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THE HEAT EQUATION SHRINKS EMBEDDED
PLANE CURVES TO ROUND POINTS

MATTHEW A. GRAYSON

One can shorten a smooth curve immersed in a Riemannian surface by

moving it in the direction of its curvature vector field. This process is known

by many names, including "Curve Shortening," "Flow by Curvature," and

"Heat Flow on Isometric Immersions." While this flow is defined by local

information, it has many subtle and mysterious global properties. Even when

the curve is immersed in the Euclidean plane, the global behavior is very

difficult to analyze. Most striking are the facts that a convex curve shrinks to a

point, becoming round in the limit, and that, in the absence of singularities,

embedded curves remain embedded. We will add to this list the fact that

embedded curves become convex without developing singularities. This fact

completes the proof of the conjecture that curve shortening shrinks embedded

plane curves smoothly to points, with round limiting shape.

The Main Theorem. Let C( ,0): Sι -> R2 be a smooth embedded curve in

the plane. Then C: Sι X [0, T) -> R2 exists satisfying

(*) dC/dt = K N,

where K is the curvature of C, and N is its unit inward normal vector. C( ,t) is

smooth for all t, it converges to a point as t -> Γ, and its limiting shape as t -> T

is a round circle, with convergence in the C°° norm.

A more visual description of this flow is the evolution of elastic bands in

honey. If the tension in the elastic is kept constant, then its behavior is

determined (approximately) by equation (*). For a discussion of this problem

in its most general setting, the reader is referred to [5].

For the case where the initial curve is convex, this theorem was proven by

M. Gage and R. Hamilton in [5].
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G. Huisken [6] generalized it to convex hypersurfaces in Rn flowing via mean

curvature. In higher dimensions, it is generally agreed that the Main Theorem

is false for nonconvex embedded hypersurfaces. A barbell with a long, thin

handle develops a singularity in the middle in short time.

§1 contains useful formulas and analytic preliminaries, many of which

appear in [5]. In particular, we will prove the long-term smoothness of

solutions given bounded curvature.

§2 contains the proof of the nonexistence of corners. This theorem, due to

Richard Hamilton, is a generalization of a similar theorem in [5]. It states that

if the curvature blows up anywhere, then it does so along an arc which has a

total curvature of at least π.

§3 contains the proof of the δ-whisker lemma, which is an important tool in

the proof of the Main Theorem. It says that, under certain conditions, the

curve cannot get too close to itself.

§4 begins the proof of the Main Theorem. There are three principal cases. In

this section, we show that spirals do not collapse, and that curves which shrink

to a point become convex. These are precisely the cases where the curvature is

blowing up along arcs which turn through more than π.

§5 deals with the last case, that of curves which have curvature blowing up

on arcs which turn through exactly TΓ. In the end, everything has been ruled

out, except the case of a curve becoming convex before it becomes singular.

The Main Theorem then follows from the results in [5].

My thanks go to Herman Gluck for introducing me to this problem, to

Daryl Cooper, Chris Croke, Charlie Epstein, and Mike Gage for many helpful

discussions, to the Mathematical Sciences Research Institute, where much of

this work was done, for providing a fantastic research atmosphere, and

especially to Richard Hamilton for immense help in formulating careful

statements and complete proofs, as well as for supplying Theorem 2.1.

1. Equations and existence

Throughout this section, we assume that C: Sι X [0, T) -> R2 is a family of

smooth curves satisfying the evolution equation (*). We will usually denote

C( , t) by C(/), with the understanding that C(t) is a curve in the plane. We

start with the statement of short-term existence.

Theorem 1.1 [5]. Let C( ,0) be a smooth, embedded closed curve in the

plane R2. Then C: Sι X [0, ε) -> R2 exists satisfying equation (*). Furthermore,

C( , t) is smooth and embedded.
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We actually have more than smoothness after time 0. E. Calabi has shown

that, for very general initial conditions, the solutions are analytic for positive

time.

Theorem 1.2 [2]. Let C(0) be a piecewise C 1 plane curve, with the property

that there is an ε > 0, such that the tangent direction to the curve changes by less

than π along any arc of length ε. Then the solutions C(t) of equation (*) exist for

short time, and are analytic for t > 0.

The proof uses standard techniques in the theory of analyticity of solutions

to strictly parabolic equations. Thus we can, without loss of generality, assume

that the initial curve is analytic. For the proof of the Main Theorem, we need

only the fact that the curve has a finite number of inflection points for all

positive time. If you like, add this requirement to the hypotheses of the Main

Theorem.

In the next three lemmas, we show that C(t) remains smooth and embedded

as long as its curvature remains bounded.

If we parametrize the curve in such a way that points are moving by their

curvature vectors, then we can calculate the derivatives of curvature with

respect to time and arc-length. Since arc-length is not preserved under this

flow, the variables s and t are not independent.

Lemma 1.3 (Lemma 3.1.6 in [5]). The evolution of curvature with respect to

arc-length is given by

3κ 3 2 κ -,

9 ' ds2

Lemma 1.4 (Lemma 3.1.3 in [5]). The time and arc-length derivatives do not

commute, as motion normal to the curve affects arc-length. The relation is

dt ds ds dt ds'

Lemma 1.5. Suppose that K is bounded for t e [0, / 0 ) . Then for some ε > 0,

C(t) exists and is smooth for t e [0, t0 + ε).

Proof. Using Lemma 1.4, we get

dt [ ds J 3 s 2 L 3s J L 9s

L though t and s are not independent variables, this equation bounds the

rate of growth of the derivative of /c to exponential. Therefore, it is bounded

for all finite time. In general, repeated applications of Lemma 1.4 yield

^ U ~ ^ = — ^ + ( " + 3 ^ 2 ^ + previously bounded terms.
9α9*"J ds
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Thus the nth derivative of K grows no faster than exponentially. Lemma 1.3

now shows that the time derivative of K is bounded, so the curve converges as

/ -> t0. Similarly, C(t0) is smooth. Therefore, by Lemma 1.1, C(t) exists and is

smooth for some further short time, q.e.d.

Bounded curvature not only implies that a smooth curve remains smooth, it

also implies that an embedded curve remains embedded.

Lemma 1.6 (Theorem 3.2.1 in [5]). // K is uniformly bounded for a collection

of evolving C(t), / G [ 0 , / 0 ] , and if C(0) is embedded, then C(t) is also

embedded for t e [0, t0].

We now prove some of the properties of evolving curves in the plane.

If we consider the curve in cartesian coordinates, and require that points

move to fix their jc-coordinates, then we get a different flow with the same

point-sets as solutions, but different time-derivatives for curvature. We use ' to

denote differentiation with respect to x.

Lemma 1.7. Choose cartesian coordinates in R2 so that C(t0) is locally a

graph. Then the evolution of y fixing x is given by

*y y"

3' l+y'2'

In addition, θ(x,t)= t&n~l(y'(x,t)) and κ(x,t) also evolve by equations

which are strictly parabolic when \y'\ is bounded, namely

dθ = β" 9/c = K " 3

dt ~ i + y<Ί' 3/ " i + yΛ
 + K '

Proof. The speed of the curve in its normal direction is K. The correction

term for vertical speed is sec(0),

Λ y"

The formula for the evolution of y follows.

For the evolution of θ we differentiate the above formula for the evolution

of y to obtain

3/ [/]" 2y'y"2

* l+y'2 [l+y'2}2'
An application of the chain rule yields the desired formula.

