\/t))) obeys

the following differential equation in B(x, 5 λ/t):

, 4 n v P-dA{w)d*A{w)U + P_(rf^ (u; )U Λ <CL(U;)W)

with tz = 0 on dB(x, 5 λ/ί). The cut-off function βχ(-) is defined after (4.1).

With AQ completely arbitrary, the section u will exist provided that λ and

t are appropriate. For the applications below, the constraints on λ and t

are summarized in Lemma 4.7, below. The existence of u is established by

mimicking the proof of Lemma 5.2, below. Indeed, for an L^-connection A

on a principal G-bundle over M, and for x G M and p > 0, define the range

Banach space as the completion of

W{x, p) = {ωe L 2(P_Ω 2(AdP)\ fl(jB|P)):

sup \\d\st{-,y)-2ω\\Li.B{x,p) < 00}
yeB(χ,p)

with metric

(4.12) M w = \\ω\\Li;B(x,p) + S U P l|dist( ,2/)" 2 α;| | L i ; j B ( a ; 5 p ) .
yeB(x,p)

Define the domain Banach space as the completion of

U(A;x,p) Ξ {u € ^ nL°°(P-Ω2(AdP)| B(xφ)): u = 0 an dB(x,p)}

with the norm

(4.13)

sup ||dist(y, ) ^ ^ 1 1 1 1 ^ ^ ( 1 ^ ) + sup \u\{ ) .
{)

| |() 1 1 ^ ( ^ ) \
y€B(x,p) B{x,p)
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Given ω G W(x, p), the solvability of the equation

(4.14) P-dA(d\u) + P-(d*Au Λ d\u) + ω = 0

for u G U(A; x, p) is established by copying the contraction mapping argument

in the proof of Lemma 5.2. The result is summarized in the lemma below; for

the proof, the modification of the proof of Lemma 5.2 is left to the reader.

L e m m a 4.6. Let M be a compact, oriented, Riemannian 4-manifold.

There exists po^o > 0 and ZQ < oc with the following significance'. Let G be a

compact Lie group, and let P —» M be a principal G-bundle and for x G M and

p G (0,po), let *(W(x,p)) = {A G * ( P ) : \P.FA\w{XiP) < ε0} let W€o(x,p) =
{ω G W{x,p): \ω\W{Tt/)) < ί 0 }. For A G <&(W(x,p)) and for ω G W€Q{x,p),
(4.14) has a unique solution u G U(A; x, p) Γ\Ll(P-Ω2(AdP\ B(XAP/S))) satis-

fying \u\u < ZQ'\ω\W{χ,p) Furthermore, the assignment of(A,ω) G %L(W(x,p))

x Weo{x,p) to u G Ll{PAΪ2(kάP\B{xΛpιs))) defines a smooth, β ( P ) -

equivariant map.

The application of Lemma 4.6 is to (4.11) where A = A(w) and where

p = 4 - λ/t. In this case, additional conclusions concerning u are derivable.

To state these conclusions, it is necessary to construct from the data w =

[[Λo, fto]> /o, <P, s([A0, ho\), t([A0, h0]), [Aι,hi\] an isomorphism

To define the isomorphism, observe first that an isomorphism, i\: AdP+| 3 —>

AdPo| x is obtained as follows: Send σ G A d P + | s to ho h^1 σ h\ ft^1 G

Ad Po I a:0, and then parallel transport the result using the connection Ao along

the path φ to AdPolz. Next, fix the inverse stereographic projection map

Φ: R 4 -». S4\s. Let ω G P + /\2T*S4\S', by parallel transport using a Eu-

clidean metric on S 4 \n, ω defines a section of P + / \ 2 T * 5 4 | 54\n, and Φ*ω

defines a section of P+ Λ 2 T*(R 4 \0). Note that

ω' = lim \x\4 P_ (d|a:| Λ * ( φ | Λ ω))
x—+0

is well defined. By parallel transport using the Levi-Civita connection along

φ the given fiducial frame /o G F r M | Xo defines a frame / G F r M | x, and thus

a Gaussian coordinate system ^ from a ball centered at x to R 4 which takes

x to 0. Thus, an isomorphism i2 : P+/\2 T*S4\ s-> P_ Λ 2 T*S4\X is defined

by sending ω to y*ω'. Finally, set X(φ, / 0, [Λo, Λo], Λi) Ξ «Ί ® «2

L e m m a 4.7. Let G be a compact Lie group, and let M be a compact,

Riemannian manifold. There exist C2(G), constants ro(M, G) G (0,1/8) and

Zo{M,G) < oo, and, given ξ,ξf < oo, there exists ao G (0,1/8) which are

such that the following is true: Let x G M, and let r < r 0 . Let P —• M be a

principal G-bundle, and let [Ao] G ̂ 3(P;x,r) and all y G J3(z,3r/4)
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Let A > 0 and t > 0 be given such that λ/r = a G (0, a0) and t G (α, >/a). Let
φ\ [0,1] —• M 6e a smooth path from xo to x, let /o G FrM\Xo,
and let h0 G P\Xo. Set w = [[Ao,ho],fo,(p,s = A/ί,ί,[i4i,Λi]]. t/se
(4.2) £o construct the connection A(w). Then, the connection A(w) G
Λ(W(x,4 • A/0) αnrf P-FΛ(™) - (1 - βx) P_F Λ o G WPo(x,p). Construct
u = w(iί ) G L3(P_Ω2(AdP(w)| B{kA\/t))) as Φen H Lemma 4.6 and (4.11),
αnc/ then construct the connection A'(w,t) as in (4.10). Then

\\\P-FA'{u,)\\h-\\P-FAo\\h

- c(G) • λ2 (P-FAo(x),X{φ, /o, [Ao, hQ], fti) P+^U, (β))|

< zQ • (t4 + ξ2(l + ξ2) α 4 + ξ1 • (1 + 0 4 <*3Λ)

Proo/ o/ Lemma 4.7. The assertion that the constants c*o, Po> ^nd ô
of the lemma can be chosen so that (A(w),P-FA(w) — (1 — β\) P-FA0) G
2t(W(x,4 λ/0) x WPo(x,p) follows from an algebraic calculation using the
explicit formula in (4.4) of [21] for the g-valued 1-form a\ = λ*φ{Aι,hι)*A\
on R4\0. Use said formula with the expression below for P-FA(W)

 o n Bfa r )

= P-{dβλ/t Λ oi - βx/t (1 - βχ/t) - o i Λ α i - d/9λ Λ α 0

(4.15) - βx (1 - /?λ) α 0 Λ α 0 + ( l - /?Λ)

aλ Λ α 0 ) )

By a straightforward calculation, one obtains the following bounds:

(4.16)

\P-FA(w) - (1 - βx) ' P-FAo\w{χA\/t)

Here, a = λ/r. (4.16) gives the first assertion of the lemma.
It is important for future remarks to observe that given e > 0, the constants

c*o, Ro and r0 of Lemma 4.7 can be chosen so that the left-hand side of (4.16)
obeys

(4.17) \P-FA{w)\w{xΛχ/t) + |(1 - βx) P-FAo\w{xAX/t) < e.

Consequently, u, as given by Lemma 4.6, obeys

(4 1 8 ) \u{
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The number e will be restricted by requiring, first of all, that

(4.19) IIv A ( t l ,Hi£ a + M i * < zo - \\<rMw)ω\\h

whenever ω G L\(P_Ω2(AdP(w))) obeys ω = 0 on dB(x,r).
To complete the proof of Lemma 4.7, it is necessary to generate the asserted

a priori estimates for u\ since

(4.20) = 2 (-P-FAo,dβ4X/t A d\u + β4X/t (1 - β4X/t) • dAu A dAu)L*

+ II - dβ4X/t A d*Au + β4X/t (1 - β4X/t) • d*Au A dAu\\l2,

the estimates start with
Lemma 4.8. The constants αo, RQ andro, ZQ can be chosen as in Lemma

4.7 so that under the assumptions of Lemma 4.7,

Proof of Lemma 4.8. Contract both sides of (4.14) with tί, then integrate
over β(x,4 X/t) and then integrate by parts. Lemma 4.6 and (4.16) insure
that the constants in Lemma 4.7 can be chosen so that the first term on
the left-hand side of the resulting equation dominates twice the second term.
Then, Holder's inequality gives

\\d>\\h<z-\\u\\L<-\\P-FA\\L4/3.

This last equation, plus (4.19) and (3.4) and some simple algebra, yields the
lemma.

With the estimate from the preceding lemma, one immediately bounds

\{P-FAo,β4X/t • (l-β4χ/t) dAuAdAu)L2\ + \\dβ4X/t Ad*AufL2

by

z0 • (t4 + ί8 + ξ2 α 4 e + ξ4 • a8 • t2 + e • «4 + r4 • α 4 t2)
( 4 2 1 ) +zo-ξ' (a2 .t2 + ξ2-a6 + ξ4- a10 + ξ2 • ae/t2 + α 6 r4).

To bound the last term in (4.20), introduce a smooth cut-off function θ( ) £
C°°([0, oo), [0,1]) which has support in [1/2,1] and which is identically 1 on
the support of dβ. Let 04λ/ t be the function on B(x, 4 X/t) which sends y to

Consider that (4.14) and (4.11) imply the following equation for u' =

(4 2 2 ) = P.d\0 (dθ4X/t Au) + P- (dθ4X/t A dAou)

+P_(*(dθ4X/tAu)AdAou).
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Using Lemma 4.6 and (4.16), one finds that the constants α 0 , iϋo, z0 and r 0 of

Lemma 4.7 can be chosen so that (4.22) gives an a priori bound on ||d^u'112,4

by the expression in (4.21). The arguments are practically the same as those

in the proof of Lemma 3.7 of [20] and they are left to the reader (use (3.4)).

To complete the proof of Lemma 4.7, use integration by parts and Lemma

4.8 to obtain

I - (P-FAoidβ4X/tΛdrAu)L2 + (P-FΛo,β4\/t'P-dA<rAυ)L2\

(4.23) . / 3 1 + *2 ^ α 5

 Λ 2 a7

 Λ a5 aδ

With (4.11) for u, (4.23) and Lemma 4.8 imply that

(4.24)
\(-P-FAo,dβ4χ/t Λd*Au)L2 - (P_FAo,P-FA{w) - (1 - βx) • P-FAo)L2\

1 + ί2 , a5
 Λ a7 , α 5

+r ^ + a2 • t2 + ξ2 • α 6 + ξ4 • α 1 0 + ξ2 • ^ + r 4 α 6 ) .

Equation (4.15) is used to further evaluate (4.24); the contribution to

(P-FAo,P-FA(w) - (1 - βx) P-FAo)L2

from all but the first term on the right-hand side of (4.15) is bounded in

absolute value by

(4.25) Zo.ζ'.(a2't2 + ζ'a4 + ζ2 a« + ζ- aA/t2 + r 4 a6/t2).

Finally, the contribution from the first term on the right-hand side of (4.24)

can be estimated by using Taylor's theorem with remainder to expand P-FAo

about the point x:

(4.26) + c(G) (P.FAo(x), X(φ, / 0 , [Ao, AQ], ΛI) P-FΛl W)|

<zo-ξ' o?lt.

(4.21) and (4.23)-(4.26) complete the proof of Lemma 4.7.

Proof of Proposition 4.2. The first assertion of the proposition is a con-

sequence of Lemma 4.7. To prove the second assertion of Proposition 4.2,

consider a principal G-bundle P —• M and a compact set U C 23'(F) which

obeys SMV[AMeu\\P-FA\\\2 = δ > 0. For δ' < (5, let U{δ') = {[A,h] G

U: | | P _ F A | | £ 2 > δ'}. The proof of the second assertion of Proposition 4.2

begins with

Lemma 4.9. Let CQ > 0 be as in Lemma 4.4. There exist constants t\ G

(0, eo) and %\ > 0 with the following significance: Let P —• M be a principal G-
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bundle and let U C 25'(P) be a compact set which obeys suprA h^eU | | P _

= δ > 0. For r sufficiently small, and less than ro of Lemma 4.7, and

for e < €i, invoke Lemma 4.5 /or £fte compact set U(δ/4). Since the balls

{B(x[j],r)} are disjoint, apply, for eachj, the homotopy Φ(x(j),r) of Lemma

4.4 to the compact set U to construct a new compact set, U\ C 2$'(P), which

is homotopic in <8'(P) to U. This multiple application of Lemma 4.4 gives a

homotopy Φ: [0,1] x » ' ( P ) -> » ' ( P ) and C7i = Φ(1,I7). The set Ux has the

following properties:

(2) o(Φ(ί, [A, ft])) < α([Λ, ft]) for all (t, [A, ft]) G [0,1] x C/.

(3) For all [t,[A,h]) G [0,1] x U, the restriction to M\\JjB(x\j],r) of

Φ(ί, [A, ft]) equals that of [A, ft].

(4) The connections whose orbits lie in Ui(δ/2) obey Lemma 4.4's a priori

estimates on each B(x\j],3/4 r).

(5) Let q be as in Lemma 4.5. For [A, ft] G U\(δ/2), either

Σ n^- îiWi,-,,,/!,) ^ I « II^

Proo/ o/ Lemma 4.9. The first four assertions only summarize assertions of

Lemmas 4.4 and 4.5. As for the fifth assertion, suppose that [A', ft'] G U(δ/2)

and [A, ft] = Φ(l, [A', ft']). Let T denote the set of centers {x[j]} and let T '

denote the subset of {x[j]} for which

\\P-FA\\L*-B{x[j],r/2) ^ |lljP-ί1A'|lL2;B(a;[j],r/2)

If E , l l ^ - ^ | | | 2 ; β ( ί c [ i ] , r / 2 ) <\ q- \\P-FA\\h, then

T'

Consequently,

T\T'

Then, assertion (3) of Lemma 4.4 asserts that

Σ ιι^^ιιi.;B(.M.r)^(1+c2) Σ \\p-FA^\
T\T' T\T'

where z = q/2048. Due to assertion (3) of Lemma 4.9, this last equation

means that

\\P-FA\\l, < ( ί + e 2 - z ) \\P-FA.\\lt < (1 - * , ) δ,

as claimed.
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Choose a base point x0 G M which is disjoint from each B(x\j],r). For
each j , choose a smooth path φ'\j\ from XQ to x[j] which does not intersect
B(x\jf], r) unless jf = j . If x G B(x[j],r), specify a path <p[x] from XQ to x by
first traveling from Xo to x[j] along £>'[/], and then by traveling from x[j] to
x along the unique short, radial geodesic between them.

Use the chosen path to x\j], and the fiducial frame in TM\Xo to define
an orthonormal frame fj G P- /\2T*\x\j\, and, by parallel transport with
the Levi-Civita connection along the radial geodesies from x\j], trivialize

p_Λ a r |B ( x [ ί Ί, r ).
A subdivision of each of the balls B(x\j], r) is required. Let N denote the

number of balls {B(x[j],r)}. Fix r\ G (0, r) to be further specified shortly.
Fix j and let

Utfβ j) = {[A, h] E Uiiδ/2): \\P-FA\\hiB{xyW4) > 1/(32 N) q • δ}.

