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HOMOLOGY OPERATIONS ON INSTANTONS

CHARLES P. BOYER k BENJAMIN M. MANN
To Margaret and Susie

In this paper we study the topology of certain moduli spaces of instantons
which are of central importance in the Yang-Mills gauge theory in mathemat-
ical physics. These moduli spaces, which arise naturally in the differential
geometric formulation of the Yang-Mills theory, have been extensively stud-
ied in recent years by many people including Atiyah [2], [3], Atiyah, Hitchin
and Singer [6], Atiyah, Drinfeld, Hitchin and Manin [5], Atiyah and Bott [4],
Atiyah and Ward [8], Donaldson [17], [18], [19], [20], Drinfeld and Manin [21],
[22], [23], Taubes [48], [49], [50], [51], [52], and Uhlenbeck [54], [55], using
various techniques from algebraic geometry, complex manifold theory, global
analysis and twistor theory. In particular Donaldson's seminal work [17], [20]
has shown that the moduli spaces of instantons contain remarkable geometric
information.

This rich influx of ideas into topology from other areas of mathematics has
inspired advances using more classical topological techniques, as exemplified
by the work of Fintushel and Stern [25], [26], and it is natural to ask if
homotopy theoretic techniques may also be profitably applied to study moduli
spaces of instantons. Of particular interest in this regard is the foundational
paper of Atiyah and Jones [7], which gave the first homological information
about these moduli spaces over the four-sphere for arbitrary instanton number
k and formulated the basic topological questions in this subject. Specifically,
Atiyah and Jones related these moduli spaces to components of well-known
homotopy objects, namely configuration spaces and iterated loop spaces. In
this paper we show that the disjoint union of these moduli spaces (where the
union is taken over all positive instanton numbers k) behaves homologically
like a four-fold iterated loop space (more precisely like a C4 little cubes operad
space in the sense of May [37]) with associated iterated loop space operations.
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We then use these operations to obtain new information on the homology of

these moduli spaces.

In §1 we briefly recall the differential geometric formulation of the Yang-
Mills gauge theory associated to a principal G-bundle P/c, where G is a
compact, connected, simple Lie group. We then define our main objects of
study, ^ , the moduli space of instantons with instanton number fc, and
ik: J£k —• ĝ fc, the natural inclusion of ^ into the moduli space of all con-
nections on Pfc. Technically we should index Jί^ by our choice of the Lie
group G; however, as we are mainly concerned with the case G = Sp(n) in
the first six sections of this paper, and we restrict out attention to the case
G = Sp(l) = S3 in §§7-10, we have chosen to keep the notation as simple as
possible.

§2 briefly reviews what is known about the topology of ^ , highlighting
the work of Atiyah and Jones [7]. We state the topological questions that arise
naturally from their work, including the Atiyah-Jones conjecture on the low
dimensional homotopy of ^ . We then see precisely how the disjoint union
of the ^ , over k > 0, is surrounded by four-fold loop spaces. This, in turn,
suggests that the moduli spaces ^ have a rich homological structure.

§3 is a technical section which recalls some basic facts from May's theory
[36] of iterated loop spaces. More precisely, we recall the definition of C4
operads and C4 operad spaces. These objects are the proper generalization of
four-fold loop spaces needed to enrich the homotopy structure of ]J Jί^ = Jiί
in a homotopically compatible way with known iterated loop structures on
iterated loop spaces. We then observe that the existence of such a C4 structure
on \\Jί\z is not immediate and in the succeeding three sections we construct
our desired homotopy structure.

In §4 we give Atiyah's geometric formulation [2] of the Atiyah, Drinfeld,
Hitchin and Manin [5] construction of the entire moduli space ^ in terms
of linear algebra. This description and a result of Taubes [50] given in §2 are
the crucial ingredients used in the construction of our C4 little cubes maps
on \\J?k = <£ given §§5 and 6.

§5 contains our key technical result. Here we prove that the moduli spaces
admit loop sum maps *: ΛίJt x J£\ —• Jfk+ι that agree, up to homotopy, with
the standard loop sum map on certain four-fold loop spaces (see Theorem
5.2). In §6 we extend this result from the loop sum maps to C4 operad maps
on U^Jfc that agree, up to homotopy, with the standard C4 operad structure
on these same four-fold loop spaces (see Theorem 6.10). These facts permit
the homology calculations which occupy the rest of the paper.
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In the next four sections we restrict our attention to the case G = Sp(l).
§7 analyzes the case when the instanton number is 1 and identifies the nat-
ural inclusion Jί\ —• ^ with the classical J-homomorphism. Although this
appears to be a rather trivial case it has far-reaching consequences as seen in
the computations given in §§9 and 10.

In §8 we briefly review the theory of homology operations on iterated loop
spaces (and C4 operad spaces). The results of previous sections imply we may
apply this theory to \\Jίk and obtain information on iϊ* (ΛίJk, Z/p) for p a
prime number. We then catalog our results for p = 2 in §9 and for p an odd
prime in §10.

§11 concludes with a list of open questions raised by our computations
and suggests directions for further study. The techniques developed in this
paper should prove useful in studying moduli spaces of instantons associated
to other Lie groups, moduli spaces of instantons associated to bundles over
more general compact smooth four-manifolds, and moduli spaces for stable
holomorphic vector bundles. Finally, we have enclosed an appendix with
explicit calculations for i / ς ( ^ , Z/p) for some small values of fc.

We would like to thank Fred Cohen, Jacques Hurtubise, John Jones, Jim
Milgram and Cliff Taubes for valuable comments, observations and sugges-
tions which have greatly helped us during the preparation of this paper.

1. Yang-Mills instantons

We begin this paper with a very brief review of the differential geometric
formulation of the Yang-Mills theory on principal bundles. We give sufficient
details to make this paper reasonably self-contained and to establish basic
notation used throughout the paper. The reader unfamiliar with the founda-
tional papers in this area ([2], [5], [6], [7], [8], [21], and [40]) is encouraged to
consult these sources.

Let G be a compact, connected, simple Lie group (we are interested mainly
in the compact simple classical groups) and let π: P —• S4 be a principal G-
bundle over the four-sphere. Recall that such bundles are indexed by the
integers and we write Pk for the bundle classified by the map S4 —• BG
of degree fc (recall π3(G) = Z). There are two natural geometric spaces
associated to Pk, the space of all connections, J^4, and the gauge group,
^(P/fe). s/k is well known to be an affine space [32], and the gauge group is
defined as follows:

Definition 1.1. &{Pk) = {/ I /• Pk -• Pk is a bundle automorphism
which covers the identity map on S4}.
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Definition 1.2. &b(Pk), the based gauge group of Pk, is the normal
subgroup of 3?(Pk) given by all / E &{Pk) such that / is the identity map on
the fiber over a distinguished base point.

If we think of ω £ sfk as a pseudotensorial 1-form, then ^(P*), and thus
act on S#k via the pullback; that is,

(1.3) ω H- Γ H = ad/-iα; + Γ df.

Here we have identified &(Pk) with ad-equivariant maps f:Pk—>G [27].
While the action of all of 3?(Pk) on srfk is not free, this action restricted to the
based gauge group £/b(Pk) is free. This observation and a local slice analysis
[7], [45], show

Proposition 1.4. s/k/^b(Pk) = &k is a principal &b(Pk) bundle where
8fc may be identified with B%?b(Pk), the classifying space of£/b(Pk). Further-
more, Wk is homotopy equivalent to Ω|G ~ Ω\BG.

Here QX is the space of based loops on X; that is, the space of based
maps / : (S^l) —• (X,*) with the compact open topology. Recall ΩX is an
if-space with operation (classically called the loop sum)

( f(e2iϋ) i f θ < t f < τ r ,
(1-5) f*9{eι*) = \ O Q " "

I g{e2ιϋ) if π < tf < 2τr.
We may iterate this construction to obtain Ωn(X) = Ω(Ω (ΩX)), the

space of n-fold iterated loops on X\ equivalently, Ωn(X) is homeomorphic to
the space of based maps / : (5 n , 1) —• (X, *). As πs(G) = Z the components
of Ω3G are indexed by the integers and we write Ω|G for the component of
Ω3G consisting of all based maps / : (S3,1) —• (G, id) of degree k. The fact
that 8fc may be identified, up to homotopy, with a four-fold loop space has a
pervasive influence throughout this paper.

Given a representation p: G —• Aut V of G on a vector space V we may form
the associated vector bundle Ek = PkXcV [32]. Of course connections in Pk

give rise to connections in Ek and vice versa. Now let ω G srfk. Its curvature
Fω = Dωω is a section of the vector bundle (Pk XQ g) 0 A2(54) where g is
the Lie algebra of G and p: G —• Aut(#) is the adjoint representation. There
is a natural bilinear form on (Pk xG g) <g> Λ2(54) given by the Hodge inner
product on A(54) (with respect to the standard metric on S4) and the Killing
form on g. The corresponding norm gives the Yang-Mills functional on s/k:

(1.6) P&(ω)= [ \\Fω\\2.
Js4

Furthermore, Fω splits orthogonally into self-dual, F+, and anti-self-dual,
F", components (with respect to the Hodge decomposition) and we may
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rewrite the integral as

= f
Js*
f

Now Chern-Weil theory [32] yields

where pι(g) is the first Pontrjagin number of the adjoint bundle Pk XG 9-
Thus the self-dual, Fω = F% (for k > 0), and the anti-self-dual, Fω = F^ (for
k < 0), connections give the absolute minima of J £ # . These absolute minima
are called instantons and anti-instantons respectively. As any orientation
reversing diffeomorphism will pull back Pk to P-k and pull back instantons
to anti-instantons (or anti-instantons to instantons depending on the sign of
k) it suffices to restrict our attention to k > 0 and instantons. We do so for
the remainder of the paper.

Let cJfc C srfk denote the subspace of instanton (self-dual) connections in
srfk. Further we let srfk C srfk denote the subspace of all irreducible connections
on Pk and set j £ = Sk ΠSsfk. For G = SU(2) = Sp(l) and k > 0 it follows
from the fact that there are no harmonic 2-forms on S4 that s/k = srfk and
thus Jfc = J?k but these equalities are definitely false for all other compact
simple Lie groups.

Most importantly a direct calculation shows that the Yang-Mills functional,
J £ # , is invariant under the action of the gauge group &(Pk) on £fk given in
(1.3). Thus we obtain the following moduli spaces which are our fundamental
objects of interest.

Definition 1.9. Jfk — *Sk/&b{Pk) is the based moduli space of all in-
stantons.

Definition 1.10. J?£ = Jk/Z/(Pk) is the moduli space of all instantons.

Definition 1.11. Jΐk = J%/&b(Pk) is the based moduli space of all

irreducible instantons.

Definition 1.12. jfj. = ^7k/%?(Pk) is the moduli space of all irreducible

instantons.

