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ON THE EVOLUTION OF HARMONIC MAPS
IN HIGHER DIMENSIONS

MICHAEL STRUWE

Abstract

We establish partial regularity results and the existence of global regular
solutions to the evolution problem for harmonic maps with small data.
The key ingredient is a decay estimate analogous to the well-known
monotonicity formula for energy minimizing harmonic maps.

1. Let Jΐ\Jί be (compact) Riemannian manifolds of dimensions m,n
with metrics 7,0 respectively. In local coordinates x = (a;1,--- ,x m ) and
u = (it1, , ιtn) we denote

7 = {Ίaβ)i<a,β<m,9 = {ΰij)i<ij<n and (ηaβ) = (7a/?)"1.

For a C^-map u: Jt —• Jf the energy of u is given by the intrinsic Dirichlet

integral

E(u) = ί e(u)

with density
1 fi

e(tι s) = ^iaβ{x)gij{y)Q^
in local coordinates. A summation convention is used. Since JV is compact,
yΓ may be isometrically embedded into RN for some N, and E becomes the
standard Dirichlet integral of maps w : , / - > / c RN.

u is harmonic iff E is stationary at it; in particular

—E(u + εφ)\ε=0

(1.1) dε

Ju
for any smooth variation φ with support in a coordinate neighborhood U C
R m and such that (u + εφ)(U) is contained in a coordinate chart V in the
target space, where

Received May 12, 1987 and, in revised form, August 4, 1987.



486 MICHAEL STRUWE

is the Laplace-Beltrami operator on ^# and the term

uJ^ti ^u*, ί<k<n,

involves the Christoffel symbols of the metric g, i.e., u is harmonic iff u satisfies

(1.2) -Ajru + I>(ti)(Vtι, Vu)jr = 0.

Regarding u as a map tx: Jt —> ^ C R N and £"(iί) as the ordinary Dirichlet
integral, w is harmonic iff

L- = 0

for all smooth φ: Jf —• RN tangent to JV at u, i.e., such that φ(x) G TU

the tangent space to JV at ίx(x), a: G */#. (Note that

(1.3)

for all such 0, i.e., IV(ι*)(Viί, Vn)^ is orthogonal to Tu^f; cf. Schoen [8,

§!]•)
Harmonic maps—in particular smooth ^-minimizing maps—are distin-

guished representants of maps Jΐ —• Jf. In order to understand how much of
the topological structure of a space JV is captured by harmonic maps Jΐ —>• JV
it is natural to study the following problems.

Problem 1. Given a (smooth) map UQ : ̂  —• J¥ , is there a harmonic
map homotopic to uςp.

In particular, we may ask for representations of the fundamental groups of
JV by harmonic maps:

Problem 2. Given a (smooth) map UQ : Sm —• JV , is there a harmonic
map homotopic to uςp.

In dimensions m = 2 Sacks and Uhlenbeck [7] have given an (essentially)
affirmative answer to Problem 2. Moreover, the existence of harmonic 2-
spheres turns out to be precisely the obstruction for solving Problem 1 in
general.

In dimensions m > 2—apart from certain particular cases—essentially no
significant progress has been made since the fundamental result by Eells and
Sampson [2] in 1964:

Theorem 1.1. Suppose the sectional curvature Kjr of JV is not positive.
Then for any (smooth) map uo: ./# —• JV there is a (smooth) E-minimizing
map u: Jί —• JV homotopic to UQ.
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Their method is based on an analysis of the evolution problem

(1.4) dtu - Ajru + I>(tι)(Vti, VtiJ^r = 0, t i | t = 0 = *o,

which by (1.1) may be regarded as the L2-gradient flow for E with respect
to the metric g(u). Eells and Sampson prove that under the above curvature
restriction on the target, (1.4) possesses a global regular solution u(t), which
converges to a harmonic map as t —• oo.