Due to Lemma 4.9, for fixed [A, h] € Ui(δ/2), either

(4.27)

j : [A,h]eUi(6/2;j)

or else | | P _ F Λ | | | 2 < (1 — z\) δ. Using Lemma 4.5, and the compact set
Ui(δ/4J) C 25, construct a set of disjoint balls {B(x[j\ fc], n)} C B(x[j],3r/4)
with the property that for any [A, h] G t

(4.28) £ Ili'-fUI& BOφ-.fcj,,,) > 9 \\P-FA\\h,B{x[Jl3r/4y

A further subdivision of B(x[j, fc], ri) into ra(G) smaller balls {B[j, fc, /?] =
B(x[y, fc, /?], ri/mjj/jzz i,... >m is required. The number m(G) is provided by

Lemma 4.10. Let G be a simple, compact Lie group. There exists cι(G) >
0, an integer m < oo and m homomorphisms {p[β]: SU(2) —• G} which have
the following properties: First, each homomorphism p[β] generates π^(G), so
any pair are conjugate in G. Second, given Y G g®su(2) and an orthonormal
basis {σjf=1 for au(2), there exists β such that (]C?=i p[/?]* (̂8)a ,̂ F)0<g>su(2) <
—ci(G) |y | . /ίere, p[^]* su(2) —> g es the induced Lie algebra homomorphism,
and ( , )g<8>su(2) ^ the natural inner product.

Proof of Lemma 4.10. Using the fact that G is compact, this follows by a
slight modification of the proof of Proposition 6.2 in [20]; the details are left
to the reader.

For β = 1, , m, fix hβ G G so that p[β] is conjugate by hβ in G to p[ί\.
Fix [Aι, hi] G 93/(P(-+) as described in the proof of Proposition 4.1, and let
[Aχ,hι]β = [Aι,hi Λ/?]. Focus attention on one ball, B(x[j\k,β],r1/m), and
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choose an isometry to identify the 3-dimensional vector space P+ /\ T* S4 \ s

with su(2). This can be done so that

3

(4.29) hβ ΛΓ1 ' P+FAX (β) Λi h-β1

where {σt } is a basis for su(2).

Let ξo be as in Lemma 4.4, and choose €χ so that €1 £o < 1. Let ξ, ξf

both equal 1 in Lemma 4.7, and introduce the constant αo of that lemma.

Suppose that R > 1 is given, and suppose that there is defined a continuous

map a = a[j, fc, β]: Ux-> (0, α o)

Let [J4,Λ] € ί/i, and set

tϋ = [[A, Λ], /o, <p[x(i, fc, /?)], s = n/(R'm),t = R- α, [Ai, Λi]^].

Next, construct the connection A;(ii;) of (4.10). According to Lemma 4.7,

(4.30)

i i
•a2-(rl/m2-P-FA(xkJ,k,β}),

X(f, ho, Λi) Λi A/, ΛΓ1 P+ίU, (β) Λi h^1 • h^1)

+ z0 (R4 -a4 + a4 + ξ'[j, k, β] • a2/R),

where ξ'[j,k,β] = r\/m2 • supB{xyΛt0lri/m) \P-FA\.

To evaluate (4.30), introduce the number ξ* = ||P_F4|| ί,2.B(x[ :)j !3r/4), and

observe that

(4.31) zx r 2 sup \P-FA\ >ξ*>z2-r2 s u p \P-FA\,
B(x[j],3r/4) B(iU],3r/4)

with constants zι,z2 being independent of r, x\j], the connection A and the

principal G-bundle P. Here, the second inequality is a consequence of Lemma

4.4, and the first inequality is automatic. Due to (4.28) and (4.31) there exists

a constant Z4 > 0 which is independent of r, x\j], x[j, A:], ri, the connection A

and the principal G-bundle P and which is such that when [A, h] G C/i(5/4, j),

then at least 24 of the balls {B(x[j, A:], ri)} must have

(4.32) sup
BίasϋΛl.n)

The number 24 is chosen so that

(4.33)
k

where Σ' means to sum over those indices k for which (4.32) fails to hold.
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Lemma 4.4 asserts that for all r\ sufficiently small, the fact that (4.32) holds

for [A, ft] G Uι and for indices (j, k) implies that for all x G B(x[j, fc], ri),

(4.34) \P-FA\{x)>\.zA.e/r\

and for any pair {z, y} C B(x[j, A], ri),

(4.35)

r 2 |Λ[χ](Λ, ft)"1 P-F A (x) h[x](A, h)-h[y](A, ft)"1 P-FAo(y) %](A, ft)|

<zo-ξ* ri/r.

Here, ft(z) G P | x is obtained from ft0 by parallel transport using the connec-

tion A along the path φ[x\.

Lemma 4.10 and (4.29)-(4.35) imply that for [A, ft] G U\ and those indices

(y, fc) where (4.34) holds, there exists an index β G {1, , ra} which is such

that

" * ' < « * - l l P - ^ H i a " c2 α 2 Γ r?/(m2 r2)(4 36) " " * ' < «
+ ô (i?4 α 4 + « 4 + (α2/i?) C ' rl/(m2 r 2 )),

where C2 > 0 is a constant which is fixed independently of the data at hand.

Indices (j, fc, β) such that

| | P - F Λ < ( u ( ) | | i a < | | P - ί U | | i a - \ • c2 • α 2 r r?/(m2 r 2 )

+ z0 • (R4 • a4 + a4 + {a2IK) • ξ* • r?/(ma r 2))

will be called "good" indices for [A, h], (In (4.37), \ -c? replaces c<ι in (4.36).)

Choose

(4.38) a2 = s[j, k, β]-e rί/(m2 • r 2 R*).

Here s[j, fc, β]: U\ -* (0,1] is a continuous function which will be determined

shortly. Independent of the data at hand, one can adjust R and r\ so that

when (y, A:, β) is a good index for [A, /ι], then (4.37) implies

(4.39) | | P _ F Λ , ( U ) ) | | 2

2 < \\P-FA\\la - c4 • s[j, k,β] • ξ*2 • τ4/r\

where C4 > 0 is a constant which is defined independently of all the data at

hand; it depends just on the Lie group G and the Riemannian manifold M.

If (j, h, β) is not a good index for [A, ft], then one has

(4.40) \\P-FA,(m)\\l* < \\P-FA\\2

L2+c5-S[j,k,β}-ξ*2-r4/r4.

Here, again, the constant C4 is independent of the data at hand.

It remains to choose the functions {s\j\k,β]ι U\ —• (0,1)}. For a given

[A, ft] G U\ and index (j, A;), choose s[j, fc, β](A, ft) = 1 on the compact set in

Uι where (4.36) is satisfied. Choose s[j\ k,β](A, ft) < < < 1 on the open set in

U\ where (4.37) is not satisfied, and smoothly interpolate between. One can
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leave the precise choice of s, where (4.37) is not obeyed, somewhat arbitrary;
it will be convenient to exploit this freedom in §7 when the behavior of the
self-dual connections under this map under construction is considered.

Now, observe that for any index (j>, fc, /?), and for any [A, ft] e U\.

(4.41) I I ^ Λ | | £ 2 . B ( x ϋ i M i r i / m ) ^ z° • £*2 rtA4

Here ZQ is independent of the data at hand. Together, (4.28), (4.33), and
(4.41) imply that for any index j and any [A, ft] G Uχ(δ/2,j)

(4-42) £ ( f 2 • rΐ/r*) > q, • \\P-FA\\h.B(xy]ι3r/4),
(k,β): [4.36] is obeyed

with q\ > 0 being independent of the data at hand. Meanwhile, (4.33) implies
that for any index j and any [A, ft] € U\,

(4.43) £ ( Γ 2 rf/r*) < z0 • | | P - F A | | i a ; f l ( x W i 3 r / 4 ) ,

with ZQ being independent of the data at hand.
Let J denote the total number of indices {(j, k,β)}. Let (A Q,^) denote

the characteristic classes of the bundle P. By gluing, as directed above, at
all of the points {x[j, fc,/3]} and for each [A, ft] € t/i, one obtains a map
θ : f/i —• 2$(fco + ^ ' C(G), ry) which is continuous due to Lemmas 4.4 and 4.6
and which is homotopic to the J-fold composition of the map 0+ of (4.2).
Furthermore, Lemma 4.9 plus (4.27), (4.28) and (4.39)-(4.43) imply

(4-44) sup | | P - i

where z > 0 depends only on the Lie group G and the manifold M. This last
equation proves Proposition 4.2.

5. The topology of <&'t(k0,η) for small e

Let (fco,̂ ) be admissible characteristic classes for a principal G-bundle
over M. As in Proposition 4.2, fix e > 0 and let # denote a homotopy
invariant family of compact subsets of <B'(ko,η) (rel^^ko.η)), and for each
integer j > 0, let $(j) denote the homotopy equivalent, homotopy invariant
family of compact subsets of <B'(fc0 + j c(G),η) (rel<B'2e(fc0 + j c{G),η))
as described in Proposition 4.2. Proposition 4.2 asserts that by taking the
integer j sufficiently large, there will exist U G $(j) for which the supremum
over [A, ft] G U of | | P _ F Λ | | L 2 will be less than 2 e. The object of this section
is to study the topology of ^(k.η) relative to W(k,η). In the next two
sections, the large k behavior of this relative topology will be studied.
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This study of the topology of 23'e (fc, η) relative toOT'(fc^) uses for the most
part modified versions of the techniques which were introduced in [20] and in
[21]. The strategy here is to find obstructions to pushing a given compact
set U C 23̂ (fc, 77) onto 9JΪ'. The obstruction to pushing a given point onto TV
can be interpreted as the nonvanishing at the point in question of a canonical
section of a particular, local vector bundle. The vector bundle in question
is defined over an open set from an open cover of <B'e(fc,77). Taken together,
the vector bundles over the various open sets from the open cover do not
make a globally defined vector bundle; rather, they define a virtual bundle
in if-theory. This "bundle" will be called the obstruction bundle; it and the
canonical section are described in this section (see also §3 of [21]). The zero
set of the canonical section is described in §6.

To begin, fix e > 0 and consider a compact set U C 93' (fc, η) such that the
supremum over [A, h] € U of | | P _ F Λ | | L 2 is less than e. Preliminary deforma-
tions of such a U must be made to obtain U' C QŜ (A:, η) which obeys a priori
estimates. The following lemma provides the necessary deformation.

Lemma 5.1. Let M be a compact, oriented Riemannian 4-manifold, and
let G be a compact Lie group. There exists e > 0 and ζ < 00 with the following
significance: Let P —* M be a principal G-bundle with characteristic classes
(k,η). As before, let<B'€{k,η) = {b eW(k,η): \\P.FA\\L2 <e}. Given δ > 0,
there exists a smooth, a-decreasing homotopy Hβ : [0,1] x *B'e{k, η) —• 93'e(fc, η)
which is constant on ΐΰV(k,η), and which has the property that when [A\^hι]
denotes H6(l, [A, h)) for [A,h] e%(k,η), then

\\P-FAI\\LA + sup ||dist(.,a:)-2 P _ F A l | | L i <ς \\P-FA\\L2+δ.

This lemma will be proved shortly.
In the case where M = S4 with its standard metric, the homotopy of

Lemma 5.1 is the homotopy in §3 of [20]; it converges as t —• 00 and provides
a retraction of W€(k,η) onto Wt'(k,η). This is Proposition 3.1 in [20]. For
the general case, such a retraction may not exist; for example, if the intersec-
tion form on H2{M) is indefinite. (K. Uhlenbeck [13] established that for a
suitably generic metric on TM, the moduli space DJV(k,η) is a smooth sub-
manifold of 93'(A;, η) whenever (fc, η) are admissible as characteristic classes for
a principal G-bundle over M. When such is the case, there will be a tubular
neighborhood of 9JV(k,η) in ©'(fc, η) which retracts onto Wlf(k,η). However,
the functional α may not be bounded away from zero on the compliment of
such a neighborhood; see Lemma 5.4, below.)

In the case where 95̂ (fc, η) does not retract onto OTt^fc, 77), it is necessary
to generalize certain constructions which were introduced in [21]. These gen-
eralizations occupy the remainder of this section. The strategy which was
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employed in [21] will be used here, essentially unchanged. However, the esti-
mates on which the successful application of that strategy were based must
be refined for application here. Estimates are required which are independent
of the Pontrjagin class of the bundle P. The estimates which are developed
in §3 of [21] do not have this property.

To begin, define, for e > 0, the space

b'e(M) = f [Λft] ΞtBUM): \\P-FA\\L* + sup ||dist( ,x) -P-FA\\Lι < el .

Lemma 5.1 asserts that eo > 0 exists which depends only on G and the Rie-
mannian metric and which is such that ®e(A;, η) retracts onto b'ς.e(k, 77) when
e < e0. For such e, fix μ > 0, and define the subset ίl(μ) C b'€(k,η) to be the
set of orbits [A] such that μ is not an eigenvalue of the unbounded operator
P-dΛ{P-d*A) on L2(P_Ω2(AdP)). By standard perturbation arguments [14],
there is a smooth map Π(μ)[ ] of U(μ) into the space of bounded, linear oper-
ators on L2(P_Ω2(AdP)) that sends [A, h] G il(μ) to the operator Π(μ; A) on
L2(P_Ω2(AdP)) which gives the L2-orthogonal projection onto the span of
the eigenvectors of P-d^P-d*^) with eigenvalue less than μ. Note that the
dimension of the image of Π(μ; A) in L2(P_Ω2(AdP)) is bounded a priori by
Proposition A.I.

Fix μo G (0,1/2]. Since there may be spectral flow for P-dA{P-d*A) as
[A, h] varies through b'e(fc,r/), one cannot, in general, guarantee that b'€(h,η)
can be covered by only one set il(μ) for μ G (μo?2 μo). However, due to
Proposition A.I, there exists a number no < 00 which depends only on the
Riemannian metric on M, and which is such that the number of eigenvalues
of P-dA{P-d*A) which lie in (μo, 2 μo) is bounded a priori by no- This means
that b f̂c, η) can be covered by no + 1 sets {il(μi)} with μι G (μo, 2 μo). Let
{^[μo: μi\: H(μi) "~* [0? 1]} be a smooth partition of unity for the cover of
b'((k,η)bγ{U(μi)}.

When [A,h] G ^(£,77), try, as in [21], to define a self-dual orbit
[A + α(A),ft] G fSJV(k,η) where a(A) = P_d*Av(A), and where v(A) G
L§(P_Ω2(AdP)) solves the equation

P_dA{P-d*Av)

(5.1)

Lemma 5.2. Let M be a compact, oriented, Riemannian 4-manifold, and
let G be a compact Lie group. There exist constants δo > 0 and ZQ G [1,OO)

which have the following significance: Let P —» M be a principal G-bundle
with characteristic classes (k,η), and let π: (2t(P) x P\Xo) —• *&'(k^) denote
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the canonical projection. For e G (0,e0], let (A,h) G π~1W€(k,η). Set μ 0 =

ZQ e1/4 in (5.1); then this equation has a unique, small solution, v(μo A) G

Ll(P-Q2(AdP)). Furthermore, the assignment of v(μo A) to (A, ft) defines

a smooth, 0(P)-equivariant map from π~1We(k,η) to Ll(P-Ω2 (Ad P)).

This lemma will also be proved shortly.

Given e G (0,60]? Lemma 5.2 defines a smooth section over b'e(k, η) of the

vector bundle Ώ = {[A, ft,L§(P_Ω2(AdP))]: [A, ft] G b'e(fc,//)}. This section,

5 μ o , sends [A, ft] to

(5.2)

= [A, ft, Π(2 μo{e); A) P_ {P_d*Aυ(μ0; A) A P-d*Av(μ0; A) + FA)].