A theorem of Atiyah, Hitchin and Singer [6] shows that Jf^ is either empty

or is a smooth manifold of dimension pι(g) - dim(^). Furthermore the factor

group &(Pk)/&b(Pk) is naturally identified with G/Z and by (1.3) we have

a principal bundle

(1.13)
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where ^ is a smooth manifold of dimensions p\{g). Here Z is the center of

G. We also have the obvious commutative diagram:

(1.14)

While J(]z is a smooth manifold for any Lie group G (cf. [49]), if G ψ

Sp(l) then Jΐ^ is not a smooth manifold and ^ —• Λζί is not a principal

G/Z bundle. However these spaces still have a rather interesting piece of

topological structure and it is desirable to study all spaces and maps occurring

in diagram (1.14). For any compact simple G, pi(g) can be computed in

terms of the degree k and the rank of G (see [6]). In fact pι(g) = a(g)k where

the proportionality constant depends only on g. However we will be mainly

interested in the case G = Sp(n) where a(g) = 4(n + 1) so pi{g) = 4(n -f l)fc,

thus dim«/#fc = 4(n + l)fc, and d i m ^ ' = 4(n + l)fc — n(2n + 1). If there exist

irreducible self-dual connections on Sp(n) —• Pk —• S4 then fc > n [6]. Of

special interest is the case G = Sp(l) for then ^ = «/#& and JK^ — Jif^ are

nonempty smooth manifolds of dimension 8fc and 8fc — 3 respectively for all

A:>0.

We conclude our review of instantons with the well-known construction of

a subclass of Sp(l) instantons due to 't Hooft [53], which come from config-

urations of fc unordered points in R4. Recall the set of k distinct points in

R4 is an open submanifold of R4 which admits an obvious free action of the

symmetric group Σ&. The quotient space Ck(R4) is called the configuration

space of k points in R4 and has played a key role in the homology theory of

iterated loop spaces (see, for example, [11], [16], [24], [38], [39], [43]). Viewing

R4 as the quaternionic plane H1 and S4 as the quaternionic projective plane

HP(\) we may construct an instanton as follows: Choose k distinct points

(αi,G2, ,α/c) in H1 and define a map / : HP{\) —* HP(k) by the formula

f(x) — (1, (x — α i ) " 1 , , (x — Gfc)"1) where (x — α^)" 1 is oo if x = a,i. Fixing

a standard connection ω on the Hopf fibration S3 —• 5 4 / c + 3 —• HP(k) we

obtain a self-dual connection f*(ω) on Pk -+ S4 = HP(1). This assignment

gives rise to the first inclusion jk in
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Atiyah and Jones [7] first noticed (1.15) and in the next section we review
their work relating the topology of Jίk to the topology of the better known
spaces Ck{R4) and <gk ~ Ω3S3.

2. On the topology of instantons

In this section we review the main result of Atiyah and Jones [7] on the
homology of the inclusion maps ik: Jίk -> 8*, recall the questions they pose
that arise from their analysis and summarize what is known about π+(J?k),
H*(^k) and the induced maps ik*. We are then able to describe the main
program of this paper and conclude with a theorem of Taubes which plays a
key technical role in our analysis.

We begin with G = Sp(l) and start with the inclusions Ck -^+ Jtk - ^ %
described at the end of §1. Segal [43] and Boardman and Vogt [11] have shown
there are maps Sk: Ck(Rn) +> Ω^Sn which, for all k and n, are homology
(although not homotopy) equivalences through a range (that depend on k and
n). Furthermore Atiyah and Jones showed the following diagram commutes
for all k:

Ck(R3) ^ > Ώ3

kS
3

\ y
(2.1)

where Σ represent the standard suspension maps. Using this commutative

diagram and the Segal, Boardman-Vogt result, Atiyah and Jones obtained

the following.

Theorem 2.2 [7]. Let G = Sp(l). Then (ik)q: Hq{Jtk) -> Hq{%) is a

surjection for q <C k.

Atiyah and Jones then pose the following questions:

1. Is (ik)q actually a homology isomorphism through a range?

2. Can the range of the surjection (isomorphism) q — q(k) be explicitly

determined as a function of fc?

3. Is (ik)q a surjection on homotopy groups through a range? Even better

is ik actually a homotopy equivalence through a range?

4. Are similar results true if Sp(l) is replaced by more general compact

simple G? Notice that immediately there arises a new complication as Jίk is

properly contained in Jtk for all G φ Sp(l). In fact J^k may be empty while

at the same time J[k may be quite large. Thus this question really asks one
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to analyze the commutative diagrams in homology and homotopy induced by
diagram (1.14).

Question 3, which asks if ik: ^ k —• 8*; is a homotopy equivalence through
a range and is now commonly known as the Atiyah-Jones conjecture, still
remains open at this time. It might be helpful at this point to review precisely
what is known about the topology of ^ . Again let G = Sp(l).

Theorem 2.3 (Donaldson [18]). ^ k is Q> complex manifold.

Theorem 2.4 (Taubes [50]). τ r o ( ^ ) = 1 for all k.
Theorem 2.5 (Hartshorne [28]). πi(^#2) = Z/2.
Theorem 2.6 (Hurtubise [30]). Έχ{Jίk) = Z/2 for all k > 1.
Furthermore, Taubes, using techniques from partial differential equations,

global analysis and infinite-dimensional Morse theory, Kirwan, using tech-
niques from symplectic geometry, and Segal, using techniques from analytic
loop groups, have all initiated powerful attacks on the Atiyah-Jones conjec-
ture. In fact, Taubes [52] now has both a proof of a stable version of the
Atiyah-Jones conjecture as well as a strong generalization of Theorem 2.2 for
arbitrary Lie groups. We are not in a position to properly explain their work
here and now leave that subject to concentrate on results in homology.

As the homology of Ck(Rn) and Ω%Sn is well known ([16], [24], [38], and
[43]) it is possible to use diagram (2.1) to construct nonzero classes in the
image (ί*) g : Hq(Jfk) —• Hq{^k). We will see in §9 that if one works with
homology with Z/2 coefficients then this method yields nonzero classes for
q < 2 r + 1 — 2 when k = 2 r. However it is not possible to directly use this
method to obtain interesting classes in Hq(^k) when q > k/4.

For reasons that will quickly become apparent it is natural to take the
union, over all positive values of fc, of diagram (2.1) to obtain the following
commutative diagram:

C(RZ) if* > Ω 3 5 3

(2.7) Σ ^ J t A ψ

I ,/ \
C(i?4) -1 iϊl >

where C(Rn) = LU> 0Cfc(#n), Jt = L U > 0 ^ , ^ = L L > 0 ^ an<* * i s the
natural inclusion of the positively indexed path components into the total
iterated loop space.

The inclusions toS are well known to be group completions ([43], [11]), and
thus we find that JJ ̂  = ^ is completely surrounded by iterated loop spaces
(or spaces that group complete to iterated loop spaces). The homology theory
of such spaces is very rich (see §§3 and 8 for a brief review) and it is clear that
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if one could enrich Jί with such an "iterated loop space structure" so that
diagram (2.7) respects the additional structure (at least up to homotopy) then
it would be possible to learn much more about H*(^f) and H*(J?k)> This
entire paper consists of carrying out this program. For example Corollaries
9.9 and 10.9 will give nonzero classes in H^k-z(^k) for infinitely many k.

If we replace G = Sp(l) by G = Sp(n) we may still map the configura-
tion spaces Ck{R4) into J£k (see §4 and the remarks after Proposition 4.16)
and diagram (2.7) can be replaced by the following analogous commutative
diagram:

C(R3) 122 , Ω 3 Sp(n)

\ /
(2.8)

C(R4)

The only essential difference between diagrams (2.7) and (2.8) is that the
inclusion of the configuration space \\Ck(R4) into Ω3 Sp(n) ~ Ω4BSp(n) is
no longer a group completion. Fortunately this distinction is irrelevant for our
purposes and all the structures we wish to study are preserved in (2.8). Thus
we are able to give a unified treatment in describing the additional homotopy
structure on Jΐ for all Sp(n) in the following four sections. Only when we
turn to specific homological computations (in §§7-10 of the paper) will we
restrict our attention to the case n = 1 again.

In order to carry out our program we will require the following theorem
of Taubes [50], which was an ingredient in his proof that 7Γ0(^) = 1 for
G = SU(2) (and SU(3)). We note that G is not restricted to SU(2) or SU(3)
in the following

Theorem 2.9 (Taubes [50]). Let Pk —• S4 be a principal G-bundle with

k > 0. Then there exist ε > 0 and a strong deformation retract ^ξ onto Λίfc.

Here Ήξ = J<!#~1([0,ε)) where we have normalized J £ # : ^ —• # as in
[50] so that yjf{J[k) = 0.

We shall use Theorem 2.9 in a crucial way in §§5 and 6 to enrich Jί with
additional homological structure.

3. Iterated loop spaces

We have just seen that Jί = \\^k appears to be intimately related to the
four-fold iterated loop space Ω4£?Sp(n). Thus it seems appropriate at this
point to recall some basic facts about the theory of iterated loop spaces and
the machinery which we will need to tie Jί more precisely into this theory.
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Actually we expand our attention from iterated loop spaces to May's Cn

operad spaces [36], which are based on Boardman and Vogt's little n-cube

spaces [11]. This is the proper generalization of iterated loop spaces needed

to study the spaces and maps occurring in our fundamental commutative

diagram (2.8) and gives the largest class of spaces on which the homology

operations we study later are defined. In §§5 and 6 we will show that, up to

homotopy, Jt behaves like a C4 space and, that up to homotopy, diagram

(2.8) behaves like a commutative diagram of C4 spaces (with compatible C4

structures). Thus we now briefly summarize facts used in later sections to

establish a "homotopy C4" structure on Jΐ and to compute homology oper-

ations in i/*(^#).

Definition 3.1 ([11], [36]). Let Γ be the unit n-cube and let Jn = ϊn

be the interior of In. An open little n-cube is an affine embedding / of Jn

into Jn with parallel axes. Then Cn(j) is the space of j-tuples (/1, , fj)

of open little n-cubes with disjoint images in Jn C In (with the subspace

topology inherited from Map([] J Jn-> Jn))>

Notice that the symmetric group Σj acts on Cn(j) by permuting the disjoint

images of the little n-cubes. Now Cn(j) acts on ΩnX in the following way.

First we identify ΩnX with the space of maps (J n, dln) -> (X, *). Then

(3.2) ΰnJ: Cn{j) xΈj {ΩnX)j - ΩnX

is defined by mapping the image of the zth little n-cube in Jn C In via the

zth coordinate function of (ΩnX)J into X and mapping the complement of

the images of all j little n-cubes in In to the base point * G X. If Σj acts

on (ΩnXy by permuting the j coordinates then it is clear that ΰnj is well

defined.

These structures satisfy many other compatibility conditions, for example,

the following diagram (see May [36]) is known to commute.

cn(k)xcn(j)x(Ωnxy -^^ cn(j)x(Ωnxy

(3.3) idxμ ΩnX

Cn(k) x Cn{J,ΩnX) iάxΰn>J , Cn(k) x (ΩnX)k

Here J = (ji,'-Jk), ΣLIJI = h Cn(J) = Cn{ji) x ••• x C » ( Λ ) ,

Cn(J,ΩnX) = Cn(ji) x (ΩnXy* x . . . x Cn(jk) x {ΩnXy*, μ is the

shuffle homeomorphism, and δ: Cn(k) x Cn(j\) x x Cn{jk) —* Cn(j) is

defined by δ(g; /1, , fk) = g(fχ H h /*), where + denotes disjoint union.
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Thus δ places the ji disjoint little n-cubes of fa G Cn(ji) homeomorphically
into the interior of the iih little n-cube of g G Cn(k). Also note (3.3) is equi-
variant with respect to the obvious actions of the various symmetric groups
Σfc, Σ^ , Σji.

