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Introduction

This paper is the sequel to [19], in which we proved an abstract index

theorem for Dirac-type operators on certain noncompact manifolds. Here we

will give some concrete applications of this result, and will also discuss its

relationship with L2 index theorems of Atiyah and Connes.

The set-up for [19] is as follows. Let M be a noncompact oriented Rieman-

nian manifold of bounded geometry, and D a Dirac operator of bounded

geometry over it. D is equipped with a grading η, and it will be convenient to

use the notations D+ and D~ for the restrictions of D to the + 1 and —1

eigenspaces of η. Suppose that M admits a regular exhaustion with corre-

sponding fundamental class m and trace functional τ. Then the main theorem

of [19] computes

d i m τ ( I n d D ) = <I( £),*•>;

it identifies a "real-valued index" of D with a "topological" invariant. The

fundamental question studied here is: How does the number dimτ(IndZ>)

relate to the kernel of DΊ

Recall from [19, 8.1] the equation

dimτ(lndZ>) = τ(φ(DD + )) - τ ( φ ( 2 ) + Z r ) )

where φ is any Schwartz-class function on R + with φ(0) = 1. If the manifold

M were compact, one could argue as follows: D has discrete spectrum, hence

there is a smooth φ of compact support such that φ(0) = 1 and φ(λ) = 0 for

all nonzero eigenvalues λ of D1. Then φ{D~D+) is the projection P+ onto the

kernel of Z>+, and similarly φ(D+D~) is the corresponding projection P~~, and

one gets

(0.1) dim τ(IndZ)) = τ ( P + ) - τ ( P " ) ,
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thus obtaining information about the kernels of D+ and D~. In the noncom-

pact case this argument does not work, and examples to be presented in §4

show that (0.1) does not hold in general; this paper examines sufficient

conditions for (0.1).

To derive such conditions one can pick a standard collection of functions φ,

namely the heat kernels φ,(λ) = e~tX. As / -> oo, φt(D+D~) -> P+ in the

strong operator topology on L2. In fact the corresponding Schwartz kernels

converge uniformly on compact subsets of M X M. If the convergence were

uniform over all of the diagonal in M X M, then (0.1) would hold, since the

fundamental class m is continuous against the uniform topology. We therefore

need estimates on the heat kernel allowing this uniform convergence to be

established in certain circumstances.

The contents of this paper are as follows. In §1 we discuss general tech-

niques for obtaining uniform convergence of the heat kernels. These are based

on the Bochner method. In §§2, 3, and 4 we apply these techniques to the three

classical examples (de Rham operator, Dirac operator, Dolbeault operator).

Among the results obtained are restrictions on the scalar and Ricci curvatures

of metrics in the quasi-isometry class on noncompact coverings, and a version

of the. Riemann-Roch theorem for the plane, which was discussed in the

introduction to [19]. In §5 we compare our theorem with the results of Atiyah

and Connes, and §6 contains further remarks and open questions.

1. Convergence properties of heat kernels

Let S be a Clifford bundle of bounded geometry over the noncompact

connected oriented Riemannian manifold M, and let D be the corresponding

Dirac operator. Let P denote the orthogonal projection (in L2(S)) onto the

kernel of D. This section studies the convergence to P of the heat operators

e~tD~ as t -> oo.

Several different Banach spaces of sections of S will play a role, and the

reader may care to be reminded of the notation for the various norms

introduced in Part I, §2:

|| || is the L2 norm;

|| | | k is the norm in the Sobolev space Wk(S)\

|| || || | | r is the norm in the uniform Cr space UCr(S).

We will also adopt the notational convention that " / -< g " means " / is less

than a constant multiple of g," the constant being understood to depend only

on the geometry of M and S.
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Basic estimates on the heat semigroup are summarized in the next lemma.

(1.1) Lemma. Let s e L2(S% and let st = e~tDls. Then for t > 1,

(i) for fixed k and /, \\Dιst\\k < Γι^\\s\\;

(ii) for fixed rand I, \\\\Dιst\\\\r < rι/2\\s\\.

Proof, (i) follows immediately from the spectral theorem and elementary

estimates, and (ii) is a consequence of (i) and the Sobolev embedding theorem.

It follows from the spectral theorem that as / -> oo, e~tDl -> P in the strong

operator topology on L2(S). In fact, more is true:

(1.2) Lemma. As t -> oo, the Schwartz kernel of e~tDl tends to the Schwartz

kernel of P in the Frechet topology o/C°°(5 H S) (that is the topology of uniform

convergence of all derivatives on compact subsets of M X M). Consequently, the

Schwartz kernel of P is uniformly bounded, together with all its derivatives.

Proof. Since e~tE>1 -> P in the strong operator topology on L2, a fortiori

the Schwartz kernel of e~tr>1 tends to the Schwartz kernel of P in the weak

topology of distributional sections of S 13 S. On the other hand, the functions

λ -> e'tχl for t > 1 form a bounded subset of the space ^ ( R ) of functions of

rapid decay on R [19, 2.13]; hence the Schwartz kernels of the operators e~tr>2

form a bounded subset of UC°°(S 13 S), hence a fortiori a bounded subset of

the Montel space C°°(S H S). Thus for any sequence tj -> oo there is a

subsequence of the sequence of the Schwartz kernels of the e'1^1 that

converges to the Schwartz kernel of P in the topology of CCO(S 13 S). Since

this topology is metrizable, the result follows.

Now suppose further that M is equipped with a fundamental class m

coming from a regular exhaustion, with corresponding trace τ. Unfortunately

the convergence of the kernels given by Lemma 1.2 is not strong enough to

ensure that τ(ηe~tI)2) -> r(ηP) as / -> oo. Uniform convergence of the kernels

implies this; but it is convenient for some applications to notice that a slightly

weaker concept is also sufficient.