In [11] the latter result was generalized to arbitrary target manifolds in the
case m = 2:

Theorem 1.2. Suppose m = 2. For any (smooth) map UQ\ Jί —• JV
there exists a (unique) global distribution solution to (1.4) which is regular
on Jί x [0,oo[ with exception of at most finitely many points (xk,tk)i<k<κ>
tk < oo. At a singularity (x,t) a nonconstant, smooth harmonic map ΰ: R 2 =
S2 —• JV separates in the sense that for sequences

Rm \ 0, Xm — Z, tm/l

as m —• oo

um(x) = u(expXm(Rmx),tm) -+ ΰ in H^(R2 JIT).

Moreover, u(t) converges weakly in H1'2^\JV) to a smooth harmonic map

Jί —> JV as t —• oo (strongly, if t = oo is regular).

Here exp g : T g t ^ —• ^ denotes the exponential map,

Hλ*{Jl\Jir) = {ue U^2(Jί'^N)\u(Jί) C Λf a.e.}

and i/ 1 ' 2(c^;R 7 V) is the standard Sobolev space of square-integrable (L2-)
functions u: Jί -+ R^ with distributional derivative Vu € L2. Remark
that if m = 2 the space if1'2 (./#;*#*) coincides with the closure of the space
C°°(c/#;./Γ) of smooth functions u: Jf —* JV in the ii1)2-norm.

For m > 2 this is no longer true ([10, Example, p. 267]; cf., however,
Proposition 7.2 below).

The purpose of this note is to partially extend Theorem 1.2 to the case
m > 2. In this case no existence and regularity results for (1.4) and arbitrary
target manifolds are known unless certain a-priori restrictions relating the
size of the image u(JK x R+) to a bound for the sectional curvature of Jf are
satisfied (cf. e.g. [4]). However, unless Jί is a manifold with boundary dJί
and boundary conditions are posed on dJί such conditions seem unnatural.

Imposing no a-priori restrictions on Jf or the range of u we prove partial
regularity results (Theorem 6.1) and global existence and regularity results
for smooth initial data with small energies (Theorem 7.1).
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The basic ingredients are a monotonicity estimate, cf. Proposition 3.3, and
the ε-regularity theorem, cf. Theorem 5.1, which are reminiscent of the well-
known monotonicity formula and ε-regularity theorem for minimizing har-
monic maps in high dimensions (cf. Schoen-Uhlenbeck [9], Schoen [8]).

For simplicity we restrict ourselves to the case ^ = R m . However, our
results seem to carry over to compact manifolds Jί'.

2. Notations
Let z = (x, t) denote points in R m x R. For a distinguished point ZQ =

(xo, to), R > 0 let BR(XO) = {x I |x — xo| < R} be a Euclidean ball centered at
x0, and let PR{Z0) = {z = (x, *) | |a: — xo| < R, \t - to\ < R2} be a parabolic
cylinder of radius R centered at z0. Also let Sfl(£o) = {z = (x,t)\t = to-R2}
and TR(£ 0 ) = {z = (x, ί) | £o - 4iZ2 < t < t0 - R2} be respectively horizontal
sections and horizontal layers in R m x R. Note that (1.4) is invariant under
scaling,

u •-• UR{X, t) = u(Rx, R2t),

and translation, x »-• x — x0, t —> t — to- Using this invariance property we
will often shift the center of attention to the origin ZQ = 0. In this case we
simply write PR(0) = PR, etc.

Weighted estimates will involve the fundamental solution

~ z o v ~ y (4π(to-t))™/

to the (backward) heat equation with singularity at zo> (Again Go{z) = G(z),
for simplicity.)

6 denotes the parabolic distance function

<5((x, £), (y, s)) = max{|x — y|, \/|s — ̂ |}.

the letters c, C denote generic constants.
A map u: R m x [ίo^i] -+ R N is regular iff u and VIA are uniformly bounded

and dtu, V2u E Lfoc for all p < oo.
Remark 2.1. With this definition, by [5, Theorem IV.9.1, p.341 f.] any

regular solution u to (1.4) on an interval [0, to] may be extended to a regular
solution of an equation (dt—Δ)u G L^c on R + by letting u solve (<9t—A)u — 0
for ί > to.

Lemmas 3.1 and 3.2, resp. Propositions 3.3 and 4.1 below, will also apply
to the extended function u.

