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A CURVATURE CHARACTERIZATION OF CERTAIN
LOCALLY RANK-ONE SYMMETRIC SPACES

QUO-SHIN CHI

0. Introduction

It is an interesting question to what extent can the sectional curvatures

of a Riemannian manifold M determine the metric, of which the simplest

case is when all the sectional curvatures are equal; the space is then covered

by a space form. Let R(X,Y)Z be the curvature tensor. Define the Jacobi

operator Kv( ),= R(-,υ)υ for each vector υ G SM, the unit tangent bundle

of M. The above statement can be rephrased in terms of Kυ as: Kv has

constant eigenvalue λ for all v iff M is of constant curvature λ.

The next simplest case to study is when Kv has constant eigenvalues (count-

ing multiplicities) independent of v. We will call this case Condition [O] from

now on.

It is immediate to see that Condition [O] is satisfied by spaces covered

by a two-point homogeneous space which is a space whose isometry group is

transitive on the unit sphere bundle; such nonflat spaces have long been known

to be locally rank-one symmetric, i.e., VR = 0, where V is the connection,

with all positive or all negative sectional curvatures (cf. [9], [16], [17], or [7] for

a simple geometric proof). It is very natural to wonder about the converse,

namely,

Conjecture. A Riemannian manifold M is locally rank-one symmetric

if Condition [O] is satisfied.

In this paper we will give a positive answer to the conjecture if dim M =

an odd number, 2, 4, or 2(2fc + 1). More precisely we can show, as is done in

§§1-3 and 5, that

Theorem 0. Suppose Condition [O] is satisfied. Then

1. If dim M — an odd number, then M has constant sectional curvature.

2. 7/dimM = 2,4, or 2(2fc + 1), then M has either constant curvature or

is covered by a standard complex projective space or its noncompact dual.
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3. If M is nonflat and Kάhlerian, then M has constant holomorphic sec-
tional curvature if the sectional curvatures are all nonpositive or all nonneg-
ative.

As a corollary of this theorem we recover in §4 the well-known fact that a
4-dimensional nonflat locally harmonic manifold is locally rank-one symmet-
ric (Theorem 3). The advantage of our proof is that it is geometric without
resorting to the classification theory of symmetric spaces to see that the space
is covered by CP2 or its dual. In addition, we show that Condition [O]
precisely characterizes compact rank-one symmetric spaces among compact
homogeneous spaces with the same topological type as the former ones (The-
orem 4).

Originally this conjecture was proposed by Osserman who was motivated
by his work in [12]. Actually define, for a compact M with negative curvature,
two quantities

a(M) = [ tτ{-Kv)
ιί2 dv= ί

JSM JS
( ( ) ) dυ,

SM

W - / λτ(v)dv
\ JSM

1/2

where the \%{v) are the eigenvalues of Kυ. Then Osserman and Sarnak showed
in [12] that a(M) < Λφ, where hφ is the metric entropy of the geodesic flow
of M, and equality holds iff M is locally rank-one symmetric. Osserman
further conjectured that hφ < /?(M), with equality iff M is locally rank-one
symmetric. Note that by Schwarz inequality a(M) = β(M) precisely when
Condition [O] is satisfied.

We remark here that in [1] Ballmann generalized the result in [12] to com-
pact manifolds with nonpositive curvature. He also obtained an upper bound
of hφ with equality iff M is locally symmetric. With this and the validity
of the above conjecture in symmetric spaces (easily proved using root space
decomposition) it follows that β(M) cannot in general lie between a(M) and
Ballmann's upper bound if the sectional curvatures are only assumed to be
nonpositive (but still Osserman's conjecture on the upper bound of hφ for
rank-one case might be true).

We also remark that since υ is always an eigenvector of Kv with zero
eigenvalue, then whenever we mention eigenvalues of Kv we always mean
those different from this trivial one.
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§§1-4 is a revised version of part of the author's Ph.D. thesis. He would
like to thank Professor Robert Osserman for direction and encouragement.

1. The case dim = an odd number

This case follows directly from the following theorem about the maximal
number k of nontrivial A -plane distributions on certain spheres (see [14, p.
155]).