For the evolution of K, we can either start from Lemma 1.3 and correct for

the difference between the normal flow and the vertical flow, or we can find

the evolution of y" and substitute the formula for curvature in cartesian

coordinates. In either calculation, most of the terms drop away and we are left

with the desired formula.
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Lemma 1.8 [7] (The Maximum Principle). Suppose that F(x,t): [0, ε] X

[/0, t0 + ε0] -> R and that

(i) the evolution of F with respect to t is governed by a strictly parabolic

differential equation.

(ii) F(x, t0) > 0, but not = 0.

(iii) F(0, 0 > 0, F(ε,t)>0.

Then F(x, t) > 0 for x e (0, ε) am/ ί e (ί 0, /0 + ε].

For every application of the Maximum Principle in this paper, condition (i)

is either automatically satisfied, or it is equivalent to a bound on yf.

Lemmas 1.7 and 1.8 have many important implications for the evolution of

the quantities y, θ, and K.

Lemma 1.9. (i) For a given choice of cartesian coordinates, local minima for

y, θ, and K increase with time, local maxima decrease, and terrace points for y

and θ disappear instantaneously. Furthermore, the points of the curve where local

maxima and minima for y, θ, and K are realized vary continuously with time.

(ii) //, for some choice of cartesian coordinates, yf is uniformly bounded on

the subset a(t) = C(t) Π (R2 I x e [0, £]), then a(t) cannot converge to the

x-axis from one side infinite time.

(iii) The total curvature of an arc connecting two isolated inflection points is

strictly decreasing with time. In fact, the θ-intervals of tangent directions to such

an arc strictly nest with time.

(iv) When an even number of isolated points of inflection meet, the resulting flat

point on the curve disappears instantaneously.

Proof. When applying the Maximum Principle to these equations, we

should be slightly cautious, for the equations are not linear. We get around this

by observing that we have a smooth solution, so if we know that the coefficient

of F" is bounded away from zero (in all cases, this is equivalent to saying that

y' is bounded), then we can fix that coefficient to obtain a linear strictly

parabolic equation which the original solution happens to satisfy. Compare

with Lemma 3.4.

In all cases but (ii), where we assume that y' stays bounded, we know that

the curve exists for some further time, so there is no problem choosing

coordinates which guarantee that yr stays bounded for some short time. Cases

(i) and (ii) now follow from Lemma 1.7 and 1.8. Cases (iii) and (iv) are

immediate consequences of (i). q.e.d.

We add two more lemmas which will be useful later:

Lemma 1.10. The time derivative of the area bounded between the curve, the

x-axis, and two vertical lines is given by f Kds over the part of the curve bounding

the region.



290 MATTHEW A. GRAYSON

Proof. Differentiate under the integral sign:

dA d rb , rb y" , rb
ds.

q.e.d.
Note that / K ds is just the difference in the angles of intersection of the

curve with the two vertical lines. As a consequence, we get the formula for the
time derivative of the area of the whole curve.

Lemma 1.11 {Lemma 3.1.7 in [5]). The time derivative of the area enclosed

by the curve is a constant —2π.

2. The nonexistence of corners

The next step is to show that the curvature cannot become unbounded
unless it does so on an arc which turns through an angle of less than π. The
argument is a generalization of the integral and pointwise estimates in [5].

Suppose that C(t) is an evolving family of curves. Following [5], we make
this

Definition. Let κ(t) = sup(ft: \κ\> b on some subarc of C(t) which has

total curvature π}.

Theorem 2.1 (Hamilton). If ϊc(t) is bounded for / e [ 0 , Γ ) , then K is

uniformly bounded on the same time interval.

Proof. Let θ denote the angle which the tangent to the curve makes with a
fixed line. Away from the inflection points, θ is a good local coordinate.
Throughout the proof of Theorem 2.1, ' will denote differentiation with respect
to0.

If κ(t) is bounded, then let K be an upper bound. Let a(t) be a subarc of
C(t) which connects consecutive inflection points. By Lemma 1.9, the end-
points of a(t) evolve continuously for all except a finite number of times. Let
R(t) be the subset of a(t) on which κ> K. Clearly, R(t) avoids inflection
points. Since the 0-ranges of an arc connecting inflection points form a nested
sequence of intervals, we may parametrize R(t) by θ. If necessary, choose K to
be a regular value for curvature in the (0, ί)-plane. We will need three lemmas
from [5].

Lemma 2.2 (Lemma 4.1.3 in [5]). Let a(t) be a family of subarcs of C(t)
satisfying K > 0 on the interior of a(t). Let θ denote the angle that the tangent to
a makes with a fixed line. Then the evolution of K fixing θ is given by

όt
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Lemma 2.3 {Lemma 4.3.3 in [5]). Let f(θ) be a function defined on an

interval [a, b] such that \a - b\ < π, andf(a) = f(b) = 0. Then

fhf(θ)2-f'(θ)2dθ^0.
* SI

Lemma 2.4 (Lemma 3.1.2 in [5]). The time derivative of the length L(t) of

C(t) is given by

d L = _
JC(t)

dL r 2— = - / κzds.
dt Jrit\

We are now ready for the first integral estimate.

Proposition 2.5. With the hypotheses of Theorem 2.1, the integral

/.R(t) K
dθ

is bounded for t < T.

Proof. At time t, R(t) is a countable union of intervals. Using the

formulas for evolution yields

9

, = 0
K

dθ

00 O L

ί = 0 θ ί K

The two sums are zero for K = K on the boundary of R.

Integrating by parts, we get

00

[ κκ" + κ 2 d θ = [ κ2-κ'2dθ+ Σ
JR(t) JR(t) / = = o

The last term above is negative, for K' is > 0 at ai and < 0 at bt. So

f κ/cr/ + /c2Jί < f κ2 - κ'2dθ.
JR(t) JR(t)

We now use Lemma 2.3 on the function f(θ, t) = κ(θ, t) — K. Since R(t) is

composed of intervals of 0-length less than or equal to 77, we conclude that

RU)

Therefore, since

f fi-f'2dθ=( κ2- κ'2-2Kκ + K2dθ,
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R(t)
Kdθ.

R(t)

We estimate the right-hand integral as follows:

f κ d θ = f κ 2 d s < ( κ 2 d s = - ^ - .
jR(t) R(t) C(t) "t

The last equality uses Lemma 2.4. We conclude that

κ(θ,t)

K
dθ<-2κf.

dt

Integrating with respect to time yields

f Xo%

K-ψ>dθ<( log
JR(0)

κ(θ,0)

K
2K (L(0)-L(ή)

which gives the desired bound, q.e.d.

Next, we get Lp estimates for curvature.

Proposition 2.6. With the hypotheses of Theorem 2.1, and for p > 0, the Lp

norm of curvature is bounded for t < T.

Proof. We look at the time derivative for even powers of K:

9' Lit) at

-L p κ ^
JC{t) ds1

Note the use of Lemmas 1.3 and 1.4. Integrating by parts yields

-2p(2p - I ) κ 2 ' -

Now we restrict to the set where κ2p+2 > K and substitute dθ = K ds.