(1.3) Definition. A subset L of M is said to have density 0 if for all

bounded H-forms a supported within L, (m,a) = 0. It has density 1 if its

complement has density 0.

(1.4) Definition. The full topology on UC°(S) is the non-Hausdorff topol-

ogy defined by the single seminorm

Inf{Sup{|j(jc)|: X ^ L ) : L of density 1}.

Thus the full topology is a kind of "L 0 0 topology" relative to m. For brevity we

will say that e~tE>2 converges fully to P if the restriction to the diagonal in

M x M o f the Schwartz kernel of e'tDl converges to the restriction of the
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Schwartz kernel of P in the full topology on UC°(S El S). It is easy to see that

if e~tDl converges fully to P, then dim τ(IndD) = τ(ηe-ίDl) = τ(ηP), so (0.1)

holds.

(1.5) Lemma. Suppose that for each δ > 0 there is a subset LofM of density

1 such that for all sufficiently large t,

sup{\e-tD2s(x) - Ps(x)\: x e= L ) < 8\\S\\

for alls e L 2 (S) . Then e~tDl converges fully to P.

Proof. Let εx υ (υ ^ Sx) denote the distributional section of S defined by

It follows from the Sobolev embedding theorem [19, 2.8] that there is an

.integer k > 0 for which εxv belongs to W~k(S), with norm bounded indepen-

dent of x and of the unit vector v. Let Q denote the operator e'°2. By the

spectral theorem, Q maps W~k{S) to L2(S). Moreover PQ = P and e~tDlQ =

e-u+\)D2 τ h U S ί by assumption,

for x G L and sufficiently large t, and the result follows.

Estimates of the kind required by (1.5) will be obtained by using the L2

norm of a section s together with the uniform norm of Vs to control the

uniform norm of s. In making this precise it is helpful to introduce the

following concept:

(1.6) Definition. Let c: (R + )/c -> R+ be a function. It will be called an

estimator if:

(i) c is positively homogeneous of degree 1—that is, for all λ in R+,

c(λx 1, ,λxk) = λc(jc1, ,Xfc);

(ii) c is monotone increasing in each variable separately;

(iii) if some xf tends to zero, the others remaining fixed, then c(xλ, ,xk)

->0.

For example, (xι xk)
ι/k is an estimator. An estimator of estimators is

an estimator.

(1.7) Lemma. Let V: R + —> R+ be a monotone increasing function such that

V{r) > 0 for r > 0, V(0) = 0, and V{r) -» oo αy r -> oo. 77re/i /A r̂̂  « Λ/I

estimator c on (R + ) 2 w/7A the property that

(r/a)V(r/b) ^ 1 ~ r<c(fl,fc).

Proof. Elementary.

The author is indebted to Hόrmander for suggesting the idea of the next

proposition.
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(1.8) Proposition. Let S be a vector bundle over the (noncompact, connected,

oriented) Riemannian manifold M of bounded geometry, equipped with a metric

and compatible connection. There is an estimator c: (R + ) 3 -> R + which has the

property: for any Cι section s of S and any subset F of M, if

(ii) s u p { | j ( x ) | : X G F } < ^ 2 > 0 ;

(iii) s u p { | V s ( * ) | : I G F } < ^ 3 > 0 ;

then there exists r > 0 such that

\s(y)\^c(Aι,A2,A3) Vjμ

Proof. As was shown in Part I (Proposition 5.1), there is a monotone

increasing function Vo: R
 + ^> R + such that Fo(0) = 0, V0(r) > 0 for r > 0,

V0(r) -> oo as r -> oo, and

VolB(y,r) > V0(r) Vy e M.

Let c0 be the estimator that corresponds to this function Vo under the

construction of Lemma 1.7, and let c be the estimator

c(xl9x2,x3) = ]fco{2xj^4x^x3) .

Suppose that a section s of S is given which satisfies the conditions (i)-(iii)

above. Then write c = c(Av A2, A3) and r = c2/2A2A3.

Let y e Pen~(F, r), and suppose that \s(y)\ > /?. There is no loss of

generality in taking b < cjϊ. Then the ball B(y,b2/4A2A3) is contained

within F.

Over this ball, therefore,

\V\s\ 2A2A3.

Since |Λ ( jμ)|2 > b2, it follows from the mean-value theorem that for all

x

\s(x) \2 > b2 - 2A2A3 b2/4A2A3 = b2/2.

Thus the integral of | s | 2 over this ball is at least (b2/2)V0(b2/4A2A3). This

integral, however, is at most equal to A\. Therefore

(b2/2A2)Vo(b2/4A2A3)^l.

By (1.7), then,

b2^c0{2A2AA2A3) = c2.

Thus it has been shown that if \s(y)\ > b, b < C]/2, then b < c. It follows that

\s(y)\ < ^ a s asserted.
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Recall now the Weitzenbock formula

D2 = v * V + R

where R is an endomorphism of S constructed from the curvature. For a

compact manifold the classical Bochner method argues that D has no kernel if

R > 0, and that the kernel is strongly restricted if R = 0. It is not hard to

extend these results to L2 theory on complete manifolds [9]. Here the Bochner

method will be used to obtain full convergence of e~tΣ)2.

(1.9) Lemma. The distributional extension of the operator V: C™(S) ->

C?(S ® Γ*M) maps W\S) continuously to L2(S ® T*M).

Proof. From the Weitzenbock formula

\\vs\\2=\\Ds\\2-(Rs,s),

valid when s is smooth and compactly supported, it follows that V is a

continuous linear operator from the dense subspace CC°°(S) of Wι(S) to

L2(S <S> Γ*M). It therefore extends uniquely to a continuous map on Wι(S),

which must coincide with the distributional extension of V.

(1.10) Definition. A subset L of M will be called small if for all r > 0 the

set Pen + (L, r) has density 0. It will be called large if its complement is small.