Theorem 1. The n-sphere does not admit a continuous k-plane distri-
bution if n is even and 1 < k < n — 1, or if n = 1 (mod 4) and 2 < k < n — 2.

In order to prove Theorem 0, we need one more fact in linear algebra.
Lemma 1. Let T be an n by n matrix-valued function on R n , the

Euclidean n-space, such that rank(T) is constant throughout R n . Then the
kernel ofT is a smooth distribution of dimension n — rank(T) over R n .

Proof Let k = rank(T), and let

where the X^s are n by 1 matrices. Without loss of generality, we may assume
X\, X2, , Xk are linearly independent in a neighborhood of a given point
p. It follows that the Xi, k + 1 < i < n, are linear combinations of the first k
vectors because k is the rank of T. Let

k

Then

where Cβi = (Xβ,Xi), gβa = (Xβ, Xα), and ( , ) is the standard inner product
on R n . Hence ff are smooth functions. Now define

where the E{ are standard basis elements. One then checks easily that Yi are
smooth linearly independent vector fields spanning the kernel of T around the
point p.

Proof of Theorem 0. Given p in M, let USP be the unit sphere in Mp, the
tangent space at p. For υ in USP, Kv restricted to USP is a smooth operator.
Since Kv has universally constant eigenvalues, Kv — c/, c being an eigenvalue,
must then have constant rank on USP; therefore the eigenspace associated with
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c defines a smooth distribution over USP by the previous lemma. Theorem 1

then implies that the eigenspace associated with c must be the whole tangent

space of USP for all unit vectors because the dimension of USP, being one

less than the dimension of M, is even. This amounts to saying that M is of

constant curvature, and hence certainly is locally rank-one symmetric.

2. The case dim = 2{2k + 1)

L e m m a 2. Among the 4k + 1 nontrivial eigenvalues of Kv, 4k of them

must be equal.

Proof. The unit sphere in a tangent space has dimension = 4k + 1 = 1

(mod 4). Now apply Lemma 1 and Theorem 1.

Denote by c the eigenvalue with multiplicity 1, and by b the one with

multiplicity 4k.

Lemma 3. If w is an eigenvector associated with c (or b) for Kv, then

υ is an eigenvector associated with c (or b) for Kw.

Proof. All sectional curvatures lie between b and c, and they attain b or

c precisely when v and w are eigenvectors relative to each other. q.e.d.

For simplicity in notation, we let m = 2fc + 1, so that the manifold has

dimension 2m.

Lemma 4. Around each point there exists a frame (Xi, , X2m) such

that Rijij — b or c for iφ j , and Rijik = 0 for j φ k.

Proof. Given Xi, choose X i + m so that X i + m is an eigenvector of KXί

with eigenvalue c (for subscript notation, x\ stands for Xi, etc.). By Lemma

3 above X\ is a eigenvector of KXl+m with the same eigenvalue. Now the

linear subspace perpendicular to X\ and X i + m is the eigenspace of KXl and

Kχi+m w i t h eigenvalue b. Pick X 2 in this subspace and pick X2+m such that

X 2 + m is the eigenvector of KX2 with eigenvalue c. By Lemma 3 again X\

and Xi+m belong to the eigenspace of KX2 with eigenvalue 6; hence it follows

that X2+m, in addition to X 2, belongs to the eigenspace of KXι and KXl+m

with eigenvalue b. Then choose X3 perpendicular to ΛTi,XΊ+m, X2,X2+m,

and choose Xβ+m such that X3+ m is an eigenvector of KX3 with eigenvalue c.

For exactly the same reason as before we know X3+ m , besides X3, belongs to

the eigenspace of KXl, KXι+m, KX2, and KX2+m with eigenvalue b. Continuing

in this fashion, we obtain a basis such that each Xj is an eigenvector of KXi

thus Rijij = b or c for i φ j. Finally RlJlk = (KXι (X3),Xk) = 0 if j φ k.

Lemma 5. Relative to the basis in the previous lemma we have

R(Xτ,Xj)Xk = 0 where i-j, i - k, j - k ψ 0 (modm).