Since the first term above is negative and the length of the curve is bounded,

the above integral is bounded by

(2/7 - 1) f κ2p+1 - 2pκ2P-\κ')2dθ + cτ
JR(t)

for some constant cv

Setting F = κp + ι/2, we get

- »L F2-
8/7
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To get an inequality argument similar to Lemma 2.3, we need to pick K big

enough so that the set where F > K consists of intervals of length less than

π^/Sp /(2p + 1). The bound from Proposition 2.5 guarantees that this can be

done. As before, we get the inequalities

| - f κ2pds ^c2ί Fdθ + cλ < c2 f κp+3/2ds + cτ

0* JC(t) JR(t) JC{t)

for some constants cx and c2. For p > 3/2, this bounds the growth of the Lp

norm of K to exponential. Since C(t) is compact, the bound on the Lp norm

implies a bound for the Lp norm for all q less than p. This proves the lemma.

Now that we have a bound on the Lp norms of /c, we try to bound the L2

norm of the derivative of K.

Proposition 2.7. With the above hypotheses, the integral / C ( ί ) [dκ/ds]2ds is

bounded for t < T.

Proof. We differentiate with respect to time, and we use the formula for

interchanging the order of the derivatives:

κ \T~ \ ds

[d \

_3_ r [ ^ . l 2 ^ = f Ί\ — 1 — f — 1 - 2f —
dt Jc(t) i d s \ J C ( ί ) L 3 ^ J 9/ L ds J L 3 ^

= /• 2[-i-[-i+κ

2[-i
^C(t) [ds \ ds [ dt \ [ds \

Integrating by parts twice gives

[ dκ]2 j r
T~ ds = IJC(I)

By Proposition 2.6, we can find a # such that

f 2 2

where L is the length of the initial curve. On the part of the curve where

K < K, we estimate

where K > K, we estimate

7 κ 2 U - Ids < 7 s u p U - / κ 2 ί f e < τ s u p U
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The supremum of a function which is somewhere zero is less than or equal to

the integral of the absolute value of its derivative. Using this and the Holder

inequality, we get

S U P h ί 7
ds2

ds ds.

Combining terms, we see that the growth of the integral in question is at most

exponential with exponent IK. q.e.d.

Proof of Theorem 2.1, continued. Since we are assuming that the curve C(t)

is not convex over the time interval in question, /c = 0 somewhere on the curve.

Therefore the supremum of curvature is bounded by

s u p ( κ ) < ( ^ ώ<L+ f l l ^ Γ
Jcu) o s C(t) L os i

ds

which is bounded by Proposition 2.7.

3. The δ-whisker lemma

The δ-whisker lemma is an important tool in the proof of the Main

Theorem. It prevents the curve from getting too close to itself along subarcs

which turn through at least π.

Consider the curve C(t) in the plane with a choice of cartesian coordinates.

We can label each critical point of the height function, y(s), with a "plus" or a

"minus," respectively, depending on whether the interior of the curve lies

below or above the critical point. Alternatively, we can orient the curve, and

assign "plus" to critical points where the tangent vector to the curve points to

the left, and "minus" where it points to the right (see Figure 1).

+ ̂
4-

FIGURE 1. C(t) with critical points labelled.
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In these fixed cartesian coordinates, the curve is a union of graphs of

functions. These functions can be labelled plus or minus in the same way as the

critical points. From Lemma 1.9, we know that local maxima move down, local

minima move up, and that terrace points disappear instantaneously. Critical

points are never created, for the height difference between adjacent maxima

and minima is always decreasing. Furthermore, the domains of the functions

defining C(t) are monotonically nesting with time. Also, from Lemma 1.9, we

know that the positions of the critical points are varying continuously. These

facts have the following implication.

Lemma 3.1. A given critical point at time t0 may be followed continuously

backwards in time to a critical point on the initial curve.

Proof. In forward time, sometimes an adjacent pair of critical points will

cancel, but sometimes three or more critical points will combine to make one,

as when a nonconvex curve becomes convex. In the latter case, as we follow a

single critical point backwards in time, it may split into several. We choose any

one of them.

Definitions. By a subarc of C(t), we mean a family of arcs, a(t) c C(t),

such that the endpoints of a(t) vary continuously in the plane. A subarc a(t0)

of C(t0) is nice with respect to a vector v if the tangent vectors which point

inwards at the endpoints of a(tQ) both point in the same direction as v. Note

that if we make v horizontal, then the endpoints of a(t) are critical points with

labels of opposite sign.

We now prove the very useful δ-whisker lemma.

Lemma 3.2. Given C(0) smooth, then there is a δ > 0 such that if

(i) C(t) exists fort < T,

(ii) ot(to) is a nice subarc of C(t0) for some t0 < t,

(iii) L is a line segment of length 8, based at a point p on oί(t0), such that L

points in the same direction as the inward pointing tangent vectors to the

endpoints of a(t0),

then L is disjoint from β(t0) = C ( / 0 ) \ α ( / 0 ) (see Figure 2).

Furthermore, if ^ ( / Q ) and « 2(/ 0) are disjoint nice subarcs of C(/o), then any

two line segments, Lx and L2 satisfying condition (iii) for α ^ o ) and α2(*o)

respectively, are disjoint.

Proof. By following the endpoints of a(t0) backwards in time, we can find

a family of subarcs a(t), 0 ^ t < t0, which evolve into a(t0), and where each

a(t) connects a continuously varying + critical point to a continuously

varying — critical point.

Break the curve C(t) into the two pieces: a(t) and its complement β(t) =

C(t)\a(t), and start translating them horizontally away from each other. Let
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d(t) be the maximum distance, possibly infinite, which the arcs can be

translated before they touch each other.

Lemma 3.3. d(t) is a nondecreasing function.

Proof. Suppose d(t) were realized at an interior point for both a(t) and

/?(/). In this case we show that d(t) would be increasing due to the following

lemma and the fact that translation commutes with evolution.

This lemma is a generalization of Lemma 1.9, but it requires the added

hypothesis of a bound on the second derivative of the solutions. It states that

two tangent arcs which do not cross separate instantly.

Lemma 3.4. Let yΎ(x, t) andy2(x, t) be functions whose graphs evolve by (*)

for x G [0, ε], t G [tl912]. Suppose that they satisfy the following:

(i) \y!\, \yΓ\ are bounded, i = 1,2.

(ii) y2(x, tλ) > yλ(x, tλ\ but not = .

(iii) y2(0, t) > ^(0, t\ y2(ε, t) > ^(ε, /).
Theny2(x, t2) > yλ(x, t2) for x e (0, ε).

Proof. Here, again,' denotes differentiation with respect to JC.

Consider the operator

1 1 1 ,„

By hypothesis, D is strictly parabolic. A straightforward calculation using

Lemma 1.7 shows that D(y2 — yγ) = 0, so the Maximum Principle applies,

proving the lemma.

Now consider the case where d(t) is realized at an endpoint of either a(t) or

β(t). By Lemma 1.9, we know that the endpoints of a(t) and β(t) are not

FIGURE 2. The δ-whiskers.



THE HEAT EQUATION 297

inflection points for any t < t0. Therefore, C(t) does not cross the tangents to
the endpoints of a(ί) and >S(/) in some neighborhood of the point of tangency.
Thus, for example, if ά(t) is a translate of a(ΐ) by some fixed amount d, which
is tangent to an endpoint of /?(/)> then the two arcs C(t) and ά(ΐ) are tangent,
but do not cross. Therefore, the previous lemma applies, the curves are
separating, and the maximum translation distance before intersection in-
creases. The same holds true if the endpoint of the translate a(t) by d is
tangent to the endpoint of β(t) (see Figure 3). In every event, d(t) is
increasing, q.e.d.