These structure maps are formalized in both Boardman and Vogt's [11] and
May's [36] theories of iterated loop spaces. More precisely, Cn, the union over
all j > 0 of the Cn(y)'s together with the structure maps δ: Cn(k) x Cn(j\) x
• x Cn(jk) —• Cn(j), is an operad (see [36, Definition 1.1 and Theorem 4.1]).
Furthermore the totality of the structure maps {ϋn,j} together with higher
compatibilities such as (3.3) make QnX a Cn space (see [36, Definition 1.2,
Lemma 1.4 and Theorem 5.1]). We now need the following key definition of
May.

Definition 3.4 [36]. Y is a Cn space if it is equipped with structure
maps ϋj: Cn{j) x F Ή y for all j > 0 such that

(a) The following (the analogue of diagram (3.3)) commutes:

(3.5)

n(Jb) x Cn{J) x Yi —

idxμ

Cnik) X Cn(J,Y) —

^ Cn{j)

I

I
— CJk)

F

(c) ^(cσ,^) = ΰj(c,σz) for c G Cn(j), z G F 7' and σ G Σ ?.
Furthermore May defines a C n map between C n spaces to be a map /: (Y,

—• (Y',ΰ') such that the following diagrams commute for all j :

Cn(j) x Y> ^ — Y

(3.6)

Cn(j) X

Returning to diagram (2.8) we find the composition of inclusions

(3.7) I I C * ( β 4 ) - * * -> ̂  -> Ω4βSp(n),

where every space but Jί is known to be a C4 space and the total composite
map is known to be a C4 map.

Notice however any naive attempt to impose a compatible C4 structure on
Jt by directly minimizing the little cubes action on Ω4£Sp(n) fails. This is



434 CHARLES P. BOYER & BENJAMIN M. MANN

evident even at the loop sum level in trying to construct a map Jίk x Jί\ —+

Jtk+ι that commutes with the map Ω£5Sp(n) x Ω*J9Sp(n) A Ω^+/jBSp(n)

given by t?2(c, f,g) = f * g for any fixed c E Cn(2). Essentially the problem

arises because #2(c, /, #) is constant on a rather large set while for an appro-

priate choice of gauge any ω E Λ?k+ι c a n be seen to be analytic. Thus we need

to examine J?k more closely, which we proceed to do in the next section.

4. The ADHM construction

In this section we review the well-known description of Sp(n) instantons on

S 4 in terms of linear algebra given by Atiyah, Drinfeld, Hitchin and Manin

([5] and [21], [22], [23]). Actually we summarize the more geometric version of

Atiyah [2] (see also [41]), which closely parallels surface theory in Riemannian

geometry, and is more visibly compatible with diagram (2.8). We then use this

description in the next two sections to construct C4 structure maps on */#. Let

Ek be a quaternionic vector bundle of (quaternionic) rank n on HP(1) = S4

associated to the principal Sp(n) bundle P*. This is the quaternionic analogue

of the theory of Hermitian vector bundles. Now imbedding Ek in the trivial

vector bundle HhJtn of rank H n w e obtain an exact sequence

(4.1) 0 -+ Ek -> Hk+n -> jfc£ -> 0,

where kL denotes k copies of the tautological (Hopf) quaternionic line

bundle L on HP(1). Choosing the flat metric on Hk+n with its standard

flat connection V7, the sequence splits

(4.2) Hk+n ~EkΘ kL.

Thus restricting V to Ek we get a map

(4.3) V;: T(Ek)-+τ(Ek®/\S4) ΘΓ (kL®/\S4

where T(Ek) denotes the vector space of smooth sections of E. This map can

be viewed as the analogue of Gauss' formula in surface theory. Projecting

onto the first factor gives the induced connection

(4.4) V = πi o V': Γ(Ek) - T(Ek) ® Γ ίf\S4 j

on Ek, whereas projecting onto the second factor gives the analogue of the

second fundamental form

(4.5) Π = τr2 o V': T(Ek) - Γ(ΛL) ® Γ ( /\ S4 ) .
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By choosing local bases for these vector bundles one can represent Π by an
n x k quaternionic matrix with values in the 1-forms on S4. The analogue of
Gauss' equation enables us to express the curvature F of V in terms of the
"second fundamental form" Π (since V is flat) as follows:

(4.6) F = ΠΛΠ*.

In order to compute F and its connection 1-form A explicitly in terms of
matrices we consider the quaternionic vector space Hn with its standard norm

(4.7) N|2 =
1 = 1

for Xi G H. Now the space L(Hn,Hm) of quaternionic linear maps thought
of as a left i/-module is a normed linear space with the operator norm

(4.8) IIΠI = sup
IMI

where T e L{Hn,Hm). Moreover, L(Hn,Hm) is a Banach algebra in the
sense that

(4.9) \\TS\\ < ||Γ|| | |5 | | .

Of course choosing bases in Hn and Hm gives an isomorphism L(Hn, Hm) ~
Mn,m(H) where Mn^m(H) denotes the set of quaternionic valued n by m
matrices.

Now a choice of a smooth imbedding u: E —> Hk+n can be thought of as
a choice of a smooth classifying map /: S 4 —• Gn,n+k{H), where Gn,n+k{H)
is the Grassmannian of quaternionic n-planes in Hn+k. Locally / is given
by maps of the form x »-+ U(x), where U denotes the affine coordinates on
Gn,n+k{H) If we choose a local symplectic basis (gauge) for E and a basis
for JfiΓ

/c+n we can represent u by an n + k by n quaternionic matrix which
satisfies u*u = /, where u* denotes the quaternionic conjugate matrix and
/ denotes the n by n identity matrix. To obtain / explicitly we need to
give an imbedding of the normal bundle v: kL —• Hk+n which satisfies the
orthogonality condition

(4.10) v*u = 0.

After making appropriate choices of bases any such map can be represented
in an affine chart (i/, x) of HP{\) by

(4.1D ^ )
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where Λ is a k by n quaternionic matrix and B is a k by k quaternionic matrix.

Furthermore υ(x) satisfies the condition

(4.12) r a n k φ ) = k for all x E HP(1),

where rankv(x) denotes the row rank of the matrix.

Viewing the components of u as homogeneous coordinates on the Grass-

mannian we can solve v*u = 0 locally for u as a function of x or equivalently,

in terms of affine coordinates, U as a function of x. This gives the local

expression for the classifying map

(4.13) f(x) = U(x) = (A(B-xI)-1)m.

Then the connection 1-form A can be obtained by pulling back the standard

connection ωc on G n ? n +*(//). In local coordinates

(4.14) A = f*ωG = σU* dUσ + σ" 1 dσ,

where σ~2 = I + U*U. Note that the local expression for both the classifying

map / and the connection 1-form A are not defined at the points of HP(1)

corresponding to the eigenvalues of B. These "apparent singularities" are

due to a bad choice of coordinates on Gn,n+k(H) at those points. Changing

affine coordinates on the Grassmannian corresponds to mixing the Λ and B

matrices so that the local expression in the new coordinates at that point is

well defined.

As indicated by the previous construction we are interested in the set

(4.15) 38'k = {(A,5) E Mn,k{H) x Mk,k{H): condition (4.12) is satisfied}.

Clearly 38k is an open set of the normed linear space Mn+k,k(H). The pre-

vious discussion culminating in the formula for A thus describes a continuous

map a'k: 3Bk -> stfk. Now the real orthogonal group O(fc) acts naturally on

Mn+ktk{H) ^ Mntk{H) x Mktk{H) by sending (A,£) .-> {kT,T~λBT) where

T G O(fc). This clearly leaves 38k invariant. Thus by restriction we obtain

the quotient space 38k = 38k/O(k). Moreover, one easily sees that chang-

ing (A, B) to (AT,T~XBT) does not affect A, so we get a continuous map

38k —y # ί Thus composing this map with the natural projection S#k —• &k

gives a continuous map 3Bk to Ψk. Summarizing we have

Proposition 4.16. For any symplectic vector bundle Ek over S4 there

is a continuous map ak: 38k —• g^, where ak is induced by a'k above.

Remarks. 1. If άk: £%k —• Ω4BSp(n) is the composition of ak and the

homotopy equivalence Wk ~ Ω4B Sp(n) given in [7] then άk((A, B)) = f where

/ is given by (4.13).

2. The inclusion jk: Ck(R4) -• J[k in (2.8) is given by sending the k distinct

points in R4 = H1 to the pair (A, β) , where B is the diagonal matrix whose
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diagonal entries are precisely the k distinct points in H1 and A is the matrix

all of whose entries are 1.

We shall need an explicit formula for the curvature of the connections which

are in the image of α^. This is given by Atiyah [2, Π-3.11].

(4.17) F = Ndxp~2dxN*,

where N = —uu\ in terms of the homogeneous coordinates u* = ( i ^ , ^ ) on

the Grassmannian. Here N = PC in Atiyah's terminology [2, Π-3.11], and

(4.18) p2 = v*υ = [B* - xI){B - xl) + Λ*Λ.

We note that the matrix p2(x) will play an extremely important role in

the analysis to follow. We have written it here explicitly (after making cer-

tain choices). Strictly speaking, p2 is a section of the endomorphism bundle

End(fcL) on S4 ~ HP{\).

Since dx Λ dx span the self-dual two-forms on an affine open set of S 4 ,

the connection will be self-dual if and only if p2 is real. The reality of p2 is

equivalent to the following two conditions [2]:

Γ 4 1 Q x (i) B is symmetric,
{ } (ii) B*£ + Λ*Λisreal.

This leads us to define

S% = {(A, B) € 3S{,: (4.19) is satisfied}.

Notice that conditions (4.19) are unaltered by the O(A;)-action on 38^ giv-
ing a well-defined quotient 5% = {S^)/O{k). Thus the set of O(fc)-orbits
{Λ, B} of matrices (Λ, B) satisfying conditions (4.8) and (4.13) automatically

give self-dual connections of instanton number k. What is remarkable is the

theorem of Atiyah, Drinfeld, Hitchin, and Manin ([5] and [21], [22], [23]),

which proves that S% gives all instantons of charge k up to gauge equivalence

under the based gauge group. The proof requires the full algebro-geometric

machinery of stable algebraic vector bundles on CP(S) and the monad con-

struction of Horrocks and Barth ([29], [9], [10]). We rephrase the ADHM

theorem for G = Sp(n) as

Theorem 4.20. For a principal Sp(n)-bundle, S% and Jί^ are homeo-

morphic.

Proof. Define the map δk: <9% —• ^k by the previous construction which

assigns to each equivalence class {A, J3} a self-dual connection. That δk is a

bijection is the ADHM theorem in the form described by Atiyah [2, p. 26] for

Sp(l) and generalized to Sp(n) [2, p. 27]. The continuity of δk follows easily
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from the continuity of the map otk of Proposition 4.16. To see the continuity

of the inverse map, recall that [7],

Ck ~ Ω3G ~ Ω4BG C Map(S4, BG)

with the compact-open topology. From the ADHM construction the maps

S4 —> BG given by x ι-> U(x) in (4.13) factor through the Grassmannian

Gn,n+k(H) and thus are given locally by rational maps. Moreover, on the

mapping space Map(S4,Gnjn+fc(i?")) the compact-open topology coincides

with the uniform metric topology and one easily sees that δ^1 is continu-

ous. This completes the proof.

In the succeeding sections we shall identify 5^ with Jί^ without explicit

reference to Theorem 4.20 and no longer write S%.