Proof. By assumption Kx.(Xj) = bXj, and KXi(Xk) = bXk, so that

KXt(W) = bW, where W = (Xj + Xk)/y/2. Hence ^ ( X ^ ) = bXτ by Lemma
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3 above, i.e.,

KXk(Xt) + R(XuX3)Xk + R{Xτ,Xk)X3]

It follows that

(2.1) R{Xτ,X3)Xk = -R{Xτ,Xk)X3.

The same relation holds if we cyclicly permute i,j, k. Now the Bianchi identity

says
0 = R(Xt,X3)Xk + R(Xk,Xι)X3+R(X3,Xk)Xi

= R{Xτ,X3)Xk - R{Xk,X3)Xι + R{X3,Xk)Xι

by (2.1), so

R(Xτ,X3)Xk = - 2R{X3,Xk)Xτ = 2R(X3,Xt)Xk

= -2R(Xi,Xj)Xk.

Consequently R(Xi,X3)Xk — 0, proving the lemma.

The only curvature components left to be determined are # ^ + m j J + m . In

fact

Lemma 6. Rij,i+m,j+m = Rij+m,j,i+m = ±{b ~ c) A ! < ^ i < ^
Proof. First note that

R(Xi,Xj)Xj+m = -

R(Xj,Xi)Xi+m =

for the same reason as used in deriving (2.1).

Consider W = (X,+X, )/^2, W = {Xτ-X3)[^2, U = ,

and U = (Xi+m - Xj+m)/V2. Certainly W,W,U,U, and the Xk% k φ i,

y, i + m,j + m, form an orthoήormal basis; furthermore it is directly checked

that the above Xk's and W are eigenvectors of Kw with eigenvalue b. To

determine KW(U) and KW(U), one first easily deduces

Kwψ) = b-^U + [R{X3+m,Xι)X3

Then one observes by Lemmas 4 and 5 above that R(Xj+m,Xi)Xj and

R(Xj+m,Xj)Xi are multiples of Xi+m, and J?(X"t+m, J^-JXt and

i a r e multiples of Xj + m , i.e.,

ijXj — Ri+m,j, j+m, %Xi-\-m

— Ri+m, j+m, i, jXi+m by (2.2);

, i, i+m, j^j+m
= Ri, j , i+m, j+mXj+m by (2.2).



192 QUO-SHIN CHI

In particular,

~ Xj+m)\

similarly

where the last equality is obtained by the Bianchi identity and (2.2). Therefore

(2.3) Kw{U)=(b-±l + lRι

Similarly

(2.4) KW(U) = ( ^ - lRiJ,i+mJ+m) U.
\ 2 2 )

In view of the fact that W and X^, k φ i,j,i + m,j + m are eigenvectors with

eigenvalue 6, and the fact that c has multiplicity one, we see that one of the

coefficients in (2.3) and (2.4) must be 6, i.e.,

Finally Rlύ+m^Λ+m = J R 1 J ) 2 + m j + m by (2.2), proving the lemma.

L e m m a 7. With the moving frame above, one has

Rijij h = 0,

Rijik h =0 if j \ k φ i + m ,

Rijkl h — 0^

where the difference between any two subscripts in the last equation φ 0

(modm).

Proof. Direct verification using (3.6) and Lemmas 4-6.

We need one more lemma on symmetric spaces.

L e m m a 8. Let M be a Riemannian manifold. If for every geodesic r(t)

the operator Kv with v — r(t) is parallel, then the entire curvature tensor is

parallel along r(t) and M is locally symmetric.

Proof. See [12].

Proof of Theorem 0. Choose any p G M and a neighborhood U of p.

Consider U \p on which one defines the unit vector X\ to be the tangents

along each geodesic emanating from p, and then choose a frame X\,X\+m,

X2ϊ-X2+m? according to Lemma 4. In view of Lemma 8, one needs

only to show Riku i = 0, or equivalently (Vχ,Λ)( ,ΛΊ)Xi = 0; for then

Vx, [R{W,X\)X\\ = 0 if W is parallel along any geodesic emanating from p,
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i.e., KXι is parallel. In fact we only have to check i2i,i+m,i,Z;/ι — 0 f° r aU I by
Lemma 7 above.