/HO
a(t)

FIGURE 3

Let a^to) and a2(tQ) ^ e t w o disjoint subarcs of C(t0) which are nice with
respect to the unit vectors υλ and υ2, respectively. We can follow the endpoints
of α, (/0) backwards in time to obtain families of nice subarcs αf (0 The αy(0
are disjoint: If υλ and υ2 are not parallel, then the endpoints of at(t) have
different tangents, and thus cannot evolve continuously past one another. If υx

and v2 are parallel, then we observe that disjoint critical points never collide in
backwards time, for that would entail the creation of new critical points in
forwards time, which is impossible by Lemma 1.9.

Consider translation of ax(t) and a2(t) in the directions of the inwards
pointing tangent vectors to their endpoints. Let d12(t) be the maximum
distance which the two curves can be moved before one of them bumps into
either the curve C(t)\{a1(t) U a2(t)}, or some translate of the other curve by
some amount less than or equal to du(t). dl2(t) is a monotonically increasing
function for the same reasons that d(t) was. Translation commutes with
evolution, and the first contacts are always at points of tangency where the
curves do not cross. Therefore they are separatng, and at any later time, the
arcs may be translated a little further.

Let δ be the minimum over all choices of disjoint nice aλ(0) and α2(0) °f
du(0). The lemma follows immediately.

As an application of the δ-whisker lemma, we prove that if a curve shrinks
to a point, then its curvature is bounded away from — oo. First we need a
lemma similar to Theorem 2.1. While Theorem 2.1 prevents the curvature from
blowing up unless it does so on some arc which turns through at least TΓ, we
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can say something about the curvature on a subarc of the curve connecting
inflection points, regardless of the behavior of the rest of the curve.

From Lemma 1.9, we see that the position of an inflection point varies
continuously until it disappears. Let p(t) be a continuously varying point on
C(t) with the property that K > 0 at p(t) for all / greater than some t0. Let
a(t) be the maximal subarc containing p(t) such that K > 0 restricted to a{t).
The endpoints of a(t) vary continuously, except for a finite number of times
when the endpoints of a(t) may jump outwards, including a larger arc. From
Lemma 1.9, the total curvature of a(t) is decreasing where it is continuous.

Lemma 3.5. Given C(0), there is a constant K, such that if K > K at a point
p0 of C(t0), then the maximal positive curvature subarc a(t0) containing p0 has
total curvature > π. In particular, a(tQ) is nice with respect to the inwards
pointing tangent vectors at either of its endpoints.

Proof. First consider a time interval when the endpoints of a(t) are
evolving continuously. The total curvature of a(t) is then a strictly decreasing
function of time. We may then consider the function κω which is the maximum
of K restricted to a(t) at the time when the total curvature of a(t) is ω.

Lemma 3.6. κm bounded implies that κω is bounded for all ω < π.
Proof. By Lemma 1.3, a maximum of /c can grow no faster than its cube, so

we know that for some ε > 0, κω is bounded for ω > π — 2ε.
Lemma 3.7. Let <x(t) c C(/), tλ < t < t2, be any continuously varying

subarc connecting isolated inflection points. Suppose that the total curvature of
a{tλ) is < 77 — 2ε. Let κt denote the maximum of curvature on a(t). Then
κt < /c,/sin(ε).

Proof. Parametrize the curve by θ and /. By the hypotheses, the function
F(θ) = κt - sin(0)/sin(ε) is strictly greater than κ(θ,t1) over the interval
θ e [ε, IT — ε]. F(θ) is the curvature of the parallel translating curve known as
the "Grim Reaper." It is the graph of the function c y = Log(sec(c x)). By
Lemma 2.2, F{θ) is stationary under evolution. By hypothesis, the range of θ
on a(t) is monotonically decreasing, and so is contained within [ε, π — ε] for
all tx < t < t2. Since K is zero at the endpoints of a(t), the Maximum
Principle prevents the graph of κ(θ, t) from crossing the graph of F(θ) for any
t > tv q.e.d.

This completes the proof of Lemma 3.6.
Proof of Lemma 3.5, continued. Each time the total curvature of an arc

connecting inflection points drops below π, we have a bound on the maximum
of its curvature. At a finite number of times, however, two or more arcs may
fuse to make a single arc with total curvature greater than m. Let K be the
maximum of the bounds obtained in this fashion. Lemma 3.5 follows. This is
where we use the finite number of inflection points hypothesis most strongly.
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Lemma 3.8. Suppose that C(t) shrinks to a point ast^T. Then there is an

M > - co such that κ(-,t)> Mfor all t < T.

Note. We are using the convention that a strictly convex curve has /c > 0 and

an inward pointing normal vector.

Proof. If K -> - o o , then, by Lemma 3.5, for all t greater than some t0,

there is an arc a(t) which has total curvature greater than or equal to π and

K < 0. By Lemma 3.2, there is a δ-whisker tangent to the endpoints of this arc

for all t0 < t < T which meets C(t) at only one point. If K is negative on the

arc, then the δ-whisker lies inside the curve, contradicting the hypothesis that

the curve shrinks to a point, q.e.d.

Note. If a nice arc has total curvature exactly π, then the δ-whisker based on

that arc intersects the curve only at its base point.

We can say even more about a curve which shrinks to a point.

Lemma 3.9. Suppose that C(t) shrinks to a point as t -> T. Then the C(t) is

convex in the limit, in the sense that its total curvature converges to 2π.

Proof. If the total curvature of the curve is bounded away from 2ττ, then it

contains a subarc whose total curvature is bounded away from zero, but on

which K is negative. Since this arc is eventually contained in an arbitrarily

small ball, the minimum of its curvature must converge to - c o . This con-

tradicts Lemma 3.8.

4. The Main Theorem—Part I

Or, spirals do not collapse, curves that shrink to points become convex, and

embedded curves keep bounded isoperimetric ratios.

The Main Theorem. Let C( ,0): Sι -> R2 be a smooth embedded curve in

the plane. Then C: Sι X [0, T) -> R2 exists satisfying

C( , t) is smooth for all t < T, and there is a t0 < T such that, for t > t0,

C( ,t) is smooth and convex, so it shrinks to a round point nicely via [5].

Proof. By Lemmas 1.5, 1.6, and 1.11, it is sufficient to show that the

curvature K remains bounded while C( , t) has inflection points.

Let ω be the supremum of all angles ω such that for any ε > 0, there is a

t0 < T such that some subarc β(t0) of C(t0) has the following properties:

(i) the total curvature of β(t0) is co,

(ii) the diameter of β(t0) is less than ε,

(iii) K restricted to β(t0) is either less than K or greater than -K, where K

is the bound from Lemma 3.5.
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The third condition guarantees that an arbitrarily large percentage of the

total curvature of β(t0) comes from arcs without inflection points, all of whose

curvatures have the same sign.

By Theorem 2.1, we know that ω > π. Lemma 3.9 implies that, if the curve

shrinks to a point, then ω = 2π. In this event, we wish to show that the curve

first becomes convex. The remaining cases are:

I. ω > 7r, and the curve does not shrink to a point.

II. ω = 2ττ, and the curve does shrink to a point.

III. ω = 77.

Case I. This is the first case which one suspects will yield a counterexample

to the main theorem. A spiral with 109 5 turns is going to get quite close to

crushing the inflection point which is trapped in the middle. Surprisingly, it is

the easiest case to rule out.

Theorem 4.1. With the hypotheses of the Main Theorem, Case I does not

occur.