For example, a compact subset of M is small; but there are also noncompact

small subsets, such as the x-axis in R2.

(1.11) Proposition. Suppose that the restriction of the curvature operator R

appearing in the Weitzenbock formula to some large subset F of M is a

nonnegative operator. Then e~tD converges fully to 0.

Proof. Let L be the complement of F. Given 8 > 0, choose [19, 6.3] a

smooth function φ with values in [0,1], equal to one on L, equal to zero

outside some Pen + (L, r), and such that |Vφ| < 8. Let ψ = 1 — φ.

Let s e L2(S), and let st = e~tDls. Then

II D l s t II Ik II > j {D l s t > st) Ψ (Cauchy-Schwartz)

f
as follows from the Weitzenbock formula, since R is nonnegative on F. We

should like to integrate this last expression by parts, to obtain

f st).

Strictly speaking, the integration by parts is valid only if st is compactly

supported. However, it follows from (1.9) that both sides of this inequality are

continuous functionals on W2(S). Since st may be approximated in the
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topology of W2(S) by compactly supported functions, the inequality holds in

general.

As r -^ oo we know from (1.1) that \\D2st\\ < t-ι\\s\\, Ws^ < \\s\\. From (1.9)

it follows that \\Vst\\ < \\s\\. By Cauchy-Schwarz, therefore,

ί
JF

<S\\s\

Therefore, for sufficiently large /,

ί | v ^ | 2 < ί \vst\
2ψ<δ\\s\\\

JPen~ (F,r) J

Now || H5JIII2 -< ||s| | as t -> oo, again by (1.1). Therefore (1.8) may be applied

to the section Vst of the bundle S ® T*M to show that there is an r' > r such

that

for all sufficiently large /. Then (1.8) may be applied again, this time to the

section st of S, to show that there is an r" > rr such that

for sufficiently large t. By (1.5), the desired result follows.

The principle of convergence transfer. So far we have applied the Bochner

method only in order to prove the vanishing of the index of the operator D.

Some classical applications, such as Lichnerowicz' theorem [15], use the

method in this form. In other applications, however, the method is applied to

only one of the two terms making up the index. For example, one combines the

Riemann-Roch theorem with the Kodaira vanishing theorem in order to show

that "sufficiently positive" line bundles have holomorphic sections.

In our general context the curvature operator R appearing in the Weitzen-

bock formula may be decomposed into the sum of R+ and R~, the restrictions

of R to the + 1 and - 1 eigenspaces of the grading η. It is evident that if for

example i£ + > 0 on some large set, then e~tD D+-» 0 fully as t -> oo; the proof

is just the same as that of (1.11). We state a consequence of this more formally:

(1.12) Proposition. If R + >0 on a large set, then dim τ (IndD) < 0. //

R^ 0 on a large set, then dimτ(Ind D) ^ 0.

However, this of course tells us nothing about the convergence as t -» oo of

the other term in the index formula (e~ΐD+D in the example with R + ^ 0). It

turns out that by imposing a stronger positivity condition on R+ one can

obtain full convergence of both terms, and thus get information about the

kernel of D~. In other words the convergence is "transferred" from one term

to the other.
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(1.13) Proposition. Suppose that there is a constant k such that (D2s, s) >

/c||s||2 for all s in the + 1-eigenspace of η. (In particular this will be the case if

the curvature operator R+ is uniformly positive.) Then e~tE>1 converges fully to P.

In particular, formula (0.1) of the introduction holds.

Proof. From (1.12), e~tΓ>1 converges fully to 0 on the ( + l)-eigenspace of

η. By hypothesis, the spectrum of D~D+ is contained in the interval [k, oo).

But the spectra of D~D+ and D+D~ are the same apart from 0. The spectral

theorem therefore shows that the L2 operator norm of e~tD +D - P~ is at most

e~k\ and by the Sobolev estimates its Schwartz kernel must therefore tend

uniformly to zero.

(1.14) Remark. This is not the strongest possible form of the principle of

convergence transfer; as in (1.11), we can weaken the condition of uniform

positivity to one involving positivity on large subsets. The version given here,

however, has a much simpler proof and is adequate for the applications in this

paper.

2. The de Rham operator

If one applies the ordinary index theorem to the de Rham operator d + d*,

one obtains the Chern-Gauss-Bonnet formula, which equates the integral over

a compact manifold of the "Euler form" with the alternating sum of the Betti

numbers. On a noncompact manifold of bounded geometry, equipped with a

regular exhaustion, we will in this section give two possible definitions of " L 2

Betti numbers." One is more natural, the other is arranged so that an analogue

of the Gauss-Bonnet theorem holds; and the convergence problem discussed in

§1 reduces to the question: Do these definitions agree?

Let Pk denote the orthogonal projection operator from square-integrable

/:-forms to square-integrable harmonic λ:-forms. It is not necessarily a uniform

operator; however, it has by (1.2) a uniformly bounded Schwartz kernel, and

so the trace r(Pk) can be defined. Let βk = τ(Pk).

We define also

ft = Inf{τ(φ(ΔJ): φ e Cf°°(R), ψ > 0, φ(0) = l}.

Here ΔA denotes the Laplacian on λ> forms, ft does not depend (as βk does)

only on the kernel of Δ^; but it does depend only on the germ near 0 of the

spectrum of Δk.

These "Betti numbers" have the following properties:

(2.1)0<ft <ft;
(2.2) If e-'Δ* converges fully, then βk = ft;

(2.3) (Poincare duality) If n = dim M, then βk = βn_k and ft = β'n_k.
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Indeed, (2.1) is immediate from the monotoneity property, that φ > 0

implies τ(φ(Δ)) > 0; (2.2) follows from the definition (1.4) of full conver-

gence; and (2.3) holds since the Hodge *-operator intertwines Δ* and Δn_k.

