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DUPIN HYPERSURFACES, GROUP ACTIONS
AND THE DOUBLE MAPPING CYLINDER

KARSTEN GROVE & STEPHEN HALPERIN

Introduction

A basic question in Riemannian geometry asks how geometric properties of
a manifold are reflected in its topology. Here we shall consider the case of
closed Dupin hypersurfaces in the euclidian sphere Sn + 1, n > 1. Recall [18]
that these are closed submanifolds En for which, in particular, the number of
eigenvalues (principal curvatures) \t{x) of the second fundamental form is
independent of x e En. In this case [4] the eigenspaces of \t{x) define a
foliation of £, and E is Dupin if λ is constant on each leaf. In the special
case that the λz are constant on E, E is called an isoparametric hypersurface.

An analogous question in transformation groups asks what topological
restrictions are forced on a closed manifold, M, by the existence of a "large"
effective action of a compact Lie group, G. The simplest case is that of
transitive actions, M = G/H. We shall consider the next simplest case—when
the principal orbits G/H have codimension one; these are called cohomo-
geneity one actions. We shall confine ourselves to the case of strict co-
homogeneity one actions; i.e. excluding the fairly trivial case when all orbits
have the same dimension.

An important class of examples of (strict) cohomogeneity one actions is that
of linear actions on Sn + 1, w > 1. Since the principal orbits of these actions are
precisely the homogeneous isoparametric hypersurfaces, they may be thought
of as "linear models" or "test spaces" in the sense of Hsiang for both general
Dupin hypersurfaces and general cohomogeneity one actions. These linear
actions, moreover, have been classified by Hsiang and Lawson [13].

Now let j : En c M"+ι be either a closed Dupin hypersurface (M = Sn+ι)
or the principal orbit of a strict cohomogeneity one action, and let F denote a
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path component of the homotopy fiber of the inclusion j : E -> M. In the case

of our linear models, E = G/H is contractible in M = Sn + ι and so F = G/H

X fiS"*+1. Thus the list of possible homotopy fibers for the linear models can

be read off from [13].

The general situation is described in our

Theorem A. Suppose E c Mn + ι (n > 1) is either a closed Dupin hyper-

surface or the principal orbit of a strict cohomogeneity one action (M,G closed).

Then F is a nilpotent space, and there is a linear model whose homotopy fiber has

the same fundamental group, integral homology, and rational homotopy type

as F.

Call a space X rationally ^-elliptic if the total rational homotopy, π*(ΩX, *)

® Q, of the loop space is finite dimensional. A classic theorem of Serre [19]

asserts that Lie groups are rationally Ω-elliptic; hence so are homogeneous

spaces. Since the homotopy fibers for our linear models have the form

G/H x2Sn + ι they, too, are rationally Ω-elliptic. Thus Theorem A gives

Theorem B. Let E be a closed Dupin hyper surf ace in Sn+ι and let Mn+1

admit a strict cohomogeneity one action (M,G closed). Then E and M are

rationally Ώ-elliptic.

Remarks. 1. Theorem B is new even for isoparametric hypersurfaces.

2. Since E and M are rationally Ω-elliptic it follows from [9, Corollary 2.3]

and [6] that

i r f . ( £ ) ® Q = 0 , i>2n, and ^ ( M ) ® Q = 0, / > In + 2.

3. If M admits a nonstrict cohomogeneity one action, then some covering

space of M has the homotopy type of a principal orbit. Thus M is still

rationally Ω-elliptic.

4. If M admits a transitive action it is a homogeneous space and so

rationally Ω-elliptic. On the other hand, (Sk X Sι)#(Sk X Sι), k > I > 2, is

not rationally Ω-elliptic [10, Theorem 5.4] but does admit a cohomogeneity two

SO(&) X SO(/) action.

Our topological results can be applied to yield new geometric information

about closed Dupin hypersurfaces E <z Sn + ι. In fact Thorbergson obtains

explicit formulae [23], [15] connecting the homology H*(E; Z2) with the

multiplicities of the principal curvatures, λf . In particular he shows that the

number, g, of principal curvature functions satisfies 2g = dim H*(E; Z2) and

that as in the case [17] of isoparametric hypersurfaces, g = 1,2,3,4 or 6.

On the other hand, in this case F = E X Ώ,Sn+ι and so we are able to

compute //*(£; / ) directly (cf. §2). We recover the fact that g = 1,2,3,4 or 6

independently and then, with the aid of Thorbergson's formulas, establish
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Theorem C. Let E be a closed Dupin hypersurface. Then:

(i) E is nilpotent.

(ii) There are two integers k, I (possibly equal) such that each principal

curvature has multiplicity k or I.

(iii) The integral homology of E determines k, I, and the number, g, of

principal curvatures. Conversely, g, k, and I determine the fundamental group,

integral homology, and rational homotopy type of E.

(iv) The integers g, k, I satisfy the following restrictions.

(a) If k Φ I, then g — 2 or 4 and k and I are each the multiplicity of g/2

principal curvatures.

( b ) / / g = 3, then k = 1,2,4 or 8.
(c) // g = 4 and k = /, then k = 1 or 2. // g = 4 and k > I > 2, then

k + / is odd.

(d)//g = 6, thenk = I or 2.

Remarks. 1. In §2 we list (Table 2.2) all the possibilities for irλ(E\

H*(E; T), and the Q-homotopy type of E in terms of k, I, and g.

2. It is immediate from Theorem C that n = \(k + l)g. In particular

g=l <* k + l> n\ g = 2 <=> k + I = n; g = 3 , 4 o r 6 < = > λ : + / < « .

3. Except when g = 4 the above restrictions in (ii) and (iv) include all known

restrictions (cf. Mύnzner [17] and Abresch [1]) for isoparametric hypersurfaces.

Theorems A and C thus provide further evidence for the conjecture that a

closed Dupin hypersurface is Lie equivalent (cf. [18]) to an isoparametric

hypersurface. (This is classical for g = 1 and has been proved by Cecil and

Ryan [4] for g = 2 and by Miyaoka [15] for g = 3.)

The feature common to the inclusion j : En -> Mn+ι of a Dupin hyper-

surface or the principal orbit of a strict cohomogeneity one action is that in

both cases there is a decomposition

M = DB0 U E DBλ

of M as the union of two linear disc bundles DB0 -> Bo, DBX -> Bλ with

common boundary E. In the case of group actions this is due to Mostert [16],

and in the case of isoparametric hypersurfaces to Munzner [17]; cf. also [11].

Thorbergson [23] obtains a decomposition (as above) of Sn+1 into (non-

smooth) ball bundles for general closed Dupin hypersurfaces and we extend his

argument in §2 to get the linear disc bundle decomposition in this case.

Our analysis of the homotopy fiber, however, is chiefly carried out in a

significantly wider context. We consider continuous maps φf : E -> Bt, i = 0,1,

between general topological spaces such that over each path component of
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each Bt the homotopy fiber of φ, has the weak homotopy type of a sphere

(possibly of differing dimensions). Then M, above, generalizes to the double

mapping cylinder

and j becomes the inclusion x -> (x, \) of E into DE.

In spite of this increase in generality, we still reach almost the same

conclusion as in Theorem A. In fact, let F be a path component of the

homotopy fiber of j . Then we prove

Theorem D. With the hypotheses above, F is a nilpotent, rationally Qι-elliptic

space. Moreover, if E has finite Lusternik-Schnirelmann category then F has the

fundamental group, integral homology, and rational homotopy type of

(i) a point or a sphere, or

(ii) the homotopy fiber of a linear model, as in Theorem A, or

(iii) one of the two "exceptional spaces" A4(4) X ΩS 1 7 and A6(4) X ΩS 2 5

defined in §1.

Remarks. 1. Case (i) does not occur unless either all homotopy fibers of the

φ/s are weakly 5° or E has infinitely many components.

2. We do not know if the exceptional spaces in (iii) actually occur.

The body of the paper is organized as follows:

1. Classification theorems.

2. Dupin hypersurfaces.

3. Fundamental group and homology.

4. Rational homotopy theory.

5. Rational classification.

6. Integral restrictions.

In §1 we state more precise classification theorems (1.3, 1.8), which im-

mediately imply Theorems A, B, and D above. In §2 we apply the classification

theorems to prove Theorem C. After an elementary topological reduction

(Proposition 1.2) we calculate, in §3, the fundamental group and integral

homology of a homotopy fiber, F, and prove that F is nilpotent (Theorem

1.3). The classification by rational homotopy type (Theorem 1.8) is carried out

in §§4, 5, and 6. A more detailed plan for the proof of this result is given after

its statement in §1.

1. Classification theorems

Consider continuous maps φ,: E -» Bt, i = 0,1, as in the introduction. Thus

over each path component of each Bt the homotopy fiber of φ, has the weak

homotopy type of a sphere. By abuse of language we shall refer to these simply

as the fiber spheres, Sk of φ,.



DUPIN HYPERSURFACES AND GROUP ACTIONS 433

Denote by DE the double mapping cylinder of (φo,Φi) a n d by i 7 a path

component of a homotopy fiber of the inclusion j : E -> DE. We call F a

cylinder fiber for DE.