Proof. For any ε > 0, there is a t0 and an arc β(t0), such that the diameter

of β(t0) is less than ε, and the total curvature of β(t0) is ω, where ω is at least

(ω +τr)/2. Consider the outward pointing rays tangent to the endpoints of

β(t0). Either they cross, or one of them crosses β(t0). In either event, the

crossing must occur within a small neighborhood of the endpoints of β(t0)

(where small is equal to maxε, ε/(ω —π)). In other words, at least one

endpoint of β(t0) is on a collision course with C(t0), and by an amount

bounded away from zero. Since C(t0) is embedded, it must curve very fast to

avoid the suggested self-intersection. The hypothesis that the curve is not

shrinking to a point prevents the endpoints of β(t0) from being connected by a

short arc. To at least one side of β(t0), then, and intersecting this small

neighborhood, is an arc «(/0) which has curvature of large magnitude and sign

opposite to the prevailing curvature of β(t0). We may, without loss, extend

β(t0) until it contacts a(tQ) at a point of inflection. If ε is chosen sufficiently

small, then the magnitude of the curvature on a(t0) must exceed K. By

Lemma 3.5, the total curvature of a(t0) exceeds π, and so a(t0) must contain a

nice subarc adjacent to β(t0), hence there is a δ-whisker tangent to the

inflection point between a(t0) and β(t0) which points away from β(t0). Since

this whisker cannot intersect C(t0), and since "small" can be chosen smaller

than δ, we conclude that C(t0) must curve very sharply at the other end of

β(t0). By an identical argument, we conclude that there must be whiskers

tangent to both endpoints of β(t0), pointing away from β(t0). As has already

been mentioned, rays in these directions must intersect either each other, or the

curve C(t0) in some small neighborhood. By Theorem 3.2, δ-whiskers can do

neither (see Figures 4 and 5).
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δ-whisker

FIGURE 4. One of the rays tangent to the endpoints of β(t0) crosses β(to)

\ -^. ) \ δ-whiskers

δ-whisker

FIGURE 5. The rays tangent to the endpoints of β(t0) cross each other.

Case II. Since convex curves really do shrink to points, this case is very

difficult to control. We must show that the curve becomes convex before it

degenerates to a point. If the shape of the curve accumulates to some compact,

unit area curve, then our task is not so difficult. If the shape is unbounded,

then we must work harder. Happily, Lemma 3.8 keeps K bounded away from

— oo when the curve shrinks to a point. This is vital.

We may assume that C(t) is not convex for any t < T, or else we are done.

To study the possibilities, we need the notion of a continuous family of

re-expansions of C(t).

An evolving curve C(t) passes through a family of shapes. We can envision

another family C(τ) passing through the same shapes (up to homothety), but

at different speeds. For example, if C(0) = 5 C(0), then C(t) evolves at 25

times the speed of C(τ). To see this, consider that, where C(0) has curvature /c,

C(0) has curvature κ/5, and hence speed κ/5, but 5 C(t) moves at speed

5 K. Therefore, C(25 /) = 5 C(t).

By the same argument, we can choose T to be any monotonically increasing

function of ί, and we conclude that

=lϊj c(0.
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Example. The area preserving expansion. We know, from Lemma 1.11, that

the area enclosed by a curve decreases at the constant rate of 2ττ. Suppose that

the area enclosed by C(0) is exactly 277, and that C(t) shrinks to a point. Let

T = — ln(l — /). Using the above formula for C(τ), and the fact that the ratio

of the areas is the square of the expansion factor, we see that the area of C(τ)

remains constant. Note that C(τ) exists for all τ > 0.

Since the length of C(t) is always decreasing, it is possible to choose a

different r so that the length of the expanded curve is kept constant.

Suppose that C(t) converges to a point as t -> T, but it is never convex.

From Lemma 3.8, we know that K must be bounded away from -00. For

C(τ), the area preserving expansion of C(t\ then, there are two possibilities.

Either the diameter of C(τ) converges to infinity, or it does not. In the latter

case, some sequence of expansions of C(t) converges to a (not strictly) convex

curve of bounded diameter, for the set of curves of fixed area, bounded

diameter, and bounded total curvature is compact.

Theorem 4.2. There is no evolving family C(t) shrinking to a point which

admits an expansion C(τ) such that:

(i) some subsequence C^) converges to a convex curve of bounded diameter

and of area = 2 77,

(ii) C(τf ) is not convex for any T, < 00.

Proof. Since C(t) is shrinking to a point with curvature bounded away

from — 00, the total curvature of the arcs where /c < 0 must be going to zero.

Therefore, there is, up to multiples of TΓ, a unique direction tangent to every

arc of negative curvature for all T. It is easy to see that all arcs of negative

curvature must eventually lie parallel to a single line, for otherwise, by Lemma

3.6, large ^-portions of C(t) would have bounded curvatures. Choose cartesian

coordinates so that this direction is parallel to the c-axis. Now note that there

is an M > 0 such that for any ε > 0, we can choose a τf and cartesian

coordinates such that \x\< M/2 and y > -ε everywhere on C^T,), and C{rt)

has a horizontal tangent at the origin at a point of negative curvature.

The argument, at this point, is to observe that C(η) is contained in a large

convex basket with nearly positive ^-values. The evolving basket will soon have

strictly positive ^-values, and so, then, will C(τ). This contradicts the curva-

ture assumptions on C(τ), proving the theorem.

Definition. An (ε, M)-basket is a convex curve B satisfying:

(i) y > — ε on B.

(ii) I/I < 1 on B for x e [-M, M].

(iii) y > 1 on B for x = ±M.
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Lemma 4.3. Given M > 0, there is a function /(ε) such that if B = B(0) is
any (ε, M)-basket, then for all t > /(ε), B(t) has strictly positive y-coordinates.
Furthermore, f(ε) decreases to zero as ε -> 0.

Proof. For some short time t < t0 on B(t), ya < 2 for x in the interval
[-M,M]. By Lemma 2.6

r\ f f

γ t > \ f o r * e [ - M , M ] , ί < / 0 .

The lemma follows by comparison with solutions to the heat equation with
boundary conditions y = -ε for χ e [ - M , M ] , t = 0, and j> = 1 for x =
±M. q.e.d.

With M as above, choose τi and its corresponding ε so that /(ε) <
min(/0,1/2) seconds. If we suspend the expansion process, then we know that
C(τ) will exist for another full second, i.e. for all T < T, + 1. On the other
hand, the evolving (ε, M)-basket containing C(τ) will have positive y-values in
/(ε) seconds. Before C(τ) can shrink to a point, then, it will have strictly
positive ^-values. By hypothesis, the curvature at the horizontal tangent to
C(τ) stays negative. By Lemma 1.9, the j -value at that tangent must be strictly
decreasing, contradicting the fact that y is soon strictly positive, q.e.d.

Now suppose that the diameters of the C(τ) with fixed area converge to
infinity. The fact that curvature is bounded away from minus infinity implies
that C(τ) must be straightening out, in the sense that the length preserving
re-expansion must be close to a line segment for all large T. The problem is to
show that the shape of the curve is converging to a line segment with some
fixed direction, and is not rotating. We know that there is a unique direction
parallel for all time to the subarcs of C(t) of negative curvature. Choose this
direction for the x-axis. We now show that the shape of the curve is converging
to a horizontal line segment.

Lemma 4.4. // the length of C(τ) converges to infinity, then the length
preserving expansion of C(t) converges to a line segment parallel to the x-axis.