The zero set of this section defines the moduli space ΐΩV(k,η) of self-dual

connections on P . Indeed, if [A, ft] G b'e(fc,?7), then [A + P-d*Av(μo',A),h] G

23'(λ;, r/) is self-dual if and only if sμ o([A, ft]) = 0. Furthermore, the assign-

ment of (ί, [A, ft]) G [0,1] x b'e(fc, 17) -+ [A + ί P-d*Av{μ0', A), ft] G <B'(A;, 1/)

defines a homotopy of bw2(fc, 77) m ®;(fc5^) which fixes ^'(A:,//) and which

deforms 5μ o( )~1(0) onto 9Jt'(fc,?7). Since b'ey2(fc,r/) is open in *&'{k^), it is a

straightforward matter to extend this homotopy to a homotopy of 03'(fc, 77).

Thus, Lemma 5.2 has the following corollary:

L e m m a 5.3. Let M be a compact, oriented, Riemannian 4-manifold, and

let G be a compact Lie group. There exists constants eo > 0, z0 < 00, and

these have the following significance: Let P —> M be a principal G-bundle

with characteristic classes (A:, 77). For e G (0, eo]? ^ βo = μo(e) = ^0 t1^ in

(5.1) and (5.2). There is a smooth homotopy Φ: [0,1] x <B'(k,η) -• W(k,η)

which fixes Wl'(k,η), which maps {1} x bw2(fc, η) into b^0.e(fc,7y), and which

maps {1} x (s^OΓHO) Π b'φ(k,η)) ontom'{k,η).

This lemma will also be proved shortly.

As previously noted, for a suitably generic metric on TM all of the moduli

spaces WV(k,η) are either empty, or smooth manifolds [13]. For such met-

rics, one expects that a tubular neighborhood of a nonempty 9JV(k,η) will

retract onto dJt'(k,η). To begin the construction of such a tubular neigh-

borhood, observe that the assignment of [A, ft] in 2$'(A;, η) to the smallest

eigenvalue, i?o[Ά]j of the operator P-dA(P-dA)* defines a continuous map

Έb[ ] : %$'{k,η) —• [0,oo). For the generic metrics in [13], the assignment of

E0[A] to [A,ft] G Wl'{k,η) defines a smooth map J50[ ]: WV{k,η) -• (0,oo).

This fact and the following lemma complete the tubular neighborhood con-

struction.

L e m m a 5.4. Let M be a compact, oriented, Riemannian 4-manifold, and

let G be a compact Lie group. There exists a continuous function z(-): [0,00) —•

[0,00) which maps 0 to 0 and which has the following additional property.
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Let P —• M be a principal G-bundle with characteristic classes (k,η). Let

W(*,ιy) = {[A,h] G W(k,η): \\P-FΛ\\L2 < z(E0[A])}. There is a continuous

retraction ofW(k,η) ontoW(k,η) which fixes Ίfl'(k,η).

The remainder of this section contains the proofs of Lemmas 5.1-5.4.

Proof of Lemma 5.1. The proof of this lemma mimics the proof of Proposi-

tion 3.1 of [20]. To begin, let P —• M be a principal G-bundle with character-

istic classes (k,η). Define 2le = {A G 2l(P): | | P _ F A | | L 2 < e}. For any m > 0

and A C 2le, there exists a unique u(A) C Z^(P_Ω*(AdP)) which solves the

differential equation

(5.3) P-dA{P-d*Au) + m u = -P-FA.

Furthermore, u(A) varies smoothly with A and defines a (δ(P)-equivariant

map from 2le into Z^(P_Ω2(AdP)).

Let a{A) = P-d*Au{A) G L ^ ^ A d P ) ) . The assignment of A G 2le to

a(A) defines a smooth, 0(P)-equivariant map. Thus, by push-forward, the

assignment of [Λ,Λ] G W(k,η)e to [Λ,Λ,α(Λ)] G (2le xG(p) LKΠ^AdP)))

defines a smooth vector field on ς&'(k^η)e. The homotopy in question will be

obtained by integrating this vector field.

To study the integral curves of the vector field, above, fix A G 2te. Then

standard short-time existence theory provides T(A) > 0, and a unique, smooth

map Φ( , A): [0,T) —• Ae which satisfies Φ(0, A) = A, and

(5.4) ^ΦM)so(ΦM))

(see Theorem 4.1.13 in [1]). The fact that Φ is unique implies that Φ( , g- A) =

g - Φ( , A) for all g G ©(P) This short time existence theory provides an open

neighborhood of A, ίi C As which is such that Φ( , A') is defined on (0, T(A)}

for all A' G il; and il is such that the assignment of (ί, A') G [0, T) x iί to

Φ ^ A ' ) G As defines a smooth map.

Lemma 5.5. Let M be a compact, oriented Riemannian 4-manifold, and

let G be a compact Lie group. There exists e > 0 and ς < oo with the following

significance: Let P —* M be a principal G-bundle, and let A G 2le(P). Then,

the curve Φ( ,A) of (5.4) has a unique extension to a map from [0, oo) into

2te which obeys (5.4) for allt G [0,oo). Furthermore, Φ( , ) defines a smooth,

(δ(P)-equiυariant map from [0, oo) x 2le —• 2le.

This lemma will be proved shortly.

Given Lemma 5.5, the proof of Lemma 5.1 is completed by observing that

on an interval in [0,oo) where Φ{ ,A) is defined, the curvature of Φ( ,-A)
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evolves according to

(5.5) ^ P - F Φ ( . | Λ ) = - P - F Φ ( . | Λ ) - u(A).

This last equation implies that the L2-norm of P_Fφ(.^) is a nonincreasing

function of t G [0, T) which is strictly decreasing unless A is a critical point

of α; indeed,

()

= -2 (P-Fφ(.Ah(P_dA(P-dA)* + m)-1 P-FΦ (. | A))L2.

Note also that if a; G M is fixed, then

< -||dist(., x)~2 P-FΦ{.,A)||Li - m ||dist( , a:)"2 • u(Φ

< -||dist( , x)-2 P-Fφ(. f A ) | | L i + z m ||u(Φ( , A))||L4,

where ^ is a constant which only depends on the Riemannian metric.

Equation (5.3) can be used to estimate the L4 norm of u(Φ(-,A)). Let

A! £ 2te be given. Via the Weitzenboch formula (cf. Appendix C in [13]) and

an integration by parts,

(5.8) | | V Λ ^ | | 2

2 + m . | | r i | | i 2 + (rx,2Π tx>L2 + (u, {P_^,u}> L 2 = (u,P-FA,)L*,

where 2U G C°°(End(P_ /\2 Γ*)) is a component of the Riemannian curvature

tensor, while, with respect to a local basis for P-/\2T*, {P-FA>,u} is a

specific linear combination of the commutator of the components of P-FA>

and of u (see Appendix C in [13]).

Take m = 4 sup M |20 |. Then (5.8) provides £o which depends only on

the Riemannian metric on TM and which is such that if e < eo, then

(5.9) | |V^ίi| |2

2+m H 2

2 <2 (P-FA,,(P-dA>(P-dA,y+m)-1.P-FA,)L2.

With Kato's inequality and the L\ —* L4 Sobolev space inclusion ((3.4) of

[22]), (5.9) yields the bound

(5.10) ||tx(A')||£4 < z (P-FA,,(P-dA,(P-dA/)* + m ) " 1 P-FA,)L2,

with z depending only on the Riemannian metric on TM.

Using (5.6) and (5.10), one can integrate (5.7) to conclude that

||di8t(.,ί)-2 P_FΦ ( t,Λ ) |Ui < e - t ||di8t( > z)- 2 P _ F Λ | | L .

+ z-\\P-FΦ(tA)\\L2.

A similar argument shows that

(5.12) | | P - * Φ ( M ) | | L « < e~* • \\P-FΛ\\L4+z \\P-FΦ(tιA)\\L2.
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Make the homotopy ife( , •) of Lemma 5.1 send (t, [A, h]) to

[Λ,Φ(ln(4 (||dist( ,x)- 2 P-FA\\Li + \\P-FA\\L* + l)/e),A)].

Proof of Lemma 5.5. This mimics the argument which proves Proposition
3.1 of [20]. First of all, the reader can readily check that there exists eo > 0
which depends only on the Riemannian metric, and which is such that when
6 < 6o and when A G 2le, then u(A) obeys the conclusions of Lemmas 3.5-3.7
of [20] with constants which depend only on the Riemannian metric.

Now, let χ( ): [0, oo) —• [0,1] be a smooth function which vanishes on
[3/2, oo), and which is identically 1 on [0,1]. For x G M and r > 0, let
χ[x,r]( ) = χ(dist( ,x)/r). For A G 2le, suppose that A{ ) = Φ( , A) is defined
on [0,Γ). Analogous to (3.16) in [20], one has (using (5.12)) the bound

(5.13)

where z([A]) depends only on the starting orbit [A] = [A(0)].
When T < oo, this last inequality implies, using a variation of the proof

of Lemma 3.10 in [20], that the sequence of connections {A{t)}t^τ is a
Cauchy sequence with respect to the Lf-topology on 2le. The convergence
of {A(t)}t-+τ in stronger norms is obtained in a straightforward way by tak-
ing covariant derivatives of (5.5); the details are omitted (see Lemma 3.11 in
[20] for an example).

Thus, when T < oo, the map which sends t G [0, T) to Φ(£, A) has a unique
extension to a continuous map from [0, T] into 2le. By the local existence
result, the map has a unique extension to [0, T + σ) for some σ > 0. Standard
arguments yield the remaining assertions of the lemma.

To prove Lemma 5.2, one must exploit the fact that for μ > 0 and for
any connection A, the operator HA = P-dA(P-d*A) has bounded inverse on
(1 — Π(μ; A)) L2. Thus, if υ solves (5.1), then υ solves the fixed point equation

v = -HA

λ (1 - Π(μ0; A)) ]Γψ[μ0;μ<] (1 - Π(/i,; A))
(5.14) i

.P.{P-(TAvAP-(rAv + FA).

Equation (5.14) will be analyzed as a fixed point equation on the Banach

space

U(μ A) =L € (1 - Π(μo A)) • L2(P_Ω2(AdP)):

\u\l = | |V,H|!2 + N|2» + sup ||dist( ,a;)-2
 |V Λ U| 2 | |LI < ool.
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It is useful to define a second Banach space W to be the completion of
L2(P-Ω2(AdP)) with the norm \w\w = \\M\L1 + suPzeM ||dist( ,a:)~2

 W||LI.

The utility of these spaces is due to
Lemma 5.6. Let M be a compact, oriented, Riemannian A-manifold,

and let G be a compact Lie group. There exists constants e\ > 0 and z$ < oo
which have the following significance: Let P —• M be a principal G-bundle
with characteristic classes (k,η) and let [A,h] G bCl(fc,ry). For μ > 0, H^1

defines a bounded map from (1 - Tl{μ;A)) L2(P_Ω2(AdP)) ΠW to U(μ A)
and \H^xw\u < ZQ μ~ι \w\w

Proof of Lemma 5.6. First, suppose that w is smooth, and in (1 — Π(μ; A))
L2(P_Ω2(AdP)), then standard arguments provide a unique u G
L§(P_Ω2(AdP)) which satisfies

(5.15) P-dA{P-d\u) =w.

Contract both sides of this equation with u and integrate over M to derive
the bound

(5.16) I M I L ^ ^ IHOO IMUI-

The Weitzenboch formula (see Appendix C of [13]) implies that

(5.17) \ d*d\u\2 + \VAu\2 + (tι,2Π u) + (u, {P-FA;u}) = {",^)

Integrate both sides of the preceding equation over M. Using (3.4), one finds
6o > 0 and z$ < oo which depend only on the Riemannian metric of M and
which are such that when e < e0, then

(5.18) | | V ^ | | | 2 < ^ o //-1 lhlloc |kllLi.

Next, fix x G M and let G( , x) G C°°{M\{x}) denote the Green's function
for d*d with pole at x. There exists r0 > 0 which depends only on the metric
on M and is such that | dist(ΐ/,α;)~2 < G(y,x) < 2 dist(t/, x)~2 whenever
dist(y,a;) < r0.

Multiplying both sides of (5.17) by G( ,x), and then integrate the result
over M. The following bound is obtained:

(5 19) M ^ ) + l|diβt(y,x)

< 20 (μ-1 IMIoo IMILI + N l ~ ' \P-FA\W + ||ti||oo Ww).
Here ZQ < oo depends only on the Riemannian metric. Take the supremum
over x In M of the number on the left-hand side of (5.19). One obtains
constants eo > 0 and ZQ < oo which only depend on the Riemannian metric
and which are such that when e < e0,

||tι||2o + sup ||dist( , x)-2
 |VΛU| 2 | |LI < *o - μ~l \w\^.

M
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With (5.18), this last equation yields the lemma for smooth w. The general

case is established by taking limits.

The application of Lemma 5.6 to the fixed point equation (5.14), requires

the following additional result:

L e m m a 5.7. Let M be a compact, oriented, Riemannian 4-manifold,

and let G be a compact Lie group. There exist constants e\ > 0 and ZQ < oc

which have the following significance: Let P —• M be a principal G-bundle

with characteristic class (A;,η) and let [A,h] E bei(fc,r/). For μo > 0, and

ueC°°(P-Ω2{AdP)), let

ι
T[μo;A]{u) = H

Then the assignment of u to T[μo;A](u) extends to define a smooth map

T[μo;A]{'): U{μo;A) -> U{μo;A) which obeys \T[μ0;A)(u)\u < z0-μ^1-\u\l.

Proof of Lemma 5.7. Let ω G L^(P-Ω2(AdP)) be an eigenvector of HA

with eigenvalue μ(ω) < 2 μo a n d with unit L2-norm. Then it follows from

Lemma 5.6 and (3.4) in [20] that

(5.20) \ω\u<zo'{l + μo)2.

Now, for smooth u and v!\ write

(1 - Π(μ0; A)) Σ ψ[μO;μi] - (1 - Π(μ,; A)) P_ ( P _ d > Λ P-d*Av!)
i

(5.21) = P-(P.d*Au Λ P-d*Au') -

where the sum is over an orthonormal basis {ϋjj} for the span of the image of

Π(2 μo;A). Then, (5.20) and (5.21) imply that

1(1 " Tί(μ)[A]) P-{P-d\u Λ P-d\u')\w

' <zo N(μ',A) (l + μ)2 \u\u.\u'\u.

In this last equation, N(μ; A) is the dimension of the span of the image of

Π(μ A); this number is bounded a priori in Proposition A.I by a constant

which depends only on μ and the Riemannian metric.

Lemma 5.7 follows immediately from (5.22) and Lemma 5.6.

To analyze (5.14) as a fixed point equation, it is necessary to obtain a bound

on the I |c/-norm of the last term on the right-hand side of said equation.

Lemma 5.8. Let M be a compact, oriented, Riemannian 4-manifold,

and let G be a compact Lie group. There exist constants €χ > 0 and ZQ < oo
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which have the following significance: Let P —• M be a principal G-bundle

with characteristic classes (fc,ry) and let [A,h] G bei(k,η). For μ 0 > 0, and

w<ΞC°°{P-Ω2{AdP)), let

ω[μ0; A](w) = H^1 (1 - U(μo A)) Σ > [ μ o ; μ < ] (1 - U(μt;A)) w.