In §3 we reduce the analysis of cylinder fibers to the important special case

E, Bo, Bx are connected CW complexes;

(1.1) DE is 1 -connected

The fiber spheres Sk, S1 of φ 0 , φ x satisfy k, I > 1.

We may, in any case, suppose DE path connected.

Our reduction is then contained in

Proposition 1.2. Let F be a cylinder fiber for the double mapping cylinder DE

°f (Φo> Φi) If DE is path connected, then F has the weak homotopy type of

(i) a point, or

(ii) a sphere Sk, k > 1, or

(iii) the cylinder fiber F of a double mapping cylinder DE of a pair (φ o ,φ 1 )

that satisfies (1.1).

Remarks. 1. If there are more than two fiber spheres of positive dimension,

then DE is not path connected.

2. Case (i) above occurs precisely when all fiber spheres are S°.

3. Case (ii) occurs if and only if exactly one fiber sphere has positive

dimension, /c, and E has infinitely many path components.

4. If E has finite Lusternik-Schnirelmann category so does E in (iii).

Now suppose (1.1) is satisfied and 1=1. Then Φ0(Sι) defines an element in

πλ(B0), which in turn acts on the homology Hk(Sk, Z) of the fiber sphere Sk of

φ 0 . We say that φ 0 is twisted if this action is nontrivial, i.e. acts by - 1 .

Likewise φλ is twisted if k = 1 and Φι(Sk) acts by -1 on the homology

H,(Sι; Z) of the fiber of φv

The fundamental group and integral homology of a cylinder fiber are

determined by k, /, and twists:

Theorem 1.3. Let F be a cylinder fiber for a double mapping cylinder DE of

(φ 0 , φ x) satisfying (1.1). Then E and F are nilpotent and F is rationally ^-elliptic.

Moreover πλ(F) and H*(F; Z) are as given in Tables 1.4 and 1.5.

In Table 1.4, Q denotes the order 8 subgroup {± 1, + /, ±j, ± k} of the unit

quaternions S3 c H. It is generated by two elements a, b with the relations

aba'1 = a~ιba = b~ι and bab'1 = b~ιab = a~\

Remarks. 1. In Table 1.5 and henceforth we use the convention

Ht{F\ Έ) = 0 unless / appears explicitly in the table.

2. The nilpotence is proved in Proposition 3.5 and the ellipticity in §6.

Tables 1.4 and 1.5 are established in §3.
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M

I)

F)

kj> 1

{1}

k> 1 =

Z

TABLE

1
k =

no φ,

Z

1.4. 7 7 ^

/ = 1
twisted

Φ Z

one

2

= 1=1
φj twisted

' Φ Z 2

k = l= 1
both φ, twisted

Q

(kj)

kΦ I

no twists

k = I
no twists

φ 0 twisted

φ 0 twisted

φγ not twisted

φ 0 , φλ both twisted

TABLE

z
Z Φ

z
Z Φ

z
Z Φ

z 2

z
Z Φ

z 2
Z Φ

z
Z Φ

Z 2 S

1.5.

z

z

z

z 2

z

z
) Z 2

#*(is z)

/ = 0 or i = k, 1 moά{k -(- /)

i > 0 and / = 0 mod(A: + /)

i = 0

/ > Oand / s 0mod(A:)

/ = OoΓ/ s ±lmod(2A: + 2)

/ > 0 and / Ξ 0 mod(2A: + 2)

i = k,k+ lmod(2A: + 2)

/ = 0 or i = 3 mod(4)

/ = 1 mod(4)

Ϊ = 2 mod(4)

/ > 0 and / s 0 mod(4)

i > 0 and i = 0 mod(3)

/ = 1 mod(3)

Corollary 1.6. Under the hypotheses (1.1) ίΛe mod 2 Poincare series P{t) =

Σpdim Hp(F; Σ2)tp for Fis given by

(1 + / * ) ( ! + t>)
P λ t ) ~ i-t^<

Let K = k (resp. 2k + 1) if φ 0 is untwisted (resp. twisted), and let L = /

(resp. 2/ + 1) if φλ is untwisted (resp. twisted). Then we have

Corollary 1.7. Under the hypotheses (1.1) ίΛe rational Poincare series P(t) =

Σpdim Hp(F\Q)tp for F is given by

(1+ , * ) ( ! + /*)
P F ( 0 " 1 - t™ '

As with homology and fundamental group, we can describe the rational

homotopy type of the cylinder fiber in terms of k, /, and twists:

Theorem 1.8. Suppose E has finite Lusternik-Schnirelmann category and

(1.1) holds. The possibilities for the rational homotopy type of the cylinder fiber,

F, are then as given in Table 1.9.

Moreover, the exceptional cases AA(4) X ΩS1 7, A6(4) X ΩS 2 5 do not occur

either in the case that DE = Sn+1 and the φt are normal sphere bundles for the

(smooth manifolds) 2?,, or in the case of cohomogeneity one actions.
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Here the spaces Am(k) (k even, m = 1,2,3,4 or 6) are the unique (up to
rational homotopy type) 1-connected spaces whose cohomology algebra
H*(Am(k)', Q) is generated by two elements x, y of degree k subject to the
relations

xm = x1 + y1 = 0 if m = 1,2 or 4,

jc m = jc2 + = 0 if m = 3 or 6.

Remarks. 1.

as explained in
Table II].

The right-hand column of Table 1.9 exhibits "linear models"
the introduction. The notation is taken from [13, Theorem 5,

TABLE 1.9

(k,l) and twists

k = / = 1
Φo,Φi both twisted

k = / = 1
φ 0 twisted, not φ x

A: = / = 1
φ 0 , Φx not twisted

k > I = 1, k odd
φ 0 twisted

A: > / = 1
φ 0 not twisted

k > l> 2

k = / odd

/c = / even

k = 1 = 2

k = I = 4

£ = / = 8

Q homotopy type of F

ί[SO(3)/(Z2xZ2)]xΩS4

\[SO(4)/(Z2XZ2)]XΩS7

[(SO(2)XSO(3))/Z2]XΩS5

ί Sι X S1 X QS3

\sι x as2

S1 X S2k + ι X QS2k + 3

1 Sι X Sk X Ω ^ + 2

{ Sι X Sk X Sk + ι X &S2k + 3

[ (k even)

Sk XS1 X QSk + ι+1

lskχsk χ£is2k+1

\Sk XΩS H 1

sk x sk x as2k+1

Sk X SlSk + ι

SU(3)/Γ2 X ΩS7

Sp(2)/Γ2 X Ω.S9

G2/τ2 x as13

Sp(3)/Sp(l)3 X Ω513

Λ4(4)XΩS1 7

^I6(4)XΩ52 5

F4/Spin(8) X ίlS25

Group; representation

SO(3); S2p3 - θ

SO(4); see Remark 5

SO(2)X SO(3); P2®R P3

SO(2) X SO(2); p2 + p2

SO(2); p2 + θ

SO(2) X SO(k + 2); p2 ®R pk+2

SO(2) X SO(* + 1); p2 + Pk+1

SO(2)XSO(A: + 2); p2®Rpk+2

SO(A: + 1)XSO(/+1); pk + 1 + p / + 1

SOί^ + ̂ x S O ί ^ + l ^ p ^ ^ p ^ !
SO(/: + l ) ;p, + 1 + ^

SO(k + l)xSO(k + l);pk + ι + pk + 1

SO(k + 1); p, + 1 + θ

SU(3); Ad

Sp(2); Ad

G2;Ad

Sp(3); A2P3-Θ

^ Φ 4
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2. In the middle column spaces within a single parenthesis have the same
rational homotopy type; e.g., [SO(3)/Z2 X Z2] X ΩS4 = Q [SO(4)/Z2 XZ 2 ]
X ΩS7. Such "duplications," and others we have not indicated, arise from
rational homotopy equivalences such as ΩS2k - Q S2k~ι X Ώ,SΛk~ι or SO(4)

3. The rational homotopy type of F is either of the form Sk X Sι X Ω
or of the form Am(k) X S w * + 1 with m = 1,2,3,4 or 6 and A: even. When
m = 1 or 2 we have

and these spaces occur for each even k. When m = 3,4 or 6 then /c must be
2,4 or 8; in particular

S U ( 3 ) / Γ 2 - Q Λ 3 ( 2 ) ; Sp(2)/Γ2 - Q A4(2); G2/T2 = QA6(2);

Sp(3)/Sp(l)3 - Q Λ3(4); F4/Spin8 - Q Λ3(8).

4. The right-hand column is not a complete list of linear cohomogeneity one
actions (cf. [13]), but for any such action there is in Table 1.9 an action on the
same sphere whose cylinder fiber has the same integral homology, fundamental
group, and rational homotopy type.

5. The example SO(4) in the first row of 1.9 was omitted in [13]. The
representation in question is the adjoint action of SO(4) on g2/^°(^)

6. If in (1.1) we assume only that the homotopy fiber of φλ is either Sι or
1-connected and of the rational homotopy type of a sphere, then all the spaces
^w(^) x &Smk+ι (m = 1,2,3,4,6, k even) can occur as the rational homotopy
type of the cylinder fiber, and these are the only additional rational homotopy
types. This is essentially the content of Theorem 5.1, which is the heart of the
proof of 1.8, and we shall not elaborate further.