Finally we close this section by mentioning briefly the full (unbased) moduli

space e/#fc' ~ ̂ k/G where G = Sp(n)/Z2. Actually it is the quotient space J^l

which appears in Atiyah's theorem [2, p. 26]. It is shown there, for all Sp(n),

that ^ ^ can be identified with the set of equivalence classes of pairs (Λ, B)

under the action of Sp(n) x O(fc) given by sending (Λ, B) to {qhT,T~1BT)

where q G Sp(n) and T G O(fc). As mentioned previously in §1, for n = 1,

Jίk —• Jί^ is a principal Sp(l)/Z2 ^ SO(3) bundle, but for n φ 1 it is not a

principal fibration owing to the presence of reducible connections.

5. The loop sum map on instantons

In this section we give one of the key technical results of this paper, namely

the construction of a "loop sum" map

(5.1) *:̂ ffc x ^ ί -*Jίk+U

which is homotopy compatible with the loop sum map on Ω4B Sp(n). Actually

we obtain a 1-parameter family of such homotopy loop sum maps as stated

in the following theorem.

Theorem 5.2. There is a continuous one-parameter family of continuous

maps

(5.3) ut'.JtkXJti-* Jtk+ι

such that for each 0 < t < 1 the following diagram homotopy commutes:

(5.4)
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where the vertical arrows are given by the compositions of the natural inclu-
sions ij with any homotopy equivalence of ^j —• Q^BSp(n), and * is the
standard loop sum map on Q4BSp(n).

The remainder of this section is devoted to the construction of the maps
#t, while the proof that diagram (5.4) homotopy commutes is given in §6. In
order to construct the maps ϋt we construct maps from Jί^ x ^ to the Taubes
tubular neighborhood ^ ε

+ / of J?k+ι (recall Theorem 2.9). More precisely, we
define 38ξ, — aj^"1(^e), and construct a 1-parameter family of maps φt: Jfk x
Jί\ —• &ξ+ι Then using the strong deformation retraction «5fc+/: ^? + z —•
Jίk+i given in 2.9 and Proposition 4.16 we obtain the following commutative
diagram:

(5.5) Φt / I
M\z X M\

Hence the construction of the maps ΰt is equivalent to the construction of the
maps φt-

We begin by defining a map from ^ to itself. To set our notation we let
6fc denote the pair (Λ, B) G ̂  and bk its equivalence class in 3§k- Notice
that the norm

116*11 = sup ||(A,B)«||
| |u|| = l

is independent of its representative (AT, T~1BT) for T G O(fc). Now for each

δ € (0,1] we define maps φf:^k^ Mk,n{H) x Mk>k(H) by

(5.6) * f ( Λ , B )

Clearly the ψf are continuous.

Lemma 5.7. For each δ G (0,1] the maps ψf are contractions from <Φk
to itself. Furthermore, formula (5.6) gives continuous maps φf: <S$k ~^ &k
which leave the subspace ^k invariant and depend continuously on δ. Thus
for any δ,δ' G (0,1], φf and *ψf, are homotopic.

Proof One easily checks that the ψf are O(A:)-equivariant and thus define
maps ψf on the quotient 3§k which are clearly continuous. To see that Jf^
is invariant we notice that conditions (4.19) are preserved by ψf. Thus ψf
restrict to self-maps on J?k which are continuous functions of δ. For 0 < δ <
δ' < 1 the homotopy on 3&k is given by

(l-t)δ
| f t | | B ) '

which gives a homotopy on the quotient 3§k. q.e.d.
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We next define a "diagonal imbedding"

(Mktn{H) x Mkik{H)) x (Mhn(H) x Mitl{H))

± Mk+ι,n(H) x Mk+ltk+ι(H),

which is the natural identification of Mkin(H) x M^n(H) with Mfc+/,n(lϊ) on
the first factors and the diagonal imbedding

Mkik{H) x Mυ(H) - Mk+ltk+ι(H)

on the second factors. We compose Δ with the maps (5.5) giving maps

(5.10) φδ = A o (φj x ψj):3fk x3x-> Mk+hn(H) x Mk+uk+ι(H).

Lemma 5.11. For 0 < δ < 1 the image φs(3$s x &ι) lies in &k+ι
and the eigenvalues of φs(bk,bι) for any {bk,bι) G 3&k x 3B\ lie in open discs
of radius δ centered about x = ±1. Furthermore, φs are contractions and
define continuous maps φs : 3&k x 3S\ —* <S§k+ι on the quotient space. For any
δ,δ' G (0,1], φs and φβt are homotopic.

Proof To see that φδ{&k x 38\) C £§k+ι we need only to check the rank
condition (4.12). It suffices to show that n o x G HP(1) can be a simultane-
ous eigenvalue of the B matrix in ψ£(Ak,Bι) and ψ^(Aι,Bι). Let xk be an
eigenvalue of / + (δ/\\bk\\)Bk and x\ an eigenvalue of - / + (d>/||6/||)B/. Then
there are eigenvectors ξk G Hk and ζι G Hι which we can assume are of unit
norm, such that

{Xk"1)e*= M B f c & ) {xι + m = W
Thus taking norms and using the facts that the rank condition (4.12) guar-

antees H-Bfcll < \\bk\\ and that ψf is a contraction we get \xk — 1| < δ < 1 and
\xι -I-1| < δ < 1 so xk φ x\. This also shows that all the eigenvalues lie within
open discs of radius δ about ±1. The fact that φs are contractions follows
immediately from the fact that φf are contractions and that Δ is a natural
inclusion of linear spaces.

That the φs pass to continuous maps on the quotient spaces follow from
the fact that Δ intertwines the O(fc) x 0(1) action on 33k x 3B\ with its action
under the diagonal imbedding O(k) x 0(1) -• O(k +1) on Bk+i Finally that
φs and φs' are homotopic follows from Lemma 5.7 and the continuity of Δ.
q.e.d.

We note in passing the fact that φs passing to continuous maps on the
quotient spaces depends on the fact that we are quotienting out only by the
based gauge group. If one quotients out by the full gauge group (as described
in the last paragraph of §4) then the φs do not pass to well-defined maps on
the Jt' level.
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We are interested in the maps φ$ restricted to Jίk x ^ C ̂  x 38\- Let

bk G Jf\z and b\ G Jt\. Although bk and bι are instantons the image φδ{bk, bι)

need not be an instanton for any <5, but for δ small enough φδ{bk,bι) will

always be an "almost" instanton. We now make this precise.

Now consider the section p2 of End// kL defined in (4.18). For bk =

(Afc,βfc) G Sk and bι = (Λ/,J9f) G Sj, p2 o ̂  represents a smooth section

of the bundle End//(fc + Z)L, which is isomorphic to

(5.12) End// fcL ® End// /L Θ HomH(fc£, IL) Θ Hom//(/L, fcL).

Choosing afiine coordinates x on HP(1) and local frames for fcL and /L,

we can represent p2 oφδ &s & matrix

( 5 3 )

where

( 5,4 )

+

ί Λ ί Λ "i iMΠNίΛ ί

If we choose a different representative (KkTk,TζιBkTk) for bk G M* where

Tk G O(fc), then
± 1 ±

V

where Tfc+; is the image of (7*,,7}) under the diagonal imbedding O(fc) x

Lemma 5.16. 77ιe matrices S^(δ,x) and E satisfy

(i) S*(δ,x) is a real invertible self-adjoint matrix for all δ e (0,1] and

all xeH.

(ii) | | 5 f c

± ( ί , a ; ) | | < ( | x τ l | 2 + 2(5
2).

(iii) | | £ | | < 1.

Furthermore, these conditions are independent of the choice of representa-

tive {bk)bι) of{bk,bι) e^kX dί-

Proof (i) follows from the fact that bk represents an instanton and thus

satisfies conditions (4.12) and (4.19). The remainder of lemma is easily verified

and left to the reader.
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Lemma 5.17. For each representative (JbkM) G <9% x ^ι the matrix
p2 o φδ(bk,t>ι) is invertible for all 0 < δ < 1 and for all x G H.

Proof This follows immediately from Lemma 5.11 and the explicit form

of p2 o φβ{bkM)
We need estimates on ||Imp~2 o φδ\\. The following lemma shows that

although p2 o φδ is singular as δ —• 0 the limit of Imp" 2 o φδ is well defined
at δ — 0. We may write p2 o φδ = i?(<5, x) + δ2F, where i?(<5, x) is real and
denotes the block diagonal entries in (5.13) and δ2F denotes the off diagonal
blocks, where we note that F is independent of both δ and x. However F may
contain both real and imaginary entries and we now rewrite

(5.18) p-2oφδ=K(δ,x) + 3(δ,x),

where ίH and 3 denote the real and imaginary parts of p~2 o φδ respectively.
Lemma 5.19. There are constant matrices 3(0, ±1) such that

ί α(o,i) yχ = i,

Iim3(δ,x) = I 0 ifxφ±l,

I 3(0,-1) ifx = -l

for all xeH.
Proof For δ G (0,1], ρ~2 o φδ is invertible so

(5.20) / = (R + δ2F0)ft + δ2(F13)0,

(5.21) 0 = δ2F1D\+{R + δ2F)3,

where A = AQ + Ai denotes the decomposition of a quaternionic matrix into
its real and imaginary parts. From these equations we have

3=-δ2(I + δ2R-1F)-1R-1F1R~1R

x (7 + 5 2

J R - 1 F o ) - 1 β - 1 ( / - έ 2 ( F 1 α ) o ) .

Now each of the following terms has a well-defined limit as 6 —• 0:

i I-Ak ifx = l,

/ Ίfxφ ± 1 ,

1-Aχ i f x = - l ,

if x φ ± 1 ,

• AJ if x = 1,

\ίxφ ±1,

lim δ2R'1FR~1 = { 0

δ2R-1F)-1R~1 = { I
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where

The result now follows by taking the limit of (5.22). q.e.d.
In order to get explicit bounds on pM(φδ(bk,bι)) we define

H: \x =F 1| < r}, and let i f be the complement of £>+(r) U D~{r) in iϊ.
Lemma 5.23. For all x E H1 there is a δ\ > 0, independent of (6^,

for α//<SE(0A].
Proo/. First we rewrite equation (5.22) as

(5.24) 3 = -δ\R + δ2F)-1F1{R + δ2Fo)'1(I -

Since F is independent of x, limδ_o(^ + δ2F)~1 exists and

lim R"1(δ,x) = 0 ,
IsHoo

hence (R(δ,x) + έ 2 ^ ) " 1 is uniformly continuous on [0,1] x H'. Thus

β(«)= sup IKJR + ^ F ) " 1 ! ! <OO
xeH'

is continuous and it follows, using Lemma 5.16, that

(5.25) | |3(M)ll<^ 2 2

But now an explicit computation gives
2F)~ι)\\ =

0

lim φ ) = lim sup ||(Λ + δ2F)~ι)\\ = sup liπjL ||(Λ +

Thus after multiplying (5.25) by r4 there is, by the continuity of s(δ), a

δι e (0,1] such that

(5.26) ^=p\\ < (r4 - ί 45 2(έ)r 4) | |3 | | < δ2r4s2(δ)
v2

whenever 6 £ (0,£i] Furthermore, since (R + δ2F)~1 is well defined as

IIM II*HI -> °» *i c a n b e t a k e n t 0 b e independent of {bk,bi). This completes

the proof of the lemma.
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Lemma 5.27. For all (£, x) G [0, δx] x (Z?+(r)LLD~(r)) there is a constant
Co such that

Proof. 3(5, x) is continuous on (0,5i] x (£)+(r) U ΰ " ( r ) ) . Moreover, by
Lemma 5.19, the limit exists as δ —> 0. Thus

c0 =sapφ(δ,x)\\: (δ,x) e [O.tfi] x (D+(r)Ui?-(r))}

is finite.
Remark. The constant CQ depends on the pair (6fc,δj).
Lemma 5.28. Given ε > 0 ί/iere ώ α δo{bk,bι) > 0 θwcΛ ί/iαί /or α//

0 < δ < δo{bk,bi), φδ(bk,bι)€&ξ+ι.
Proof. Given {bk,bι) EJtkXJti, Φδ(bk,h) lies in 3&k+\ for each 5 G (0,1]

and thus composing with ak-\-ι defines a connection in ^AH-/. Let F^6 denote
the curvature of this connection. Decomposing FΦδ into its self-dual, F+δ,
and anti-self-dual, Ft8, parts we show that given ε > 0 there is a <$o > 0 such
that

\\Ft*\\l<ε
for all 0 < δ < <5Q, where

is the Hodge norm. Let us write HF^

D+{r)\JD-(r)

To estimate | | F ^ δ | | recall that this norm is the Hodge norm on 2-forms and
the Killing norm κ(A,A) = — tr(ad(A)2) on sp(n). Thus viewing A G sp(n)
as a quaternionic endomorphism, there is a constant c\ such that

where vol denotes the volume form on S4. Thus by Lemmas 5.23 and 5.27
given ε > 0 there are positive constants c<2 and c$ so that

(5.29) | | F ^ | | 2 ^

by choosing r = (ε/2c3)
1 / 4 and δ0 = nύn{δu (ε3/8c24)1/4}. q.e.d.