The author is not aware of any example with βk Φ β'k, so that one could

conjecture that the two kinds of Betti numbers are in fact equal. An example to

be presented in §4, however, shows that the analogous statement for a different

elliptic operator (twisted 9 operator) is definitely false. So any proof would

have to depend on special properties of the de Rham operator. Some further

remarks on this question may be found in §6.

The index theorem now takes the following form:

(2.4) Theorem (L2 Gauss-Bonnet). Let e(TM) denote the Euler form of

TM. Then

Proof. For each k there is a sequence φ* of nonnegative compactly

supported smooth functions equal to 1 at zero such that τ(φj(Δk)) -> β'k.

For each j let φj be a function of this sort that is less than or equal to

min{φ*: k = 1, , n}. Then by monotoneity

for each k, and so τ(φj(Δk)) -> β'k. On the other hand, Σ(-l)kτ(φj(Δk)) =
τ(ηφj(D2)) where D is the de Rham operator, and so, by the main result of
Part I, Σ(-l)*τ(Φ/(ΔJ) = (m,e(TM)). The result follows.

(2.5) Proposition. For a connected and noncompact manifold M, β0 = /?ό = 0.

Proof. We apply the Bochner method via Proposition 1.11. The Weitzen-

bock formula for zero-forms (i.e. functions) simply reads D2f = V *V/; the

curvature term R is identically zero. (1.11) therefore yields the result.

This has an interesting consequence for surfaces.

(2.6) Proposition. Let S be a regularly exhaustible, orientable, Riemannian

surface of bounded geometry. If the average Gaussian curvature of S (measured

with respect to the regular exhaustion) is positive, then S is closed (and hence a

sphere).

Indeed, the average Gaussian curvature is 2π(βή- β[ + β^), and /?ό = βj

by Poincare duality, so the result follows from (2.5).

This observation was previously made by Connes [6] in the context of his

index theorem for foliations.

The application to harmonic 1 -forms is the original one of the Bochner

method. The R term is in this case just the Ricci curvature [4], [11]. Thus from

(1.11) one gets

(2.7) Proposition. // M has nonnegative Ricci curvature on a large subset,

then β{ = β[ = 0.
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Notice that if Ric > 0 everywhere, then M has subexponential growth and

so automatically possesses a regular exhaustion. The principle of convergence

transfer is of little value in this context, since if Ric is uniformly positive then

one easily checks using Myers' theorem that M is in fact compact. One

example of a noncompact manifold to which (2.7) applies is furnished by a

paraboloid of revolution.

Similarly

(2.8) Proposition. // M has nonnegatiυe Ricci curvature on a large subset and

is conformally flat, then all the βk and β'k are zero. Consequently {m, e(TM)) =

0.

The proof uses (1.11) and (2.4) together with some standard algebra, which

may be found in §3.9 of [11].

An important question in geometry asks to what extent the curvature of a

manifold may be prescribed. Index theory sometimes yields topological restric-

tions on prescribing curvatures of compact manifolds, as in Lichnerowicz'

theorem. For noncompact manifolds, it is appropriate to employ a finer

classification than the topological, as is already shown by the " type problem"

of distinguishing the conformal structures of the plane and the disc (cf. [20],

where the idea of quasi-isometry is introduced in this connection). Our L2

index theory yields restrictions on the curvature of metrics within a given

quasi-isometry class. For example:

(2.9) Proposition. Let X be a compact oriented 2-manifold or 4-manifold

with χ(X) < 0, and let M be an infinite amenable covering of X. Then there is

no metric of bounded geometry in the strict quasi-isometry class on M whose Ricci

curvature is nonnegative on a large subset.

Proof. By [19, 6.6] the manifold M admits a regular exhaustion with

fundamental class m such that {m,e(TM)) = χ ( ^ ) < 0. (The "largeness" of

a subset is measured with respect to this exhaustion.) However, {m, e{TM)) is

an invariant of strict quasi-isometry. If there were a metric in the strict

quasi-isometry class on M with nonnegative Ricci curvature on a full subset,

then for this metric β[ = 0, and in the 4-dimensional case β'3 = 0 also by

Poincare duality. Therefore by (2.4) (m9e(TM)) > 0, a contradiction.

3. The Dirac operator

Suppose now that our noncompact manifold M is equipped with a Spin

structure. Then the classical Dirac operator D is defined, and our index

theorem gives:

(3.1) d im τ (IndD) = (m,A{TM)).
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For the operator D it was observed by Lichnerowicz [15] that the curvature

term in the Weitzenbock formula is just one-quarter of the usual scalar

curvature. Thus from (3.1) and (1.11) there follows:

(3.2) Proposition. // M has nonnegative scalar curvature on a large set, then

{m, A(TM)) = 0.

Hence, by an argument analogous to that used in the proof of (2.9):

(3.3) Proposition. Let X be a compact spin manifold with A(X) Φ 0, and let

M be an infinite amenable covering of X. Then there is no metric in the strict

quasi-isometry class on M whose scalar curvature is nonnegative on a large subset.

(An example of such an X is the connected sum of Sι X S3 with a quadric

hypersurface in CP 3 ; take Γ = Hλ{X, Z).)

Kazdan and Warner proved in [14, Theorem 4.3a] that on a compact

manifold any function that is negative somewhere is the scalar curvature of

some Riemannian metric. A natural analogue of this statement in the context

of noncompact manifolds would be the following: Any C00-bounded function

that is negative somewhere is the scalar curvature of some metric of bounded

geometry in the strict quasi-isometry class. Proposition 3.3 shows that this

latter statement is false. The set of points where the curvature is negative can

be forced to be noncompact.