The proof of Theorem 1.8 is carried out mostly in the framework of rational
homotopy theory:

In §4 we pass from topology to commutative graded differential algebras
(over Q) via Sullivan's theory of minimal models. In §5 we state and prove an
algebraic classification, Theorem 5.1 (referred to above), in the context of
minimal models. This turns out directly to imply most of Theorem 1.8. In
particular, it is here that the rational homotopy types Am(k) appear and where
also the reason that m is limited (to 1,2,3,4 or 6) becomes clear: we need
tan2τ7 /m to be rational.

In §6 we return to topology and obtain the Ω-ellipticity of F directly (cf.
1.3). In the case F ^ Am(k) X Ώ,Smk+1 we then use Atiyah and Adam's results
on Hopf invariant one maps [2] to obtain the restrictions k = 2,4 or 8 when
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m = 3,4 or 6 and k = 2 or 4 when ra = 4 or 6. This completes the proof of

Theorem 1.8 except for ruling out the two exceptional cylinder fibers in the

case where the Bt are submanifolds of Sn+1 and the case of cohomogeneity one

actions.

This is accomplished in the first case via characteristic classes and the

Hirzebruch signature theorem. In the second we use the Borel-de Siebenthal [3]

classification of maximal subgroups of compact Lie groups.

2. Dupin hypersurfaces

This section is devoted to a proof of Theorem C modulo Theorems 1.3 and

1.8.

Let En <z Sn+ι be a closed connected Dupin hypersurface with principal

curvature functions λx < λ 2 < < λ g . Denote by (ml9 ra2, , mg) the

corresponding set of multiplicities.

Let Bo (resp. Bλ) be the set of focal points corresponding to the smallest

(resp. largest) λ7. Then [4] Bo (resp. Bx) is a submanifold of Sn+ι of

codimension mY + 1 (resp. mg + 1). Moreover, the focal map φ0: E -> Bo

(resp. φλ: E -> Bλ) is a submersion whose fibers are the leaves of the foliation

defined by \γ (resp. λg). These leaves are (umbilic) m Γ (resp. mg-) spheres in

S"I + 1.

We claim that Sn+ι is the double mapping cylinder DE of the focal maps

(Φo>Φi) described above. This follows directly from [23]. In fact, for each

p e Bo the "fiber" ΦόH/7) is exactly the set of points in E at minimal distance

( = cot"1λ1(φo1(/?))) to p. In particular Bo U Bλ is the cut locus of E, and so

Sn + 1 = Do U Dv where Do (resp. Dλ) is the "cone"-bundle over Bo (resp. J5X)

whose fiber at p e 5 0 (resp. # G 5 X ) is the geodesic cone in Sn+ι with vertex

at p and base ΦQ1(P) (resp. g and Φol(q)).

Next we identify φ: E -> 5Z (/ = 0 or 1) with the normal sphere bundle of

2?f . For /? e Bt let dp = d(p,E) and denote by C^ the set of vectors in

Tp(Sn + ι) of length dp, tangent to minimal geodesies from p to E. A simple

first variation argument shows that for X e Tp{Bt\ (Λ, X) is constant for all

h e C r Hence there is a unique 7^ e 7^(5,-) such that h - Yp e Γ / ( ^ ) ,

h ^ Cp. The map exp λ •-> (Λ - 5^)/|Λ - ^,| is the desired identification.

We may now apply Theorems 1.3 and 1.8. In particular, E is nilpotent ((i)

of Theorem C). Moreover, setting {/:,/} = {m1? w g } and observing that

F - EX ΏS" + ι we see that πx(E) is determined by k, I, and twists as

described in Table 1.4.
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Observe as well that F has the rational homotopy type of one of the spaces
in column 2 of Table 1.9, excluding the two exceptional cases. A case by case
check of all the possibilities then shows that In = r(k + /) where r = 1,2,3,4
or 6; moreover if k Φ I then r = 2 or 4.

On the other hand from Corollary 1.6 we deduce that the mod 2 Poincare
polynomial for E is (1 + ί*)(l + tι){\ - tk+1y\l - tn). Evaluating at t = 1
gives dim H*(E; Z 2) = 4«/A: + /. But the Morse theory argument in [23] ([15])
shows that the 2g integers 0, Σs

i=ιmi (1 < s < g - 1), Σf^m,- (2 < s < g), w
are the degrees of a basis of //*(£; Z 2). It follows that dimH*(E; Z 2) = 2g;
whence In = g(£ + /). Hence g = r = 1,2,3,4 or 6 and if & # / then g = 2
or 4.

Consider the sequence (m1?- , mg). If k Φ I and g = 2 it is just (k, I). If
k Φ I and g = 4 then n = 2(k + /) and the Poincare polynomial for E is
1 4- tk + /' + 2tk+ι + t2k+ι + / 2 * + 2 / + / 2*+ 2 /. Comparing with the degrees
predicted by the Morse theory we find (mv , mg) = (k, I, k, /). Finally, if
k = / then Ht(E\ Z 2) = 0 unless z = 0 (mod A:) and it follows by induction on
s that k divides each m,. Since n = Σf=1my = g/c in this case we have mt = k
for all i. This proves Theorem C(ii).

For (iii) note that H*(E; Z) determines n and hence H*(F\ Z), and hence
(via Table 1.5) k and /, and hence g = 2n/(k + /). Conversely g, k, and /
determine n and hence πλ{E) and #*(£; Z) from Tables 1.4 and 1.5. But
πλ(E) determines twists and k, /, w and twists determine the rational homo-
topy type of F (whence that of E) via Table 1.9.

Theorem C(iv)(a) is already proved and (b), (c), (d) follow directly from
Table 1.9. In the same way one verifies Table 2.1.

3. Fundamental group and homology

In this section we prove Proposition 1.2, show that the cylinder fibers, F, are
nilpotent, and establish the classification of πτ(F) and H*(F; Z) (cf. Tables
1.4, 1.5). Recall we consider maps φ,: E -> Bi as described at the start of §1,
whose homotopy fibers are all spheres.

From now on we shall also assume that

(3.1) DE is connected and E, Bo, Bλ are CW-complexes.

Indeed, if necessary, we simply replace E, 2?0, Bx by the CW-complexes of
their singular simplices. This has no effect on the weak homotopy type of fiber
spheres and of cylinder fibers, and the L.-S. (Lusternik-Schnirelmann) category
of E is not increased under this process.
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TABLE 2.1. Dupin hypersurfaces

439

g.kj

* = / = 1

* = /> 1

k = I =1

k = /> 1

* > / = 1

2 = 2

k> /> 2

* = / = 1

k = 1=2

k = / = 4

* = / = 8

g = 4

k> 1=1
koάά

k > I = 1
A: even

k > l>2
A + / odd

k = 1=2

* = / = 1

k = 1=2

ME)

Z

{1}

Z Θ Z

{1}

z

{1}

β

{1}

{1}

{1}

Z θ Z 2

z

z

{1}

{1}

β

{1}

//,(£; Z)

Z, 7 = 0,1

Z, i = 0,*

Z i = 0,2
Z Φ Z, 7 = 1

Z θ Z, i = *'

Z, / = 0,1,*,* + 1

Z, ι = 0,/,*,* + /

Z, / = 0,3
Z 2 Θ Z 2 , / = l

Z, 1 = 0,6
Z Θ Z / = 2,4

Z, i = 0,12
Z Θ Z , i = 4,8

Z, z = 0,24
Z Θ Z , ί = 8,16

Z, / = 0,3,4
Z Θ Z 2 , 7 = 1
Z 2 , 7 = 2

j / = 0,1,2*+ 1,

z ' 2 * + 2
2 i = * ,* + l

Z, i = 0,1,*,*+ 2,
2* + 1,2* + 2

Z Θ Z , / = * + 1

Z, 1 = 0,/,*,* + 2 /
2* + /,2* + 2/

Z Θ Z , 7 = * + /

Z, / = 0,8
Z Θ Z , 7 = 2,4,6

Z, 7 = 0, ί
Z 2 Θ Z 2 , i = l,4
Z Θ Z , 7 = 3

Z, 7 = 0,12
Z Θ Z , 7 = 2,4,6,8,10

Q homotopy type of E

5>

S*

S1 XS1

Sk X 5*

S* XS 1

Sk X 5'

SO(3)/Z2 X Z 2 = QS 3

SU(3)/Γ2=Q/l3(2)

Sp(3)/Sp(l)2=Q/ί3(4)

VSpin(8)=Q,3(8)

[SO(2) X SO(3)]/Z2 ~zS
ι XS3

SO(2) X SO(* + 2)/Z 2 X SO(*)

= S1 X 52A: + 1

SO(2) X SO(* + 2)/Z2 X SO(*)

Sk X Sι XSk + ι

SP(2)/Γ-Q,4(2)

S O ( 4 ) / Z 2 X Z 2 = Q S 3 X 5 3

o 2 /r 2 = Q , 6 (2)
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We want to reduce further to the case where DE is simply connected and E,

Bo, Bλ are connected.