Then the assignment of w to ω[μo',A](w) extends to define a smooth map

ω[μo;A]('): W -• U(μo;A) which obeys \ω[μ0; A](w)\u < z0 μ^1 \w\w-

Proof of Lemma 5.8. This follows from Lemma 5.6; the details are left to

the reader.

Proof of Lemma 5.2. Lemmas 5.6-5.8 have established the basic results

which allow the use of standard fixed point arguments to prove the existence

of a solution to (5.14). In fact, these lemmas provide £o > 0, z$ < oo, and

a continuous, decreasing function, μo( ) : [0,eo] —• [0,1] which maps 0 to 0;

these are such that the following is true: For e < e0 and for [A,h] G b'€(P),
there exists a unique υ(μo; A) G U(μo\ A) which obeys (5.14) and also satisfies

(5.23) \υ{μo,A)\u < z0 • μ^1 \P-FA\W < e3/4.

L e m m a 5.9. There exists a constant κ,0 > 0 which depends only on

the Riemannian metric, and which has the following significance: Let [A, h]

and v{μo\A) be as described in the preceding paragraph. Then v(μo,A) G

L§(F_Ω 2 (AdP)). Furthermore, if $B{χr) \FA\
2 < κ0, for x G M and r > 0,

then

ff \ ^
B{X,T/2)

Proof of Lemma 5.9. For the a priori estimate, mimic the proof of Lemma

3.7 in [20]. The proof that v is in L\ is a standard bootstrapping argument

(see for example [17, Chapter 6]).

The proof of Lemma 5.3 is completed by showing that the assignment

of (A, h) G π~ιb'e(P) to v(μo;A) defines a smooth, 0(P)-equivariant map

into Z^(P_Ω 2 (AdP)). This argument is a straightforward application of the

contraction mapping principle using the fact that the projectors Π(μ; A) are

smoothly varying on the open sets U(μ) (see §8 in [22] for an analogous argu-

ment).

Proof of Lemma 5.3. The homotopy in question sends (ί, [A, h]) G [0,1] x

b'c(A;,η) to [A+t.a[A].P-d*Av{μ0; A),h] G*B'(M); whereα[ ]: K(k,η) -* [0,1]

is a smooth, G-equivariant function which is identically one on b^2(A;, η), and

which vanishes identically on b'Ze,A(k,η). For [A,h] £ b'e(fc,ry), the homotopy

sends (£, [A,h]) to [A,h]. The only assertion of the lemma which has not

yet been verified is the assertion that ZQ < oo exists which depends only
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on M and the group G and which is such that for all [A,ft] € b'e,2(k,η),

one has [A + P-d*Av(μ0;A),h) 6 b^o.e(fc,r/). To establish this fact, let A' =

A + P-d*Av{μ0;A). Then

A) P_ (P.d^t ; Λ F _ d > + FΛ).

The lemma follows from this last equation with (5.20) and (5.22).

Proof of Lemma 5.4. Using Lemmas 5.6-5.9, mimic the proof of Lemma

5.2.

6. The obstruction bundle

This section studies the change with respect to change in Pontrjagin class

of the obstructions to self-duality which were defined in the preceding section.

Consider a principal G-bundle P —• M with characteristic classes (fc,r/). Fix

€ > 0, and focus attention on a compact set U C b'e(k,η). Equation (5.2)

defines a vector bundle QJ —• C/, the obstruction bundle, and a canonical

section, s μ o , of 5J. If sμo = 0 on ί/, then U can be deformed continuously into

Suppose that sμo is nonzero on U. Then the following proposition will be

invoked.

Proposition 6.1. Let M be a compact, oriented, Riemannian ^-manifold,

and let G be a compact, simple Lie group. There exists eo > 0 and ZQ < oo with

the following significance: Let (fc, η) be admissible as characteristic classes for

a principal G bundle P —> M, and suppose that 9JV{k,η) is not empty. Let

W C bco(fc,ry) be a given compact set, and let U = 9JV(k,η) UW. Then

there exists an integer J < oo and for all «/' > J', a homotopy equiva-

lence T ΞΞ Tjι\ W(k,η) -> 93'(* + c(G) - J',77) which has the following

properties: First, T maps V€0{k,η) —> b^o.Co(fc + c(G) J',η) and U into
b'zo-eo/2(k + C ( G ) ' J / ^ ) ' aTld second> *μo(zo eo)\τ(U) = 0, With Sμo{zo.€o) as
defined in Lemma 5.3.

The homotopy equivalence, Γ, is constructed by multiple gluings of the

standard self-dual orbit over S4; [Auhx] = [A+,hi] e %{PG±), where [A+,ft]

and *B(PG+) are as described in the proof of Proposition 4.1. By a suitable

number of gluings, and by an appropriate choice of the gluing parameters, one

can construct T with the required properties. Of course, this is the strategy

which was developed in [21].

Before beginning the proof proper, it is necessary to investigate how sμo (.)(•)

is changed by the gluing operation. This investigation occupies the first part
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of this section, and the results are summarized in Lemma 6.4. The last five

parts of this section contains the proof proper of Proposition 6.1.

Part 1: The change in sμo(.)(•). To consider the change in sμo(.)(•)

after gluing, it is necessary to begin by slightly modifying the homotopy of

Lemma 4.4 to obtain a priori estimates on orbits in b'e(fc, η). The lemma below

proves sufficient.

Lemma 6.2. Let M be a compact, oriented, Riemannian A-manifold.

There exist ro > 0, eo > 0 and zo € (l>°o), and for each integer m > 0,

there exists ξm < oo, and these have the following significance: Let r G (0, ro)

and e G (0, eo) and suppose that J < oo points {x{v)} C M are fixed such

that the set of balls {B(x(υ),r)} are disjoint. Let P —• M be a princi-

pal G-bundle with characteristic classes (fc,r/), and let *Be(P;{x(υ),r}) =

{[A] G 35(P): (4.7) holds for each ball B(x(v),r)}. There exists a smooth

homotopy Φ({x(υ),r}) Ξ Φ : [ 0 , 1 ] X W(k,η) -• ̂ '{k.η) which maps [0,1] x

Q5e(P; {x{v), r}) —• 95^O.£(P; {x{v), r}) and which has the following properties:

First, Φ(t,[A,h]) = [A,h] for all t if [A,h] £ <Be(P: {x(υ),r}). Second, for

[0,1] x 33€(P: {x(t;),r}),

Φ(ί,Λ)= U + ί ^ ^ ( o ί Λ ; x(υ),r)/e).<(Λ) ,

α(Λ;x,r) ώ defined in (4.7) and ^( ) iθ described in Lemma 4.4.

defines a smooth section over 93e(P;z(t>),r) o/ ί/ιe t ecίor bundle

^ ( Ω ^ A d P ) ) u AtcA o6et/s

(1) TAe support of v'v(A) is in B{x(v),r), and

\K(A)\\7

A<z0-\\VaA\\%B{x{vM,

where UVeuH^B^,,),,.) < ^o ||-P-^U||z,2;β(i(υ),r) ώ <Λe norm of the restriction
o/VOyi ίo the subspace of L ^ Ω 1 (Ad P)) with compact support in B(x(υ),r).

(2) For ί € [0,1],

(M)I IL l|

< \\P-FA\\l2 + sup

(3) For each [A] G 33e/2(P; {x(υ), r}) αncί /or eαcΛ υ and ye B(x(v), r/2),

I v i ^ ^ Φ d ^ K ? / ) < U r- m " 2 | | F Λ | | L a ; f l ( x ( t ; ) f r ) .

(4) Λ/so, /or sucΛ [Λ], onrf v and y,
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Proof of Lemma 6.2. For each ι>, construct vv(A) = v(A) of Lemma 4.4,

and then set υ'υ{A) = βf vv{A) where β' G C°°(B(a;(υ),r);[0,l]) is identi-

cally 1 on B(x(v),r/2), vanishes identically on B(x(υ),r)\B(x(υ),3r/4) and

obeys \dβ'\ < 25/r. The estimates follow from Lemma 4.4. (The estimate

on ||Vcu|U;B(z(υ),r) in assertion (1) follows from the Bianchi identity after

integrating by parts.)

Fix e G (0, Co), and fix J < oc points {x{v)} C M and r > 0 such

that the set of balls {B(x(υ),r)} are disjoint. For [A^ή] G b'€(k,η), with

[Ao] G 93c/2CP;{z(υ),r}), let [Λ0,Λ] Ξ Φ(l, [J4|>,Λ]), with Φ as in the pre-

ceding lemma. Lemma 6.2 insures that [>lo,Ao] £ b'ZQ.e(k,η) with ZQ being

independent of 6, e and P; it depends only on G and the Riemannian metric.

Let XQ G M denote the base point, and let /o G Fr M\ Xo be the fixed frame.

For each point x(υ), choose a smooth path φ{v) G φ(zo) from zo to x(v).

Choose the path to be disjoint from B(x(vf), r) and φ{v') for υ1 Φ v. For each

v, choose smooth functions X(υ): »'(/:, ry) -• (0,1/8) and t(υ): ^(fc, η) -+ [8

\{v)/r, 1). Suppose also that for each υ, a centered point [Ai, /&i]υ G © ( P G + )

has been specified. Here, PQ+ —• 5 4 is defined in the proof of Proposition

4.1; as is the unique, centered orbit [Aι] = [̂ 4+].

For fixed t;, this data defines data

w(υ) = [[Ao,ho}Jo,φ{υ),s{v) = A^/ίft;)^^,^,^],]

which is required for the definition of the connection A'(w(v)) of (4.10). This

connection is defined on a principal G-bundle, P' —• M, with characteristic

classes (fc + c(G),η). The principal bundles P' and P are naturally isomor-

phic on M\x(v) by an isomorphism which identifies Ao and A'(Z/;(Ϊ;)) on the

compliment of the ball B(x(υ), 4 λ(υ)/t(υ)) C M.

Since the set of balls {B[v] = B(x(v),4 λ(t;)/ί(t;))} is a set of disjoint

balls, the construction of Af(w(v)) can be done simultaneously in each ball

B[υ] to produce a connection A! = A'({w(υ)}) which is a connection on a

principal G-bundle, P[w] —• M, with characteristic classes (fc + c(G) J, 17).

It follows from Lemmas 4.4 and 4.7 and (4.16) that J , r, and the parameters

{\(υ),t(v)} can be chosen to insure that [Af, h] G b'2zo.e(k-\-c(G)' J, r/). Indeed,

fix i? G [1, e~1/4) and require that

(6.1a) t{υ) = 16 λ(υ)/r, λ(t;)4Λ4 < Λ4 <?lh K^Ϋ < R ' e/J

Let

(6.1b) μi=μo(2 zo e),

with μo( ) as in Lemma 5.3, and with z0 as in Lemma 6.2. Suppose that e

has been chosen so that 2 ZQ e and μ\ are both less than 1/2. The next
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task is to evaluate sμι([Af,h\). To begin, it is useful to first compare the
projections Π( ; A') and Π( ; Ao). For this purpose, the following observations
prove useful:

Lemma 6.3. Let M be a compact, oriented Riemannian 4-manifold and
let G be a simple Lie group. There exists eo,ro > 0 anά for each nonnega-
tive integer m, there exists ζm < oo; and these numbers have the following
significance: Let P —• M be a principal G-bundle with characteristic classes
( M ) and let [A] G b€o(k,η) = b'€o(k,η)/G. Let ω G L|(P_Ω2(AdP)) be
an L2-normalized eigenvector for the operator P-dA(P-dA)* with eigenvalue
μ(ω). Then the following hold.

(3) //, in a ball of radius r < r$ on M with center x, the connection A
obeys assertion (3) of Lemma 6.2, then at points y G M with dist(x,y) < r/4,

Proof of Lemma 6.3. The first assertion is a consequence of Lemma 5.6,
and the second follows using the Weitzenboch formula. The fourth is obtained
via standard elliptic techniques (see [17, Chapter 6]).

Focus attention on an L2-orthonormal basis of eigenvectors, {ωn: n <
N(S μi)} G L§(P_Ω2(AdP)), for the operator P-dAo(P-.dAo)* with eigen-
values μ(ωn) < 8 μi < 1. Here, μi is defined in (6.1b). The bound JV(8 μi)
for the maximum size of such a basis depends only on G and the Riemannian
metric (see Proposition A.I). Here, and elsewhere in this section, the con-
vention will be to index the eigenvectors so that the eigenvalue of ωn is not
greater than that of ωn+ι. Introduce the notation from (4.2) and (4.10) and
let

(6.2) ω'n

Then {ω'n} defines a set of L§-sections of P-Ω2(AdP(w)), and Lemma 6.3
implies that

(6.3) KωWnh* - U < z\

(6.4) \\\P_ά\,ω'Λh ~ μM\ <

Furthermore, any φ € L\(P-U2(AdP[w})) obeys

\{P-<rA.φ,P-<rA,ω'n)L2 -μ(ωn) •

<
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It follows from (6.2)-(6.5) that there exists e > 0 which depends only

on M and G and which is such that when e < eo, then the assignment

of {ωn: n < N(8 μi)} to {Π(8 μi,A') ω'n} defines a linear map from

Range Π(8 μi A)) C L2(P_Ω2(AdP)) into RangeΠ(8 μr,A') C

L2(P_Ω2(AdP(w))) which is injective.

Conversely, if {τn} G L2(P_Ω2(AdP(it;))) is an L2-orthonormal basis of

eigenvectors for the operator P-dAt(P-dA>)* with eigenvalues less than 2

μi, and if {τ'n} is defined by (6.2), then {τ'n} defines a set of Zj-section

of P_Ω2(AdP) which, due to Lemma 6.3, obeys (6.3) and (6.4) with Ao

replacing A! in (6.4).

It follows from these last two observations that eo > 0 exists, which depends

only on the Riemannian metric and on G and which is such that if e < eo,

then

Π ( 2 . μ i ; A 0 X 2 ( P - Ω 2 ( A d P H ) )

C Span{Π(8 μ\\A!) ω'n: n < N(4 μi)}.

Now, for n < N(8 μi), write each ω'n as Π(8 μi; A1) ω'n + θn with

θn G (1 - Π(8 μi;A')) - L2(P_Ω2(AdP(w))) Π L\ obeying

(6.7) P-dA'(P-dA')*θn + (1 - Π(8 μi\A')) ω'n = 0.

Because

| | P _ ^ , 0 n | | 2

2 = (P-d*A,θn,P.d*A,ω
f

n)L2,

(6.5) implies that

Here the facts that [Af, h] G b'e(P(w)) and μi(e) > e1/4 have been used.

Observe: Equation (6.6) asserts that sμi([Af,h]) = 0 if

(6.9) fn = (U(8 μ1'1A
/)'ω/

n,P.FAf+P.(d^v(Xo;A
f)Ad%v(Xo;A/)))L2 = 0

for all n < N(4 μi). Concerning fn, one has (see (1.7) and Proposition 5.4

in [21])

Lemma 6.4. There is a constant c(G) which depends only on the group

G, and there are constants eo > 0 and ZQ < oo which only depend on G and

on M these are such that when e < EQ, then for all n < N(8 μi),

fn-(ωn,P-FAo)L2

- Σc(G)\(v)2(ωn(x(v)),X(<p(v), / 0 , [4>, Λo],hi(v)) P+FAι (s))

where X(-) is defined prior to Lemma 4.7.
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Proof of Lemma 6.4. Due to (5.23),

(6.10) |fn - (Π(8 μi]A') ω'n, P-FA,)L2\ < z0 - β3 / 2.