Observe further that we may assume in Lemma 6 that

(2.5) Λl,s,l+m,s+m = #l,s+m,s,l+m = (c — b)/3

by changing Xs into — Xs if necessary. Now (3.6) implies

\^Rl,l+m,l,s;hθ = ~ / , Rs,s+m,s,l;hθ
(2.6) Λ h

Hence i?i,i+m,i,s;/ι = -#s,s+m,s,i;fc f° r a ^ Λ I n particular

(2.7) -Rl,l+m,l,θ;l = ~-Rs,s+m,s,l l

Now the Bianchi identity applied to Rs,i,s,s+m,i implies

Rs,s+m, β,l;l = -Rs,l,s,s+m;l — ~-R S ) i ? i ? s ; s - |_ m — Λ s , l ,s-hm,l s — 0

by Lemma 7. Therefore (2.7) says /2i,i+m,i,5 ;i = 0, proving that the manifold

is symmetric, q.e.d.

We remark here that dimension = 2(2fc + 1) is used only to show that

the operator Kυ has exactly two different constant eigenvalues, one of them

having multiplicity one. Thus we have in fact proved

Theorem 2. Suppose Kυ has only two distinct constant eigenvalues, one

of them having multiplicity one. Then the manifold must be the complex pro-

jective space or its noncompact dual if it is simply connected.

Proof. The space must be globally symmetric. Let c be the eigenvalue

with multiplicity one, and for each unit vector X let JX be the unit eigenvec-

tor of Kx with eigenvalue c such that JX form a continuous vector field on

the unit sphere bundle. Then J defines a complex structure and the space is

Kahlerian under J by (2.6) essentially. Now the result follows by noting that

c is precisely the holomorphic sectional curvature.

3. The case dim = 4

This is the first dimension where any theorem like Theorem 1 would fail to

give us any information on the possible eigenvalue distribution of Kv, due to

the fact that continuous A -plane distributions for k — 1, 2 do exist on S3.

Let α,6, c be the nontrivial eigenvalues for Kv. Around each point pick

a smooth vector field X\. By Lemma 1 there exist smooth vector fields

XΪ^XZ^XΪ such that they are the eigenvectors of KXι associated with α,6, c

respectively. Denote by
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the sectional curvature of the plane spanned by X{ and Xj. One has

a12 = (KXl(X2),X2)=a,

(3.1) α 1 3 - 6,

a14 = c.

By assumption KXi, i — 2,3,4, also has a,b,c, as eigenvalues; in particular

tr Kx. = a + b + c. Since tr if^ = J ^ = i α*i w e n a v e

&21 + «23 + ^24 — α "I" b + C,

^31 + α32 + «34 = 0 + 6 + C,

#41 + ^42 + ^43 = fl + & + C,

which, together with (3.1), implies

αi2 = α, αi3 = 6, α i 4 = c,
(ό.Z)

^23 = C5 ^24 — 0, 034 = α.

Now α2 + 62 + c2 = t r X 2 = (β(X2, v)v,R(Xι,v)v); one finds

32

Hkak
i,s

where the first term in the last equality follows from (3.2). Hence R%ksk = 0
if i φ s\ this, together with (3.2), implies

(3.3) Rikjk =

The only Rijki's remaining to be determined are i?i234 and Λ1423, and then

#1342 = -(#1234 + #1423)- Set X = #1234, V - #1423, #1342 = "X ~ V- NθW
let v = {X2 H- ^3)/\/2. The fact that

shows, using (3.3), that

(2x + 2/)2 = ( α -

Similarly for υ = (Xι + X<2)/\/2 one checks
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and for v = (X2 +X±)/\/2 one finds

Solving for x, y, one obtains

Case (1). a,b,c are different:

=b±£=2ϋ.

Note that the second solution is the negative of the first one. Using the

transformation X\ —• —X\ and X{ —• Xi,i = 2,3,4, one can always transform

the second solution of (3.4) into the first one. Therefore

_ b + c - 2a
X — # 1 2 3 4 — ^ j

b + α - 2c

V = #1423 = ^ '

-X-y = #1342,

and so

2x + y = b - α,

x + 2y = 6 - c,

x — y = c — α.