Moreover, for a regular solution u of (1.4), also dtu, V2ti, etc. will be
uniformly bounded, if the initial data UQ are smooth.
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3. Energy estimates and monotonicity formula

Let u: R m x [0,T] - ^ y Γ b e a regular solution to (1.4) with E(u(t)) < oo
for t € [0,T]. The following estimate is well known:

Lemma 3.1.

sup E{u{t)) + f ί \dtu\2 dxdt < E{u0).
o<t<τ Jo Jκm

Proof. Simply multiply (1.4) by dtu and integrate by parts. By (1.3)
and since E(u(t)) < oo for all t the nonlinear term and boundary integrals
vanish, q.e.d.

We also need a weighted decay estimate analogous to Lemma 3.1. This is
our key result.

Lemma 3.2. Let u: R m x [0,T] —• JV be a regular solution to (1.4) with
|Vu(x,ί)| < c < oo uniformly. Then for any point z0 = (zo^o) Ξ Rmx]0,T[
the function

= \ R 2 f \Vu\2GZodx
2 JsR(t0)

is nondecreasing in R for 0 < R < RQ =

Proof. By translation we may achieve that ZQ = 0. We establish that

±Φ(R;u)\R=Ri>0.

By scale invariance Φ(R',u) = Φ(1;UR), where ujι(x,i) = u{Rx,R2i)\ also it
suffices to consider R\ = 1.

By the exponential decay of G and regularity of u we may differentiate
under the integral sign:

A

= /
Js
/

[ Au{x Vu + 2tdtu)Gdx

The vector x Vu+2tdtu is tangent to JV at u\ hence by (1.3)-(1.4) and using
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that VG = - § G , t = - 1 on SΊ:

( Ξ . vu) (x- Vti -

= i / (23tti -
2 JSx

> 0. q.e.d.

In particular, Lemma 3.2 implies the following monotonicity formula for

solutions to (1.4).

Proposition 3.3. Suppose u: R m x [0,ί0 = 4i?£] -+ JV is a regular

solution to (1.4) wΛA |Vtι(x,£)| < c < oo uniformly. Then for any point

zo = (^o?^o) ίΛe function

Φ(Λ u) : =

is nondecreasing for 0 < R < RQ.

Proof. Shift 20 = 0 and compute for 0 < R < Rι < Ro (with r'/r =

Rx/R =: λ):

p-R2 r r2R

; u ) = / / \Vu\2Gdxdt = 4 r-χΦ{r;u)dr
J-4R2 JKm JR

by Lemma 3.2.

4. A Bochner-type estimate

Suppose u: Q —• Jf is a regular solution of (1.4) in an open space-time

region Q C R m x R . Taking the gradient of both sides of (1.4) and multiplying

by Vu we obtain

dtVu - Vu - AVu Vu = (dt - A) O^γ-J + l v ^l 2

7u,Vii)) Vu

Choosing ε = 1 yields the following differential inequality for the energy den-

sity e(u) = | |V i ί | 2 of u:

Proposition 4.1. Let u: Q —• JV be a regular solution to (1.4) in Q with

energy density e{u). Then there holds

{dt - Δ)e(ti) < ce{u)2

with a constant c depending only on JV and m.
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Remark 4.2. By the maximum principle for the heat equation, Proposi-
tion 4.1 implies an a-priori estimate for |Vw| on a small time interval for any
regular solution u of (1.4) with regular initial data uo This guarantees the
existence of solutions to (1.4), locally. If E(uo) < oo, by Lemma 3.2 and a
covering argument we can also see that E(u(t)) < c < oo uniformly, locally
near t = 0, and the energy inequality of Lemma 3.1 will hold.

5. The ε-regularity theorem

Our monotonicity formula Proposition 3.3 allows us to use ideas of Schoen-
Uhlenbeck [9] and Schoen [8] to prove the following:

Theorem 5.1. There exists a constant εo > 0 depending only on^V and
m such that for any regular solution u: R m x [—4i?Q,0] —• JV of (1.4) with
E(u(t)) < EQ < oo, uniformly in t, the following is true:

If for some R G]0,Λo[ there holds

Φ(#) := Φ(#;ιt) = / \Vu\2Gdxdt < ε0,
JτR

then

sup|Vu| 2 < c{δR)~2

PδR

with constants 6 > 0 depending on Jf, m, EQ, and inf{#, 1}, and c depending
on yy and m, only.