To analyze the left-hand side, above, note that

(6.11) + ^ p_ {dβiX(υ)/t(v) Λ d*A,u{w(v), t{v))

•(1 - βAλ(v)/t{u)) • <ΓA,u{w{υ), t(υ)) A dA,u(w{υ),

Thus, due to Lemmas 4.8 and 5.9 and (6.1),

(6.12)

fn - (Π(8 μi;A') • ω'n,l[(l - βx(v) • P-FAa

{y) Λd*A,u(w(υ),t(υ)))L< ,3/2

The third term on the left-hand side of (6.12) is evaluated via an integration
by parts:

I(Π(8 μi;A') • ω'n, dβ4Hv)/t{ι/) Λ dA,u(w(v), t{v)))L2

- (ωή> βi\(v)/t(u) • P-dA,dA,u{w(v), t(υ)))Li\
[ ' ' <zo-(r-\\P-dAln(8-μi;A')-ω'n\\L2;B[v]

Here B[υ] = B{x{v),4- λ{v)/t(υ)).
Equation (6.13) is readily evaluated using (4.15). The evaluation results in

\(U{S • μi;A') • ω'n,dβ4Hv)/t{l/) Ad*A,u{w{v),t{v)))L2

-c(G)-X(υ)2 • (ωn(a:(t;)),X(/(υ),Ao(υ),Λi(t;)) P + f Λ l (β)) |

< 20 ( | |V^ W n | |K% M λ(υ)7/4 (A(^)A)1/4 + r R4 • e2/J

+ (r • | | F _ ^ Π ( 8 μi;A') ω ; | | t 2 . B M + \\θn\\L2.B[υ]) R2 e/VJ).

This last estimate utilizes assertion (3) of Lemma 6.3.
By substituting this last equation into (6.12), and using (6.8) and Lemma

6.3, one obtains the final estimate.
Part 2: The choice of gluing sites. The proof proper of Proposition

6.1 begins here with the start of the construction of a family of homotopy
equivalences between a given 93'(A;, η) and *B'(k + c(G) -J,η). These homotopy
equivalences will require certain parameter specifications. The specification
of these free parameters will constitute the last parts of this section, and
complete the proof of the proposition.
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For eo > 0, but yet to be specified, and for e G (0, eo), suppose that

U C b'e(λ;,77) has been specified as in the statement of Proposition 6.1. The

proof begins with five lemmas which detail the choice of points in M about

which to make the gluing construction of (4.2) and (4.10). Choosing this set

of points constitutes this part.

To start, choose 7*i to be much less than the injectivity radius of M. A

further restriction on r\ comes from

L e m m a 6.5. Let M be a compact, oriented, 4-dimensional Riemannian

manifold, and let G be a simple Lie group. There exists q > 0 with the

following significance: Let (fc, η) be the characteristic classes for a principal

G-bundle P -> M. Fix μ > 0 and e > 0. Let W C 9S(k,η) be a compact

set. For each [A] G U = iXfl{k,η)\jW, let Π(μ A) denote the L2-orthogonal

projection in L 2 (P_Ω 2 (AdP)) onto the span of the set of eigenvectors of the

operator (P-dA)d*A with eigenvalue less than μ. There exists ro > 0 so that

for any r G (0, ro], there is a set of disjoint balls {B(x\j],r)} C M with the

property that for each [A] EU, a subset {B(x[j(A)],r)} C {B(x[j],r)} obeys

(1) For each index j{A), [A] €® € / 2 (P ;z[ ; (A)] , r ) .
(2) For each ω G RangeΠ(μ; A),

ZZ llωlli2;B(x[i(Λ)],r/4) ^ 9 * IMli2 '
3 (A)

Prior to proving this lemma, it is useful to make a preliminary observation:

L e m m a 6.6. Let M be a compact, oriented, A-dimensional Riemannian

manifold, and let G be a simple Lie group. Let (fc, η) be the characteristic

classes for a principal G-bundle P —• M for which $Jl(k, η) is nonempty. Fix

μ > 0. The set Ξ(k) = Uo<*'<fc{M : ω e RangeΠ(μ; A), ||α;||L2 = 1 and

[A] e Wl(k',η)} is a compact set in L\(M).

Proof of Lemma 6.6. Proposition A.I in the appendix establishes a metric

dependent, but k independent, upper bound for the dimension of the range of

Π(μ; A) for [A] G 97t(fc, η). Knowledge of the noncompactness of 9Jt(fc, η) from

[9] (see also §5 of [22]) details the behavior of a sequence [A(i)\ G OT(fc,r/)

which fails to converge. With this knowledge, plus Lemma 6.3, a straightfor-

ward cut and paste mimicking (6.2)-(6.5) establishes the lemma.

Proof of Lemma 6.5. Note first that the compactness of W plus Proposition

A.I insures that dim(RangeΠ(μ; A)) is a priori bounded for [A] G U. Then,

given Lemma 6.6, it follows that {|ω|: ω G RangeΠ(μ; A), ||U;||L2 = 1 and

[A] G W} is a compact set in L\(M). Exploit this fact by copying the proof

of Lemma 4.5 to establish the existence of constant q > 0 with the following

properties: First, q depends only on the group G and the Riemannian metric.

Second, given r > 0, but sufficiently small, there exists a set of disjoint balls
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{B(x[j],r)} such that for any [A] G U and ω G RangeΠ(μ; A),

Since W is compact, given e > 0, there exists r\ > 0 such that W C
®e/2CP;z[/],r) whenever r < rx. For [A] G Wl(k,η), the condition [A] &
53e/2(F; x[/], r) can be true for at most 2 A /e of the indices j . For sufficiently
small r, Lemma 6.3 insures that the deletion of 2 k/e balls from the sum
above will not effect the validity of the inequality if 2 q is replaced by q on
the right-hand side. This completes the proof of Lemma 6.5.

Let W C 93' (fc, η) be a compact set as given in the statement of Proposition
6.1. Consider U = fΠV(k,η) U W. Choose n > 0, but sufficiently small so
that Lemma 6.5 can be invoked for the projection of U into 2$(fc, η) using
μ = 16μo(2 zo e), with μo( ) as in Lemma 5.3, and with z$ as in Lemma
6.2. By adding balls if necessary, one can assume that the number of points
{χ[j]} C M is equal to J\ = co/rf, with Co fixed by the Riemannian metric
on M.

Construct a homotopy Φ = Φ({x[y],ri}): [0,1] x ©'(fc,^) -^ ®'(fc,^) of
Lemma 6.2. Then J70 = Φ(1,17) C b'Zo.€(k,η) with ZQ < oo as provided by G
and M via Lemma 6.2. This homotopy Φ can be constructed for any suffi-
ciently small, but positive, choice of r\ and balls {B(x[j],rι)} which satisfy
the conclusions of Lemma 6.5. The next lemma gives an additional upper
bound on the number r\.

Lemma 6.7. Let M be a compact, oriented Riemannian 4-manifold and

let G be a simple Lie group. There exist βo £ (0,1] and Co < oo with the

following significance: Let P —• M be a principal G-bundle with characteristic

classes {k,η), and for e € (O,eo], let W C b'e(k,η) be a given, compact set. Set

U = 9Jt'(fc, η) U W. Fix μ\ = μo(2 ZQ e) with μo( ) as in Lemma 5.3 and ZQ

as in Lemma 6.2. Let q be as in Lemma 6.5. Then ro(e) > 0 exists such that

when ri G (0,ro), there is a set of Jι = Co/rf balls {B(x\j],rι) C M} which

satisfy

(1) The conclusion of Lemma 6.5.

(2) Let UQ = Φ(l,ί7), with Φ = Φ{{x\j],rι}) as described in Lemma 6.2.

For each [A, h] £ UQ, and for each ω G Range 11(8 μo; A),

Proof of Lemma 6.7. This is a straightforward perturbation argument using
assertion (1) of Lemma 6.2 and Proposition A.I. The details are left to the
reader.
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Given U = Wlf(k, η) U W', and having constrained r\ by Lemma 6.7, let

{B[j] = B(x[j]] ri/4)} be the set of balls which said lemma provides. Assume

that a base point XQ G M has been chosen which is disjoint from each B[j).

For each j , choose a smooth path <p\j] from xo to x[j]. Then, for each x G B[j],

define a path φ(x) from xo to x by first following <p[j] to x[j], and then by

following the radial geodesic from x[j] to x. Note that the chosen frame /o

in F r M | Xo defines, by parallel transport with the Riemannian connection to

x[j] and then to x, a frame / for F r M over each ball B[j].

It is necessary to subdivide each ball B[j] two times. For this purpose, fix

r 2 G (0, ri/8]. The next lemma defines the first subdivision.

Lemma 6.8. The Riemannian metric fixes qi,Cχ > 0 and e0 € (0,1]
with the following significance: With e G (0, eo], let the set UQ, the set of balls
{B(x[j],rχ)} and μi > 0 be given in Lemma 6.7. There exists r[ < r*i/8 and

for each r 2 G (0, r^) and for each j , there exist J 2 (= the closest integer to

C\ τ\jr^) disjoint balls {B[j, k] = B(x[j, fc], r 2 )} in B[j] with the property that

when [AQ, ho] G UQ, and when ω G RangeΠ(8 μ\\ AQ), then

In addition, there exist at least q\ - J\ J 2 of the J\ J 2 indices in the set

{(j, k)} with the property that infx€jB[Jjfc] \ω\(x) > q\ \\ω\\L2.

Proof of Lemma 6.8. The proof of the first assertion is obtained by mim-

icking, again, the proof of Lemma 4.5; the argument is straightforward, and

again, it is omitted. The second assertion follows from the first assertion with

Lemma 6.3.

Lemma 6.8 has the following useful corollary:

Lemma 6.9. The Riemannian metric provides qo^o € (0,1] with the fol-

lowing significance: Assume that e < βo Let μ\ be as in Lemma 6.7, and let

N(8 μi), 05 provided by Proposition A.I, be such that for any [A] G β€o(A;, η),

N(& - μι) bounds the dimension of RangeΠ(8 μ\\A). Let Uo be as in the

preceding lemma and Lemma 6.7. Then, for each [AOjho] G Uo, there are

<7o ' J\ ' J2 disjoint subsets {Λ(α) C {(j, k)}} which have the three properties

listed below. First, no Λ(α) contains more than N(S μi) elements. Sec-

ond, for each a, the assignment of ω G RangeΠ(8 μi; Ao) to /(A(α)) ω =

Mx[y,fc]))(>,*]€A[α) € Θ(j, jb]eA[α) P - Ω 2 ( A d P )Uy,fcl defin™ « linear injec-

tion. Third, if\I(λ(a)) ω\2 is defined to be equal to Σ(j,k]eA[a) \ω(x\j^])\29

then

inf 2 2

μi \A0)
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Proof of Lemma 6.9. The proof is by induction on the integers in the
set {1, ••• ,N(8 μi)}; these are the allowable dimensions of the nontriv-
ial subspaces of RangeΠ(8 μi; Ao). For integer p = 1, pick a normalized
ω(l) G RangeΠ(8 μi; A)) Then ω defines a 1-dimensional subspace L(l)
of RangeΠ(8 μi; Ao). Lemma 6.8 asserts that there are at least q\ J\ J<ι
indices {Λ(α)} G {(j, k)} with the property that the assignment of ω G L(l)
to I(A(a)).ω = (ω(x[j,k]))Utk)eHa) G ®{j,k)eA(a) P-Ω 2 (AdP) | x [ h k ] defines
a linear injection with

inf

To construct the induction step from integer p to integer p + 1, it is nec-
essary to introduce the constant ZQ which, according to Lemma 6.3, is pro-
vided by the Riemannian metric, and which has the property that when ω G
RangeΠ(8 μi), then ||ω||oo < z0 \\ω\\L2.

Now, suppose that for p > 1 there exists qp G (O,max(ςi,^o/2)), and a
p-dimensional subspace, L(jp) C RangeΠ(8 μi; Ao) with the property that
Qp ' J\ ' J2 disjoint subsets {A(α) C {(j\ fc)}; a = 1, , qv J\ - J2} exist for
which the assignment of ω G L(p) to /(A(α)) ω = (w(a;b'ϊ*]))(j,fc)€A(α) ^
®(j,k)eA(ot) -P-Ω2(AdP)| a y^] defines a linear injection with

inf

Assume further that each Λ(α) contains at most p elements of the indexing
set {(;,*)}.

Let ω(p 4- 1) G RangeΠ(8 μi; Ao) be an L2-normalized element in the
L2-orthogonal complement to L(p). Let L(p + 1) denote the linear span of
{ω(jρ + 1), L(p)}. Suppose that there exists at least qv - J\ Ji/{2 - p) of the
set of subsets {A(o )} for which the map /(Λ(α)) on L(p + 1) obeys

inf

Relabel so that the preceding equation is true for the subsets {Λ(α): a <

qP Ji J2/(2 p)}.
For each a < qp J\ JijQ p), let L'(a) C L(p + 1) denote the maximal

subspace of L(p + 1) with the property that for the subsets A(α), the map
I (a) obeys

sup (|J(Λ(α)).ω|a/iμ||£.)<W2

This subspace has dimension at most 1. If it had dimension 2 or more, there
would be a nontrivial kernel for the projection of L'(ot) onto Span{α;(p + 1)}
and the preceding equation could not be obeyed on that kernel. Let ω'(a)
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generate L'(a). There are at least qι J\ J2 indices in the set {(j, k)} with
the property that |α/(α)|(:φ",k}) > q\ ||u/(α)||L2.

Since the total number of indices in (J{Λ(o;): a < qp- J\ J2/(2 p)} is at most
qι J\ J2/2, it is possible to choose a set of indices K = {{j{&), k(a)): a <
qp J\ J2/(2 p)} C {(j, k)} with the following two properties: First, K
is disjoint from \J{A(a): a < qp J\ JijiΊ p)}. Second, for each α,
\ω'(a)\(x[j(a),k(a)])>qi.\\ω'(a)\\L2.

Set <7p+i = min(^p/(2 p),q%/(4 z$)) and for a < qp+ι Jλ J 2, define
A1 (a) = A(α) U {j(cή, k(a)). The sets {A'(a)} are mutually disjoint; and none
contain more than p + 1 indices. Finally, for each a < qv+ι J\ J 2 ,

inf

This last fact follows from Lemma 6.3 with some simple algebra. The preced-
ing equation completes the induction step from p to p + 1.

Given the set U = WV(k,η) U VF, and the homotoped set UQ from Lemma
6.7, Lemmas 6.7 and 6.8 construct a set of disjoint balls {B[j\ k]}. It is
necessary to further subdivide each ball B[j,k]. For this purpose, fix r^ G
(0,7*2/8], and fix R G (4/(co cJ), e"1/4]; these constants are defined in Lemmas
6.7 and 6.8. No generality is lost in requiring c\ from Lemma 6.8 to be such
that for each (j, fc), there exist J3 (= the closest integer to c\ r\jr^) disjoint
balls {B[j, A;, i] = B(x\j,k, i], rs)} in B[j, fc]; the center of B[j\ fc, i] is the point
x[y, fc, i]. The value of r^ is determined by

Lemma 6.10. Let G be a simple Lie group. There exists an integer m <
00 with the following significance: Let {^}f=1 be an orthonormal basis for
su(2); and let p: SU(2) -+ G be a homomorphism which generates τr3(G). Set
{TΪ = p*σi}. There are m points {gΊ} C G such that the map T: (0, oo)m —•
Q<8>su(2) which sends (sΊ) to

is a surjection with the property that if K C 0 0 su(2) is a compact set, there
exists a compact set Kf C (0, oo)m which is mapped surjectiυely onto K by T.