4. Hirzebruch-Riemann-Roch theorem

Applying the ordinary index theorem to a twisted 3 operator on a compact

complex manifold, one obtains Hirzebruch's version of the Riemann-Roch

theorem. Now let M be a noncompact Kahler manifold of bounded geometry,

equipped with a regular exhaustion and with corresponding functionals m and

T, and let V be a hermitian holomorphic vector-bundle of bounded geometry

over M. As in §2 we introduced two sorts of " Betti numbers" for M, so here

we may introduce "Hodge numbers" for V. Let Pp q be the orthogonal

projection operator from square-integrable F-valued (/?, ^r)-forms to

3-harmonic square-integrable K-valued (/?,g)-forms, and define hpq(V) =

τ(P ). On the other hand, let Δpq denote the 3 Laplacian on K-valued

(/?, gj-forms, and set

h'pq = Inf{τ(φ(Δ, J ) : φ e Q°(R), φ(0) = 1, ψ > θ}.

The following properties of these Hodge numbers are proved in the same way

as the analogous properties of the Betti numbers in §2.

(4.1)0 < A </>;,,;
(4.2) If 6>-'V</ converges fully to ?pφ then hpq = Wpq\

(4.3) (Kodaira-Serre duality) Let n be the complex dimension of M. Then
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(4.4) (Hirzebruch-Riemann-Roch) One has

Σ ( - l ) X , ( r ) = <^,ch(K) U td(TM)).

It will now be shown how one can combine the principle of convergence
transfer and the Kodaira vanishing theorem with the index theorem to get
examples with h00 = h'oo > 0. In other words, the theorem is used to prove the
existence of an infinite-dimensional (in the usual sense of linear algebra) space
of L2 holomorphic sections of the bundle V.

Suppose therefore from now on that V is a line bundle, with curvature form
Θ. Assume also for the moment that the K&hler form ω of M is proportional
to Θ: ZΘ(JC) = λ(x)ω(x), where λ is a smooth function. If M is a Riemann
surface this is automatic, of course; otherwise the metric may have to be
suitably massaged—this will be discussed later. Let Λ denote the operator of
interior multiplication by the Kahler form ω, L the operator of exterior
multiplication by ω. Write the connection on V as V + 3, where V is of type
(1,0); and recall [12] the Kahler identities

[Λ,3] = -i/V*, [Λ,v] = -i/3*,

[Λ, L] = (n - p - q) on (pyq)-ϊorms.

Now

Θ = 3v + v 3 = {3,V},

where the curly brackets denote the anticommutator. Hence from the Jacobi
identity

[Λ,Θ] = [Λ,{3,V}]

But also

[Λ,Θ] = -zλ[Λ,L] = -iλ(n-p- q).

Hence

(4.5) Δp%q = V *V + VV * - 2λ(/i -p-q).

This is the Weitzenbock formula in the present context.

Let us call V uniformly positive if the function λ is uniformly positive in the
sense of (1.13), and uniformly negative if -λ is uniformly positive.

(4.6) Proposition. With the assumptions above, let c(V) denote the Chern
class of V in Hj{M). Then:

(a) If Vis uniformly positive then hn0 = h'n0 = {-l)\m,e-c{V) U Td(TM))\
(b) If Vis uniformly negative then hQn = h'On = (-ΐ)n(m, ec(V) U Td(TM)).
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Proof. The two statements are equivalent by Kodaira-Serre duality. We

prove (b). Write Δ + = ΔOn Θ Δ 0 > π_ 2 θ , Δ _ = Δ O t W _ 1 θ A O | Λ _ 3 θ •••.

Then the Weitzenbock formula (3.4) yields (Δ_a,a)^ (λα, a). By the princi-

ple of convergence transfer (1.13), then, e~tA~ and e~tA+ converge fully, so

hOp = h'Op for all p. But (from (4.5) again) a harmonic (0, /?)-section for

p < n is necessarily zero; thus h0p = ΰ ίoτ p < n. The result follows from

(4.4).

We must now analyze the assumption that Θ is a multiple of the Kahler

form. In the usual proof [12] of the Kodaira vanishing theorem one uses the

curvature Θ to define a new Kahler metric. This can also be done in the

noncompact situation.

(4.7) Theorem. Let M be a Kahler manifold of bounded geometry equipped

with a regular exhaustion and corresponding fundamental class m. Let V be a

holomorphic line-bundle over M. Then

(a) If Vis uniformly positive then hn0 = h'nQ = (-1)"<>, e~c(V) U Td(TM))\

(b) If Vis uniformly negative then hOn = h'Qn = (-l)n<**, ec{V) U Td(TM)).

Proof. Assume V is uniformly positive. The result will follow from (4.6)

once it is shown that z'Θ is the Kahler form of a metric of bounded geometry

on M strictly quasi-isometric to the old one. Since Θ is bounded below, the

two metrics are quasi-isometric in the weaker sense, and hence the new metric

has positive injectivity radius. Since Θ is C°°-bounded, the new metric has

bounded geometry. Moreover, its connection coefficients are uniformly

bounded in the old metric. Thus the old and new metrics are strictly quasi-iso-

metric.

(4.8) Corollary. Let V be a uniformly positive line bundle over a manifold M

as above. Then some tensor power of V admits an infinite-dimensional space of L2

holomorphic sections.

Proof. Just imitate the proof of the corresponding result for compact

manifolds (see [12, Chapter II]).

Under what circumstances can one construct a uniformly positive metric on

VΊ For compact manifolds one knows that positivity is a topological property

of line bundles. Here one can modify the metric on certain line bundles so as

to make it positive. To do this we shall need to make use of diffusion acting on

UC°° forms.