Here and later on, the simple behavior of double mapping cylinders under

pull-back plays an important role:

Let p: X -> DE be a fibration. View DE = Do U E Dλ as the union of the

mapping cylinders D o = B0U φo(E X [0, £]), Dλ = {E X [\, 1]) U φBx, and set

X. = p-^Z).), i = 0,1, and XE = p'\E X {£}). Let ψf : X £ -> X, denote the

inclusions and observe that up to homotopy we can identify φ,: E -> 5, with

the inclusions £ -> Dz, / = 0,1. It is now straightforward to prove

Lemma 3.2. Let p: X -> DE α«d ψf : A^ -> X, &e as above. Then up to

weak homotopy type we have:

(i) The homotopy fibers of ψ, are the same as those of φi9 i = 0,1.

(ii) X = DXE is the double mapping cylinder of (ψ 0 , ψ x).

(iii) 7Άe homotopy fiber of the inclusion XE -> X w /A^ .s^me ΛΛ1 /AΛ/ 6>/ /A^

inclusion E -> /)£".

Our first application of this is to the universal covering p: ZλE -» DE.

Proposition 3.3. 77ie universal covering space DE of DE has the homotopy

type of one of the following types of spaces:

(i) Double mapping cylinder DE for maps φ 0, φx: E -> Bo, Bλ with E

connected',

(ii) Open mapping cylinder for φ: E -* B with E connected;

(iii) Έ XU with E connected.

The homotopy fiber of the φ^s in (i) and φ in (ii) have the weak homotopy

type of a sphere of positive dimension. Moreover, in all cases each cylinder fiber

F of DE is the homotopy fiber of the natural inclusion of E.

Remarks 3.4. 1. Proposition 3.3 follows easily from 3.2 applied to p:

DE -> DE by considering the path components of ρ~ι(E), ρ~x(B0), and

ρ~ι(Bλ), and Proposition 1.2 is immediate from 3.3.

2. Case (iii) occurs exactly when all fiber spheres of φ 0 , φλ are S°. Case (ii)

occurs when exactly one fiber sphere has positive dimension and ρ~ι(E) has

infinitely many components. Since DE is connected, at most two fiber spheres

can have positive dimension.

Since Proposition 1.2 is now established we will assume (1.1) throughout the

remaining part of the paper. Then, since DE is 1-connected, we have in

particular that the homotopy fiber of the inclusion E -> DE is connected and

we denote it by F.

Proposition 3.5. Let F be the cylinder fiber of a DE satisfying (1.1). Then E

and F are nilpotent spaces. Moreover φ : E -> Bt is twisted (cf. §1) if and only if

it is not (up to homotopy) an orientable fibration (Z-coefficients).
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Proof. Consider the diagram:

Sι ^

(3.6)

If k = 1 then γ0 represents an element a0 e π^E). If k > 1 put flo = l G

77'1(£'). Similarly let aλ e TΓ^IS) be represented by γ1, or be 1, according as

/ = 1, or / > 1.

Now set bx = (Φι)*a0 e π^BJ and b0 = (Φ0)*αi G ^lί^o)- Since the cyclic

subgroups (a0), {aλ) c πλ(E) are normal, (a0) (flx) is the normal subgroup

they generate. Since (φo)*> (Φi)* a r e surjective on πx it follows that (b0), (b^

are normal subgroups too, and (φ0)*, (Φi)* induce isomorphisms

0) -(a,) -+

By Van Kampen's theorem this group can be identified with a quotient of

π^DE); hence it is trivial and

(3.7) π1(E)=(a0)-(a1), Vl(B,) = (b,), ι = 0,l.

In particular the commutator subgroup of πx(E) is contained in (a0) Π (aλ)

and is central. Thus π^E) is nilpotent. If k = 1 then (φ 0)*: ^Ί ( ^ ) -^ ̂ , (^o) ̂ s

injective for / > 2 and maps α0 to 1. Thus a0 (and also aλ) acts trivially on

πj(E)9 i > 2. Hence £ is nilpotent and, since DE is simply connected, F is

nilpotent as well.

The last assertion in 3.5 follows from the observation above that bt generates

^(JSj). q.e.d.

Our next goal is to establish Table 1.5 for the integral homology H*(F; Έ) of

the cylinder fiber for a DE satisfying (1.1).

Proof of 1.5. By applying Lemma 3.2 with X contractible we may reduce to

the case that DE - {pt} and F - E. The Mayer-Vietoris sequence for the

double cylinder then reduces to isomorphisms

(3.8) #,.(£; G) 5 H^Bo; G) Φ H^; G), i > 1,

for any abelian group G.

Now G = Hk(Sk; G) is a ττ1(^0)-module which is trivial unless / = 1 and φ0

is twisted; in this case the generator b0 of iΓι(B0) acts by -1 (cf. proof of 3.5).

We denote by Hε*(B0; G) the homology of Bo with coefficients in this module,

and define H\{Bλ\ G) in the same way.



442 KARSTEN GROVE & STEPHEN HALPERIN

Then combining (3.8) with the Serre spectral sequence for the fibrations φ,:

E -> Bi we obtain isomoφhism

(3.9) H?_k{BQ\ G) ̂  HXB,; G); H^{Bλ\ G) ̂  Ht{B0\ G), i > 1.

Thus if neither φ, is twisted we have H\{Bt\ Z) = #*(£,; Z) and 1.5 follows

(with G = Z) in these cases via an obvious induction.

Suppose now that φ0 is twisted and so 1=1. Clearly Hε*(Bi,Z2) =

//*(£,; Z 2 ) in any case, so it follows from (3.8) and (3.9) that the Poincare

series for the Z2-homology of Bo, Bλ and E (cf. Corollary 1.6) are given

respectively by

tk)

Next recall that fe0 G ^ ( Λ Q ) is given as S1 -> E -> ̂ 0 and let £ -> 5 0 be the
γ i ψo

double cover of φ 0 corresponding to 2 ^(-BQ). (This is the proper subgroup of

IΓ^BQ) acting trivially on Hk(Sk; Z).) The double cover Bo -> 5 0 leads to the

standard row- and column-exact commutative diagram of chain complexes

0
4

(3.11)

I
0

in which C*( ) denotes singular chains and H(C+) = H+{ Z). Similar

considerations apply to pE: E -* E.

In particular the cokernels of (p^)*, p*, and pε* consist of 2-torsion.

Moreover, because E is nilpotent (cf. 3.5) it follows that ker(p£)* c //,-(£; Z)

is a 2Γ'-torsion group for some η.

The double cover we are considering leads to a map of Gysin sequences in

which we denote the connecting homomorphisms by 3*. This map, combined

with (3.8), (3.11), and our observations above, yields

Lemma 3.12. For all i, the kernel and cokernel of

' pj,λ\: H,'(B0;Z) -+ H^.^BoiZ)

are 2s'-torsion groups.
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Suppose now that φλ is not twisted, so that Hε(Bλ\ Z) = H(Bλ; Z). Then
(3.9) and (3.12) imply that modulo 2w'-torsion groups H^BQ, Z) is Z if i = 0,1
mod(2A: + 2) and zero otherwise. On the other hand (3.10) gives H*(B0; Z 2)
and from this and the universal coefficient theorem we compute

/Z, i = 0,lmod(2& + 2),

(3.13) #,.(£<,; z) = I Z/2"', / = fc + 1 mod (Ik + 2), some nt > 1,

VO, otherwise.

I t follows f rom (3.9) with mi = ni+k+ι that

/Z/2ws i = 0mod(2A: + 2),

(3.14) Ht

ε(B0; Z) = / z, i s jfe + l, fc + 2 mod (2A: + 2),

lO, otherwise.

Now, applying (3.11)

(3.15) H^BQ; Z)

we

=

obtain

'z,

Z θ Z/2m '~\

,0,

/ = 1 mod

/ = 0 mod
otherwise.

( * -

(2k

n),

+ 2),

On the other hand, suppose k = / = 1 and both fibrations are twisted. In this
case (3.12) applies to both fibrations and the same argument as above then
shows that for j = 0,1 and for integers nUj > 1

YZ, / = 0mod(3),

(3.16) #,(£/, Z) = / Z/2Λ ' .Λ i = 1 mod (3),

(θ, / = 2mod(3).

Again consider the double cover φ0: E -> Bo of φ0. As above we may use
(3.9) and (3.16) to compute i/ε* (^z, Z) and combine this with (3.11) to get

(Z θ Z/2^ 1 ' 1 " 1 , / = 0 mod (3),

(3.17) HABoi Z) = Z/2^'0-1, / Ξ 1 mod (3),

( z , ι = 2 mod (3).

In both cases the fact that E -> E -> B1 is a Z2-oriented S 1-fibration
implies, in view of (3.10), that dim Ht(E\ Z 2 ) < 2 for all i. On the other hand
the Z2-oriented S^-fibration E -+ Bo pulls back from E -^ Bo; hence its Z 2

Serre spectral sequence collapses. A calculation from (3.15) (resp. 3.17) now
shows that H*(B0; Z) is torsion free. Thus π, = ra, = 1 (resp. ni0 = niλ = 1).
Substitution in (3.8) establishes the remaining cases of Table 1.5.
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Proof of 1.4. As above we assume F = E, DE = {pt}. Recall from the proof
of (3.5) that πx(E) = (a0) {aλ). If (k, /) Φ (1,1), or if there is at most one
twist, it follows that πx(E) is abelian and we apply Table 1.5.