To complete the existence part of the proof of Theorem 5.2, we now con-
struct the maps φt: Jtjς x «̂ ί ι—• J^kΛ-i °f diagram (5.5). Notice that <$o(&fc? h)
is a positive valued function which is continuous in the matrix entries of bk



HOMOLOGY OPERATIONS ON INSTANTONS 445

and bι and H-F^l^ is monotonically decreasing as δ < δo(bk,bι) goes to zero.
Thus if we define

for 0 < t < 1, then from (5.29) we have \\Ft% \\% < ε for all t G (0,1].

6. The little cubes action on instantons

We now extend the loop sum maps *: ^ x ^ ί —• >^k+ι defined in §5 to
maps

(6.1) tf:C4(p)xEp(^b)p^^fc>

which will permit us to define homology operations in Jΐ.

We think of little cubes in I4 as big cubes in R4 in the obvious way. Fix
a homeomorphism of I4 with H1 = R4. Then a point in C^(p) is equivalent
under this fixed homeomorphism with p disjoint open cubes in H1 (with sides
parallel to the axes). Let <7i, ,qp denote the centers (the points whose
coordinates are given by the midpoints of each side) of the p disjoint cubes
and let βij = dπiQi^Qj) for i φ j be the distance between the distinct centers.
Thus e = mini^j(eij) > 0 and we let e = max(l, 1/e).

Definition 6.2. Let bi = (A<, B<) G Jtk for 1 < i < p. Then

where

(b) Bδ = diag( ρ i /+ («/e)Bi||6i||, - ,qpl + (δ/e)Bp\\bp\\), the pk by pk
block diagonal matrix with the A; by A: matrix qtf + (ί/e)Bt||6»|| in the ith
diagonal block,

(c) the <ft's and e are uniquely determined from Ci2...p G C±(p) in the
manner described in the paragraph above.

Remarks. 1. When p = 2 and c\^ is fixed with qι = 1 and q<ι = — 1 we
recover the loop sum map φs of §5 (with fc = I).

2. We must check that φs is well defined. First if we consider transforma-
tions represented by Γi, ,ΓP in O(fc) then we need to check that

is equivalent to

φδ(c, {A1TUT^1B1T1), , {kpTp,T-ιBpTp))
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in 3§v]z. But this follows immediately from the fact that the map φg inter-
twines the O(k)p action on ( ^ ) p with its action under the diagonal imbed-
ding O(A:)P \—• O(pk) on <£&pk> Secondly we must show Definition 6.2 is Σp

equivariant; that is, that

is equivalent to

for all σ € Σp. This follows immediately from the fact that there are elements
of O(pfc) which simultaneously permute the p (fc by k) block diagonal matrices
in Bg and p (k by ή) block matrices in kg.

Again we point out that this construction is not well defined if we mod out
by the full gauge group (see the last paragraph of §4) and thus our construction
of the φg maps does not descend to the Jί1 level.

It follows by exactly the same arguments as in §5 that there exists δo > 0
(depending continuously on ε and on the entries in the b{) such that for all
0 < t < 1, φts0: C±{p) XΣP {ΛfkY —• 38%>k maps into 3S^k and for appropriate
choice of ε we may compose with the Taubes strong deformation retraction
to obtain our desired maps ϋt: C±(p) x^p {y$k)v —• Mvk Again as in §5 it is
routine to verify that for any t\, t<ι such that 0 < t\ < t<ι < 1 we have that
ϋtι is homotopic to ϋt2. We are interested here in the maps ϋt only up to
homotopy and thus will write ϋ to denote the generic ϋt for 0 < t < 1.

Now (./#, ϋ) is not a C4 operad space in that the analog of diagram (3.5)
commutes only up to homotopy but does not strictly commute. However our
structure maps ϋ: C±(p) x^p (y$k)v ~+ ^%>k are sufficiently well behaved, up to
homotopy, as demonstrated in the following two theorems, the first of which
completes the proof of Theorem 5.2.

Theorem 6.3. The following diagram commutes up to homotopy:

n4

kBSp{n)xnfBSp{n)

i
(6-4)

Ck(R4) x d(R4)

Proof. We show both the squares in (6.4) commutes up to homotopy.
The upper square: Our model for S4 is H U 00 and hence our model for

the loop sum can be to write x = x0 + x\i! + x2j + x^k in H and use the
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real coordinate Xo as the suspension coordinate. More precisely for all /, g E

Ω4B Sp(n) we have

f /(Inx 0 + xii + X2J + X3*0 if zo > 0,
(6.5) / * g(x) = <

{ g(ln(-l/x0) + xχi + x 2 i + £3*0 if z 0 < 0.
Let 6i = (Λi,Bi) E ^ and 62 = {^2^2) G ̂  be two instantons. Then 61

and 62 correspond through the ADHM construction to based maps / 1 : S4 —•

Gn,n+k(H) C 5Sp(n) and / 2 : S 4 -> Gn,n+f(JΪ) C BSp(n). In affine coor-

dinates on the Grassmannians we may write fι(x) = (Λi(£?i — x/)" 1 )* and

/2(z) = (Λ2(B2 — χI)~X)* as l°ng a s χ i s n ° t an eigenvalue of B. Since the

values of /1 and /2 at the eigenvalues of B\ and B<i respectively are well de-

fined by continuity we will abuse the notation and use the matrix equations

to globally represent j\ and f^. Thus we have

(6.6)

tf * f)(x) = ί (AΛBi-{\nx0 + xii + X2J + X3k)I)-1)* if x0 > 0,

* h ) [ x ) \ (Λ2(£2 _ (ln(-l/χ 0 ) + xit + X2J + X3A:)/)-1)* if x0 < 0.

On the other hand 61 * δ 2 = b$ = (As,B$) € ^f+/ is represented by the based

map / 3 : S4 ^ G n , n + f c + ί ( t f ) C BSp(n) given by /3(x) = (Aδ(Bδ - x/)" 1 )*.

Of course /3 is homotopic to f\ * fi as they represent maps from S4 into

B Sp(n) of the same degree. However to show that the upper square commutes

we must show much more, namely that the homotopy we choose from / 3 to

/1 * h depends continuously on the values of the b{. We proceed as follows.

The eigenvalues of B$ are centered about ±1 (this is independent of the

choices of B\ and £ 2 , rather it depends only on the fact that δ < 6$) and thus

the eigenvalues of B$ are disjoint from the xo = 0 hyperplane in H. Hence

/3I χo=o is contractible in £Sp(n) and thus there is a canonical homotopy of

/ 3 to a map f± denned as follows:

1 /3(2:0 - jo + x\i + X23 + 23k) if xo > 55,

W/afri* + *2i + x3fc) + (1 - 10(|xo|))P if |xo| < ^ ,

fϊixo + Jo + Xli + XM + χ3^) if xo < ϊ ^ ,
where P is the n-plane representing the base point in Gn,n+k+ι{H) and the

"sum" of two n-planes in Gn,n+k+ι{H) is defined by entry-wise addition of

affine coordinates. The formula for f± is well defined as x is never an eigenvalue

for bs as long as |xo | < 3^. Notice that f± sends the x0 = 0 hyperplane

to P, the base point in βSp(n), and hence f± is canonically a loop sum.

Furthermore writing f±{x) in terms of affine coordinates on Gn,n+k+ι(H) we

see that f± is canonically homotopic to

k if xo > 0,
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Here Pk is an n-plane in Hn+k+ι expressible in terms of the first n + fc coordi-
nates (that is, the last I coordinates are zero) and Pi is an n-plane in //«+*+*
expressible in terms of the first n and last I coordinates (that is, the n + 1
through n + k coordinates are zero). In addition there is a self map of B Sp(n)
which is homotopic to the identity and which interchanges affine coordinates
on the Grassmannian. Hence f± is canonically homotopic to

Γ Pk if x0 > 0,
(6.9) Λ * Λ = < * . f ~

I PI if xo < 0,
where P[ is obtained from P\ via the self map of Gn,n+k+ι{H) induced by the
map (x, y, z) ^ (x, s,y) on Hn+k+ι ^HnxHkxHι.

Lastly, as

we see there is a homotopy v of H such that after precomposing by z/, /i *
/2 = fδ * h- As every homotopy described in the argument above depends
continuously on b\ and 62 the upper square in (6.4) commutes up to homotopy.

The lower square: Let p = (p1? ,p^) € Ck{R4) and </ = (<?i, ,φ) €
Q(R4). Then p*g = (1+ίpi, , l+δpk, - 1 + % , , - l + ί « ) € Cfc+i(^4)
for some <5, 0 < δ < δ0. Thus the lower square fails to commute only by a
multiple of δ on the A matrices (the B matrices are identical). But there is
an obvious homotopy on Λίk+ι using the multiple of δ on the A matrix which
completes the proof.

The following theorem follows directly from the arguments and construc-
tions used in the proof of Theorem 6.3.

Theorem 6.10. The following diagram commutes up to homotopy.

Ϊ i
(6.11) C4(p) x Σ p {J?ky —^ jrvk

ί I
1 > Cpk(R4)

Theorems 6.3 and 6.10 are sufficient to carry out our computational pro-
gram in §§9 and 10. We close this section with a theorem and general remark,
which although not necessary for computational purposes, are interesting in
their own right.
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Theorem 6.12. The loop sum maps *: ^k x ^ι —* <^k+ι a>re homotopy
associative and hence Jΐ is a homotopy associative topological monoid.

Proof. We must show that

\z X J£\ X

(6.13) i d x J

commutes up to homotopy. But both compositions are homotopic to the
triple sum Jίf^ x Jf\ x Jίm —• ^ + z + m defined by precomposing the Taubes
retraction with the map that sends (61,62? 63) to

B = diag(/ + δBuδB2, -I + δB3)

and

for all sufficiently small 5 > 0 via the following homotopy:

(6.14) B t = diag (1 - t){I - δ2l) + ^52J52

V-/ + «iί2ί + {l-t)δ2B3J

and

(6.15) At = (ίi«2Ai,«ifcA2,(l-0fcA3).

q.e.d.
If the loop sum were associative (which it is not) and not just homotopy

associative then JK would automatically have a classifying space and ΩJB(^#)

would be a group completion. Stasheff 's theory of Aoo spaces [46] supplies a
recognition principle for determining if a homotopy associative monoid does
have a classifying space. We do not pursue this question here.