Proof. As in Theorem 4.2, arrange each C(τ) so that it has a horizontal
tangent at the origin at a point where K < 0. If there exists an M > 0 such that
for any ε > 0, we can find a τ such that the unit area C(τ) is contained in an
(ε, M)-basket, then we are in the same situation as the last part of Theorem
4.2, i.e. the curve becomes convex before it can shrink to a point. Thus for any
values of M and ε, we know that the unit area (and therefore very thin) curve
C(τ) intersects both the origin, and some point (JC0, y0), where x0 = ±M and
— ε < j>0 < 1. Remember that the total curvature of C(τ) is converging to 2ττ.
So if we rescale by a factor of 1/L, we have a nearly convex curve of area
1/L2, connecting the origin to a point distance « 1 away within 1/L of the



304 MATTHEW A. GRAYSON

jc-axis. If the shape of C(τ) is close to that of a line segment, then the line

segment must be approaching horizontal.

Theorem 4.5. There is no evolving family C(t) whose length preserving

expansion C(τ) converges to a line segment.

Proof. Suppose not. By Lemma 4.4, we can choose coordinates so that

C(t) converges to the origin, and C(τ) converges to a horizontal line segment.

Since K is bounded away from - oo, and the diameter is going to zero, the total

curvature of the negatively curved arcs must be going to zero. Therefore, C(t)

cannot double back to itself. So for t sufficiently close to T, C(t) is the union

of two graphs, yλ(x, t) and y2(x,t), both defined on the interval x^

[a(t\b{t)].

Lemma 4.6. Let w(t) = b(t) - a{t\ and let Iε(t) = [a(t) + εw{t\ b(t) -
εw(t)]. For all ε > 0, there is a t0 < T, such that for all t > t0 and for all
x e Iε{t\

(i) |j>/(*, 01 < ε
(ii) h(x, t) = yx— y2 has a unique local maximum.

b(t)-ε(b-a)

FIGURE 6

Proof. Condition (i) follows from the fact that, away from the ends, the

curve is approaching a line segment. Uniform convergence follows from the

fact that the expanded negative curvature is going to zero. This implies that the

total curvature of the curve a bounded fraction away from the ends is

converging to zero. The restriction on yr follows.

Consider the thickness function h{x, t) = yx — y2. For t sufficiently close to

Γ, h can have no local minima in its interior, for, by Lemma 3.4, h would be

increasing at such a point, and h is converging uniformly to 0. By Lemma 1.9,

no local minima can ever be created; the height difference between adjacent

minima and maxima is strictly decreasing.

Corollary 4.7. // the angle which a vertical line makes with the curve is less

than IT — ε, then the vertical tangent to the curve is less than ε w(0) away.

Proof. This follows from the bound on yf from Lemma 4.6, and the fact

that w is decreasing with time, q.e.d.

For C(τ) to approach a line segment, it is necessary for the ratio of its

thickness to its width to appraoch zero. We define the width of C(t) by
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w(t) = b(t) — a(t). To define the thickness, we take the average of h(x,t)

over the interval [a(t), b(t)]9 that is we define H(t) = A(t)/w(t), where A(t)

is the area enclosed by the curve. (Of course, by Lemma 1.11, A(t) = 2π -

(T — t).) So for the shape of C(t) to approach a line segment, it is necessary

that H(t)/w(t) converge to zero, or equivalently, that A(ΐ)/w2(t) converge to

zero. This quantity actually converges to 4 divided by the standard isoperimet-

ric ratio, so we are really saying that the isoperimetric ratio must converge to

infinity.

The purpose of the average is to avoid difficulties with the possible nonuni-

form convergence of K to zero in the center section. Because of the small total

curvature, the average of K over any fixed interval must converge uniformly to

zero.

Note. In [3], M. Gage mentioned that, for a particular shape of curve, the

isoperimetric ratio, L2/A, did not improve. His example, however, had a local

minimum for the thickness function in its interior. We will show, essentially,

that the isoperimetric ratio improves for curves which are successfully shrink-

ing to points, for they are eventually devoid of internal minima for thickness.

We use the property of no internal minima only to obtain the estimate in the

next lemma. It is both surprising and crucial.

Lemma 4.8. Suppose that h(x, t0) has no internal minima. Let qλ and q3

(for first and third quartile) be the x-coordinates of the vertical lines which

separate C(t0) into three pieces, the left and right ones having 1/4 each of the

total area, and the center piece 1/2 of the total area. Then q3 — qx < (2/3)

w(t0).

Proof. Let q2 be the x-coordinate of the vertical line splitting C(t0) into

two equal area pieces. The vertical lines through qv q2, and q3 divide the curve

into four equal area pieces. Call these pieces Pl9 P2, P3, and P 4, and call their

widths wv vv2, w3, and w4. The maximum thickness, λm a x, of C(t0) is realized

either in one of the end pieces, or in one of the central pieces. Suppose that

Am a x is realized in Pv Then, since h decreases as we move through the other

P's, we conclude that w2 < w3 < w4. q3 — q2 is just w2 4- w3, so the lemma

follows in this case, for

w2
§(w2 + w3 4- w4) < f(wλ + w2 + w3 4- w4).

Suppose that /zmax is realized in P2. Normalize so that the four pieces have

unit area. Divide P2 into two pieces at the maximum thickness. These pieces

have areas Ax and A3, and widths w21 and w23. Let hγ and h3 be the thickness

at the left and right endpoints, respectively, of P2. Note that:

h < hx on w1? h > hx on w21, h ^ h3 on w3, h ^ h3 on w23.
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Therefore, we have

w2l < Aλ/hl9 wλ > l/hl9 w23 < A3/h3, w3 > \/h3.

Hence,

w21 < Aλ - wλ and w23 < yl3 w3.

Using ^ < 1, A3 < 1, and, as before, w3 < w4, we get

w2 4- w3 = w21 + vv23 4- w3 < ̂  wλ 4- Λ3 w3 4- w3 < 2 wλ 4- 2 w4,

which implies that 3 (w2 4- w3) < 2 (w2 4- w3) H- 2 (wx + w4). The lemma

follows.

Now blow up the curve until its area is 2ττ, reset time to zero, and fix the

positions of qγ and q3 so that they divide the curve into pieces of area ττ/2, TΓ,

and π/2 at time zero only.

The idea of the proof is to show that the area will halve in 1/2 second, but

the width will decrease by a factor of about 1/3. Therefore, the area A will

shrink to A/2 and the width w will shrink to approximately 2w/3, so

A/w2 -> « (9/8)^4/w2, which is an increase. So at each time /„ « 1 - (1/2)",

then, Λ/w 2 is increasing, contradicting the hypothesis that it is converging to

zero. This is not a miracle which works only for dividing the area in half. Any

other fraction works as well, but with slightly different restrictions on ε.

Lemma 4.9. At time t0 = (1/2 + ε/π) the vertical tangents to C(t0) are

within [a0 - ε w(0), b0 + ε w(0)]. That is,

w(*o) < bo ~ ao + 2 ε ' w(°) < (2/3 + 2c) w(0).

Proof. From Lemma 1.10, we have that either:

(i) the area of an outside piece is decreasing at a rate in excess of TΓ — 2ε or,

(ii) the interior angles at the vertical line sum to less than TΓ - 2ε.