(4.9) Lemma. Let Δ be the total Laplacian acting on forms on M. Let

kt{x, y) be the Schwartz kernel of e~ίA. Then

(a) \kt(x, )l is integrable for each x;

(b) // η is a UC°° form then so is e~tAη defined by

= f
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(c) The PDE

is satisfied for all UC°° forms η.
Proof. It is enough to establish that for each multi-index a and fixed t,

\v?kt(x,y)\vo\(y)<Ca< oo

with Ca independent of c. Since e~'Δ is a uniform operator of order -oo we
know [19, 5.4] that

where μ(R) -» 0 as R -* oo, and in fact the explicit calculation of [19, 5.6]
gives

μ(R) < rι/2f P(λ)e-χ2/4tdλ (P being a polynomial in λ),

for some constants A and a. On the other hand one knows from the Sobolev
estimates that V"kt(x, y) has a uniform bound independent of x and y. An
interpolation argument therefore yields

where R = dist(jc, y). However the volume comparison theorem [19, 2.3] gives

vol B(x,R) < CeμR

for some constants C and μ. So we may write

[ \v;k,(x,y)\*ίΓ Bae-hR2d\o\(B(x,r))

= Γ 2BaRbebR2\ol(B(x,r))dR

< BaCbΓ Re~hR2+μRdR = Cα.

This proves the result.
Let V be a holomorphic vector-bundle over the hermitian manifold M. We

will say that two hermitian metrics on V are strictly quasi-isometric if each is
dominated by a constant multiple of the other and their hermitian connections
are boundedly equivalent in the sense of [19, 3.7].
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(4.10) Proposition. Let Θ be the curvature form of a metric on the line-bundle

V over the Riemann surface M of bounded geometry. Then for any t > 0 there is

a metric on V strictly quasi-isometric to the original one with curvature e~tAΘ.

Proof. We have,

0 _ e - ' Δ θ = Γ ( Δ e - ί Δ Θ ) Λ = Δi8, wherejβ= Γ e~

However, on a Riemann surface Δ/J = 93p, where p = 4(*β). Clearly p is

C00-bounded. The metric on V given by multiplication of the original metric by

eμ is strictly quasi-isometric to the original one, and has curvature form

Θ - ddp = e-' Δ Θ (cf. [12, p. 149]).

One may regard e~tA as a "moving average" operator. Thus ihe content of

the proposition is that if a suitable "moving average" of Θ is uniformly

positive, then the bundle can be remetrized so that Θ itself is uniformly

positive.

This theory will now be applied to the Riemann-Roch problem in the plane.

Let Γ be a discrete subset of C. It will be called a pseudo-lattice if there is a

number r > 0 such that each ball of radius r contains at most one point of Γ.

A divisor D on C will be a finite formal linear combination of pseudo-lattices

with integer coefficients, and a meromorphic function / on C will be called

subordinate to D if for all z in C the order of the pole of / at z is no greater

than the order to which z appears in D. (Here we count zeros as poles of

negative order.)

The classical theorems of Weierstrass and Mittag-Leffler (cf. [13]) assure us

that there exist many meromorphic functions subordinate to any divisor D. To

obtain a Riemann-Roch type result one must impose growth conditions.

Define the function μ(z) = min(/, |z|) for some positive / smaller than half the

minimum distance between points of Γ. For a pseudo-lattice Γ let

/*r(z) = Π μ( z ~ w),
W€ΞΓ

and for a divisor D = ΣniTi let μ D (z) = Π(μ Γ (z))" ' . A function / will be

called L2-subordinate to D if it is subordinate to D and fμ2

D\f\2 < oo. It is

easy to see that this condition is independent of the choice of /. We ask: When

do there exist meromorphic functions ZAsubordinate to DΊ

The first result on this question was obtained by Alain Connes as a corollary

of the foliation index theorem.

Theorem [6]. Suppose that Γx and Γ2 are lattices in C with density(Γ 1) >

density(Γ 2 ) . Then for almost all translations Z E C there is an infinite-

dimensional space of meromorphic functions Insubordinate to [z 4- Γ J — [Γ 2 ] .
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Connes' work left open the question of whether the restriction to almost all

z was necessary. It will emerge from our analysis that it was not.

To relate the question to index theory one can construct a line bundle VD

from the divisor D in the usual sort of way. Explicitly, let E be a holomorphic

line-bundle over C with an hermitian metric, and let p be a point of C. Say for

definiteness that the radius / is equal to 5, and suppose that, over the ball of

radius 4 around p, E is isometric to the trivial bundle. A new bundle i7, said

to be obtained from E by patching in a pole at p, is defined as follows. On the

complement U of B\p, 2), F is isometric to E; on the ball V = B(p, 3), F is

trivial; the transition function is (z — p) (i.e., if sυ and sv are local representa-

tions of a section s onU and V, then sv = (z - p)sv). As for the metric on

Fιv: if s is the standard section over V, then we are forced to take \s(z)\2 =

\z - p\2 for 2 < \z - p\ < 3; we set \s(z)\ = φ(\z - p\) for \z - p\ < 3, where

φ is a smooth function fixed once and for all, constant in a neighborhood of

zero, and such that φ(r) = r for 2 < r < 3.

Notice the following points with regard to this construction:

(i) A holomorphic L2 section of F may be identified with a meromorphic

section s of E such that /|s |2w < oo, where w(z) = \z — p\2 for \z — p\ < 1,

w(z) = 1 for \z - p\ > 1. Indeed, given a section (su,sv) of F, one sees that

(sυ, sy/(z — p)) describes a section of E. For the original section to be square

integrable it is necessary and sufficient that both sv and sv be square

integrable, so the result is immediate,

(ii) One has

where c is the Chern form of F, c = /Θ/2τ7. Indeed

/ c(z)=f (-//2τr)331og|φ|2
J\z-p\<3 J\z-p\<3

= (l/4ττ) j (d/dn)log\φ\2ds (Green's theorem)

= (l/4ττ) -(2/r) 2ττr = 1.