7. Instanton number one

We now return to the case G = Sp(l). In this section we examine the
natural inclusion i\: Jϋ\ —• ^1 and see that, up to homotopy, i\ is equivalent
to the well-known J-homomorphism J : SO(3) —• ΩfS3. This analysis, while
rather straightforward, is a vital ingredient, especially at the primes 2 and 3,
in our homological calculations given in §§9 and 10.

We begin by recalling that Jί\ is homeomorphic to SO(3) x B5 [6], and
in fact, JK\ is the total space of a principal SO(3) bundle over ./#', which is
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homeomorphic to B5. Furthermore the following commutative diagram is a
pullback of principal SO(3) bundles (see [33]):

SO(3) — ^ - * SO(3)

Ί I'
(7-1) jti — ϋ — 8i

1 I
Recall J£\ and ^ are the moduli spaces of instantons and connections under
the based gauge group, while jtf{ and Ψ{ are the respective moduli spaces
under the full gauge group. In addition we have denoted the natural inclusions
of the fibers SO(3) over the preferred base points by k and j respectively. As
k: SO(3) —• Jf\ ~ SO(3) x Bδ is a homotopy equivalence, the commutativity
of the upper square of (7.1) implies that up to homotopy the natural inclusion
iιm. J£\ —• @i is equivalent to the inclusion j : SO(3) —• 8χ. Thus, as 2i is
homotopy equivalent to Ω 3S 3 (let θ: 8i —> Ω3ί?3 be the equivalence given
by Atiyah and Jones [7]), i\: Jί\ —• 8χ is homotopy equivalent to a map

One of the most important maps in homotopy theory is the J-
homomorphism, J: SO(n) —• Ω^S72 (see [57] for example). We briefly re-
call the construction of J for n = 3 and then show our map j 1 is homotopic
to J.

We may naturally regard SO(n) as a subspace of Map^S™"1,Sn~ ι) in
the obvious way. Now given a map a: Sr —• SO(n) we form the adjoint of
the composition of a with the inclusion into Map1(S'n~1,S'n~1) to obtain
Ad(α): Sr x S71'1 -> S"1'1. As d{Dr^ x 5 n - χ ) = Sr x S71'1 = d(Sr x Dn)
we may extend Ad(α) to two maps D r + 1 x Sn~ι -• D^ and Sr x Dn -• D1!
by radially extending Ad(α) over the two discs D7^ and D1! in two different
ways. Then these two maps glue together to give a map

(7.2) J(α): 5 r + n = (Z? r+1 x 57 1"1) U (5 r x Dn) ^DluDηl=Sn

or equivalently Ad(J(a)): Sr -->• Ωy5n. The assignment α: ̂->> Ad(Ja) induces
a homomorphism 7: πr(SO(n)) —• π r(Ωϊ5 n) ^ π r+n(S'n) for all r and n. If
we let α: S 3 -+ ΛP(3) ~ SO(3) be the canonical double cover, then J(a)
gives an explicit description of the map J: SO(3) —> Ω?S3 as follows.

Let x = x0 -f Xi?" + x2y + ̂ 3^ be a unit quaternion. Then x E S3 C H1 and
S 2 = {a ;ES 3 : io = 0}. Let q E S3; then J(α) is the extension of the map
5 3 x S 2 -> 5 2 given by {q,x) ^ ^x^-1 [47]. Regarding S6 = Z> 4 x5 2 U5 3 xD 3
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and S3 = D\ U D3_ we have

(7.3) ./(<*)I D4χS*(2fg,z) = ((sin πt)qxq~x, cos πt) for 0 < t < ±,

(7.4) J(α) | 5 3 X j D 3 (g, (2 - 2φ;) = ((sinπί)<7^~1,cosπί) for § < t < 1,

where the second coordinate is the suspension coordinate in S3 = D\ U D^_.
Notice that Ad(J(a))(q) = Ad(J(a))(-g) and thus yields a map from SO(3)
to Ω?S3, which is precisely J : SO (3) ^ Ω?S3.

Lemma 7.5. j 1 =θoj: SO(3) -• 8i -> ΩfS3 ώ homotopic to J: SO(3)

Proo/. We begin by recalling the Atiyah-Jones equivalence θ in more de-
tail. We may first assume that Ψ\ has been deformed to ^ F , the moduli
space of connections that are flat near infinity. For any connection ω G 2 ^
choose a covariantly constant section a: S4 —• Pi with α(oo) = Poo and any
section β: R4 —> Pi | R4 which agrees with a on a fixed radial direction SQ.
On a small S 3 centered at oo, aβ~x defines a map S3 —• G. Then the map
CJ i—• aβ~ι can be shown to be a homotopy equivalence. Now let q G S 3 and
fq: S3 * 5 3 —• S3 * 5 3 be defined by fq(x,t,y) = (qx,t,qy). It is clear that
/g is a gauge transformation which fixes the fiber at oo only when q = +1.
For / € ^(Pi ) we recall that /*(ω) = Ad}(ω) + f'1 df and thus, as dfq = 0,
we have f*{ω) = AdJ (t<;). This defines an action S3 x ^ —• ^ given by
(<7,ω) H-»> /* (ω) which passes to the quotient action

(7.6) SO(3) x 8i ^ «1

given by ({#}, CJ) ι-> fq{ω). For a fixed α; G ̂ Ί the orbit of this action describes
the fiber over {ω} in the principle SO(3) bundle ^i -> g^.

The action in (7.6) and the homotopy equivalence θ yield the following
commutative diagram of action maps:

SO(3) x «i > «1

(7.7)

SO(3) x Ω 3 5 3 > Ω 3 5 3

However if we apply the gauge transformation /g to Pi we will clearly send
the section a to the section qa and the section β to the section qβ. Thus if

*
(7.7) is given by (g, /) H

If we set / = id € Ω?53 we find that / : SO(3) -> Ω?S3 has adjoint map
Ad(y') = SO(3) x S3 -• S3 given by (g, j/) ι-> gj/ς"1 for 2/ G S 3 . Now writing
y = t + x with x = τ/i2 + 2/2J + 2/3̂  and comparing with formulas (7.3) and
(7.4) immediately establishes the lemma.

θ{w) = Oίβ~ι, then θ(f*(ω)) = qaβ~ιq~λ and the bottom horizontal map in
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8. Homology operations on CVspaces

Theorems 6.3 and 6.10 show that Jΐ is a "homotopy C4 space" in the
sense that (*/#, ΰ) is homotopy compatible with certain important C4 operad
structure maps on ]J Ck(R4) and Ώ4B Sp(n). In this section we recall certain
fundamental facts about the homology of C4 spaces which we will need in §§9
and 10.

The homology theory of iterated loop spaces is very rich and it is well
known that H*(ΩnX,Z/p) admits homology operations that are not the
duals of the Steenrod operations. Araki and Kudo [1] were the first to discover
and study such operations, which generalize the Pontrjagin product induced
by loop sum, when p = 2. Browder [14] obtained more complete information
when p = 2 and also studied when p is an odd prime. Dyer and Lashof [24]
then studied the algebra of stable operations (on infinite loop spaces) for all
primes p. These stable operations (which naturally give rise to unstable op-
erations on iterated loop spaces) and their rich algebraic structure have made
the Dyer-Lashof algebra a fundamental tool in algebraic topology. However
not all unstable homology operations come from stable Dyer-Lashof opera-
tions (to quote Fred Cohen [16], "To be precise, only l/(p — 1) times the
requisite number of operations (defined in this paper [16]) may be described
using the methods of Dyer and Lashof.") and we will consider other homol-
ogy operations here as well. May's theory of iterated loop spaces [36], [16],
shows that all the homology operations mentioned above live naturally on Cn

operad spaces. Finally Cohen [16] has given a complete treatment of all the
modp homology operations on C4 spaces that we consider in this paper.

We now recall the definitions of these operations. We do not give all the
rules one uses to compute with these operations but refer the reader to Cohen's
concise yet encyclopedic treatment [16, §1, pp. 213-219].

Definition 8.1. Let X be a Cn+i space with x € Hq(X,Z/p) and y £
Hr(X, Zip). Then define the following.

(a) For i < n

Qi(P-φ) = Vfe(p-i) ®χV) e

and, for p odd,

(b) For p = 2 and s < q

while if s > q then

Qs(x) = Qa-q(x).
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(c) For p > 2 and 2s < q
Qs(χ) = o,

while if 2s > q then

Qa{x) = {-l)aυ{q)Q{2s_q){p__φ).

(d) For 2s <q

βQ°(x) = 0,

while if 2s > q

βQa(x) = (-l)V(<7)Q(2a-,)(P-i)-i(z),

where v{q) = (-l)9(«-i)(p-i)/4(((p _ l)/2)!)«.

(e) For p = 2

ξn{x) = tf2(enβi®i)e H2q+n{X, Z/p).

(f) For p odd

(g) For p odd and n + g even

in = (-l)

(h)
λn(x, 2/) = ( - 1 Π + V (* 0 x 0 y) E /rn+i+ri-X-, Z/p).

Here -0: Cn+i (2) x X x X —• A" is the Σ 2 equivariant map without the Z/2
quotient action on the domain and i G /fn(Cn+i(2),Z/p) = Hn(Sn,Z/p) is
the fundamental class.

Remarks. 1. Part (a) defines the operations which come from the stable
Dyer-Lashof operations [24].

2. Parts (b) and (c) provide a dictionary for passing between lower notation
(Qα(z)) and upper notation (Qb(x)), which was invented by May [35] to sim-
plify many computational formulas involving iterated operations, especially
at odd primes. We shall not strictly adhere to one convention but rather pass
freely to whichever notation can be used most easily to state our results.

3. Part (h) defines the Browder operation [14].
4. The cells et E /ί t(Cn(p)/Σp, Z/p(q)) are dual to the z-dimensional gen-

erator in the image of WiBΣp, Z/p{q)) -+ i/*(Cn(p)/Σp, Z/p(q)) (see [16]).
5. Qo(x) = xp, the p-fold Pontrjagin product of x with itself.
6. In general the top operation ξn behaves very much like a Dyer-Lashof

operation (ξn = Qn(p_i) if X is a Cn+2 operad space). Theorem 1.3 of [16]
catalogs the precise differences.

7. We are interested in C4 spaces thus n = 3 in our calculations.
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We conclude this section with the following classical facts used in §§9 and
10:

Theorem 8.2. (a) iϊ*(SO(3), Z/2) ~ E(x\,X2), an exterior algebra over
Z/2, where \xχ\ = 1, \x2\ = 2 and the Pontrjagin product in H*(SO(3),Z/2)
is induced by the Lie group multiplication on SO(3).

(b) i/*(SO(3),Z/p) ~ E(xs), an exterior algebra over Z/p on a single
generator of dimension 3. Here p is an odd prime.

To describe # * ( Ω m + 1 S m + \ Z / p ) recall the identity map 5 m + 1 -> 5 m + 1

represents the base point in the 1 component Ω™+ 1Sm + 1 and thus a distin-
guished homology class [1] e ίfo(Ω™+ 1Sm + 1,Z/p). Furthermore if x and y
are homology classes carried by the k and / components of Ω m + 1 S m + 1 , then
x * y and Qi(x) are carried by the k + I and pk components respectively.