Finally, suppose k = / = 1 and both φ0 and φι are twisted. Then aQaλaQl =
aQlaλa0 = a{1 and aλa^alx = a{ιaoax = a^1 and thus β maps onto π^E). It
remains to show that the order [^(l?)! is at least 8. Consider the fibration
E -+ Bx discussed at the end of the proof of 1.5 above. It is twisted, and by
(3.16) and (3.9) the £2-term of its spectral sequence (/-coefficients) satisfies
Elo = Elι = Z2> a n d Elo = ° Hence Hλ(E; Έ) is a group of order 4. Thus
\π[(E)\ > 4 and so K ( £ ) | > 8.

4. Rational homotopy theory

In this section we begin the proof of Theorem 1.8 by passing from topology
to commutative graded differential algebras via Sullivan's theory of minimal
models.

The reader is referred to [20] and [8] for details of this theory. Here we recall
briefly some of the basic definitions and results. All vector spaces and algebras
considered in this section are defined over Q.

For a graded vector space X = Σk > 0 X
k we define

AX = exterior algebra (Xo ά ά) ® symmetric algebra (X e v e n).

Then AX is augmented by the ideal A+X generated by X.
Denote by sέ the category of augmented commutative graded differential

algebras, A = Σk>0A
k, satisfying H°(A) = Q. Its objects and morphisms will

be called J ^ DGA'S and j^morphisms.
If A -» A (8) Λ X is an j^morphism and X admits a well-ordered basis

{xa} for which the differential d satisfies dxa e A Θ A(X<a\ then A Θ Λ I
is a KS extension of A. When A = Q it has the form (AX, d) and is called
simply a KS complex. A DGA-morphism inducing a cohomology isomorphism
is called a quism and is written -> .

Any j^moφhism φ: A -> B embeds in a commutative diagram of J #
morphisms,

A 0ΛI,
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A Θ Λ X is a KS extension, and A <E> Λ X is called a Sullivan model for φ. The

DGA (ΛX, J ) = Q ®A(A ® Λ I ) is called a SW/iwi/i //ter /or φ. If Im J c

Λ + X - A+X, the model is called minimal; minimal models exist and are unique

up to isomorphism. If A = Q, then ΛA" is a (minimal) Sullivan model for B.

Finally, sέ admits a homotopy theory as described in [20] or [8], If φ:

AX -> A is an j^moφhism from a KS complex and if ψ: B -> 4̂ is an

j^quism, then there is a unique homotopy class of j^morphisms χ: AX -> .5

such that ψχ — φ.

Let S7 be one of the directed graphs , -> or -> <- regarded as a

category. Two functors F, G from ^ to J / are connected by an elementary

equivalence if there are j^quisms F(-) -> G( ) for each vertex which make the

obvious diagram commute. The equivalence relation generated by elementary

equivalences is called a c-equivalence. Two objects in J / are oequivalent

(& = •) precisely when their minimal Sullivan models are isomorphic. (We say

they have the same homotopy type.) Homotopic j^morphisms are c-equivalent

(9= •-> •)•

The passage from topology to algebra is via the contravariant Sullivan-

de Rham functor APL that associates to a pointed path connected space, S, the

ja£DGA of rational PL-forms on the singular simplices of S. A Sullivan model

for a space S (resp., a Sullivan model for a continuous map φ, a Sullivan fiber for

φ) is a Sullivan model for APL(S) (resp., a Sullivan model for v4PL(φ), a

Sullivan fiber for AFL(φ)).

On the other hand if the Sullivan model of a space F occurs as the Sullivan

fiber of an j^morphism (or continuous map) we often abuse language and

refer simply to F as the Sullivan fiber of the morphisms or map. This is

justified by the following result [8] (proved in the simply connected case by

Grivel[7]):

Theorem 4.1. Suppose φ: E -> B is a continuous map between path con-

nected spaces with path connected homotopy fiber F and Sullivan fiber (AX, d).

If dim H\F\ Q) < oo for all i, and πλ(B) acts nilpotently in each H\F\ Q),

then (AX, d) is a Sullivan model for F.

We can now describe the analogue in J / of the double mapping cylinder DE

of φ 0 , φλ\ E -> 2?0, Bv Observe that the contravariance of APL causes all the

arrows to be reversed.

Consider a pair of j^morphisms
Φo Φi

Ao-> A <^ Aλ

and proceed as follows: Extend φ 0 to an j^morphism Φ o: Ao Θ C -> A with C

acyclic and so that A = ImΦ 0 + Imφ^ Define an J ^ D G A , DA, by

DA = {(x,y) G (Ao Θ C) <B Ax\Φox = φλy].
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There is a short exact sequence of differential spaces

(4.2) 0 -> DA Λ (Ao Θ C) Θ ̂ - ^ - ^ -> 0

and an j^morphism ε = Φo ° λ = φ x ° λ:

(4.3) ε:DA-+A.

Definition 4.4. DA is called a double cylinder for (φo,Φi) and a Sullivan

fiber for ε is called a Sullivan cylinder fiber. The long exact cohomology

sequence determined by (4.2) is called the long exact sequence of the double

cylinder.

Standard arguments give the next three lemmas.

Lemma 4.5. With the terminology above:

(i) Sullivan fibers of c-equivalent morphisms have the same homotopy type.

(ii) The c-equivalence class of ε: DA -> A does not depend on the choice of C

or of the extension Φo, and depends only on the c-equivalence class ofA0^A <—

A-
(iii) In particular, the isomorphism class of the minimal Sullivan cylinder fiber

depends only on the c-equivalence class ofA0 -> A <- Ax

(iv) Suppose εA, ε, and εF are the double cylinders for (ψ 0 , ψx), (φo>Φi)>

{aQ,aλ\ where

«0 α l

w α commutative ^/-diagram in which the vertical arrows are KS extensions. Then

ε and εF (resp., ε and εA) have isomorphic minimal Sullivan fibers provided ψ 0

and ψx are quisms (resp. a0 and aλ are quisms and Hι(A) — Hι(Ai) = 0,

i = 0,l).

Lemma 4.6. Suppose φ 0: Ao -* A is an stf-morphism with Sk (k odd) as

Sullivan fiber, and suppose m: AX ^> A is a Sullivan model. There is then a

homotopy commutative s/-diagram

Ay ΘΛX = *A0

Q ®Λ.v I } Φθ

AX -A
m

in which deg y = k + 1 and Ay -> Ay ® Λ X is a KS extension.
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Lemma 4.7. Suppose φf. E —» 2?z, i = 0,1, are maps between connected

spaces and j : E -» DE is the inclusion of E in the double cylinder of the φ^s.

Then AFL(j) is c-equiυalent to the "inclusion" ε of the double cylinder for

In particular, a cylinder fiber for these two sZ-morphisms is a Sullivan fiber

forj.

In order to apply these techniques in the setting (1.1) we need to compute

the Sullivan fibers of the φ(. The answer is contained (cf. also Corollary 1.7) in

the following proposition (in which φv I may be replaced by φ0, k).

Proposition 4.8. Assume (1.1) holds. If φλ is twisted, then I is odd. The

Sullivan fiber of φx is Sι if φλ is untwisted and S2l+1 if φλ is twisted.

Proof. The assertion in the untwisted case follows from 4.1.

Assume k = 1 and φλ is twisted. The inclusion of the fiber γ1: Fλ -» E of φx

defines an element a e π^E) (a = ax if / = 1). The action of πλ on 777 satisfies

a0 a = -a (a0 a = a'1 if / = 1). From the nilpotency of E it follows that

2"a = 0(a2" = l i f / = 1).

Consider the double cover Bλ -> Bx such that E pulls back to an orientable

fibration E -> Bv with fiber Fv The generator of ^ ( i ^ ) determines a e π^E)

covering a\ hence 2nά = 0 and H^F^, Q) vanishes in H^E; Q). An elemen-

tary cohomology spectral sequence argument for E -» Bλ now shows that / is

odd.

Next apply (4.1) to obtain a Sullivan model for E -> Bλ of the form

AY -> AY ® Ax with AY the minimal model for Bλ and degx = /. Then JC is

dual to a. Since a vanishes in πt(E) Θ Q it follows that (for appropriate

choice of Y a AY) that 0 Φ dx = y ^ Y. Moreover the involutions of E and

Bx determine an involution ω of AY ® Ax which may be taken to preserve Y

and to map JC to -x.

Because E is nilpotent,

which represents E -> E, is a quism. Since dy = 0, A(Y/y) is a minimal KS

complex and because ψ is a quism so is A(Y/y)ω=ίd -* A(Y/y). This forces ω

to act by the identity in Y/y.

Finally, since (ΛY)ω = i d -> (Λ7 ® Λ x ) ω = i d is c-equivalent to ^ P L C ^ ) -»

^ P L ( ^ ) » ^ t s Sullivan fiber is the Sullivan fiber of φv Our remarks above show

that ( Λ 7 ) ω = i d = A(y2) ® Λ(y/y) and (Λ7 Θ Λ x ) ω = i d « Λ(y/y); hence this

fiber is S 2 / + 1 .
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5. Rational classification

This section is devoted to the proof of Theorem 5.1 below which is the main

step in the proof of Theorem 1.8.