Proof. We closely follow Schoen's proof [8, Theorem 2.2] for the analogous
result in the stationary case.

Let r\ = 2<5i?, δ G]0, \[ to be determined in the sequel. For r,σ E [0,ri[,
r + σ < ri, and zo = (xOi ô) G Pr our monotonicity formula (for the extended
function u: cf. Remark 2.1) implies

σ~n / \Vu\2 dxdt <c \Vu\2G(Xo,to+2σ
2)dxdt

(5.1) < c I |V«|2G(χo,io+2σ2) dxdt
JTσ(to+2σ2)

<c
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But on TR, given ε > 0, if δ > 0 is small enough:

n ( C

G(xoM+2σφ,t) < ( 4 π | t | ) m / 2

(5.2) :

< (CG(M) i f N < f
" I CiTmexp(-c<r2) if |x| > f
< CG(x,t) + CiT 2exp ((2 - ra)logiϊ - c<T2)

<CG(x,t) + εR~2.

Remark that δ ~ (|lni?| + llnεl)"1/2 for small R and may be chosen inde-
pendent of R if R > 1. Hence

(5.3) σ~n j \Vu\2 dxdt < cΦ(Λ) + cεE0 < c(ε0 + εEQ).

There exists σo G [0, r\ [ such that

(ri — σo)2 supe(u) = max (r\ — σ)2 supe(ιt);
•p 0<σ<ri ψ

moreover, there exists (xo^o) G P σ o such that

supe(u) = e(u){xo,to) =: e0.

Set po = 2 ^ ! "" σ°) ^y c n ° i c e °f σo a n < i (̂ Oî o)

sup e(u) < sup e(u) < 4eo

Introduce TQ = /̂eo po and define a map v: P r o - ^ / " b y letting

x-xo t-to\
e0 /

v is a (regular extension of α) solution to (1.4) in P r o ; moreover, v satisfies
e(v)(0,0) = 1 and supPr e(υ) < 4. By our Bochner-type estimate Proposition
4.1 therefore e(v) satisfies

(dt - A)e(v) < cie(v)

with a constant c\ depending only on m and JV. Thus, if instead of e(v) we
consider the function f{x,t) = exp(—c\i)e(v) in P r o and if TQ > 1, Moser's
Harnack inequality [6, Theorem 1, p. 102] implies the estimate

= e(ι;)(0,0) <c f e{υ)dxdt.
JPi
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But, scaling back, by (5.3) and since 1/y/efi + σo < po + 0Ό < r i

e{v) dx dt = {y/e^)n [ e(u) dx dt < c(ε0 + εE0)

and we obtain a contradiction for small εo,ε > 0. Hence we may assume
ro < 1. But then the Harnack-inequality gives

1 = e(υ) (0,0) < crQn~2 / e(v) dx dt

e(u)dxdt.

I.e., by (5.3) and since po + 0"o = ^(?Ί + ̂ o) < ri'

cεE0 < C.

Finally, by choice of σo this implies

max (ri - σ)2 supe(τz) < 4ρleo < 4C
0<σ<ri pσ

Hence, we may choose σ = \rχ = δR and divide by σ1 to complete the proof.
Remark 5.2. Instead of (5.2) we may estimate for K > 0, R > 0, uni-

formly on TR\

(5.40 G ( x o , t o + 2 σ 2 ) (x, t)<jL< c(K)G(x, t) if |x| < KR,

resp.

\2 \X-XQ\2

{ φ t ) < c exp

(5.47')
< c exp(-C-1iί2)G (o,Λ2 )(x,ί) if |χ| > KR,

provided (xo?^o) ^ Pσi <* < Rfc- Hence we obtain that for any ε > 0 there
holds

uniformly on TR, uniformly in R > 0. Thus, instead of (5.3) we obtain

σ" n / I Vu\2 dx dt < C(e)Φ(Λ) + cε ί | Vu|2G(0, jR2) dx dt.

