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SPHERE THEOREMS VIA ALEXANDROV FOR
CONSTANT WEINGARTEN CURVATURE
HYPERSURFACES—APPENDIX
TO A NOTE OF A. ROS

NICHOLAS J. KOREVAAR

In the paper Compact hypersurfaces with constant scalar curvature and a
congruence theorem, A. Ros proves that compact embedded hypersurfaces of
R"*! without boundary and with constant scalar curvature must be Euclidean
spheres [8]. He uses an integral technique originated by R. C. Reilly for the
corresponding mean curvature problem [7], rather than the classical reflection
method due to A. D. Alexandrov [1]. His result requires no ellipticity assump-
tion on the surface (e.g. convexity of the compact region it bounds), unlike
previous proofs (see [1], or e.g. [6], [9], and their references).

In analogy to an early step of Ros’ proof (where it is shown that constant
scalar curvature implies positive mean curvature on any candidate surface), we
note here that any candidate surface with constant intermediate curvature H,
(the rth symmetric function of the n principal curvatures, 1 < r < n) is
automatically elliptic. This point is also almost made in Remark 5.B of R.
Walter’s work [9]. It is a simple yet surprising observation, letting Alexandrov
reflection be applied in full generality. In the spirit of L. Caffarelli, L.
Nirenberg, and J. Spruck [2], [3], we have the result:

Theorem. Let A = (A, A,,--,A,), with A, <A, < --- <A,. Let f=
f(X) be a function of N which satisfies the following conditions:

(1) f(A) > O whenever A > 0 (each A, > 0).

(ii) On the component T of {A|f(X) > 0} containing all positive N, f is
concave (i.e., negative Hessian).

Then any compact, embedded hypersurface S of R"*' without boundary on
which each principal curvature vector A = A\(P), P € S, has the same value f()\),
is a Euclidean sphere.
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Remark 1. In [4] it is shown that f= (H,)Y" satisfies (ii) for 2 < r < n.
Also, one can show that in this case T' is the set of A for which H, and all
partials (to order r) are positive.

Remark 2. Condition (ii) implies that I" is convex as well as the ellipticity
of f on I [3]. (If A is the eigenvalue list for a symmetric matric A and if
f(A) = F(A), then ellipticity can be expressed as df/dA; > 0 Vi, or by
[0F/04,;] > 0.)

Proof of the Theorem. By comparison with a hypersphere, all principal
curvatures of S at an extreme point P (one at maximum distance from the
origin) are at least 1/[P|. Thus by (i), (ii) the constant value of f is positive on
S and A(P) e T. But because S is connected and (the ordered) A varies
continuously on S, (ii) implies that A(Q) € I' VQ € S. Thus by Remark 2 all
of S is elliptic. The ellipticity of S and the convexity of I' imply that
Alexandrov’s reflection method will work (Theorem A of [1]). Our generality is
a slight extension of Alexandrov’s, since his A are positive. Thus we show here
that the essential details carry through.

In Alexandrov reflection one can express S and its reflection locally (near a
point of tangency) as graphs above their common tangent plane, where both
functions satisfy a fully nonlinear equation:

(1) G(Du,D*u)=c>0, G(0,A)=F(A)=/f(N).

One wants to show that there cannot be two distinct solutions u,v to (1)
satisfying:

(2) u>vinQ, 0€0Q, Q< C? u(0)=0, Du(0)=Dv(0)=0.

But for w = u — v the mean value theorem implies that the following point-
wise equation holds:

(3) 0 = G(Du,D*u) - G(Dv,D%) = a—G(p,r)wk + iG—(p,r)w,u,
du, du;; J

(p.r) = s(Du,D%u) +(1 — 5)(Dv,D%), some0 < s < 1.

Remark 2, (1) and D*u(0) > D%(0) imply that D*u(0) = D% (0). Because Du
and Dv are small near the origin, and D?u and D% are nearly D?u(0), the
ellipticity of F, (1) and the smoothness of G imply that equation (3) is
uniformly elliptic near the origin. One can now follow the proof of the
Boundary Point Lemma in [5], using only the uniform ellipticity and bounded-
ness of coefficients in (3), to show that w is identically 0.

Because the only tool used in Alexandrov reflection is the boundary point
lemma above (and its interior consequence), we conclude that the desired
theorem is true.
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Remark 3. As Alexandrov notes in [1,e}, for the purposes of his sphere
theorems, reflection in hyperbolic space H"*! or the upper hemisphere of $”*1
are essentially the same as reflection in R"**, This theorem and proof remain
true in those settings.

Added in proof. Condition (ii) in the sphere theorem can be replaced by the
more general assumption that f be elliptic on the set I (3f/9A; > 0 Vi), and
the same proof remains valid.
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