Let φ,: Aj->A9 / = 0,1, be j^morphisms with Sullivan fibers Sk, Sι

(k, I > I) and let ε: DA -> A be a double cylinder (cf. 4.4) for (φ 0 , φλ).

Theorem 5.1. The Sullivan cylinder fiber, (AW, d), for (φ 0 , φx) has at most

three odd generators and at most two even generators {i.e., άimWoάά < 3,

d i m ^ e v e n < 2).
Moreover, unless k = I and is even the cylinder fiber is Sk X Sι X ΩS* + / + 1 . If

k = / and is even, and every class in H+(A) is nilpotent, then the cylinder fiber is

one of

Am(k) xΩSmk+1, m = 1,2,3,4 or 6,

and all these possibilities can be realized.

For the proof of 5.1 we distinguish three cases: k, I odd; k odd, / even; k, I

even.

5.2. The case k and I are odd. Here we use Lemmas 4.5 and 4.6 to replace

Ayk+ι <8) Λ X -* AX <- Λz / + 1 ® AX.

By Lemma 4.5(iv) the Sullivan cylinder fiber is unchanged if we pass to

Λv*+i -* Q ^ Az/+1. Thus it is Sk X Sι X QSk+ι+\ and (5.1) is proved in this

case.

5.3. ΓΛe case k is odd and I is even. Choose a model ΛZ -> Ax for Av Since

the Sullivan fiber of φλ is S1 (I even) this extends to a commutative j ^

diagram,

ΛZ •ΛZΘΛ(w,;t)

- I I -
Ax -A

in which degw = /, du = 0, and dx = u2 — Φ, Φ a cocycle in ΛZ. Apply

Lemma 4.6 to the right-hand quism and to φ 0 . Because of Lemma 4.5 we may
Φo Φi

reduce in this way to the case that Ao-^> A <^ Aλ has the form

(5.4) Ay®[AZ®A(u,x)] ^ AZ®A(u,x)^ ΛZ,

where p = Q (8) Λ y, and deg j = k + 1.
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This is oequivalent to, and hence has the same Sullivan cylinder fiber as,

(5 5) A y Θ ^ A Z ® A ^ W ' X^ ~* A y ® ̂ A Z Θ A ^ M > * ^ ® A ^

«-Ay ® Λ Z ® Λ(ι>),

where <&> = >\ By Lemma 4.5(iv) the Sullivan cylinder fiber is unaffected if we

apply first Q ®Ay and then Q ® Λ z to (5.5). Reversing the argument we see

we may suppose Z = 0 in (5.4). A simple computation then identifies the

cylinder fiber as Sk X Sι X ΩSk+i+1, and (5.1) is proved in this case.

5.6. The case k < /, both even. By Lemma 4.5(i-ϋi) we may suppose

A = AX, Ai = ΛJζ are minimal KS complexes. As in (5.3), the fact that φ 0 , φλ

have SΛ, S z as Sullivan fibers translates to commutative ^diagrams

where degα 0 = k, dQgaλ = /, da0 = daγ = 0, and dut = af — Φ/? Φ, a cocycle

Λ

Because Λ^, AXt are minimal, φ 0 is an isomoφhism in degrees < k and

injective in degree ky while φx is an isomoφhism in degrees < / and injective

in degree /. Both ψ 0 and ψx, moreover, are surjective.

We now divide into two subcases:

Suppose k < I. Then ψ o ( α o) = Φi(^)> ^ a cocycle in AXλ, while ^ι{aλ) =

ψo(Ω + Ωr ® α 0 ) + dΩ" for cocycles Ω, Ω' G Λ ^ . We can modify ψx so that

Ψi(^i) = Ψo(Ω + Q' ® *o) = Φo(Q) + Φo(O0 * Ψo(«o) Moreover φo(Ω') =
φ x(Ω x) for some cocycle Ωx e A ^ .

Now consider the .^diagram Bo^> B -* Bλ given by

σ 0 σ l

(5.7) A(co,bo,w)^> AicoybotCub^Wtϋotϋi) *- A(cl9bl9w),

in which degw = I — k, degc 0 = /, deg£ 0 = 2/c, degc1 = k, degZ?1 = 2/, and

all these generators are cocycles, while dv0 = c\ - b0, dυx = (c 0 + wcx)
2 - ftlβ

Map c 0 -> Ω, fe0 -> Φo, cx -> Ψ, bx -> Φ x. Map w -> Ωr on the left and

w -» Ωx on the right, and ί;0 -» ψo(
wo)> ϋ i "* Ψi(wi) This defines an s#-

moφhism from (5.7) to Ao -> A <- ̂ 4^ Moreover, the Sullivan fiber of σ. is

mapped isomoφhically to that of φf . Hence the SulUvan fiber of i?, -^ 4̂Z is

mapped isomoφhically to that of B -> A, and it follows from Lemma 4.5(iv)

that (5.7) and Ao -• ̂ 4 <- Aι have the same cylinder fibers.
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Now if we put w = 0 in (5.7), then the cylinder fiber is unaffected. The

projection Λ(c0, b0, cl9 bl9 υθ9 υx) -» Λ(c0, cλ) sending υi9 doi to zero is a quism.

We are thus reduced to computing a Sullivan cylinder fiber for

(5.8) Λ(c0, 60) -* Λ(c0, cΛ) «- Λ(c1? & J ,

where i 0 -> c 2 and bx -> c2,. This is again Sk X Sι X QSk+i+1, which proves

(5.1) in this case.

Suppose k = /. If the cohomology classes in H(AX) represented by ψ o ( α o)

and Ψxίflx) are linearly dependent (they are each necessarily nonzero!) we can

choose aQ, av ψ 0, and ψx so that ψ o ( β o) = Ψi(α i) I n this c a s e a variation of

the argument given above reduces us to the case that An-^> A <- Aλ has the

form

(5.9) Λ(60) - Λ(c)<- Λ(6J,
with degc = A: and fc0, bλ both mapping to c2. In this case the Sullivan

cylinder fiber is Sk X QSk+ι = Aλ(k) X 2Sk+\

If on the other hand, the classes represented by ψ o ( α o) a n ( ^ Ψi( β i) a r e

linearly independent, then the above arguments reduce us to the case that

Ao-> A <r- Aλ has the form

Λ(c0, b0) -+ K{ao,aλ) *- Λ(c1 ? bx)9

with ai9 c, of degree A:, φ f̂c,-) = flz

2, and each of the pairs ( α 0 , ̂ 1 , {Φo(
co)>

α 0 } , and {ΦxίcJ, flx} form a basis for A*.

Now put x = Φo(co) a n d ^ = flo Then φ 0, φλ are the inclusions

(5.10) Λ(x, >^2) ̂  Λ(x, 7) <- Λ(λjc + M7, (λ'x + μ » 2 ) ,

where λ, μ, λr, μ' G Q satisfy λμr - λrw ^ 0 and λ' # 0. This leads to the

final subdivision into cases:

(i) λ = 0, μ' Φ 0: Here Imφ 0 + Imφ x = A, Imφ 0 Π Imφ x = Λ(^ 2), and

our desired cylinder fiber is the Sullivan fiber of Λ(j>2) -* Λ(x, ^ ) . This is

sk x ask+ι.
(ii) λ Φ 0, μ' = 0: Here Imφ 0 + Imφi = >4 and Imφ 0 Π Imφ x = Λ(x2).

The cylinder fiber is Sk X Ω5^ + 1 .

(iii) μ = 0: Here x e Ao, A, Av Put c = 0 (without affecting the Sullivan

cylinder fiber) and deduce from (5.9) that the cylinder fiber is Sk X ΩSk+\

(iv) λ = μ' = 0: This is identical with (5.8), except that k = /, and the

Sullivan cylinder fiber is Sk X Sk X Ω 2 / c + 1 = A2(k) X QS2k+\

(v) λ, μ, λ', μ' are all nonzero: Put a = μ/λ and β = λ'/μ'. Then (5.10) is

equivalent to

(5.11) A(x, y2) -» Λ(*. y) <- Λ(x + ay, (βx + yf),

where a Φ 0, β Φ 0, and αβ ¥= 1.
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In the remaining part of this section we determine the possible Sullivan

cylinder fibers for the case (5.11) above. The main step is to find Imφ 0 Π Imφ^^

and a complement for Imφ 0 + lmφv

The computations are noticably different from the previous ones.

We begin by extending the coefficient field from Q to C and by choosing

complex numbers ί, σ G C so that

tan20 = -aβ and σ tan# = a.

Put x = x and y = σy.

Now embed Λ(3c, y) into the algebra of holomorphic functions in C 2 by

mapping x -> u cosy and y ^ u sinυ, u, t e C . A basis (as a complex vector

space) for the image is given by

ucosqυ, p>0, q>0,

u2p+(1smqv, p>0,q>l.

The complexification of A(x, y 2 ) is Λ(x, y2) and its image has a basis

(5.13) u2p+qcosqυ, p>0,q>0.