Theorem 8.3 [24]. H^{Ωm+1Sm+1, Z/2) ~ Z/2([1],Q/(1)), a polyno-
mial algebra over Z/2, under the loop sum Pontrjagin product, on gener-

ators [1] and Qi{ΐ) = QixQi2 Qik(l), where I = ( i i , ••>*'*) satisfies

0 < z'i < %2 < - - < ik < m.

As is customary we have written Qm for fm. Notice that H*(Ω3S3,Z/2)
can be described solely in terms of iterated operations Qo^Qi and Q^. How-
ever, as Ω 3 5 3 - Ω 4 ^^ 3 , Q3 = ^3 exists in H*(Ω4BS3,Z/2) and in
//*(./#, Z/2) where it is highly nontrivial as we shall see in §9. To state
the analog of 8.3 for odd primes we need a bit more notation. Let
βeiQsi . ..βεkQ*k(χ) = Q / ( I ) be an iterated mod p operation on [1].

Definition 8.4 [16]. Let / = (εi, si, , ε^, Sk) and p be an odd prime.

(A) e(I) = 2βi - εi - E > = 2 ( 2 S J " ( P ~ x) " ε i ) i s t h e e x c e s s o f 7

(B) / is admissible if psj — 6j > Sj-ι for 2 < j < k.
(C) 6(7) = ε.
Theorem 8.5 [16]. Let p be an odd prime. As algebras, under the loop

sum Pontrjagin product:
(a) H*(Ω4BS3,Z/p) s H*{Ω3S3,Z/p) ~ S([1],Q7(1)), wΛere / ώ admis-

sible, e(/) + 6(J) > 0 , β* < 1.
(b) tf*(Ω4S4,Z/p) S S([l],g 7(l),Q J(A 3(l,l))), ^Λere /, J are admissi-

ble, ε(J) + 6(7) > 0, e(J) > 3, βfc(7) < 1, sk(J) < 3.
Remarks. 1. S( ) is the tensor product over Z/p of polynomial algebras

on even dimensional generators and of exterior algebras on odd dimensional
generators.

2. The Browder operation A3(l,l) is nontrivial and indecomposable in
terms of the Q7's in H*(Ω4S4,Z/p) and hence in H*(\\Ck{R4),Z/p). How-
ever, λ 3 (l, l) is zero in H*(Ω4BS3,Z/p). For p > 5 this fact follows imme-
diately from dimensional considerations whereas for p = 3 it requires proof.
We thank Fred Cohen for communicating a proof to us.
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3. Qo,Qp-i,Q2(p-i),Q3(p-i) = £3 and their Bockstein's are all defined in
H*{Ώ4BS3,Z/p) and H*(Ώ4S4,Z/p) although for any fixed homology class
x only Qo(x),Q2{p-i)(z) or Q{p-ι)(x),Qz{p-ι){x) are defined (depending on
the parity of |x| as 0 < 2s — |x| < 3).

Theorem 8.6. Let J: SO(3) —• ΩfS3 be the classical J-homomorphism.
Then Λ : i/*(SO(3),Z/p) -+ H*(ΏfS3,Z/p) is given by the following formu-
las:

= Oa(l) * Qi(l) * [-3] + QiQi(l) * [-3] + (Qi(ί)f * [-5].

3,

Λ(x3) = Q3(l) * [-2] = -/?Q'(1) * [-2].

(C)7/p>5,

Proo/. (Al), (A2), (B) and (C) are well known (see [24], [39], [16], or [34]
for example). (A3) follows from the commutative diagram,

SO(3)

SO ί-* Ωϊ°5°° —=—> G

the fact that the Pontrjagin product in SO (3) is compatible with the compo-
sition product xoy in Ωi°5°° ~ G, and Milgram's distributivity formula [39],
that permits the calculation of ((foil) * [-1]) ° (Qi(l) * [-1]) i n terms of the
loop sum. q.e.d.

We close this section with three immediate corollaries of Lemma 7.5 and
Theorem 8.6.

Corollary 8.8. Hq{JtuZ/2) = Z/2 if 0 < q < 3 and 0 if q > 3. Λ r p
on odrf prime, Hq{Jtx,Z/p) = Z/p if q = 0 or 3 αnrf 0 if q ^ 0 or 3.

Corollary 8.9. Tfte natural inclusion i: *#i —* W\ induces a monomor-
phism in Z/2 and Z/3 homology and is trivial in Z/p homology for p > 5.
Furthermore, if we write x3 for X\x2 € H3(SO{3),Z/2), and zq for the
q-dimensional generator of H*{JH\), then i*(zq) = J{xq) for all q and
primes p.
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Corollary 8.10. The natural inclusion i: Jf\ —• %. induces an isomor-
phism H for q = 1 and an injection for q = 2 whereas ύ : Hz{^\^Z) —•
Hzi^uZ) is isomorphic to the natural epimorphism of Z onto a Z/12 factor.
Hence ker(ii)3 is isomorphic to Z.

9. Mod two calculations

We are now ready to use the results of the previous sections to construct
many new nontrivial classes in H*(^k,Z/2). Theorems 6.3 and 6.10 imply
that the following diagrams commute:

H9{Ω4BS3,Z/2)®Ht{Ω4BS3,Z/2) — i

(9.1) usef

Hs{J?k, Z/2) ® Ht(Jth Z/2) - * Ha+t{Jtk+u Z/2)

and, for i < 3:

Hs(Ω4BS3,Z/2) - ^ - + H2s+i{Ω4

kBS3,Z/2)

(9.2) ΰ.j

Hs(J?k,Z/2) 2ί

We may use our structure maps fy: C±{j) x^j JK^ —>• Λζ jt to define classes
in H*(J?) using the formulas given in Definition 8.1. These diagrams imply
that the images of our classes in H*(Ώ4BS3) are fully compatible with the
usual C4 homology operations in Ώ4BS3. Thus by abuse of notation we will
use the notation of Definition 8.1 to designate our homology operations in

If we start with the generator [1] G Ho(^Ί,Z/2) and compute iterated
Dyer-Lashof operations on [1], and loop sums of such elements by using
the commutativity of diagrams (9.1) and (9.2) and the known loop sum
Dyer-Lashof structure of H*(Ω4BSs,Z/2) we may recover the Z/2 version
of the Atiyah-Jones theorem that Hq{Jfk) -* Eq(^k) is a surjection for
k >• q. For example we immediately find Qi(l) and Q2W are in the image
ή : i f*(^,Z/2) —• H*(%2,Z/2) and, by induction, easily obtain a prelimi-
nary result.

Proposition 9.3. Let Ik = (t'i, , k) with 0 < i\ < < i\ < 2. Then
(A) Q/t(l) € H+(&2ι,Z/2) is in the image ofi*.
(B) Qih (1) *QI l2 (1) * *Q h . (1) e H*{&k,Z/2) is in the image ofu for
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We note in passing that Q2Q2 * -£2(1) € if2
|+1-2(^2«?^/2) is in image

{u) and thus we obtain a nonzero class in Hq(^k,Z/2) for q approximately
\ dim(./#fc) Furthermore, using these elements it is possible to obtain a bound
for the range q = q(k) through which ΰ is a surjection.

Corollary 9.4. With Z/2 coefficients, ή is a surjection for q < k.

Proof. By induction on k. The case k = 1 follows from Lemma 7.5. The
inductive step follows easily from the known structure of H*(Ω4BS3,Z/2)
and 9.3. q.e.d.

It is apparent that this method does not give a nontrivial class in ker i* for
q < k which is consistent with the Atiyah-Jones conjecture. The reader will
have undoubtably noticed that we have not yet used the top operation Q3
nor Corollary 8.8 in our computations. We shall now see that we can greatly
improve Proposition 9.3 by incorporating these results. However, Corollary
9.4 cannot be improved by our methods, rather our computations suggest ύ
may be neither a surjection nor an injection for q > k. Of course neither
phenomena is inconsistent with the truth of the Atiyah-Jones conjecture (for
q < k). We make these statements more precise in what follows.

Starting with the generators z% G Hi(J?Ί,Z/2) for i = 1,2,3 we may con-
struct elements Qi(zi) G H+(Jf2k,Z/2) (with ik < 3) and recast 9.3. In the
appendix we have written out H+(Jtk, Z/2) for small k detected in this way
and are content here to give the following general results:

Proposition 9.5. z{ * [1] = Q*(l) G Hi{Jt2, Z/2) for i = 1,2,3.

Proof. Zi * [1] is detected by the map SO(3) - ^ / i X l - ^ / i x / i -^ ̂ 2
while Qi(l) is detected by the map SO(3) -4 5 3 x z / 2 1 x 1 ̂  S 3 x z / 2 -#1 x

Λίί ^-Λf2. Since τri(Λf2) = H^Jt^Zfi) = Z/2 [28], and if*(SO(3),Z/2) is
a truncated polynomial algebra on the 1-dimensional generator, the proposi-
tion follows from the fact that the two detecting maps have the same effect
on Hi. But Ufa * [1]) = Qi(l) = ΰ(Qi(l)). q.e.d.

Proposition 9.5 has the following amusing corollary.

Corollary 9.6. Q3(l) = QiQi( l )*[-2]+O 2 ( l )*Oi( l )*h2] + Qi( l ) 3 *
[-4] in H3{Ω*BS3,Z/2) ~ H3{Ω%S3,Z/2).

We now adopt the conventions z0 = [1] and Qφ{zi) = Z{ for all i. Then we
have

Theorem 9.7. H+{Jΐk, Z/2) contains elements of the form

(9.8) Z = Z(lw ' ,/n,il, ,in) = Qlx ( ^ ) * ' ' ' * Qln{Zjn)
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for all sequences (/i, ,lmjiim" ,3n) such that Y^-i 2^/m) < k. Here
each Im = (z'i, , ii(im)) is an admissible sequence 0 < i\ < < i/(/m) < 3
and 0 < yα < 3 /or all 1 < a <n. Furthermore the image of z in i ϊ * ^ , Z/2)
is given by replacing Z\^z2 and z$ in 9.5 by Qι(l) * [—1], Q2(l) * [—1]>
(QiQi(l) * [-3] + Q2(l) * Qi(l) * [-3] + (Qi(l))3 * [-5]) respectively.

Corollary 9.9. Let k = V. Then Q3Q3 ~Qs{z3) € H6k-3{^
has nonzero image in HQk-z^k^Z/2).

Proof. Direct computation, using the Adem relations and the weight fil-
tration [16], shows i*(Qs Qs(zs)) may be expressed as

Q2 02(1) * Qi' <2i(l) * Qo ' <2o(-3) + "terms of higher weight"

and is thus nonzero in if6fc_3(^, Z/2). q.e.d.
Theorem 9.7 and Corollary 9.9 point out the existence of nonzero classes

in image ή of dimension up to approximately | d i m ( ^ ) . This should be
contrasted with the remark following Proposition 9.3. We are able to see this
additional homology for the following two reasons. First, as 9^ ~ Ω|S 3 , its
homology can be completely described (at least additively) by the Q^s for
i < 2. However Ω 3 S 3 ~ Ω4BS3 and the operation Q3, while decomposable in
Ω 3S 3 and Jf, is definitely not zero there. We would like to thank Fred Cohen
for forcefully pointing out this critical fact to us. Second, rather than just
operating on [1] we have used Lemma 7.5 and Corollary 8.8 in a fundamental
way. Close examination of 9.3 and 9.7 will show how pervasive an effect these
observations have on our knowledge of i / * ( ^ , Z/2).