Proof of Lemma 6.10. Observe first that by defining (UJ = exp(π σJ/2))^=1

6 SU(2) we have

33 3

Σ Σ ^ J ) • n ' ^ J ) " 1 ) ®σ i = " Σ r i Θ σi-

Therefore, at the expense of replacing the integer m in the statement of the
lemma by 4 m, no generality is lost by considering such a map T as a map
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from R m -> jι®0u(2). The assertion that m < oo and {#7}™=i C G exist

such that T : R m -> g ® su(2) is surjective is equivalent to the assertion that

m < oo and {gΊ}™λ C G exist such that

g~ι)
U=i

Span I Σ(gΊ r* g~ι) ® σΛ = g 0 su(2)
U J

This last assertion follows from Lemma 4.10. Furthermore, as a map from

R m , T is linear; this implies that a compact set in g ® βu(2) is covered by a

compact set in (0, oo)m.

To return to the proof of Proposition 6.1, set the ratio r^/r^ so that J 3 = ra

of Lemma 6.10.

Part 3: Defining the parameters. Let e0 > 0 be specified according

to Lemmas 6.2-6.9 and fix e E (0,eo] Let W C b'e(k,η) be a given compact

set, let U = ΐΠV{k,η) U W, and construct Uo = Φ(l,ί/) as detailed in Part

2 of this section, Lemma 6.7. Suppose that a smooth map ε: 53'(fc, η) —•

(0, e] has been defined; require that ε( ) > min(e, α( )), but leave ε otherwise

unrestricted for now. For each index (j\ fc, i), suppose also that a smooth map

s[j, fc, i]: S^fc, η) -* (0,1] has been specified. Set

(6.14a) A2[y,fc,2] = φ ,A:,z].β.ε/J,

With J = Jι J 2 Jz- Set

(6.14b) ί[j,fc,z] = 16 λb , fc,ί]/r3.

Note that with i; Ξ (J, fc, i) and r = r3, (6.1) is obeyed. For each index (j, fc),

set Λi[y, A:,i] € /b+U according to the rule hχ[j\k,i = η] = hi gΊ with

h\ G P G + I s fixed and with {gΊ} as in Lemma 6.9.

For fixed v = (j, fc, i), and for fixed [Λo, ^o] ^ 35'(^ ^)? the data in the pre-

ceding paragraph provides all required data for the definition of w([A), ho])(υ)

= [[J40? h0], /o, /[υ], ̂ [v], A[υ]/ί[υ], ί[υ], [A\, Λi[v]]], and then for the construc-

tion of the orbit [A'(w([Ao,ho})(v),ho} € *B'(fc + c(G),r/). By making this
construction simultaneously over the index set {υ = (j,k,i)}, one defines a

smooth map

(6.15) T:&(k,η)

which is a homotopy equivalence (see Proposition 4.1).
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Part 4: From local to global. To complete the proof of Proposi-

tion 6.1, it remains to make some specific choices for the data {eo,rι,r2,R,ε,

{s(j\ A;, i)}). The following digression is required for the purpose of setting up

the formalism with which the ultimate choice of the data will be made. The

formalism below is meant to make a global version over U = 9Jt'(fc, η) U W of

the local construction of Λ(α)[ ] and l[a] of Lemma 6.11, below.

Given the set U = Wl'(k,η) U W, and the homotoped set Uo from Lemma

6.7, fix [4>, Ao] e Uo- L e t ί Λ ( α ) = A(α)[i4o, Ao].C { & * ) } : a < q0 Jx J2}

be as provided for [Ao, ho] by Lemma 6.9 and let |Λ(α)| denote the size of the

set Λ(α). Let

V(a) = V(a)[A0,h0] = @ P-Ω2(AdP)\x[jik].
(i,fc)€Λ(α)[Ao,Λo]

Define a metric on V(a) by sending ip\$ = dpipiji^))(i,fc)eΛ(α) to

(^i ?^2)v(α) = lA(a)!" 1 Σ(i,fc)(<Pib',fc]5

<P2b',fc]) With this metric on V(a),

and with the L2-metric on RangeΠ(8 μi; Ao), the adjoint 7(A(α))* : F(α) —•

Range Π(8 μi; Ao) is well defined.

The choice of path ιp[j, fc, i] from the base point to x[j, fc, i] defines an iso-

metric identification of each V(a) with the vector space 0|A(Q)|(i®5u(2)) (by

parallel transport of /o with the Levi-Civita connection and of ho with Ao).

With this identification, Lemma 6.10 provides a surjection, T ( α ) : (0, oo)*(α) —•

y ( α ) , where k(ά) = k(a)[Ao,ho] = m |A(α)|.

L e m m a 6.11. The Riemannian metric provides constants ZQ G [8,00),

Z\,eo > 0, and βo G (0,1] with the following significance: For e G (0,eo],

let Uo and μι be as described in Lemma 6.7. Let {(j, k)} be the set of in-

dices which are provided by Lemma 6.8. Let qo, and, given [Ao,Ao] G Uo,

{Λ(α) C {(y, k)}: a < qo J\ J2} 6e αθ provided by Lemma 6.9. For eαc/i a,

let k(a) = m |A(α)| with m as in Lemma 6.10. Define a Riemannian met-

ric on (0, oo)*^) by taking the product of the Euclidean metrics on (0,00).

Let l{a) = /(A(α))* o T ( α ) : (0,oo)Λ(α) -> RangeΠ(8 μλ\ Ao). The restric-

tion of l(a) to (ZQ1 60,^0 * £o)k^ defines a map from (ZQ1 eo?^o £o)k^

into {ω G RangeΠ(8 μi Ao): \\U\\L2 < ^0} which is a surjection of both

(ZQ1 - eo, zo €o)k(a) and (4 ZQ1 6o? \ zo ' to)k^ onto an open neighborhood
ofθ£ RangeΠ(8 μi; Ao) which contains {ω G RangeΠ(8 μi; Ao): | M | L 2 <

zx e 0}. The differential dl[a] has adjoint dl[a]*: Rdim(RangeΠ(8.μi;A0)) _

T(zoX 'eo,zo eo)
k(a) which obeys

inf(|d/[α]*.u;|/|μ||L2)>eo.
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Proof of Lemma 6.11. This is a direct consequence of Lemmas 6.9 and 6.10.

To apply Lemma 6.11, use it to define an open set in UQ in the following

way: Given [Ao,Ao] Ξ UQ, there exists an open set X = X[Ao,ho] C Uo

and an open set X' G Q3'(fc, η) which restricts to Uo as X, and a num-

ber μ[Ao,ho] G (7 μi,8 μi) such that the assignment of [A,A] G X1 to

the composition of the map T(α)[A 0,A 0]: {ZQ1 eo,zo G eo)
kM[Ao,ho] _>

V(a)[i4o,Ao]? with the adjoint of the restriction map I(A(a)[Ao,ho])*:

V(a)[A0,h0} —• RangeΠ(μ[i4o,Ao];i4), defines a smooth map Y(a)[AOiho]
:

X* {ZQ1 'eo,z0 eo)k{a)[AoM] - £ 2 ( P - Ω 2 ( A d P ) ) .

The sets X and X' can be chosen to have special properties: (1) Require

that X' be smoothly contractible. (2) Require that the assignment of [A, A] G

X' to the L2-orthogonal projection Π(μ[Ao, Ao]; A) define a smoothly varying

family of projections on L 2 (P_Ω 2 (AdP)) . (3) Require that the restricted map

Y(a)[AoM([A, ft], •): t ^ " 1 6o, z0 Co)*(αθμ0,Λo] - RangeΠ(μ[A), Ao]; A) is a

surjection whose differential has adjoint which obeys

(6.16) inf (\dY(a)[AoM]([A,h},r ω\/\\ω\\L2)>e0.
0έα;GRangeΠ(8 μi;Λ) ι

The last required property is described by

L e m m a 6.12. Let eo and ZQ be as in Lemma 6.11. The sets X and X',

above, can be chosen to have the following property: There exists a smooth

map ςo{a): X' -• (4 z^1 e0,1/4 z0 e o ) f c ( α ) | i 4 o > Λ o 1 w^A ίAe property that

y(α) [ Λ θ f Λ o l([Λ,h],fo(tt)([A,ft])) = 0 /or any [Λ,ft] G X'.

Proo/ of Lemma 6.12. This is a direct consequence of Lemma 6.11 and the

inverse function theorem.

Note that the assignment of the vector space RangeΠ(μ[τ4o, Ao]; A) to a

pair (A, A) with [A, A] G X' defines a smooth vector bundle over X' which is

isomorphic to a product vector bundle X' x RnlΛo,fco). w j th

n[Ao, Ao] Ξ dim(RangeΠ(μ[A0, Ao]; A): [A] G X')

This isomorphism is obtained by making a 0(P)-equivariant choice of L2-

orthonormal basis for RangeΠ(μ[Ao, Ao]; A) as (A, A) vary through π " 1 ^ ' ) ,

where π : 2l(P) x P | Xo —• ©'(fc, ry) is the defining projection.

Let {un{')}n<n[Ao,ho} denote such a choice. Having made the choice, each

map Y{a)[Ao,ho} {<* < Qo - Ji - J2) is defined as

(6.17) Y{μ)[AoM ' X' x (^o"1 to,zo eo)
k{a)[A°>ho] - R-ί Λ o ' h o].
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Pick an open set Z' C X1 with compact closure in X1. Require that Z'

restricts to X as an open set Z with compact closure in X. Since each X1 is

contractible, each map Y(a)[A0,h0]
 c a n ^ e deformed to a smooth map,

(6.18) H a W o ] : X' x O ^ 1 ' *o, *o £O)* ( α ) I i 4° Λ o 1 - R n l Λ o Λ°l

which agrees with Y(a)[A0,h0]
 o n %'\ a n d which has the following special

properties.

L e m m a 6.13. Let t§, ZQ, Z\ and eo be as in Lemma 6.11. The sets Z1

andX1, and the map Y'(a)[Ao,ho] z n (6-18) can be chosen to have the following

properties:

(1) For fixed [A,h] G X'', r ( a ) [ A o , M ( [ A , / i ] , •) mαp5 into {y G R - 1 ^ , M :

12/1 < 60} and surjectively onto an open neighborhood of 0 which contains
{yeRn[Ao,ho]: \y\<Zl.€o}.

(2) The differential ofY'(a)lAθtho]([A,h]r): fa1 β o ^o £ 0 ) * ( α ) I Λ o Λ o 1 -

Rn[Λ0,/io] ^ α 5 adjoint

ω(|dy'(α)[Λo,fco]([Λ,Λl> r »|/|y|)>e0.

(3) On the complement of an open set in X1 in which Z1 has compact

closure, and which has, itself, compact closure in X', the map Yf(a)[A0M}

depends only on the coordinates (z^1 60,20 ' £ o ) f c ^ ' A o ' / l o '

(4) There exists a smooth map ς^{a): X1 -» (S ^ 1 e0, l/3 zo e o ) M α ) [ Λ ° ' M

with the property that Y'(α)μo,/ιo] (lAi hl fo(α)([A, Λ])) = 0 for all [A, h] G X'.

Proof of Lemma 6.13. This is a straightforward perturbation argument

which uses Lemma 6.12 and the contractibility of the set X'.

Since W is a compact subset of ^( fc,^), there exists a locally finite cover

of UQ by open sets {Xσ: σ > 1}, with each Xσ = X[Aσ,hσ] as defined in

the preceding paragraph for some [Λσ,Λσ] G ί/o (Exhaust WV(k,η) by a

sequence of nested, compact sets, and use the analysis in [9] or in §5 of [22] to

see that a locally finite cover can be constructed for 9Jί'(A:,r/).) Let Zσ c Xσ

and Z'σ C X'σ C 23'(fc, η) be the corresponding open sets which are defined by
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[Aσ, hσ\. For each index σ, let

{V(σ,α),A(σ,α),fc(σ,α),Y(σ,α),ζo{σ,α),Y'(σ,α),^(σ,a): a <qo Ji - Ji}

and μσ, n(σ), {ωσ)n}n<n[<7] be as defined above using the point [Aσ, hσ] G UQ.

Due to Lemma 6.13, each pair (Y'{σ, α), ς^σ, a)) can be extended as smooth

maps

Y'(σ, a): (\jx'σ) * (*ό * «>, *o eo)
fc(<T'a) - R " w ,

(6.19) V σ )

δS(σ, a) : ( J x ; - , (zo"1 e0, ̂ o eo)
k{σ'a}

which agree with (Y(σ, a),ζo{σ, a)) on Z'σ\ and which obey

Lemma 6.14. Let eo, 2:0? ^i and ô 6e as m Lemma 6.11. 77ιe maps

(y(σ, a),£o(σ, a)) m (6.19) Λave the following properties:

(1) For /ixerf [A, Λ] e [jσ X'σ, Y'{σ, a)([A, Λ], •) maps inίo {y G RnW : |y| <

Co} and surjectively onto an open neighborhood of 0 which contains {y G

R n H : | y | <*!•€<>}.
(2) The differential of Y'(σ,a)([A,h],-): {z^1 •eo,zo-eo)k{σ'°') -> Rn[σ] has

adjoint dY'{σ, a)([A, h], •)*: R n H -• T(ZQ1 -eo,zo- e o) f c ( σ 'Q ) which obeys

mϊy(\dY'(σ,a)([A,h},r y\/\y\)>e0.

(3) On the complement of X'σ in \JσX'σ, the map Y'(σ, a) depends only on

the coordinates (ZQ1 6o,^o * co)k^σ'a\

(4)Y'(σ,a)({A,h},ς()(σ,a)([A,h}))=0foralllA,h}eX'.

Proof of Lemma 6.14. This is immediate from Lemma 6.13.

Let {ψσ: ©'(fc,//) —• [0,1]} be a smooth set of functions with two special

properties. First, require that Σσψσ\u0 = 1; and second, require that for

each σyφσ = 0 on ® / ( P ) \ ^ .

Part 5: Redefining the parameters. Now, to specify the data

(̂ o? fi>τ*2> /?, ε, {s(j, fc, i)}) from Part 3, introduce the parameter space

(6.20) X = (\JX'σ) x σ ( X (zo1 • eo,z 0 • eo)
Hσ'a)) .

\c ) \<x<q0JiJ2 /

Note that the infinite product Xσ(XQ<qo JX J2{
zoλ ' e o^o co)

fc(<T'a)) has a

natural manifold structure which is defined from the product structure.

This is a Banach manifold structure; the tangent space to a point
xσ(Xα<g 0 Ji J2 R* [ σ ' α ) ) , is isomorphίc to l°°.
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Let ς = (?(σ,α)) define a point in X σ (Xα< f l 0 Ji•Ja(
j8fό"1 ' 6o,^o ^o) Λ ( σ ' α ) ) ,

where f(σ,α) = {ζσ[j\k,i]: (j,k) G Λ(σ,α) and i < m)) defines a point in

Fix a smooth function δ: 93' (k, η) —> (0, c] and then define a function from

X to (0,1] by sending ([Ao, Λo], f) t 0

(6.21) φ*, fc,i

Here χσ(j,k) = 1 if (i,fc) G U α Λ ( σ ' α ) ' a n d X<τ(i»*) = ° otherwise. (Note

fσb'ί *»*1 ^s o n l y defined when (j, k) G (JQ ̂ ( σ ' α )

(j,k)ί\J\jA(σ,a){U,k)}',
σ a

one has s[j,k,i]([A0,h0],ς) = <5([AO,ΛO])2 )

Over any compact subset of {[JσX
f

σ)1 s[j\ A:,i]( ) depends on only finitely

many coordinates in Xσ{Xa<qo Jι j2(
zo1 ' eo,^o eo)

k^σ^). Thus, (6.21)

defines a smooth function on X.