Case (ii) for either end implies the conclusion of the lemma for that end. If

we are never in case (ii) then, by Lemma 1.10, the area of an outside piece after

(1/2 4- ε/τr) seconds would be less than

τr/2 ~(τr - ε) -(1/2 + ε/π) = ε2/π - ε/2

which, for small ε, is negative. This is absurd. At time t0, then, the vertical

tangents are within ε w(0) of a0 and b0. The lemma follows.

Proof of Theorem 4.5, continued. With t0 as above, we will show that

or equivalently,

A(to)-w2(0)>A(0)-w2(to).

A(t0) = 2τr(l - (1/2 4- ε/π)), so cross multiplying yields:

2τr w 2 (0)( l/2 - ε/π) = w2(0) (TΓ - 2ε) for the left-hand side,
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and

2τr w2(t0) < 2ττ (2/3 + 2ε) 2 w2(0) for the right-hand side.

So

L.H.S.- R.H.S. > w2(0) >(π/9 - ε(2 + 16τr/3 + 8τrε)).

For ε < 0.01, this is positive.

Since A/w2 is not converging to zero, the shape of C(t) is hitting a compact

set infinitely often, which is a contradiction.

5. The Main Theorem—CaseΠI

Case III. There is some sequence of arcs j8;(O c C(^), which turn through

φ,, φ, -> 77, such that diam(/?,-(*,•)) -> 0. Choose coordinates so that [0, TΓ] is a

limit of the ̂ -intervals of /?,. From Theorem 2.1, we know that we can choose

the βfitf) so that for any K > 0 and ε > 0 there is a &(*,•) such that K > K on

a subarc of /?,-(*,•) of total curvature > π - ε. Since ^-intervals of arcs

connecting inflection points are nested with time, except for a finite number of

jump discontinuities, there is a single subarc, β(t) c C(/), connecting consecu-

tive inflection points which contains infinitely many of the j8f (*,.)> and has

tangent directions θ e [0,77] for all sufficiently large values of /.

Lemma 5.1. The two lines tangent to β(t) at the θ = 0, TΓ directions must be

converging to the same line.

Proof. Suppose not. Then since K is getting large on ̂ -intervals [θ0, θ0 + π

— ε] close to [0, TΓ], and since β(t)is contained within very-close-together lines

at those angles, we see that the length of β(t) would have to be unbounded in

order to stay tangent to the horizontal lines, q.e.d.

Choose axes so that the horizontal lines tangent to β(t) converge to the

x-axis, and the vertical line tangent to β(t) converges to the >>-axis from the

left.

Call the two arcs to the right of the >>-axis β+(t) and /?_(/)• If necessary,

extend β+(t) and β_(t) to the left until they contain horizontal tangents. Note

that, with the current definition, β need not be disjoint from β ±.

Our first goal is to show that an inflection point must accumulate on the

origin along one of β+(t) or β_(t).

Lemma 5.2. Suppose that, for a fixed £ > 0, K > 0 on β+(t) for all x < £

and t0 < t < T. Then for some t0 < tλ < Γ, β+(tλ) is below the x-axis some-

where in the interval x G [0, £].

Proof. Suppose not. First, note that the height of the intersection of β+(t)

with the j>-axis must be positive for all t < T, for it is approaching zero and it

is strictly decreasing. Therefore, the claim is that β+(t) is below the x-axis
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somewhere to the right of the horizontal tangent. Next, observe that for every
ε > 0, there is a ξ0 > 0, such that the slopes of the tangents to /?+(/) over the
interval x e [£0/2, £0] must eventually stay bounded between -ε and ε. The
lower bound follows from local convexity and the fact that the height of β+(t)
is approaching zero. If the upper bound were false, then the total curvature of
β U β+ in an arbitrarily small ball would be greater than π + ε/2 at times
arbitrarily close to Γ, and the proof of Case I would apply.

Let y+(x,t) be the function whose graph is /?+(/)• From the above
paragraph, we know that y'+ is bounded on the interval [£0/2, ξ0] for all
t2 < t < T. By hypothesis, y + > 0 over the same interval and for all t0 < t < T.
Therefore, by Lemma 1.9, the values of y+ cannot go uniformly to zero in
finite time, which is a contradiction, since the maximum of y + is converging to
zero, q.e.d.

If >β+(/) has no inflection points near the origin for any t > tθ9 then β_(t)
must eventually have an inflection point at some point whose x-coordinate is
less than ξ. Since this holds for arbitrary £, we see that there must be an
inflection point accumulating at the origin along one of β+(t) and β_{t). If
necessary, flip the picture so that the inflection point is on β_{t).

We are first going to rule out the case of inflection points accumulating on
the origin along both β+(t) and /?_(/).

Lemma 5.3. There is no β(t) c C(t) satisfying:
(i) |)β(0| -> πast-> Γ,

(ϋ)diam(j8(0)-*0,
(iii) K = 0 at the endpoints of β(t).
Proof. For simplicity, restrict the β +'s to be the arcs of negative curvature

whose left endpoints are accumulating on the origin. Since the ranges of θ on
β ±(t) are eventually nesting, and since they contain horizontal directions in
the limit, they must have horizontal directions for all sufficiently large time.
That is, both β+(t) and β_(t) have horizontal tangents, and K < 0 in their
interiors for all t0 < t < T.

Let v0 and υλ be the horizontal tangents to β+(t) and /?_(/)• We know that
v0 and υx converge to the same line (see Figure 7).
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Since υ0 is moving down and υλ is moving up, υ0 must lie above the jc-axis,

and vλ must lie below it. So the picture is as depicted in Figure 8.

FIGURE 8

Note that the critical points to the height function, p0 and pv have opposite

sign. Therefore, the arc connecting ρ0 with pγ is nice, so by Lemma 3.2, the

horizontal distance between the bold arcs in Figure 9 is bounded away from

zero. This result is a contradiciton, as we will see in the next lemma.

^ MO

FIGURE 9

Lemma 5.4. The horizontal distance between β_(t) and β+(t) cannot stay
bounded away from zero.

Proof. Suppose that it is, as in Lemma 5.3. Consider the function y+(x, t)

whose graph is the part of β(t) U β+(t) which lies above the positive x-axis.

Since p0 lies above and pλ lies below the x-axis, y+(x, t) has a positive zero

for all t. But the x-coordinate of the smallest positive zero of y+(x, t) is

bounded away from zero, that is, there is a ξ > 0 and a t0 < T, such that

y+(x, t) > 0 for x e [0, ξ] and to< t < T. Now y+ must converge uniformly

to zero as t -> T. The slope y'+ is bounded, for β(t) cannot turn more than ε

past the horizontal before meeting the inflection point, and β+(t) is below the

x-axis before it reaches the horizontal again. So y+ is positive and its

derivative is bounded in the interval x e [£/3,2£/3], so it evolves by a strictly

parabolic equation. Lemma 1.9 applies again; y+ cannot converge to zero

uniformly. Lemmas 5.3 and 5.4 are proved.

The only picture left is: everywhere that K is blowing up, inflection points

accumulate to the singularity on one side only.
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Lemma 5.5. The curvature of β(t) must be positive.

Proof. Suppose not. We could then choose cartesian coordinates so that
the region between β+(t) and β_(t)is part of the outside of the curve. There
is a critical point labelled -f at the top of β_(t). The lowest point on the curve
is labelled with a - , and the arc connecting these two critical points is disjoint
from β+(t) in a neighborhood of the x-axis. Hence Lemma 3.2 applies and the
horizontal distance between β_(t) and β+(t) cannot go to zero, contradicting
Lemma 5.4. q.e.d.