Returning to Corollary 9.4 it is natural to ask if the bound q = g(A ) < k
through which ύ is a surjection can be improved. The answer is no (at least
using the methods developed in this paper), for example (<3i(l))fc+1*[—k—2] £
Hjc+i{<£k,Z/2) cannot be shown to be in the image of ή for k < 4 using
Theorem 9.7 (and we conjecture the restriction k < 4 can be dropped). Of
course since ^ is finite dimensional and ^ has homology in every dimension,
surjectivity must fail sooner or later. One of the reasons it apparently fails
sooner (q = k + 1) rather than later (q > k + 1) is the decomposability of Q3

in Ω 3 5 3 which also forces candidates for kerή (for q > k) as follows.
Proposition 9.10. Qι(zι) +z2*zι+zz* [1] and (̂ 2(̂ 1) + ̂ 3 * ̂ 1 are in

the kernel of i* : H*{JT2, Z/2) -+ i/*(^2, Z/2).
Proof. The proof follows from direct computation using 9.7 and the stan-

dard Dyer-Lashof formulas [16].
Many other examples can easily be constructed, some appear in the appen-

dices. It is not apparent that the classes given in 9.10 are zero in i / * ( ^ , Z/2)\
however, we have not yet been able to show they are, in fact, nontrivial. We
summarize these questions left open by our analysis in §11.
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10. Calculations at odd primes

We now turn our attention to H*(^k,Z/p) for p an odd prime. As the
proofs of the results of this section are so similar in spirit to the proofs when
p = 2 we simply state our results leaving detailed verification to aficionados of
the Dyer-Lashof algebra at odd primes. Again Theorems 6.3 and 6.10 imply
the following diagrams commute:

Hr(ΏiBS\Z/p)®Ht(ΏtBS\Z/p) —i-> ffr+t(Ωί+ίBS3,Z/p)

(10.1) ύ βii.ΐ ΐΰ+ι. .

Hr{Jtk, Z/p) ® Ht{Jtu Zip) - > Hr+t{jrk+h Zip);

Hr{ίl\BS\Z/p) - £ -

(10.2) ΰ.j

2! *H2s(p__lHr(J?pk,Z/p);

Hr(Ώ4

kBS3,Z/p)®Ht(ΩtBS3,Z/p)

(10.3) ΰ.otuΐ T t f c + ι .

j Zip) ® Ht{Jtu Zjp) ^

where the last diagram corresponds to the Browder operation λ3 As in §9
we may start with [1] G Ho(J?Ί,Z/p) and directly obtain the analogs of 9.3,
9.4 and 9.5.

Proposition 10.4. Let I be an admissible sequence of length I with ε(J) +
b(I) > 0 and si = 1. Then

(A) QJ(1) G /f*(g^ι,Z/p) ώ m Me eraα^e o/ύ,

(B) Q J l(l) * Qh{l) * * Q7>(1) G H*(%k,Zlp) is in the image of ύ for

Corollary 10.5. With Z/p coefficients, i* is a surjection for q < k.

We note that, for many choices of k and p, q can be chosen to be greater

than k in 10.5. For example if p < k < 2p then ύ is a surjection for q < 4p-5.

Proposition 10.6. z3 * [2] = -βQx(l) G H3{Jt3, Z/3).

The analog of 9.7 splits into two cases, p > 5 and p = 3. Since the J
homomorphism, J : SO(3) —> Ω?53, is trivial in Z/p homology if p > 5 we
cannot improve Proposition 10.4 for the image of ΰ unless p = 3. Thus we
have
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Theorem 10.7. H^Jt^Z/p) contains elements of the form

(10.8) z = z(I1,.-.Jn,ju 1jn) = Qh(zjl)* ..*QI»(zjn)

for all sequences (/i, ,In,ji,m" iJn) such that Y^n=1P
l(<Im>} < k. Here

each Im is an admissible sequence with si = 1, ε(I) + b(I) > 0 and j a = 0 or
3 for all 1 < a < n. Furthermore the image of z in H^k,Zjp) is given as
follows:

(A) Ifp = 3 replace z0 by [1] and zz by -βQx{l) * [-2].
(B) If p > b then the image is zero if any j a = 3. Otherwise replace each

ZQ by [1] thus recovering 10.4(B).
Corollary 10.9. Let k = Sj. Then

QVQV-1 Q9Q3(zs) e H6k-3(J?k, Z/S)

has nonzero image in HQk-^i^k^Z/Z).
Proof Just expand Q&Q3*'1 Q3{-βQ1{l) * [-2]) using the Adem re-

lations and the weight filtration [16].
Corollary 10.10. For p > b, n: H*(J?k,Z/p) -• H*(%,Z/p) has a

nontrivial kernel.
Proof Evaluate i+(zz) for 0 ^ 3 € Hs(JtΊ,Z/p). q.e.d
Corollary 10.10 is the mod p version of Corollary 8.10 for p > 5. It is

tempting to conjecture that the classes ^(/ 1 ? , /n, j \ , ,yn) with at least
one j a = 3 also give nontrivial classes in keri* for p > 5. Again we point out
this behavior occurs in dimensions q > k and thus is not inconsistent with the
Atiyah-Jones conjecture for q < k.

Finally we come to (10.3) and the Browder operation λs(l,l), which as
we pointed out in §8 is nonzero and indecomposable in terms of the <37's in
H*(UCk{R4),Z/p) but zero in #*(Ω|£S 3 ,Z/p). We do not know if A3(l, 1)
and QJ(λs(l, 1)) are nontrivial in H*(Jt2, Z/p) and H*(^p«j), Z/p)\ if they
are then it is clear that allowing the z/s in 10.7 to range over [1], z$ and

l, 1) would generate a far larger kernel of ύ (again for q> k).

11. Some open questions

We conclude this paper with some comments about future directions that
should be pursued.

1. Clearly the main task is to completely determine H+{y#k) and the image
of ύ : H*{^k) —• H+(%>k). The first obvious remark is that while a proof of
the Atiyah-Jones conjecture would show i* is an isomorphism through some
low dimensional range, 8.10 shows ύ has a nontrivial kernel (for q > k). The
following questions arise:
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Is the Browder operation λ 3 (l, l) G # 3 ( ^ 5 Z/p) nontrivial? If so deter-
mine the operations QJ for which QJ(λ3(l, 1)) is nontrivial. Notice that all
these classes belong to the kernel of i*.

Is the image of ΰ completely described by Theorems 9.7 and 10.7? If so ή
would fail to be a surjection for q > k.

Do the operations given in this paper completely describe H+(Jtk)? More
precisely, do the classes z(Iχ, ,/n, Ji, ,jn) given in Theorems 9.7 and
10.7 (with perhaps the additional classes obtained by allowing z$ to equal
λs(l,l) at odd primes) generate i?*(^,Z/p)? Furthermore are there any
nontrivial relations between the z(Iι, - ,/ n , i i, 5 jn)'s? Again this ques-
tion is related to the structure of the kernel of i*. For example, are the classes
given in 9.10 nontrivial in H+(Jt2,Z/p)?

2. Is Jί an AQO space? This would imply Jt has a classifying space and one
could then ask if Ω3G is a group completion of Jt. More generally is {Jt, ϋ) a
"homotopy C4 space" in the sense that all the requisite C4 diagrams on {Jt, ΰ)
commute up to homotopy? This would imply one could compute Cartan
formulas, Adem relations, Nishida relations and so on directly in iϊ* (Jt) and
not just on the image in H*(W).

3> We have given the construction of our structure maps i?j, only for the
case G = Sp(n). However both the ADHM construction (§4) and the Taubes
ε neighborhood theorem (Theorem 2.9) work for G = SU(n) and SO(n). Thus
one can also construct versions of our structure maps in these cases. To extend
the computations of this paper given for G = Sp(l) to more general groups
requires understanding the inclusion ΰ' Jt\ —» ^1 in those cases as well as
understanding homology operations on Ω4Sp(n), Ω4SU(n) and Ω4SO(n).
The Ph.D. thesis of Wagonner [56] should be very valuable in this regard.

4. If the base space S4 of the principal bundle Pk is replaced by a more
general closed, compact, simply connected smooth four-manifold M, then
do the moduli spaces Jtk of self-dual connections still retain the homology
operations constructed in this paper? The first manifold to consider is CP(2)
where Buchdahl [15] has recently given an ADHM construction for self-dual
instantons.

5. Since, by the Ward correspondence, real instanton bundles on S4 corre-
spond to certain stable holomorphic vector bundles on CP(S) can our results
shed some light on the structure of the moduli space of stable vector bundles
on CP(3)?

6. Atiyah [3], using the results of Donaldson [18], has shown that Jtk is
diffeomorphic to the space of analytic maps from the Riemann sphere to the
analytic loop group ΩSp(l) of degree fc where the natural inclusion ik is
given by forgetting the analytic structure to obtain maps of degree k from
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S2 to ΩSp(l); that is, elements of Ω3 Sp(l). It would be useful to construct
operations in Atiyah's alternate formulation of the instanton problem and
identify them with the operations constructed in this paper.

7. We have used the techniques of this paper to study homology operations
on moduli spaces of monopoles and certain nonlinear σ models [13]. These
techniques should also apply to moduli spaces for solutions to other variational
problems.

12. Appendix

The following tables list the homology classes in H*(^k, Z/p) detected by
Theorems 9.7 and 10.7 for small values of k.

TABLE 1 TABLE 2

q Hq{JtuZβ)

1
2
3

q

1

2

2

3

3

3

4

4

4

Hq(J?2,Z/2)

zι * [1]

z\

Z2 * [1]

Q\{z\)
Z2 * 2χ

*3 * [1]

Q2{Z\)

zl

Q

TABLE 3

q H

5

5

5

6

6

7

7

8

9

TABLE 4

Hq{Jtp,Z/p)

r

g(^2,Z/2)

Ql(Z2)

ZZ * Z2

Qz(zi)

zl
Q2(z2)
Qz\z2)

QM
Q2{Z3)

2p-3 βQι(ΐ)
2 p - 2 Qi(l)

The following table catalogs the 19 monomial elements in
known to exist by Theorem 9.7 that are indecomposable in terms of the loop
sum. Using Tables 1 and 3 one can easily construct the other 170 monomial



elements in nq\Jί\, Z/2) given by Theorem 9.7 that are loop sum
able.

q Hq{JTA,Zl2)

7 QiQi{zι)
9 QzQi(zi)
9 QiQ i{zi)
10 Q2Q2(Zl)
i i QiQifo)
11 QiQz(zi)
12 Q^Qsi^i)
13 QzQz(zi)
1 Q f~\ /^ί (~ \
ίo W3^βlv '̂2/

13 gig2(^2)
14 g2g2(^)

Q

2p-3
2p-2

2(2p-2)-l
β(2p-2)

p(2p-2)-l
p(2p-2)

(p + l)(2p-3) - 1
(p + l)(2p-3)

(p+l)(2p-2)

for 1 < s < p.

TABLE 5

1 q

16

16

17

17

18

18

18

19

20
21

TABLE 6

Hq{Λ

βQι(l)

g χ (i) '

/JQi(l) •($!(]

(QHDY

βQHD*
ί~yp—•

β(~)P— •

Qpβ

Qp(
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Hq(JT4,Z/2)

Q1QΛZ3)
^2^3(^2)
QiQ2\Zs)
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g3gi(^3)
QzQz{z2)
QiQs(zz)
Q2Qz{zz)
QzQz(zz)

p2, Z/p)

* [p2 ~~ p]

i ) ) - 1 * b 2 - sp\

* [p2 - sp]
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