If now IViί| < C < oo, we may apply Proposition 3.3 to the term on the far
right and deduce that

IVu\2 dx dt < C(ε)ε0 + cε / \VU\2G{O,R2) dx dt
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where Eo = E{μ0) > E(u(t)) by Lemma 3.1 and Remark 4.2. With this
modification, setting 6 = \ and leaving the remainder of the proof of Theorem
5.1 unchanged we obtain the following variants of this result.

Theorem 5.3. For any RQ > 0 and EQ there exists a constant εo > 0
depending on R§,E§,J¥, and m such that for any regular solution u: R m x
[-4Rg,O] ->Jf o/(1.4) with E(u(t)) < Eo < oo the following is true:

If for some R E]0, RQ[ there holds

) = / \Vu\2Gdxdt<ε0,
JτR

then
sup \Vu\2 < OR'2

PR/A

with a constant C depending on JV and m only.
Theorem 5.4. For any Co > 0 there exists a constant εo > 0 depending

on CQ,^, and m such that for any regular solution u: R m x [—4^,0] —• ^
of (1.4) with I VwI < c < oo uniformly the following is true:

If for some R E]0, RQ[ there holds

ψ{R;u)= ί \Vu\2Gdxdt<ε0
JτR

while JTR |VU|2G(O,Λ2) dxdt < Co, then

sup \Vu\2 < CR-2

PR/4

with a constant C depending only on yV and m.

6. Partial regularity

Using the a-priori estimate obtained previously we can prove the partial
regularity of weak solutions u to (1.4) with finite energy and which can be
weakly approximated by smooth global solutions to (1.4):

Theorem 6.1. Suppose u: R m x R + —• JV is the limit of a sequence
{uk} of regular solutions Uk to (1.4) with uniformly finite energy

E{uk{t)) < Eo < oo V f c e N ; * > 0

in the sense that E(u(t)) < Eo almost everywhere and Vuk —• Vu weakly in
L2(Q) for any compact Q C R m x R+. Then u solves (1.4) in the classical
sense and is regular on a dense open set Qo C R m x R-f- whose comple-
ment Σ has locally finite m-dimensional Hausdorff-measure (with respect to
the parabolic metric δ). Moreover, there exists to > 0 (depending on JV\m
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and Eo) such that Σ Π (R m x [ί0, oo[) = 0 . Finally, u{t) -^u^^peJ^ in
C\oc as t —* oo, where UQO = p is a constant map.

Proof. This proof is modelled on [8, proof of Corollary 2.3]. Define

Σ = Π \zoeRmx R+l liminf f \Vuk\
2GZo dxdt > ε0 \ ,

Λ>0 I *"*~ Jτ^) j
where εo > 0 is the constant determined in Theorem 5.1. Σ is closed. Indeed,
if {zι} is a sequence of points in Σ converging to z$ G R m x R+, then for any
R > 0 and I G N we have

liminf / \Vuk\
2GZι dxdt > ε0.fc-*°° JτR(Zι)

liminf /
JτR(Zι)

Since GZι —* G^o uniformly away from ZQ = (xo?^o) and E(uk) < EQ uni-
formly, this implies that for any δ > 0

liminf / / |Vt*fc|
2G*0 dxώ > ε0.

Since β, <5 > 0 were arbitrary, by Proposition 3.3 this implies that

liminf / \Vuk\
2GZo dxdt > ε0

fc-oo JτR(zo)
lim inf

lTR(zo)

for all R > 0, whence ZQ G Σ as claimed. Σ has locally finite m-dimensional
Hausdorff-measure with respect to the metric <5, given by

m-meas(Σ) = lim inf <
v } R-+o

The infimum here is taken with respect to all covers ^ of Σ by cylinders
PRiizi) of radius R4 < R. It will suffice to show that

m-meas(Σ Π Q) < c(Q, Eo)

for all compact regions Q C R m x R+. Let R > 0 be given and let f =
{PRi{zi)} be a cover of Σ Π Q with Ri < R. We may assume Z{ G Σ: By
Vitali's covering lemma (cf. Caffarelli-Kohn-Nirenberg [1, Lemma 6.1, p. 806]
for a parabolic version) there exists a subfamily JF1 — {Pi = P R . ( ^ ) } of <f
such that PiΠPj = 0 for i φ j and such that the collection {Pδβ, (zj)} covers
Σ Π Q. Note that for arbitrary z0 = (xo,to), fc G N, ε > 0, by (5.4;), (5.4")
there is a constant G(ε) such that:

ί \Vuk\
2GZodxdt < cR~m I \Vuk\

2dxdt
JTR(to) J PC(B)R{ZO)

JττR(t0)
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Applying Lemma 3.2 the last term may be dominated for sufficiently small
ε > 0 :

ί \Vuk\
2G(zo+{o,R2))dxdt

JτR(t0)

< εc{t0 + R2) ί |Vti*|2G(,o+(o,*2)) dx\t=

t=Q

< εc{Q)E0 < \ε0.

Thus for ZQ € ΣnQ, 0 < R we can choose a cylinder PR0 (ZO) of radius RQ < R
such that for sufficiently large k

(6.1) ί \Vuk\
2dxdt >

Since Σ is closed, we may cover Σ Π Q by finitely many such cylinders P^ (zi)
from which we extract a disjoint finite subfamily f = {Pi = -Pĵ O )̂} as
above. We choose k € N such that (6.1) is satisfied on each cylinder Pi. By
summation over z,

J2R?<c(Q,E0)sv^[ \Vuk\
2dxdt

= C{Q,E0)6Q1 ί \Vuk\
2dxdt<c{Q,E0)<oo.

Moreover, the collection {PδJRi (z^)} covers Σ Π Q with sup^ Ri < R. Hence

s(Σ ΠQ)< Urn I inf j c(ra) ̂  «? I I < c(Q, Eb),m-meas

as was to be shown.
Next, for ZQ = (xo? ̂ o) ̂  Σ there exists R > 0 such that

for infinitely many A; G N. By Theorem 5.1 then also \Vuk\ < C uniformly
in a uniform neighborhood of ZQ, and a-priori bounds for higher deriva-
tives may be derived from (1.4). It follows that a subsequence uk —• u in
CΊ2

oc(Rm x R+\Σ;^Γ) and u is a regular solution of (1.4) off Σ.
Finally, using Proposition 3.3 for large t0 such that 4R2 < t0, we may

estimate
Γ pto/4 p

/ |V<ifc|2G*0 dxdt< / \Vuk\
2GZ0 dxdt < Ct{

0

2-m)/2E0 < ε0

JτR(t0) JO JKm
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uniformly in fc, and we obtain full regularity for to > C(Eo/εo)2^m~2\ More-

over, choosing R as large as possible and applying Theorem 5.1 we infer the

uniform decay \Vu(x, i)\2 < C/t for large t, and u(t) —• UQQ = const (t —> oo).

7. Small initial data

In particular, Theorem 6.1 can be turned into a global existence and reg-

ularity result for smooth initial data with small energy:

Theorem 7.1. There exists a constant ε\ > 0 depending on C\,JV

and m such that for initial data u0 G l/'1

1

o

l*(Rm;./f) with Vu0 G L°° and

||Vtxolloo < C\, E(uo) < εi, there exists a unique smooth solution u of (1.4)

which as t —* oo converges to a constant map UOQ = p G / " .

The proof is a consequence of Theorem 6.1 and the following approxima-

tion result for functions u$ G i / ^ ( R m ; ^ 0 with finite energy and satisfying

(7.1) below. (This result is analogous to an approximation result of Schoen-

Uhlenbeck [10, Proposition, p. 267] in the case m = 2.)

Proposition 7.2. There exists 6% > 0 such that any map u E

if1

1

o'^(Rm;t^
/") satisfying the condition

(7.1) sup R2~m ( \Vu\2dx<ε2,
R<Ro JBR{XO)

uniformly for all XQ G R m and for some RQ > 0, can be approximated in

H^{Rm'^) by smooth maps uk G C°°(Rm;yΓ).

Moreover, if u has finite energy, resp. \Vu\ G L°°, we may choose uk with

finite energy and E(uk) < cE(u) with a constant c depending only on J^,

resp. \\Vuk\\L°° < c||Vtz||£,°o.