Since we now know that the point of intersection of β+(t) and the x-axis is
approaching the origin, we see that the horizontal distance between β_(t) and
β+(t) must be going to zero at the x-axis.

We are now in the situation that K -> 4- oo on β(t), and the critical point at
the top of β_(t) is labelled - . By the above argument, every critical point of
the height function below the x-axis must also be labelled - , or else Lemma
3.2 would apply, and the horizontal distance between β_(t) and β+(t) would
be bounded away from zero, contradicting Lemma 5.4.

Lemma 5.6. With the hypotheses of Case III, C(t) approaches an arc

uniformly as t -> Γ, and the horizontal width of C(t) decreases monotonically as

y decreasees.

Proof. After some time tλ there are no more + critical points below the
x-axis. Now consider the function h(y,t) which is the length of the longest
horizontal line segment at height y with endpoints on the part of C(t) below,
and to the right of the top of β_(t), and connecting it to the point on β+(t) at
the same height. Because of the lack of + critical points, the discontinuities of
h(y, t) for fixed t can only decrease as y decreases (see Figure 10). If h were to
jump up as we decended to a particular ĵ -value, then the new endpoint would
be a local maximum for y, hence it would be labelled +.

FIGURE 10. The discontinuities of h ( y, t0 )
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Fix t = t0. Suppose that h(y, tQ) has a discontinuity at height yo(to), and at
no higher height. C(t0) has a - critical point at height yo(to). Note that there
must be at least one critical point at some height yλ(t0) > yo(to), but that is
"interior," and so does not cause a discontinuity in h(y, t0). The only way that
h(y,t0) could have a local maximum at the height yo(to) would be for the
other endpoint of the line segment to be at a + critical point.

From the facts that yo(t) is increasing in t, h(y,t) never has a local
maximum at height yQ(t)9 and new local maxima cannot be created (Lemma
3.4), we must eventually have no local maxima for h(y, t) at any height above
yo(t) and below the top of /?_(*)• Otherwise, since there is already a local
maximum to h(y, t) at the top of /?_(/)> we would have to have a trapped local
minimum for all time. At such a minimum, Lemma 3.4 shows that h would be
increasing with time, thus preventing h from approaching zero at the x-axis.
Therefore, h(y,t) is eventually monotonic in y above yo(t).

FIGURE 11

This argument can be repeated for each of the disjoint pieces of interior
(C(0) n {R2 I y < JΊ(O} A t y = JΊ(O> t n e horizontal tangent implies that the
widths of the horizontal line segments to either side are decreasing as y
decreases. The widths at y — yx(ϊ) are converging to zero, for each is bounded

We have, then, that the length of every horizontal line segment with
endpoints on C{t) below the x-axis is approaching zero, and eventually,
h(y,t) has no local maxima below the top oΐ β_(t).

Lemma 5.7. With the hypotheses of Case III, the curvature over the entire

curve is bounded away from - oo.

Proof. Compare with Lemma 3.8. Negative unbounded curvature implies
that some arc of negative curvature has total curvature at least π. By Lemma
3.2, we know that there is a δ-whisker inside the curve which intersects the
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curve only at its basepoint. Choose coordinates so that the whisker covers the
x-axis over the interval x e [8/2, 8] for all t sufficiently close to T. The area
of the curve is converging to zero, hence the curve must converge to the x-axis
over the interval x e [8/2,8]. This is ruled out by Lemma 1.9. q.e.d.

So not only must the curve converge to an arc, but it must do so in a
two-to-one fashion, with no "folding." Any arc "folded under" would have
unbounded negative curvature.

Lemma 5.8. With the hypotheses of Case III, the lowest point on the curve is

bounded away from the x-axis.

Proof. At some time t0, β+(t0) is below the x-axis at some point p0 whose
x-coordinate, x0, satisfies x0 β [ξ/2, ξ]. For all t > t0, K > 0 on β+(t). By
Lemma 1.7, then, the height of β+(t) at the line x = xQ is monotonically
decreasing with time, q.e.d.

Let Yb be the limit as t -> T of the height of the lowest point on C(t).
Consider the sum of the interior angles which the tangent vectors to C(t) at
some height y, 21^/3 < y < 1^/3, make with the horizontal.

Lemma 5.9. Given any ε > 0 there is a time t0 < T such that for any t > t0

and for any y0 e [2Yb/39 Yb/3], the sum of the interior angles which C(t) makes

with the underside of the line y = y0 is between π — ε and π.

Proof. Consider the outermost points of intersection of C(t) with the line
y = y0. The upper bound on the interior angles follows from the fact that, for
fixed t, h(y,t) decreases as y decreases. For the lower bound, consider: The
distance between the endpoints of the arcs through the outermost points is
going to zero, but their curvatures are bounded from below by some constant
- M , and they do not join up for at least a distance of \Yb/3\. Remember that
negative curvature is the rate at which the curve is turning away from its
interior, and the interior of C(t) now lies between the arcs. The lemma follows
from trigonometry.

To complete the proof of Case III, we use a variant of the proof of Theorem
4.5.

Define Aλ(t) to be the area of the intersection of the interior of C{t) with
the strip 2Yb/3 < y < Yh/3, and Λ2(t) to be the area of the interior of C(t)
below the line y = 2Yh/3.

Fix some small ε. Pick a t0 large enough to satisfy the conclusion of Lemma
5.9, and the additional condition that C(t) lies above the line y = 4Yh/3.
Since h(y, t) is monotonic in y, and using Lemma 1.10, we get

Aι(t)^h(2yh/3,t)'\yh/3\ and dAJdt > -ε,

0 | V 3 | , b u t dA2/dt *Z -7Γ + ε.
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Aλ(t) must go to zero, but A2(t) is decreasing much faster. By time t = t0 +

h(2yh/3,t0) \yb\/π, Λλ{t) has barely decreased, but A2(t) is already nega-

tive. This is absurd, q.e.d.

We have now ruled out all behavior for an embedded curve save that of the

curve becoming convex. The Main Theorem for embedded curves now follows

from the Main Theorem for convex curves in [5],

Epilogue: Curves on surfaces

The fact that embedded curves in the plane evolve nicely is a strong

argument for the niceness of curves evolving on a Riemannian surface. In [1],

Abresch and Langer show that curvature bounded for all time implies conver-

gence to a closed geodesic. If our techniques were generalized slightly, they

should be able to show that either the curve would become convex and shrink

to a point, or its curvature would remain bounded for all time. For instance,

the δ-whisker lemma works with a slight modification. In the hyperbolic plane,

equidistant curves flow towards each other, so δ must be allowed to decrease

exponentially. The fact that the total curvature of an arc, or even the whole

curve, may increase in another problem. The 1° North Lattitude circle on the

sphere has small total curvature, yet it converges to the North Pole via higher

lattitude circles whose total curvatures converge to 2π. Finally, the analysis in

[5] must be repeated, for once we know that the curve is convex and shrinking

to a point, we would like to show that its shape becomes round.

We are optimistic that this program will go through, as the problems are

local, and the local analysis is very close to the Euclidean case. Here is one

conjecture:

Conjecture. Let C(0) be a smooth curve immersed in a surface M, with the

property that C(0) is contained in some compact, convex set K, and the lift C(0)

of C(0) to the universal cover of K is embedded. Then C(t) exists satisfying the

flow-by-curvature equations, and C(t) either exists for infinite time and con-

verges to a closed geodesic, or it converges to a point in finite time with round

limiting shape. Convergence is in the C°° norm.
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