Dually to this construction, one can patch in a zero at p. Now the line-bundle

Vτ associated to a pseudo-lattice Γ is obtained from the trivial bundle by

patching in zeros and poles with appropriate multiplicities at the points of Γ.

We define the line-bundle VD associated to a divisor D in the usual way as the

tensor product of the line-bundles associated to its constituent pseudo-lattices.

Clearly, VD has bounded geometry. From (i) above, an L2 holomorphic
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section of VD may be identified with a meromorphic function ZAsubordinate

to D. From (ii), if m is a fundamental class associated to a regular exhaustion

and D = [I\] - [Γ2], then

(c{yD),m) = DensityI\ - DensityΓ2

(assuming that the r.h.s. exists), the density being measured with respect to the

given regular exhaustion.

The Riemann-Roch theorem for a line-bundle V over C takes the simple

form

If (0.1) held, so that hoo(V) = h'OtO(V), then Connes' result (without the

"almost everywhere" condition) would be an immediate corollary; for if

/ i o o (F D ) > 0, then there is an infinite-dimensional space of meromorphic

functions L2-subordinate to D. However, we will now present an example to

show that (0.1) does not hold in general.

Choose any lattice Γ in C that is symmetrical about the origin and does not

meet the imaginary axis. Let I\ be the intersection of Γ with the left-hand

half-plane, Γ2 be the intersection of Γ with the right-hand half-plane, and let

D be the divisor [ΓJ - [Γ2].

(4.11) Lemma. There are no nonzero meromorphic functions L2-subordinate

toD.

Proof. Let / be such a function and let g(z) = f(z)f(-z). By the sym-

metry of Γ, f(-z) has a zero wherever f(z) has a pole, so g is a holomorphic

function on C. Moreover, the weight function μD satisfies μD(z)μD(-z) = 1. It

follows that g is integrable. Hence g is identically zero.

So hoo(VD) = 0 for any exhaustion. On the other hand, it is easy to

construct a regular exhaustion of C so skewed that (™,c(VD)) > 0, so that

h'00(VD) > 0. We conclude that (0.1) does not hold for the 3 operator on VD.

Intuitively, the problem arises because the sets I\ and Γ2 are far apart,

rather than mixed up together as in Connes' example. The following notion

formalizes the idea that "Density I\ > Density Γ2 uniformly over C."

(4.12) Definition. We say D = [ΓJ - [Γ2] is uniformly positive if there exist

η > 0 and rQ> 0 such that for all x e C and all r > r0,

( l / W r 2 ) ( # ( Γ 1 n B(x, r)) - # ( Γ 2 Π B(x, r ) )) > η.

(4.13) Lemma. If D is uniformly positive, then there is a uniformly positive

metric in the quasi-isometry class on VD.

Proof. Let Λr denote the averaging operator

f(z)dz A dz.
\z\<r
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Write c(VD) = λω, where ω is the standard Kahler form. It is clear from

Definition 4.12 that for all sufficiently large /% Arλ > η/2.

From (4.10) one sees that it is enough to prove that <?~'Δλ > ε > 0 for some

large t. However, one may write

e-'*\(0) = j^-jj e-r2/4tX(reiθ)rdrdθ

= —A rh-rl^Ar\dr
8r J

on integration by parts. It is therefore clear that e~'Δλ(0) > η/4 for suffi-

ciently large /, and the desired result follows from this since all the estimates

are translation-invariant.

Combining (4.13) and (4.6) we obtain

(4.14) Theorem (planar Riemann-Roch). Let Yλ and Γ2 be pseudo-lattices in

C. // D = [Γ\] - [Γ2] is uniformly positive, then hoo(VD) = Density I\ -

Density Γ2 > 0 (in any regular exhaustion). Consequently, there is an infinite-

dimensional space of meromorphic functions 1}-subordinate to D.

In particular, the "almost everywhere" condition can be dropped from the

statement of Connes' result. The possibility of this extension of Connes'

theorem was suggested to me by Atiyah.

We close with a couple of questions.

(a) The result shows that if Γ is uniformly positive then there is an

infinite-dimensional space of meromorphic functions ZΛsubordinate to Γ.

How far can the hypothesis of uniform positivity be weakened? In particular, if

Γ is contained in a half-plane and uniformly positive there, does the conclusion

still hold?

(b) Can any direct significance be attached to the numerical value (and not

merely the positivity) of hoo(V)Ί One would expect that if hoo(VD) > hoo(VD,),

then there should be "more" meromorphic functions /^-subordinate to D than

to Df. Can this be made precise?

5. Relation with other ZΛindex theorems

Atiyah in [2] and Connes in [6] have described L1 index theorems on

noncompact manifolds, which overlap with the one given here. In this section

the relationship between these various results will be discussed. This will

enable us to clarify the significance of the convergence problem which has

formed the subject of the present paper, and which does not arise in the other

two works.



AN INDEX THEOREM ON OPEN MANIFOLDS. II 133

First we consider the theorem of Atiyah. This applies to a manifold X which

is a Galois covering with Galois group Γ of a compact manifold X, and an

operator D which is the lifting to X of an operator D on X. Let P + and P~

denote the orthogonal projections (in L2) onto the kernel and cokernel of Z),

with Schwartz kernels k + and k~, and let F be a fundamental domain for Γ.

Then the Atiyah theorem says

(5.1) f (Ύτk+- Trk~) = indcxD = ί l(b).
Jf JF

To relate this to our theorem, suppose that Γ is amenable. This ensures that X

is regularly exhaustible [19, 6.6] (in fact the converse implication also holds;

see [5]). If m and T are associated to the regular exhaustion, then (5.1) becomes

This is (0.1). Thus this particular case of Atiyah's theorem can be obtained

from ours provided we prove the full convergence of e~tD'". In fact the full

convergence can be obtained in a more general case:

(5.2) Lemma. Suppose that M is a regularly exhaustible noncompact mani-

fold of bounded geometry equipped with a Dirac-type operator D. If there is a

group G of diffeomorphisms of M preserving all the structures and such that M/G

is compact, then (0.1) holds.