Case (2). a = c φ b: We have x = y, a special case of the first case.

We have therefore determined all Rijki's relative to the above chosen frame

X\, Xi, X3, X4. In summary
αi2 = α, 013 = 6, 014 = c,
023 = C, 024 = 6, «34 = O,

_ 6 4- c - 2a
(3.5) ^1234 - jj - ίC,

_ b + α - 2c
#1423 = 5 = 3/,

#1342 = -X-y,

2χ + y = b — a, x -\-2y = b — c, a: - 2/ = c — α.

Now let θ1^2^3^4 be the dual forms of Xi, ,X4, and let CJJ be the

connection forms. Denote by Rijki h the covariant derivatives of Rijki- One

has

(3.6)
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In particular, substituting (3.5) into (3.6) one gets

(3.7) Rijki h = 0 if i,j, fc, / are different,

(3.8) Rl3lJ,h = 0.

(3.6) also gives

(3.9) - Σ Rijkj;hθh = ai3ωi + ajkωf + ] Γ c ^ f l ^ + ̂  ωs

JRιjks.
h s s

From (3.9) one checks

(3.10.1) ω2

3(α - b) + ω\(α - b) = - ^ J 2 2 1 3 i ; Λ 0 Λ = ̂  Ri242-,hθh,

(3.10.2) cϋ4

2(α - c) + ω\{α - c) = - £ i?

(3.10.3) ω\{b -
h

We also have the second Bianchi identity

(3.11) Rijki h + Rijhk l + Rijlh k = 0,

and

(3.12)

since V i ^ = 0 (e.g. R1232;h = ~Ri434-h)-

L e m m a 9.

[ωl + ωί)(α - b) = αθι + /?02 -h

(3.13) (ωl + ω^)(α - c) = - /Ϊ01 + αθ2

(ω3 + α;2)(6 - c) = ηθ1 + (5^2

Of = -#2131;1, β = -/?2131;2, 7 = -#2131;3, * = -#2131;4



CURVATURE CHARACTERIZATION OF CERTAIN SYMMETRIC SPACES 197

Proof.

(3.14) = — i?2i3i;4 by the Bianchi identity and (3.7)

-#2141;4 = - #1232;4 by (3.10.2)

(3.15) = Λi224;3 by Bianchi identity and (3.7)

= -#i242;3 = - 7 by (3.10.1),

-#2141;l = #2343;1 by (3.12)

= — #233i;4 by Bianchi identity and (3.7)

(3.16) = -#1332;4

= jRi343;2 by Bianchi identity and (3.7)

= - β by (3.10.1) and (3.12),

-#2i4i;2 = #i434;2 by (3.10.2) and (3.12)

= — -Ri442;3 by Bianchi identity and (3.7)

(3.17) = i?i424;3 = -#1323;3 by (3.12)

= #3i4i;3 by (3.10.3)

= — #3i34;i by Bianchi identity and (3.7)

= - #i343;i = a (3.10.1) and (3.12).

Thus we get the second identity of (3.13) by (3.14)-(3.17).

(3.18) #23i3;4= -β by (3.16),

(3.19) Λ2 3i3;3 = - OL by (3.17),

ft23i3;2 = — -R232i;3 by Bianchi identity and (3.7)

(3.20) = - i?32i2;3 = -#2141:3 by (3.10.2)

= δ by (3.14),

Λ23i3;i = - Λsi4i;i by (3.10.3)

= #3242;! by (3.12)

(3.21) = - #322i;4 by Bianchi identity and (3.7)

= #3212:4 = #2i4i;4 by (3.10.2)

= 7 by (3.14).

Hence we get the third identity of (3.13) by (3.18)-(3.21), proving the lemma.

To prove the validity of Theorem 0, we need only to show the impossibility

that a, b, c are different, then Theorem 2 implies the result. In fact, supposing
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they were different, by (3.13) one would get

d{aθι + βθ2 + Ίθ
3 + δθ4)

= (α - b)Ώl + (α - 6)Ω?
(3'22) +p=!feH*+•••+«•-*•>

Λ (ηθ1 + δθ2 - aθ3 - βθ4).