Proof. There is δ0 > 0 such that any point q G RN at distance > δo from

yK has a unique nearest neighbor π(q) G ̂ f. Moreover, this projection π from

the (^-neighborhood Ue0 {J^) of J^ onto Jf is smooth.

For R < Ro let φ = ΦR be a mollifier,

ί
JB

φRdw =
BR

For u as above and R < RQ let

uR{x) = {u* φR){x) = / u{x)φR(x - x) dx.
J

It is well known that uR G C°° and uR -> u in iί1

1

o 'c

2(Rm,R j V) as R -+

0. Hence if we show that uR: R m -> Uδo{J^) for sufficiently small Λ, the

functions vR = πouR,0 < R < RQ, will lie in C°°(Rm;yΓ) and will converge
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to u in / ^ ( R ™ , ^ ) , as required. As in [10], for any x G R m we estimate

dist(ί/β(x),^)2 < CR~m ί \uR{x) - u(x)\2 dx
JBR(X)

< CR2~m ί \Vu\2 dx < Cε2 if R < Ro,
JBR(X)

which will be < δ§ if ε2 > 0 is small enough.

Finally, by smoothness of π and Fubini's theorem

/ \VvR\2dx<c[ \VuR\2dx = C ί \ί Vu{y)φR(x-y)dy dx
JR.™ JRm JRm | J R m

<C f (ί φR(x-y)dy)(ί \Vu\2(y)φR(x-y)dy)dx

= C f \Vu\2dx,

where C = ||V7r||oo = C{JV). The estimate for ||VWA:||L«> is obtained in a

similar way.

Proof of Theorem 7.1. If εi > 0 is sufficiently small, by Proposition 7.2

there is a sequence Uko £ C°°(R m ;yΓ) of smooth functions approximating UQ

in H^l and with£(u f c 0) < CE{u0) = £b, l|Vufc0||oo < C||Vu0 | |oo We will

show that for εi > 0 sufficiently small

sup R2 / |Vw fco |2G (xo, jR2 )da:<εo,
o,β>O JKm

which by Theorem 5.1 and Lemma 3.2 will imply the existence of smooth

global solutions Uk to (1.4) with initial data u^o-

But using the explicit formula for G, for 0 < R < e~m

f \Vuko\
2G{xo,R*)dx<CR-m f

jRm y B

and this is < #~~2ε0 if R < R\ = #i( | |Vu 0 | |oo,£o); while for R > Rι we can
achieve

r
I dx < CR~mE0 < Λ~2ε0,L

Hence Theorem 5.1, Lemma 3.2 and our monotonicity formula Proposition

3.3 guarantee uniform global a-priori bounds |Vw/fc(x, t)\2 < C/t. Since by

Remark 4.2 (cf. also [3]) (1.4) for smooth initial data Uko admits smooth

solutions locally, we thus obtain global smooth solutions Uk to (1.4) with data
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Moreover, {uk} is uniformly bounded in C1 , hence relatively compact
in C° locally in R m x [0,oo[ with uniform limit u solving (1.4) with initial
data UQ. Since u is continuous, u is also regular. (This follows from standard
results in regularity theory for parabolic systems; cf. [5].)

Remark 7.3. Inspection of the proof shows that Vuo € L™*μ and uni-

form local boundedness

sup f \Vuo\
m+μdx<C

xo JBiίxn)B1{xo)

for some μ > 0 would suffice instead of Vuo E L°°.

8. Tangent maps

The appearance of singularities can be related to nonconstant harmonic

mappings of (m — l)-dimensional spheres, as in the case of locally minimizing

weakly harmonic maps (cf. Schoen-Uhlenbeck [9, Theorem III, p. 310]):

Theorem 8.1. Suppose u: R m x [0, to[-^ JV with uniformly finite energy

E(u(t)) < Eo < oo is a locally regular solution to (1.4), which develops a

singularity ast / t§. Then there exist sequences Rk —> 0, Rι —• oo, x^ G R m

and tk / to such that

— —2 ί m C 1

1

o c ( R m x - o o , 0 ;
uι(x, i) = Uoo(Rtx, Rt t) -• ί/oo J

if first k —• oo and £Λen Z —• oo, where either

(8.1) ϋooίMjΞVooOr/lxl)

is induced by a nonconstant harmonic map v^: Sm~1 —> JΫ', or

(8.2) ttcx>(M)ΞWoo

UQQ being a nonconstant solution to (1.4) in the half-space {t < 0} and homo-

geneous on curves t = ex2.