(Notice that G need not be discrete, nor M/G a manifold.)

Proof. Let k+ be the Schwartz kernel of e~tD\\ + η)/2. We want to show

that Trkf -* Ύτk+ uniformly on M. Certainly Trλ;,+ decreases to Trλ;+ by

monotoneity. But Trk* and Trλ:+ are G-invariant, so descent to the compact

metric space M/G. By Dini's theorem, the convergence is uniform.

The general case of Atiyah's theorem (where Γ is nonamenable) does not

follow from ours. Atiyah constructs a trace using the extra data provided by

the Γ-equivariant structure, whereas our method takes no account of this. It is

however possible to use our heat equation estimates to prove Atiyah's theorem

in general. This is essentially the proof outlined in §6.2 of [2].

We turn now to Connes' theorem. Here the noncompact manifolds are

leaves of a foliation & of some compact manifold X. It is supposed that

(X, &) has an invariant transverse measure Λ. Let D be a differential

operator on X which restricts to leaves and is elliptic along them. Define

functions k+ and k~ on X as follows: k+(x) (resp. k~(x)) is the trace at

(JC, JC) of the Schwartz kernel of the projection onto the kernel of D (resp. D*)

in the ZΛspace of the holonomy covering of the leaf through x. If [Λ] is the

Ruelle-Sullivan homology class corresponding to Λ, then Connes' theorem says

that

(5.3)
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Suppose that J^ has a regularly exhaustible leaf L. The Plante construction

[16] yields a transverse measure Λ on J^ with the property that

for all continuous functions / on X, where m is a fundamental class on L

associated with the regular exhaustion. One might then think that (5.3) should

imply (0.1) for any pair (L, D) that can be embedded as a leaf in a foliation of

a compact manifold. However this is not the case: the functions k+ and k~

need not be continuous. In fact, since L is likely to have Λ-measure zero,

Connes' theorem in this form does not immediately allow us to make state-

ments about an individual leaf. This phenomenon is responsible for the

appearance of "almost all translations" in Connes' version of the Riemann-

Roch theorem on the plane.

Thus there are situations in which our theorem can give more precise

information than Connes'. On the other hand, the range of applicability of

Connes' theorem is wider. There are plenty of foliations with transverse

measures but without regularly exhaustible leaves—one example is discussed

in [6]—and the K-theoretic version of the foliation index theorem due to

Connes and Skandalis [8] dispenses with the transverse measure altogether.

Further discussion of the relation of our work with Connes' will appear in

[18].

6. Further remarks

We conclude with some miscellaneous comments and questions.

(6.1) Extravagance in derivatives. We made no effort to use the minimum

possible number of derivatives to get the required estimates. For example, our

definition of "bounded geometry" requires uniform bounds on the curvature

and on all its covariant derivatives. Can we get away with just uniformly

bounded curvature? A related question: Under what circumstances can strict

quasi-isometry be replaced by ordinary quasi-isometry?

(6.2) Betti numbers. As was noted in §2, it is an outstanding question

whether the two sorts of Betti numbers defined there are equal, β = β'. If not,

which is the "good" definition? The index-theorem suggests β'\ and I hope to

show elsewhere that the numbers β' also satisfy "Morse inequalities" with

respect to a suitably well-behaved Morse function. This uses the methods of

Witten [21]. Unfortunately, even if the β' are the "good" Betti numbers, the β

are the interesting ones.
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It is also possible to use the methods of classification theory [20] to prove

β = β' on Riemann surfaces satisfying strong parabolicity conditions.

(6.3) Metrics on nonamenable coverings. The statements of Propositions 2.9

and 3.3 make sense (if one replaces "large" by "cocompact") without the

assumption that the covering group Γ is amenable. However the proof com-

pletely breaks down: our index theorem is inapplicable since there is no regular

exhaustion, and Atiyah's is inapplicable since the Γ-equivariance is destroyed

by perturbations of the metric. Do these results still hold?

A possible approach to this question would be to prove:

(a) The Λ^-theoretic index of D is quasi-isometry invariant (in a suitable

sense).

(b) The natural map

where S( X) denotes the algebra of smoothing operators on X, is injective.

This latter statement says that we lose no information at the ΛΓ-theory level

by forgetting the equivariance. It may be related to the next question.

(6.4) Application of cyclic cohomology. The fundamental class on M gives a

trace on όl/_O0(M), which detects certain elements of K(<%_OC(M)). Can one

construct, even if M is not regularly exhaustible, higher cyclic cocycles on

^-oo( M ) w h i c h d e t e c t o t h e r d a t a i n κ(^-oo(M)T

(6.5) Relation to value-distribution theory. The ideas of "regular exhaustion"

and "mean Euler characteristic" were introduced by Ahlfors [1] in his discus-

sion of covering surfaces and value-distribution theory. Can these be related to

index theory (as advertised in [3])? Specifically, can Ahlfors' "Metrisch-

topologischer Hauptsatz" be deduced from the L 2 Gauss-Bonnet or Riemann-

Roch theorems given here? (The assumption of bounded geometry seems to be

a problem.) J. Dodziuk [10] has noted the relationship between Ahlfors' results

and questions in L2 index theory.

(6.6) Low energy physics. It is interesting to notice that the convergence

problems discussed in this paper all involve low energies and large distances, in

contrast with the more familiar "high-energy" calculus of pseudo-differential

operators. In this context, S. Hurder has made the interesting suggestion that

the difference between the left- and right-hand sides of (0.1) should be

regarded as a "low energy η-invariant." Does this "invariant" depend only on

the asymptotic behavior of MΊ Does it vanish in the Gauss-Bonnet case?
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