Similarly, doing the same procedure for dω2 and dω\ yields

di-βθ1 + aθ2 + δθ3 - ηθ4)

= (o - c)U\ + (α - c)Ω£

For dω3 and dcJi one has

d{Ίθ
ι + 66»2 - aθ3 - βθ4)

= {b- c)Ώ2 + {b- c)Ώ3

4

( 3 > 2 4 ) + . b,:(

C Λaθ1 + βθ2 + Ίθ
3 + δθ4)

(a-b){a-c)

A{-βθ1 + aθ2+δθ3 -ηθ4).

Comparing the coefficients of θi A θj in (3.22)-(3.24) and using (3.5) give

A - ^ -^ = -{a-c)(!-c){02 + l2) - { a

B - A3 - ^ = ( a - o

c ) ~ ( L ) ( t t a + ό 2 ) + ( α -b){y -c)'
α ^ C

c ) ( ^ 2 + 72) + (α - c)(x + y +

D = a;4 +r,2 = ~, _°~°_ .(/g2 + <52) - (α - c)(x + y + 6),

where " " appearing in subscripts again denotes covariant differentiation. Now
it is easy to see A — B = D — C = E — F, i.e.,

/ i ^9 9 r9x Γ a — b a — c

(3.25) ( t t + < ? + ^ ^ > ί ( α - c ) ( t - c ) - ( α
= 2(o - c)(x + y + b) - 2(a - b)(y - c),
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a — b b — c

(3.26) { a + β + Ί + δ

= 2{b - c)(x -a)- 2(α - b){y - c ) .

Cancelling out α 2 + /?2 + Ί2 + <$2 from (3.25) and (3.26) and introducing

s = (α + 6 + c)/3, one finally gets

(3.27) 0 = {a-b)2{s-c)(s-2c) + {b-c)2(s-a){s-2a) + {c-a)2{s-b)(s-2b).

If 8 = 0 = (α + 6 + c)/3, from (3.27) it follows that

0 = (a - b)2c2 + (b - c)2a2 + (c - α ) V ,

which would certainly be absurd since α, 6, c were supposed to be different;

hence s ^ 0. The following algebraic argument settles the case s > 0. Rescal-

ing if necessary, one may assume l = s = (a + b + c)/3, and then (3.27)

reads

(3.28) 0 = (α-6) 2 ( l -c)( l

Without loss of generality one may assume a < b < c, so that

a — b a — c b + c — 2a
> '{a - c){b -c) {a- b){b - c) = {a - c){a - b)

therefore the left-hand side of (3.25) is nonnegative, and so is the right-hand

side, i.e.,

(a - c)(x + y + b)>(a- b)(y - c) = (a - b)
b + a ^ b c > 0 ,

which implies
56 — a - c

= x + y + b < 0;

hence b < \ since a + b + c = 3. In particular, a < b < | , which would imply

the right-hand side of (3.28) is positive, a contradiction.

In general, we give a proof which simplifies an argument of A. Derdzinski

(from personal communiation). Set

φ1 =δθλ -ηθ2+βθ3-aθ4,

and let φ2 ,<p3', φ4 be respectively the right-hand side of the third, second, and

first equations in (3.13). By (3.25), a2 + β2 + 7 2 + δ2 is a nonzero constant so

that one may assume it to be 1 by scaling. It follows then that φι, 1 < i < 4,

are orthonormal. By direct check one also has

p i Λ φ2 - φ3 Λ φ4 = θ1 Λ θ2 - θ3 Λ θ4,

(3.29) φι Λ φ3 - φ4 A φ2 = θι Λ θ3 - θ4 Λ θ2,
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On the other hand, since div(<p1) = B — A = C — D = F — E, where div
denotes the divergence of a vector field or a form, one obtains

+ 2[(α - b){s - 2c) + {b - c){s - 2a) + (c - α)(β - 26)]

(α - fr)2 + (6 - c)2 + (o - c)2

( α - 6 ) ( 6 - c ) ( α - c )

where one has used the relation a2 + β2 + 7 2 + <52 = 1 and the fact that the
bracketed term is zero. Hence div(^1) φ 0. However (3.22) is equivalent to

(3.30)

= (α - b){s - 2c)(<p1 Λ<p4-<p2 Λ <p3) + Q ~ _ , ^ 3 Λ

by (3.29) and (3.5). Now let ffc, 1 < i < 4, be the dual vector fields to p»,
and let Λ* be the corresponding connection forms. Then the first structural
equation says

(3.31) d(p4 — —k\(η±)<p4 Λ φι + other terms not involving <p4 Λ φ1.