Proof. Suppose there exists Ro satisfying 4R$ < to such that for all z0 =

(xo,ίo) there holds

f \Vu\2GZodxdt<εo.

Then by Theorem 5.1 Vu remains uniformly bounded as t / to, contradicting

the hypothesis.
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Thus, given a sequence of radii Rk such that Rk —• 0 as fc —> oo, there exist
points Zk = {xk,tk), tk < £o? such that

/ \Vu\
JτRk(zk)

GZkdxdt = sup
z=(x,t)

t<tk,R<Rk
2

Moreover, since |Vu| <C uniformly for t < t < to, it follows that tk / t0.

Rescale, letting

uk(x, t) = u(xk + Rkx, tk 4- Rkt).

Then uk: R m x] — tk/R%,0[—> JV solves (1.4) and satisfies

sup f \Vuk\
2Gzdxdt= [ \Vu\2Gdxdt = ε0

z={x,t) Jτ-g{z) JTi
ί<O,Λ<l

t>4R2-tk/R2

By Theorem 5.4 the family {uk} is uniformly bounded in Cγoc. Passing to a
subsequence we may assume that uk —• ΰ uniformly locally (and in C 1; cf.
the proof of Theorem 6.1), where ΰ: R m x ] — cx),0] —• JV is a nonconstant,
regular solution of (1.4) such that

sup / \Vΰ\2Gzdxdt = / \Vΰ\2Gdxdt = εo

t<O,Λ<l

Moreover, by Proposition 3.3 for any z = (x, ί), t < 0, and R > 0

|V?ϊ|2Gfc/a:Λ
)

= lim / \Vuk\
2Gzdxdt

k-κχ>JTlί(z)

/ \Vu
JTiixoJo)

< sup / \Vu\2G{xOito)dxdt<CEo

€ R m J T i )

uniformly in R and 2.
Letting Φ(Λ, ΰ) = / Γ |Vΰ|2Gdxcίί as above, we have by Proposition 3.3

d rfi?<oo;
Γ°° d
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and there exists a sequence Rι >0 such that

—-ΦfiRj ϋ) ->0 (/->oo).
dR

Let ΰι = t t^ = ΰ(RιX) Rt t)\ then as in the proof of Lemma 3.2

dR

= 2 / VfijV(x Vδ/ + 2t dtΰι)Gdxdt

= - 2 / atΰi(a; Vfi/ + It dtΰι)Gdxdt

ί x ' \7ϋi
- 2 / ' (x Vβj + 2tdtΰi)G dx dt

= ]TιWrx'Vuι + 2tdtUι* Gdxdt

It follows that either dtΰι,x Vΰi —• 0 in L2

OC in which case (using Theorem
5.4 again)

converges to a map iϊoo induced by a nonconstant harmonic map v^: S™'1 —>
^Γ; or ϋ/ —• ΰoo where UQO is a nonconstant solution to (1.4) on R m x ] — oo,0[
with 9ttϊoo = x Vΰoo/2|ί|, i.e.,

Note that by Theorem 6.1 if a solution u of (1.4) behaves irregularly as
t —• t < oo, necessarily a singularity must be encountered in finite time.

A natural question is whether homogeneous solutions of the kind (8.2) may
appear.

Added in proof. J. Eells has kindly pointed out a result of J. C. Mitteau
(J. Differential Geometry 9 (1974) 41-54) related to my Theorem 7.1. Re-
cently, F. Bethuel and X. Zheng (Preprint, Univ. Paris VI, Analyse
Numerique) have studied the density of C ° ° ( ^ , ^ ) in Hx^{Jt^) and ob-
tained necessary and sufficient conditions for the density to hold. This is
related to my Theorem 7.2. R. S. Hamilton (private communication) has
observed how the monotonicity formula of Lemma 3.2 can be extended to
solutions of (1.4) on an arbitrary compact manifold.
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