The complexification of A(x + ay, (βx + y)2) is Λ(cos03c 4- sin θy,

+ cos θy)2) and a basis for its image is

( 5 . 1 4 ) cosqθ(u2p+qcosqv) + smqθ(u2p+qsinqv), p,q>0.

The intersection of the spaces spanned by (5.13) and (5.14) has for a basis

u2p, p > 0, if θ £ Q - IT or u2p+qmcos qmυ, p, q > 0, if θ = nτ/m, r, m e Z,

( r , m ) = l .

A complement of the span of (5.13) and (5.14) in the span of (5.12) has for a

basis φ if θ £ Q π or u2p+qm sinqmυ, p > 0, q > 1, if β = rτr/m as above.

Using these relations we translate back to A(x, y). Put ε(m) = 0 or 1

according as m is even or odd. Let /m, g w e Q[s, t] be the homogeneous

polynomials for which

umcosmv = (wcosι;) ε ( m )/m(w 2, w2cos2ι;),

umsmmυ = (usinv)(ucosυ) ~ε gm(u2,u2cos2v).

Thus with am, bm G Λ(x, j ) defined by

bm=yxι-^gm(βx2-cty2,βx2)

we have obtained the following.
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Proposition 5.15. // θ is not a rational multiple of π then

A(βx2 - ay2) = Imφ0 Π Imφ^ Λ(x, y) = Imφ0 4-

// θ = rm/m (r,m relatively prime integers) then

A(βx2 - ay2, am) = Imφ 0 Π Imφ 1 ?

Λ(x, y) = (Imφ0 + I m φ J Θ Z>m A(βx2 - ay2, am).

Choose now an acyclic Sullivan model, C, and extend φ0 to Φo: Ao φ C -> 4̂

so that ImΦ 0 4- Imφ 1 = ̂ 4. Recall the short exact sequence

(5.16) 0 -» DA -* (Λ 0 Θ C) Θ ^ - ^ — -Λ -> 0.

Since ^40, Av A are concentrated in even degrees we can easily combine

(5.16) and Proposition 5.15 to calculate H(DA). Suppose first θ = πr/m

with r, m relatively prime integers. Let bm e Hkm+ι(DA) be the image

of 6m under the connecting homomorphism of (5.16). Then H(DA) =

A(βx2 - ay2, am, Ί>m) and ε: DA -> A is c-equivalent to the morphism

(A{βx2 - ay2,am,bm),0) -+ (A(x,y),0).

The Sulhvan fiber of this moφhism has the form (A(x, y,w,z),d)<8> (Ac, 0)

with deg c = km and

dw = βx2 - ay2, dz = am.

Now fm(s, t) = λ m ί ( m " ε ( m ) ) / 2 4- shm(s, t) for some 0 # λ m e Q . It follows

from the definition of am that dz = λ'mxm 4- Φrfw, with 0 ̂  λ'm e Q and

Φ G Λ(x, j ) . On the other hand we have d(βw) = (βx)2 + ten2θy2.

Now a suitable change of basis reduces the Sullivan fiber to the form

(Λ(x, y, z, w),d)<8> (Ac, 0) with

dw = x2 4- tan20j>2, dz = x m .

Since tan2 θ = -αβ is rational and nonzero and since θ = mr/m we must have

m = 3,4 or 6. For each value of m there is a unique possibility for tan20,

namely 3,1, and 1/3. The respective Sullivan fibers are thus Am(k) X ΩSmk+ι,

m = 3, 4 or 6.

It remains to consider the case θ £ Q π.

By Proposition 5.15 we may then in (5.16) take C = Q. Thus DA -> A can

be identified with the inclusion Imφ0 Π Imφx -> Λ(x, >>). It follows (again by

(5.15)) that in this case the Sullivan fiber is given by

(5.17) (A(x,y,z),d), dz = βx2-ay2.
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To complete the proof of Theorem 5.1 we now rule out (5.17) as a cylinder
fiber when the elements of H+(A) are nilpotent.

Indeed if (5.17) is the cylinder fiber there is a quism

ψ: (DA ® A(x, y,z),δ) ^> (A,d)

in which δx, δy e DA and δz = βx2 - Φx - ay2 - Ψy + Ω, with Φ, Ψ,
Ω e DA. By modifying x and y (replace x b y x + Φ/2β) we can arrange that
Φ = Ψ = 0. From δ2z = 0 we deduce δx = 0 and so x represents a nonnilpo-
tent class in H(A).

6. Integral restriction

In this last section we complete the proofs of 1.3 and 1.8. In both cases our
point of departure is Theorem 5.1.

Completion of 1.3. Having calculated ^ ( i 7 ) , H*(F; / ) , and established the
nilpotence of F in §3, we have only to show that F is rationally Ω-elliptic. By
1.2 we may suppose that (1.1) holds.

Since DE is simply connected and H*(F; Q) is finite dimensional in each
degree, Theorem 4.1 asserts that a Sullivan fiber for j : E -> DE is a Sullivan
model for F.

On the other hand, by Lemma 4.7, a Sullivan cylinder fiber for (APL(φ0),
^4PL(φ1)) is a Sullivan fiber for j . By Proposition 4.8 each AFL(φi) has a sphere
as Sullivan fiber and so by Theorem 5.1 the Sullivan cylinder fiber (= Sullivan
model for F) has at most five generators. But these are dual to a basis of
π*(F)®Q and so F is Ω-elliptic.

Corollary 6.1. DE is Ω-elliptic if and only if E is.

We are now ready for the
Completion of 1.8. Since by assumption E has finite L.-S. category each

class in H+(E', Q) is nilpotent. Identify a minimal model for F with a Sullivan
cylinder fiber for (ΛPL(φ0), ̂ 4PL(Φi)), as above. Then Table 1.9 is an im-
mediate consequence of 5.1 except when

(6.2) k = / even and F « Q Am{k) X Ωmk+\ m = 3,4 or 6.

In these cases, however, Table 1.9 follows directly from Lemmas 6.3 and 6.4
below.

Lemma 6.3. Suppose φz: E -> Bt satisfy (1.1) and (6.2). IfE has finite L.-S.
category then the connecting homomorphism

d:πmk+1(DE)®Q-*τrmk(F)®Q

is nonzero.
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Proof. The minimal model for F has the form AX = A(x, y, c, w, υ) with

x,y, c cocycles of degrees k, k, mk and du = xm, dv = x2 + y2 (resp. x2 +

3y2) if m = 4 (resp. m = 3 or 6). Theorem 4.1 asserts that the sequence

F -> £ -* ZλE is modelled by ΛX <- Λ7 ® Λ X <- Λ7; in particular we get a

sequence of surjections

(AY ® ΛX, /)) -> (ΛX, rf) -* (Λc,0)

Since £ has finite L.-S. category it follows [5, §6] that in AY ® AX, Dc has a

nontrivial component, a e y. The duality between model generators and

TΓ̂  Θ Q identifies the map c -> a as the dual of 3 (cf. [22]).

Lemma 6.4. Suppose φ,: £ -> 1?, satisfy (1.1) fl«rf (6.2), and that

is nonzero. Then k = 2,4 or 8 flfld, if m = 4 or 6 then k Φ 8.

Proo/. Since dim9rw Λ(F) ® Q = 1 we may choose a map a Smk+ι

so that the composite

is an isomorphism. Convert α to a fibration and apply (3.2) to replace DE by

a space of the homotopy type of Smk+1. Thus in addition to the hypotheses of

6.4 we may assume

(6.5) DE = Smk+1 and 3: vmk+1(DE) ® Q - πmk(F) ® Q.

In particular, dmk+ι is the only nontrivial differential in the Serre cohomol-

ogy spectral sequence for E -> DE. Since, moreover, H*(F; Q) = H{Am(k))

® ff*(ΩS'mΛ+1; Q) it is easy to compute J m ^ + 1 (Q-coefficients) using (6.5)

and to deduce that H*(j): H*(E; Q) -> i / * ( F ; Q) is in fact an isomoφhism

(6.6) ί

(6.7) HJ(E;Z) =

On the other hand, using 1.5 we obtain from the same spectral sequence with

Z-coefficients that for j < mk,

Z, j = 0, mk,

Z Θ Z, j = n k,0 < n < m,

0, otherwise.

The Mayer-Vietoris sequence for DE implies that

(6.8) HJ(B0; Z)ΘHJ(Bι; Z) ^ HJ(E; Z), 0 <j < mk,

whence

• x the Serre spectral sequence (Z coefficients)

for the φ z: E -> Bt collapse.
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It follows from this and (6.7) that for i = 0,1 and 0 < j < mk,

(6.10) #'•(*,; Z ) = / Z y = ^ 0 < » < w ,
10, otherwise.