Specifying the set {s[j\ fc,z]} in this way constructs from the map T of

(6.15) a well-defined and a smooth map,

Γ':£-^<B'(fc + c{G) J,ιj).

Part 6: Choosing the parameters. Use the observations of Part 5 to
define {fn: n < N(7 μx)} of (6.9) using the orbit [A1, ti] = T'([AQ, Λo], f) and

an orthonormal basis {ωn: n < N(8 μι)} for RangeΠ(8 μi; AQ). Due to

Lemma 6.4,

(6.22)

f»= Σ A2[j,fc,i]([Ao,fto])K([Ao,M)(^[^fc^'])?

{(i,fc.0>

X(/, Λ(xy, fc, ί])([Ao, Λo]), ΛiU, *, t]) P + ί U , (β)) + tn,

where rn is the tautologically defined remainder; it is estimated for [Ao, Λo] G

Wσ by Lemma 6.4.

Using the partition of unity and (6.21), note that for n < N(7 μi), one

has

(6.23)

f n = Σ ^R J~1'Σ,Έ(ω^(k)[\ki]δ2)

x[j". *. «Ί)i /o, [^o, Λo], Λi[j, *, ί]) P+FAι (s))
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The preceding can be rewritten by decomposing the sum over indices {(j\ fc, i)]
as
(6.24)
fn = ε R- J"1 ΣΣΣ(ωn,ωσ,nι)L2 φσ

σ a. n\

Σ
,α) i

ini([Ao,h0])(x\j,k,i]),

j , *, ί]), /o, μ 0 , Λo], Λi b, *, *]

+m

(6.23) yields (6.24) because the sum over a contains precisely J\ J2Q0 terms.

(6.24) makes evident the assertion that all fn vanish for n < N(i μi) if,
for every index σ and every index α, and for all n < N(μσ)

(6.25)

X(φ[j, K«]), /o,

h *> *])> /o> [A)> M> Λi[j, A;, i])

4- m - (ε -1

where xσ,n = Σn><N{s-μι)(ω<r,niωn')L2 ' r n' The utility of this last equation
lies in the fact that when [Ao, ft0] € X'σ, then
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U,k)eΛ(σ,a) i

(6.26) (ωff,n([j4o,Ao])(a:[j, *,»]),

X(<p(x[j, k, *]), /o, [Ao, ho], Ai[j, k, i\) • P+FAl («))

= K , n ( [ A ) , Λo]), Y(σ, a)(ς(σ, a)) + τ^n([A0, ho], ς{σ, a)),

where the remainder t£ is a smooth function on

X'σx( X (zt1 e0,zo €o)
\at<qo Jι J2

which obeys, for [Ao, ho] € Xσ, the a priori bound

(6-27) \^n\<z0

Here 20 is a constant which is provided by the Riemannian metric via assertion

(4) of Lemma 6.2.

For each index σ, let ψσ: 2$'(fc,77) —• [0,1] be a smooth function with two

special properties. First, require that Σσ<pσ\u0 = 1; and second, require

that for each σ, φσ = 0 on <8;(A;,η)\Z'σ.

Introduce the infinite dimensional Banach space Xσ(Xα<g 0 Λ J2 R n ' σ ' ) ;

the Banach space structure being defined by the obvious isomorphism with

Z°°. Define a map

(6.28) 2 ) : X ^ x f X R71

σ \OL<qoJ\J2

by sending ([Ao, Λo], ?) to 2) = (2)(σ, α)([A0, Λo], f)), where

(6.29) 2)(σ, α)([A0, Λo]), ς) = F'(σ, a)([A0, Λo], f) + r(σ, α),

where Y'{σ, α)([A0,Λ0],f) is defined in (6.18) and where

(6.30)

r(σ, a) = <pσ Σn{x^n + m (ε R go)" 1 ^ ,n + (Λ J* ^o)

Over any fixed compact set in XσX'σ, 2)(σ, α)( ) depends on only finitely

many coordinates in Xσ{y^a<qo Ji'J2(
zo1 'eizo •^o)/c^σ'α^); this means that 2)

defines a smooth map.

Observe that when [Ao, h0] G ί/o, the assertion that 2)([A0, Λo]), ς) = 0 for

some ς e *σ(*oc<qoJιJ2{
zol eo,^o eo) f c ( σ 'α )) implies that the set {fn: n <

JV(4 μi)} vanishes for the orbit T"([A0, Λo], ς).
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For appropriate choices of ζ = £[Ao,fto]> ri> r2> ̂ o, and R,

will vanish. Indeed, choose r 2 /ri = e, R = e'1/64 and J\ = €~1 /2 . Now
observe that the remainder in (6.30) obeys

(6.31) M<2o c1/64.

This estimate is a consequence of Lemmas 6.3-6.4 and (6.27).
To complete the proof of Proposition 6.1, note that (6.29) and (6.31) plus

Lemma 6.14 plus the inverse function theorem provide the following data:
First, they provide a constant eo > 0 which depends only on G and on the
Riemannian metric. Second, when e < eo, they provide an open neighborhood,
9t, of Uo in 05'(A;, η) with a smooth map,

(6.32) ς .m^

which obeys

This last equation implies that {fn: n < N(4 - μi)} vanishes for each orbit

T([Ao,ho],ζ([Ao, ho])) when [A0,h0] G Uo. Thus,

sμi(T'([A(hho},ς([Ao,ho})))=0

when [Ao,Λo] £ ί̂ o
Using (6.32), (6.21) defines the functions {s[j, k,i]} over 01. It is no task to

extend the definition of the functions {$[/, k,i]} from this domain to smooth

functions which are defined on all of Q3'(A;,r/) in Such a way that the map T

of (6.15) is well defined and agrees with T'([A0, h0], ζ{[A0, h0])) for [Ao, h0] in

an open neighborhood of Uo. A specific extension will be considered in the

next section. Also, a specific choice of the functions ε and δ will be made.

With this extension made, the conclusions of Proposition 6.1 are established

for some fixed J = J(Uo).

To obtain Tjt for J1 > J, one need only fix J' — J distinct points on M

which are disjoint from all balls B[j] of Lemma 6.6, and disjoint from the base

point xo Then, at each such point, glue the standard self-dual connection

with scale size much less than e2/ J'. A repetition of the preceding argument

using Lemma 6.14 and the implicit function theorem provides a homotopy

TJI which satisfies the requirements of Proposition 6.1 (see Proposition 6.2 in

7. Homotopy equivalences rel WV(k,η)

Fix a compact, oriented 4-dimensional manifold. In [13], Uhlenbeck proved

that for all compact, simple Lie groups G, all moduli spaces {9JP(fc, η) C

*B'(k,η)} are smoothly embedded submanifolds when the metric on TM is
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suitably generic. The generic set is a Baire set of Cp metrics for p > 2.
(A Baire set is a countable intersection of open, dense sets, hence dense by
Baire's theorem.) If the space of G°° metrics is given the usual topology
as ΠpC

p> then it is, in fact, a complete metric space. With this topology,
Baire's theorem implies that there is a Baire set of G°° metrics on TM with
the property that for all compact, simple Lie groups G, all moduli spaces
{SDt̂ fc, η) C 25'(fc, η)} are smoothly embedded submanifolds.

This Baire set of smooth metrics constitutes the set of metrics which are
G-good for all G, where the term G-good is defined by

Definition 7.1. Let G be a compact, simple Lie group. A metric on
TM is G-good when the operator {P-dA)d*A is invertible on L2(F_Ω2(AdP))
whenever (P, A) is a pair of principal G-bundle P —• M and self-dual connec-
tion A on P.

To discuss the relative topology of (2$'(fc, r/), 9Jt'(fc, η)) when (fc, η) are char-
acteristic classes for a principal G-bundle over M, it is convenient to distin-
guish metrics on TM as being G-good, or not. For G-good metrics, the fol-
lowing proposition describes the situation. Together, Proposition 7.2 implies
Theorems 1 and 2 for a G-good metric.

Proposition 7.2. Let G be a compact, simple Lie group, and let M be a
compact, oriented ̂ -manifold with a G-good metric. Let (fc, η) be characteris-
tic classes for a principal G-bundle over M for which 9Jl'(k,η) is nonempty.
Then, for any j > 0, 9Jt'(A; + c(G) j\η) is nonempty, and there exists a map
of pairs

with the following properties:
(1) T(j): 53'(fc, η) -* <B'(fc -I- c(G) j , η) is a homotopy equivalence.
(2) If ji > 0 and j 2 > 0, then T(jχ +.7*2) is homotopic to T(j2) o T(j\) as

maps of pairs

(3) Let z e π*(®'\k,η)W{k,η)) or z G H.{W{k,η)W{k,η)). There

exists J(z) such that for all j > J{z), T(j)*(z) = 0 in

or

The homotopy equivalences in the preceding proposition are modifications
of the ones in §4. The proof of the proposition, which will be given shortly,
provides the details.
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When the metric on TM is not G-good, then there are moduli spaces

UJl'(k, η) which are not manifolds, or are not embedded in 93'(fc, η). For these

cases, the assertions of Proposition 7.2 must be modified. The modifications

are made in Proposition 7.3 below, which establishes Theorems 1 and 2 in the

general case.

Proposition 7.3. Let G be a compact, simple Lie group, and let M be a

compact, oriented Riemannian ^-manifold. Let (fc, 77) be characteristic classes

for a principal G-bundle over M for which 3Jt'(fc, η) is nonempty. There exists

j(k) > 0 such that for any j > j(k), TV(fc + c(G) j', η) is nonempty, and there

exists a map of pairs

with the following properties:

(1) T(j\ k): 93'(fc, η) -• 93'(A; + c(G) j , η) is a homotopy equivalence.

(2) If jι > j(k) and 32 > j(k + c(G) j \ ) , then T(fc, k%) is homotopic to

T(j2, k + c(G)-jι)o T{jι,k) as maps of pairs

(3) Let z E ic*(W{k,η),1DV(k,η)) or z 6 H+{W(k,η),<BV{k,η)). There

exists J{z) > j(k) such that for all j > J{z), T(kJ)*(z) = 0 in

or

The remainder of this section contains the proofs for Propositions 7.2 and

7.3.

Proof of Proposition 7.2. In §4 (see Proposition 4.1 and (4.10)) a ho-

motopy equivalence T : 93'(A:, η) —• 93'(fc + c(G),η) was constructed. Let

V = {T: W{k,η) -> a;(Jk + c{G),η): V is homotopic to Γ}. This is a

connected family of homotopy equivalences from 93'(fc, η) to 93'(A; + c(G), η).

Given e > 0 and a smooth function f: ^'(fc, η) —• (0, e), one can require of

r e Ί! that α(Γ ;(6)) < f(6) for all b G JϋΠ^M). ( M a k e a suitable choice of

the functions s( ), ί( ) in (4.1).)

By appealing to (6.6) and Lemma 5.4, one observes that for suitable f and

e > 0, there will exist a homotopy Φ: [0,1] x93'(fc+c(G), η) -+ 93;(fc-fc(G), ry)

which fixes UJV(k+c(G), η) and {b e W{k+c(G),η)\W€{k+c(G),η) and which

retracts {b G 93;(A; + c{G),η): 0(6) < f(6)} into Wl'{k + c(G), r/).

Define X to be the set of homotopy equivalences from 93' (fc, 77) to

93'(A; + c(G),η) of the form Φ(1,T'( )) for V G X'. Every homotopy equiva-

lence in T is a map of pairs

c(G), i,)).
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Composition defines for each j > 0 a set %{j) of homotopy equivalences
from W{k,η) to 93'(A; + c(G) j\η) which map pairs (<8'(fc,r/),9Jί'(A;,77)) to
pairs (»'(* + c(G) y, ιj), WV(k + c(G) j , η)).

The fact that %(j) was defined to be the composition of homotopies in X
means that assertion (2) of the proposition follows automatically. By restrict-
ing somewhat the choice of the functions (s( ),ί( )) in (4.1), an appeal to (6.6)
and Lemma 5.4 shows that the family X is connected as maps of pairs; hence,
so is %(j) for all j > 0.

Given z e π*(»'(*;,77),9Jί'(λ;,7?)) or z G H.(W(k,η),ίBV(k,η)), and given
e > 0, §4 (see Proposition 4.2) finds J(*,e) such that T(j)+z factors through
the inclusion (β'c(* + c{G) j , η),WV(k + c{G) j , η)) -> (W(k + c{G) j , η),
9Jt'(fc + c(G?) j , r/)) whenever j > J(z, e) and T(j) e %(j).

Let sμo(.) denote the obstruction section of (5.2). By choosing e > 0 appro-
priately, and by choosing the functions ε in (6.4) and δ in (6.21) appropriately,
§6 (see Proposition 6.1) finds J(z) such that T(j)*z factors through the in-
elusion (β^.jίOj.aWίfc + cίGJ y.tj)) - (W{k + c{G)-j,η),m(k + c{G) j,η))
whenever j > J(z,e) and T(j) € X(jΓ). The proof of assertion (3) of Proposi-
tion 7.2 follows from this last fact and Lemmas 5.3 and 5.4.

Proof of Proposition 7.3. §6 (see Proposition 6.1) provides j(k) and it pro-
vides a family of maps V(j(k),k) which is composed of certain homotopy
equivalences from Q5;(fc,r/) to 25'(A: + c{G) j(k),η) which map 9JV(k,η) into
$~\ Λ(0). In this construction, a fixed choice of gluing points is determined in
Part 2 of §6. The family is defined by taking different choices for the functions
ε in (6.14) and δ in (6.21). By appealing to Lemma 5.3, a family of maps
Z(j(k),k) is obtained; each map in Z(j(k),k) is a homotopy equivalence be-
tween ©'(fc, η) to *B'(k+c(G)-j{k), η) which maps the pair (Q3'(fc, r/), 9Jt'(fc, 77))

For j > j(k), §6 and Lemma 5.3 provide a family of maps, %(j, fc), which
is composed of maps of pairs from {*&'{k,η),W(k,η)) to (<B'(fc + c{G)-j,η),
TV(k + c(G) J,r7)) that are homotopy equivalent as a map from Q3;(fc,r7) to
»'(£ + c(G) j , ry). This family is constructed from V{j{k), k) by first adding
additional gluing points to boost the Pontrjagin number (as per (4.10)), but
with the gluing parameters (the choice of ς and δ in (6.21)) taken very much
smaller than those which defined the maps in X'(y(fc), A:). Then, via slight
readjustments of the functions ς, and δ at the original gluing sites for the maps
in V(j(k),k) (see Part 6 of §6), a family of homotopy equivalences Ί'{j,k)
from <B'(fc,77) to 93'(fc + c(G) j,η) is constructed which maps WV(k,η) into
s ~\ Ϊ(0) Using Lemma 5.3, this family is deformed to a family of homotopy
equivalences X(j, jfc) from <B'(Λ;, η) to 93'(fc + c(G) j , η) which is composed of
maps of pairs (»'(£,77),Ott'^r/)) to (»'(* + c{G) >j,η),tBV(k + c(G) - j,η)).
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Consider assertion (2) of the proposition. Let j > j(k) and let j \ >
j{k + c{G) - j). Let T G %(j, *), and let Tλ G Z{ji,k + c(G) j). One can
assume that the functions ε of (6.14) and δ of (6.22) are as small as desired.
By making these functions sufficiently small, one can show that Ύ\ o T is ho-
motopic to some V G %(j+jι, K) through homotopy equivalences of ©' (fc, η)
to W{k + c{G) (j +3i),ri) which send SW.(M) into SW(fc + c(G) 0'+ jΊ),f?).
Lemma 6.14 with (6.28)-(6.30) and the implicit function theorem provide the
crucial tools; the argument is straightforward and omitted.