By equaling the coefficients of the term φ4 Λ φ1 in (3.30) and (3.31), one
gets Λi(r/4) = (s - 2c)(a - b). Similarly, A?(r/3) = (s - 26)(c - α), and
A2(r/2) = {s - 2a){b - c) by (3.23) and (3.24). Therefore div^ 1 ) = Aj{η4) +
^1(^3) + ̂ 1(^2) = 0, contradictory to div^ 1 ) Φ 0.

Remark. (3.5) implies that the space is locally anti-self-dual and
Einstein. (3.13) can thus also be obtained by the fact that div(V^~) = 0,
where W~ denotes the anti-self-dual part of the Weyl tensor. For details see
A. Derdzinski: Self-dual Kaehler manifolds and Einstein manifolds of dimen-
sion four, Compositio Math. 49 (1983) 405-433.

4. Two applications

In this section, we shall give applications of what we have shown so far,
which turn out to be interesting in their own right.

Definition 1. A Riemannian manifold is said to be locally harmonic if
every geodesic sphere has constant mean curvature.

Surprisingly, it can be shown (cf. [2]) that this geometric definition is equiv-
alent to the well-known mean-value property of a harmonic map, namely, the
average of any harmonic function over each local geodesic sphere is equal to
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the value of the function at the center of the sphere; and hence the name

"harmonic" manifold.

We mention the following conjecture and the well-known Theorem 3.

Conjecture. Locally harmonic manifolds must be locally rank-one sym-

metric.

Theorem 3. The conjecture is true if dimension is 4.

The first application is that the validity of Osserman's conjecture in dim =

4 yields another proof of this theorem. To be more precise, it can be shown

that for a four-dimensional harmonic manifold, Kv has globally constant

eigenvalues (see [2, p. 154] for more detailed discussions).

As a second application we have

Theorem 4. A compact homogeneous space homeomorphic to one of the

compact rank-one symmetric spaces is isometric to one of them iff Kv has

globally constant eigenvalues for all unit vectors v.

Proof By a hard classification theorem (see [4], [3], [16]) these spaces are

either isometric to rank-one symmetric spaces or diffeomorphic to C P 2 / c + 1 .

Now our proof of the conjecture in dim = 2(2k + 1) settles this case.

It would be very interesting to see a geometric proof of this theorem without

resorting to Lie theory.

5. The Kahler case

Proof of Theorem 0. Let M be Kahlerian. Given X £ Mp, let Y perpen-

dicular to X be chosen such that the plane spanned by X and Y assumes the

maximal sectional curvature (minimal if the curvature of M < 0), so that Y

is an eigenvector of Kx. By [3, p. 362] this plane must be holomorphic. It

then follows that M has constant holomorphic sectional curvature.

6. Concluding remarks and questions

In [7] it will be shown that if a space of constant curvature satisfies the

following two axioms:

1. Kυ has two different constant eigenvalues (counting multiplicities) for

all v G SM, say ί>, c;

2. Let Ec(v) be the span of v and the eigenspace of Kυ with eigenvalue c.

Then Ec{w) = Ec(v) whenever w £ Ec(v).

Then the space must be locally rank-one symmetric, from which follows

the classification of rank-one symmetric spaces.

Note that these two conditions are natural as can be seen by the fact that

for a compact rank-one symmetric space c = 1 and 6 = 1 / 4 after scaling;
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furthermore Ec(v) is the tangent space at the base point of v of a totally
geodesic sphere of curvature c, hence the second condition follows. Conse-
quently we would like to pose a question here.

Question. Does Condition [O] imply the two axioms in this section? If
the answer is yes, then Osserman's conjecture would be true.
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