Regard HJ(Bt\ Z), 0 <y < mk, as a subgroup of HJ(E; Z) and let an G

Hnk(B0; Z), βn G Hnk{Bλ\ Z) be generators (0 < Λ < m) with α 0 = β 0 the

unit element. Then (6.8) and (6.9) imply that aλ (resp. βx) restricts to a

generator of the cohomology Hk(Sk; Z) of the fiber of φx (resp. φ 0). It follows

from (6.6) and (6.7) that for 1 < n < m each of the pairs

( α , β ) ; ( α , A U α i ) ; ί « ! U β i , β )

is a basis for Hnk(E; Z). Moreover

«iU^.!= ±βιUam_1

is a basis for Hmk(E\ Z). Replacing αw or βn (n > 2) by their negatives if

necessary we obtain

ax U βx = a2 + j82,

αx U βn = α n + 1 + pn+ιβn+1, 2 < « < m - 1,

β χ y α ^ = βn+ι 4. ςfM + 1απ + 1, 2 < w < m — 1,

with p n + 1 , r̂n + 1 G Z.

On the other hand it is easy to see that for 0 Φ a G Hk(Am(k)\ am~ι Φ 0.

In view of (6.6) the same holds for a e Hk{E\ Q); in particular

axU an = rn+ιan+ι, βιU βn = sn+ιβn+l9 1 < n < m — 1,

with r π + 1 , ^ M + 1 nonzero integers. Replace al9 βλ by - α 1 ? -βx if necessary to

arrange r2 > 0. Finally, since Hmk{Bλ\ Z) = 0,

" A n - , = βnβm-n = 0, l < H < m - l .

Now consider the cases m = 3,4,6 separately.

77*e case w = 3. Here a\βλ = α!(α 2 + β2) = ^ ^ = ±a2βi a n d so α^ =

α 2 . By [2, Theorem A] applied to the 2/c-skeleton of Bo we have k = 2,4 or 8.

77*e cα^e m = 4. Here α ^ = ̂ ( ^ + # 3 α 3 ) = «χiδi«2 = β 2 α 2 . Hence ̂ ^

= a1a2β1 = α 2 β 2 = ccχβιβ2 = «3>β1. It follows that )83 = βλβ2 and α 3 = aλa2\

i.e. r3 = ^3 = 1. On the other hand 2α2/?2 = (a2 4- β2)
2 = α ^ ! 2 = r2s2a2β2.

Thus we may suppose r2 = 1, s2 = 2.

Now [2, Theorem A] applied to the 2Λ>skeleton of Bo gives k = 2,4 or 8 and

[2, Theorem B] applied to the 3A:-skeleton gives k Φ 8.

77ιe case m = 6. As when m = 4 we find

α lP5 = aiP\a4 = P2α4 = P2a\H?> ~ a3H3 = a2azP\ ~ a2H4 = PlalH4 = Pl α 5
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Hence β5 = βλβ4 = β2β3, a5 = aλaA = a2a3, whence r5 = s5 = 1, r2 = r4, and

s2 = s4. From 3a2β2aιβ1 = 3a2β2(a2 + β 2 ) = ( α 2 + /*2)3 = a\β\ we deduce

r2s2 = 3. Hence we may take r2 = 1, s2 = 3, and by [2, Theorem A], k = 2, 4

or 8.

From r 2 α | = αjγχ2

 = r3r4α4 w e find α 2 = r 3α 4, β 2 = ιS 3/?4. Using this in

a2β2aιβι = α 2 β 2 + β2a2 yields / ^ = r3 + J 3 . Since r3 =£ 0 this yields r3 = s3

= 2. Hence [2, Theorem B] gives k Φ 8.

This completes the proof of Table 1.9.

To complete the proof of 1.8 we must rule out the exceptional spaces

Λ4(4) X ΩS 1 7 and A6(4)X ΩS 2 5 as possible cylinder fibers in the case that the

φz are normal (linear) sphere bundles of smooth manifolds Bi and DE ^ Sn+1,

and in the case of cohomogeneity one actions. We consider these cases

separately.

DE = Sn + ι; φi normal sphere bundles. Since we want to exclude only

Am(k) X ΏSmk+ι as a possible cylinder fiber for (φo,Φι) when k = 4 and

m = 4 or 6, we may suppose that the φ, are the 4-sphere bundles of normal

vector bundles vt of rank 5. Since, moreover, DE — Sn+1 the φ, satisfy (6.5)

and the hypotheses of 6.4. Thus all the properties developed in the proof of 6.4

apply, and we will use the notation established there without further comment.

The cohomology class aλ e H4(E; Έ) orients φv Let £ be the oriented rank

4 vector bundle over E "tangent to φλ": ξz = Tz(S*ιZ) where S$iZ is the fiber

of φ x at φλz. The Euler class χ e HΛ(E; Z) of ξ has the form X ^ + λ2βι

(λl9λ2 e Z) and λx = 2 because ax (resp. j8x) restricts to the fundamental

class (resp. 0) in the fibers of φv Moreover χ 2 is the second Pontrijagin class

p2(ξ) and so χ 2 = ΦtiPii^i)^ i e X2 = λ3^2 f o r some λ 3 e Z.

On the other hand the multiplication table developed above for H*(E; Z)

shows that χ 2 = 4(1 + λ 2 ) α 2 + (4λ 2 + 2λ2

2)β2 if m = 4 and χ 2 =

4(1 4- λ 2 ) α 2 + (4λ 2 + 3λ\)β2 if m = 6. Hence λ 2 = - 1 , χ = 2αx - βl9 and

P2(vλ) = —2>β2 (resp. -)82) if m = 4 (resp. 6). In particular, the fourth Stiefel-

Whitney class satisfies

w 4(iΊ) = w 4 (O = & (mod 2).

Our next objective is to show that the first Pontrjagin class, Pι(vλ\ is zero.

Write p^vj = sβλ (s e Z). Then the total tangential Pontrjagin class of Bλ is

given by 1 + Σp^B) = (1 + sβx + ί/^)"1 where t = -2, -1 if m = 4, 6.

Again using the multiplication table for H*(E; Z) we apply the Hirzebruch

signature theorem [12] to obtain the signature of Bλ as a polynomial in s with

rational coefficients. In each case direct inspection shows s = 0 is the only real

root. But since Bλ has no middle homology, ήgr^B^ = 0 and hence Pi{v^) = 0.

Now consider the restriction of vλ to the four skeleton, S4, of Bx. There it

splits off a trivial line bundle to give a rank 4 vector bundle η over S4 with
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(w4(η), [S4]) = 1 and Pι(η) = 0. The Euler class of η then satisfies

(X(VX [S4]) = 1 mod (2). But (cf. [14, 20.10]) since Pl(η) = 0, <χ(η), [S4])

= 0 mod (2). This contradiction rules out A4(4) X ΩS17 and A6(4) X ΩS25 in

the case φ, are normal bundles and DE = Sn+ι.

E = G/H c Λf"+1 codimension 1 principal orbit. In the case of a group

action G X M -> M of cohomogeneity one the decomposition theorem of

Mostert [16] asserts that: Either all orbits are principal and M -> M/G = Sι

is a fibration or there are exactly two exceptional orbits Bo = G/K, Bι = G/L

with H c K, L c G. In the first case i 7 - {pt}. In the second Mostert's

theorem gives linear actions of K and L on Euclidean discs Dk+1, Dι+ι with

Sk = K/H, Sι = L/H and

M = (GXκD
k+ι)\J G/H(GXLDL+ι).

This exhibits M as the double mapping cylinder of the maps φ0, φ x: G/if ->

G/K9 G/L.

Now by applying 4.5(iv) to the Sullivan models for the fibrations

G/K * G/H > G/L

I i

we may replace the projections G/H -> G/K, G/L by the maps BH -> Bκ, BL

of classifying spaces. In particular the group G is irrelevant.

Let i/°, K°, L° be the connected components of H, K, L containing 1.

The universal cover of H°(K°, L°) is a product of H(K, L) and a Euclidean

factor, where H(K, L) is a compact simply connected semisimple Lie group. In

particular H -* H, K -> K, L -> L are homotopy equivalent to the universal

covers of H°, K°, L°. It follows that BH, BK, BL are the 2-connected

Postnikov fibers of BH, BK, BL.

To rule out AΛ(A) X ΩS17 and A6(4) X ΩS25 we need only consider the case

K/H = L/H = S4. But then π^BH) -» TT^BK), π^BL) is an isomorphism

for / = 1,2. In particular the double mapping cylinder for BH° -> BK°, BL°

is the universal cover for that of BH -> BK, BL. This, together with Lemma

4.5(iv), applied to the Sullivan models for the fibrations

BK < BH ^ BL

i i I

BK° « BH° > BL° ,
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allows us to reduce to the case H, K, L = H, K, L are 1-connected
semisimple and compact.

In particular, each group is a product of simple factors. Moreover, because
K/H = L/H = S4, H is maximal in K and L and has the same rank [3]. If
some factor of H is also a factor of K and of L it can be split off without
affecting the cylinder fiber. It follows now from [3] that once this process has
been completed the only possibilities for H, K, L are as given in the Table
6.11. Since neither of the exceptional cases appear in the right-hand column we
are done.

TABLE 6.11

s3

S3X

s3

X

s3

H

X

S3

X

S3

X

S3

s3

X S3

K

Spin 5

Spin 5 X S 3

Spin 5 X S3 X S3

S3

S3 X

L

Spin 5

X Spin 5

S3 X Spin 5

Q homotopy of F

S4 X ΩS 5

A4(4) X QS13

S4 X S4 X QS9
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