Consider now what happens upon the specification of a class
z G π*{<B'{k,η),m'{k,η)) or z G H*{W{k,η),ΐΩl'{k,η)). Let W C ©'(M)
be a compact set which represents z. Given e > 0, the inclusion map defines
2 as a relative class for the pair (©'(A;,^),©^/:, 77)). §4 (see Proposition 4.2)
provides J(z,e) and, for j > J(^,e), a homotopy equivalence Tf: *&'{k,η) —•
©'(A: + c(G) j , η) with the property that T maps the pair (©'(A:, η),©^(fc, r/))
into (©'(A: + c(G) , r/), ©'*0.e(fc + c(G) j , η)) and has 2 in the kernel of the
induced map T* on the relative homotopy or homology groups. It is easy to
homotope T" of §4 to some T G X(y, k) through homotopy equivalences from
<8'(A;,?7) to ©'(£ + c{G) j\η) which map the pair (W(k,η),*Bf

e(k,η)) into
(»'(* + c(G) j,r7),©;0.£(A: + c(G) j,r/)). Indeed, choose any T G I(j".^)
The homotopies T and T" are constructed in similar ways. The number of
gluing sites are the same (and equal to j). However, the positions of the glu-
ing sites might be different. Pair them up, one by one. For each pair, choose
a path between the two points; require that the set of paths are disjoint. By
decreasing the value of the functions ε in (6.14) and δ in (6.21) which define
T, one can deform T into V by moving the gluing sites for T along the chosen
path to the respective paired site for T".

Since T defines a homotopy equivalence from 93;(fc,7/) to
©'(A: + c(G) - j\η) which maps TV(k,η) into ^(A: + c(G) j\η), the con-
struction of the preceding paragraph shows that T*z is a well-defined relative
class for the pair (©'(A; + c(G) -j\η),WV(k + c(G) -j,η)) which factors through
the inclusion of © Ô.€(A: + c{G) j , η) into ©'(A; + c(G) j , η).

The constructions in §6 plus Lemma 6.3 provide e > 0; and for j > J(z, e),
they provide J(z,j); and for all j \ > J(z,j) they provide a homotopy equiv-
alence Ti: ©'(A: + c{G) j\η) -> W(k + c(G) {j 4- jχ),η) with the follow-
ing properties: Tx maps ΰJV(k + c(G) j\η) into VJV{k 4- c{G) {j + ji),η);
and Ti*T*2 is annihilated in the relative homotopy or homology of the pair

With an appropriate choice for the functions ε in (6.14) and δ in (6.21), it is
a straightforward process to homotope TΊ oT to a homotopy in T(j -fj Ί, fc); this



THE STABLE TOPOLOGY OF SELF-DUAL MODULI SPACES 225

step is an application of Lemma 6.14, (6.28)-(6.30) and the implicit function
theorem.

This completes the proof of assertions (l)-(3) of Proposition 7.3.

Appendix. Eigenvalue estimates

Let P -^ M be a principal G-bundle, and let [A] € 93(P). Define an
L2-eigenvector of P-dA(P-dA)* with eigenvalue λ to be an L2-section ω of

P_Ω2(AdP) which solves the following differential equation:

(A.I) P-dA(P-dΛ)*ω = λ ω.

Fix E > 0. The purpose of this section is to provide an a priori estimate for the

number of linearly independent L2-eigenvectors of the operator P-dA(P-dA)*

with eigenvalue less than or equal to E. The estimate comes from Proposition

A.I, below, and it depends on the orbit [A] and the precise principal G-bundle

only through the L2-norm of P-FA-

Proposition A.I asserts a more general result. To state Proposition A.I,

consider a finite dimensional Hubert space V on which G acts isometrically

via p: G —• EndTΛ Let K —• M be a vector bundle which is associated to the

principal SO(4) bundle of orthonormal frames in TM. If A is a connection

on P, then A defines a connection on the vector bundle P xp V, and together

with the Levi-Civita connection on the frame bundle, a connection is defined

on the vector bundle ((P xp V) ® K). Denote by VA: L\({P xp V) <8> K) -•

L 2 ((P xPV)<g># ®Γ*M) the associated covariant derivative. Let T be an L\-

section of the vector bundle of self-adjoint endomorphisms of (P xp V) <8> K.

Then the assignment of ω € L\{{P xp V) x K) to

(A.2) iAω = VA* VAω + T-ω

defines an essentially selfadjoint, unbounded operator on L2((P xp V) <8> K)

with dense domain L\((P xp V) ® K) (use (3.4)).

Standard elliptic theory can be used to show that iA has pure point spec-

trum with finite multiplicities and with no accumulation point. The spectrum

lies on the real axis and is bounded from below.

Proposition A.I. Let G be a compact Lie group, and let V be a finite

dimensional Hilbert space on which G acts isometrically via p: G —• EndV.

Let M be a compact, oriented, Riemannian 4-manifold and let K —• M be a

vector bundle which is associated to the principal SO(4) bundle of orthonormal

frames in TM. Given E E R and a > 0, there exists a constant co(E,a)

with the following properties: Let P —> M be a principal G-bundle, and let

[A] e » ( P ) . Let T G L?(End((P xp V) ® K)) with \\T\\L2 < α. The number
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of linearly independent eigenvectors of iA with eigenvalue less than E is no

greater than co(E,a).

A similar result has been announced by [4] using a theorem of Cwickel-

Lieb-Rosenbljum [18] (see also [16]).

The remainder of this appendix is concerned with the proof of Proposition

A.I.

The proof of Proposition A.I begins with the following observation:

Lemma A.2. Let M be a compact Riemannian manifold, and let ro,

e > 0 and a < oo be given. There exists an integer ΛΓ(ro,e, a) with the

following significance: Let f be an L2-function on M with | | / | | L 2 < &. There

exists some N < N(ro, e, a) functions {u[σ]}σ<N C L2(M) with the properties

that

(i)Σ.Φ] = /.
(2) If σ φ σ1 then u[σ] u[σf] — 0 almost everywhere on M.

(3) The support of u[σ] is contained in a ball B(x[σ],r[σ]) with r[σ] < ro.

(4) For σ 0 < N, / B ( l | < T o ] , 2 . r ( < T o ] ) Σ σ > σ o u[σf < e 2.

Proof of Lemma A.2. First, observe that there exists z < oo which depends

only on the dimension of M and which has the following significance: Suppose

that ro > 0 is less than 1/16 times the injectivity radius of M. Let x G M

and r G (0, ro) be given. Then the ball B(x, 2 r) is covered by no more than

Given ro > 0, but less than 1/16 times the injectivity radius of M, there

exists a cover of M by N(ro/2) open ball {B(x[j],ro/2)} of radius ro/2.

Define / 0 = /. Suppose that for n > 0, a function fn G L2(B(x[ϊ\,r0) has

been defined. For each x G #(a;[l],ro/2), let r(fn,x) denote the supremum

over the set of r G (0,ro/2] with the property that \\fn\\L2;B{χ,r) < */(2 * z)

Let xn minimize r(/ n , •) as a function on J5(x[l],r0), and let rn = r(/ n ,x n ).

Let χn denote the characteristic function for the ball B(xn, r n ), and let / n +i =

fn — Xn ' fn> Note that this recursive definition of L2-functions on S(xo?^o)

must terminate after at most | | / | | L 2 Λ steps. Note as well that

(A.3) /
JB

In <C
B(xn,2 rn)

Now, define u[σ = (l,w)] = χn/n For given index y, if the functions

{u[σ = (y, n)]} have been constructed, construct the set {u[σ = (j + l,n)]}

by repeating the procedure above with / — Σ^/'^andπ^M replacing / and

with B{x[j],r0) replacing B(z[l],r0).

Suppose E G R is given. Let ω G L%{(PxpV)®K) be a linear combination

of eigenvectors of iA with eigenvalues less than E. Then

(A.4) (VACJ, V^CJ)X/2 — (ω, |T | u;)L2 < E (ω, α;)L2.
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Use Lemma A.2 to construct the set of Z,2-functions {ΐ/[σ]} using the L2-

function/ = \T\.

Let /?(•): [0,oo) —• [0,1] be a smooth function which is identically one on

[0,1] and which vanishes on [2,00). Define for each (z,r) G M x (0,1] the

function β(χ,r)(') = /?(dist(z, )/r). For each index σ, set β[σ] = β(x\σ\,τ[σ\)

with (2(0"], r[σ]) provided by Lemma A.2. Set

/ Xl/2

(A.5) v\σ)=\β[σ)-Y[{l-β[σ'])\ ,
\ σ'<σ )

and note that Σσ v[σ]2 = 1, and if σ' < σ, then u[σ'\ • v[σ] = 0.

Then, rewrite (A.4) by inserting the partition of unity {υ[σ]2} as

(A.6) (VAω, VΛα;)L2 - Σ{v[σ) ω, |Γ | υ[σ] ω)L2 < E (ω,ω)L2.

Due to Lemma A.2, this last equation can be written as

(A.7) {VAω,VAω)L2 - J ^ ί υ[σ] ω, Σ u[σ]'v[σ]-ω\ <E-{ω,ω)L2,
σ \ σ'>σ I ̂ 2

and, therefore, due to assertion (4) of Lemma A.2 and Holder's inequality,

(A.8) (VAω, VAω)L2 - c ^ \Hσ] ' ω\\l* < E ' (ω, ")L*

Since υ[σ] ω has compact support in the ball B(x[σ], 2 r[σ]), the Lf —• L4

Sobolev space inclusion with (3.4) imply that

\\v[σ]-ω\\lt<z-\\d\υ[σ].ω\\\lt

Together, (A.8) and (A.9) imply that

(A.10) (1 - 2ze) • (VAω, VAω)L* - 2ze • ^ |||dv[σ]| ω| | |£ a < E • {ω,ω)L*.
σ

Here, since each r[σ] is less than 1/16 times the injectivity radius of M, the

constant z is fixed, independent of M.

To evaluate (A.10), observe that |d/?[σ]| < z/r[σ] and it has support in

B(x[σ],2 r[σ\). Thus, if e is taken less than z/4, then (A.10) implies that

(A.ll)

- z ( £ + N{ro,e,a)2/r[σ}2) <ω[σ],α;[σ])L2.B(a.[σ]ϊ4r[σ])) < 0,

where ω[σ] = /?(x |σ],2 r[σ]) ' ω.
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To analyze (A. 11), it is necessary to digress and discuss the trace Laplacian,
V^VΛ For this purpose, let B C M be a ball of radius less than the 1/4
times injectivity radius of M, and let L\.0((PxpV)®K\ B) denote the Hubert
space of Z/2" s e c^ o n s °f {P xPV) <8> K over B which vanish on dB.

The trace Laplacian V^V^ defines an unbounded, self-adjoint operator
AA on L2((P xpV) ®ϋΓ| B) with dense domain L\^{(P xpV) ®K\ B) which
is called the Dirichlet Laplacian.

Lemma A.3. Let M be a compact, Riemannian manifold. There exists
Γi > 0 and, given λ > 0, there exists N(X) < oo which have the following
significance: Let B C M be a ball of radius r < r\. Let (F, p, P, K) be as
in Proposition A.I. Let A be a connection on P. Then there are at most
N{\) eigenvectors of the Dirichlet Laplacian ΔΛ on L2((PxpV)®K\ B) with
eigenvalue less than λ/r2.

This lemma will be proved shortly.
Proof of Proposition AΛ assuming Lemma A.3. Choose ro in (A. 11) to

be less than r\ of Lemma A.3. Choose λ in Lemma A.3 to be equal to
32 z - N(ro,e,a) (E r$ + Λ^(ro,£, α)2), with the constant z as in (A.ll).
Suppose that there existed more than N(X) iV(ro, e, a) eigenvectors of ΪA with
eigenvalue less than E. Then, one could find a nontrivial linear combination
of these eigenvectors, ω, with the following property: For each of the less than
iV(ro,e,α) indices σ, the section ω[σ] e (Ll;0{(P xp V) (8) K\ B(x[σ],4r[σ]))) is
L2-orthogonal to the span of the eigenvectors of the Dirichlet Laplacian Δ^
on L2((P xp V) 0 K\ B(x[<τ]f4r[σ])) with eigenvalue less than λ. For such α/,
(A.ll) would yield an immediate contradiction.

Proof of Lemma A.3. The proof mimics an argument in [7]. To begin,
construct the heat kernel for the Dirichlet Laplacian; denoted by fcyi(<; , ).
This kernel can be written explicitly using the eigenvectors to the Dirichlet
Laplacian,

where the sum is over an L2-orthonormal set {υ} of Dirichlet eigenvectors of
A A- Here the number X(υ)/r2 is the eigenvalue for the eigenvector v. Observe
that when the point y is in the interior of B, the heat kernel obeys the heat
equation,

(A.13) (d/dt + AA)kA{", , »)| t>o = 0 with Au(0; , y) = δ(Ί y) I.

Here δ(-,y) is the Dirac delta function with support at y, and

I e Horn ((P xp V) 0 K\ y , (P xp V) Θ K\ y)

is the identity homomorphism.
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Note that on dB, / ^ (£;•,?/) vanishes. Thus, by Kato's inequality ((3.4))

and the maximum principle,

(A.14) \kA{t;z, y)| < m \ko(t;x,y)\ for t > 0 and for x,yeB.

Here fco(£; , ) is the Dirichlet heat kernel for the scalar Laplacian d*d on

L2(B), and m is the fiber dimension of the vector bundle (P xp V) <8> K.

Together, (A.12) and (A.14) imply that

• / ko(t;x,x) dvol(z)

> J tτ(kA(t;x,x))-dwo\(x) > N(A,\)

Here, tr is the trace on Hom((P xp V) <8> K\ *, (P xp V) <g> K\ x), and N(A, λ)

is the number of linearly independent eigenvectors of the V^ with eigenvalue

less than λ/r2.

For the proof of Lemma A.3, it remains yet to bound the left-hand side of

(A. 15). Since M is compact, there exists r<ι > 0 so that a Gaussian coordinate

system which is centered at a given point in M covers the ball of radius r^

about that point. Gaussian coordinates identify this ball with a ball which is

centered at the origin of Euclidean space.

There exists r% = (0, Γ2) such that if B is a ball of radius r < r$ in M,

then Ko(t;x,x) is uniformly estimated by the heat kernel for the Euclidean

metric's Dirichlet Laplacian [5], The result is that there exists δo > 0 which

depends on the Riemannian metric and which is such that when t < #o, the

left-hand side of (A.15) is bounded by z r4/t2. Take λ > 1, and take t = r2/λ,

then (A. 15) implies that

z m X2 >N{A,X).

This estimate implies the lemma.
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