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0. Introduction

It is shown by example that the Liouville property is not a quasi-isometry

invariant of Riemann manifolds or for reversible Markov chains. Thus the

example illustrates the subtleties involved in trying to understand the global

function theory of Riemannian manifolds in terms of the behavior of discrete

combinatorial models.

Let M be a manifold, p a complete Riemannian metric, and Δp the

associated Laplacian operator. Many global function theoretic properties of Δp

have geometric significance. This paper is concerned with the changes in the

function theory which occurs as p is replaced by a quasi-isometrically equiva-

lent metric τ; that is there exists a C > 1 such that for all u e TMX, for all x

in M, we have 1/C < p(w, w)/τ(w, u) < C.

In parallel with manifolds we consider reversible Markov chains. These are

defined by specifying a positive symmetric rate function (fl/7-)/je^ on a

countable set X so that πi = ΣJeXaij< oc. These then admit the finite
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difference analogue of a Laplace operator:

acting on functions / from X into U.

Again one can ask how the function theory of Δ a compares with Δ b where

there is a C > 1 such that C " 1 < tf,7A7 < C for all /, ; 6 j f (where 0/0 = 1

by convention).

There are comparisons in both directions between manifolds and reversible

chains (see Royden, Varopolous, and Lyons & Sullivan [11], [14], [9] for

examples where a manifold problem is reduced to a discrete situation). §4 of

this paper goes in the other direction and gives one recipe for constructing

manifolds which "look like" reversible Markov chains (see H. Watanabe [15]

for another). However all these constructions fail to distinguish between

quasi-equivalent metrics on M or quasi-equivalent rate functions on X. It

seems important therefore, that one should understand how the function

theoretic properties of Δ are affected by these perturbations.

The properties which concern us in this paper are the Liouville properties.

We say M or X has the strong (weak) Liouville property if X has no

nonconstant positive (bounded) solutions h to ΔA = 0 (henceforth such solu-

tions will be called harmonic even in the discrete case). We shall prove by

example that it can happen that (M,ρ) has the strong Liouville property and

(M,τ) fails to have the weak Liouville property while p is quasi-equivalent to

T. This completely settles a problem posed by Royden [11], [12]. A partial

solution involving nonhomeomorphic Martin Boundaries was given by [13]

using ideas of [1] in a fundamental way.

Not all properties are badly behaved, and under restricted conditions the

Liouville property is also well behaved. It is known [9], [8] that the existence of

a Green function is a quasi-isometry invariant for complete manifolds and for

reversible Markov chains, and understandably it is in this context that the

papers [12], [14] made use of discrete approximations to the manifolds. For

planar Riemann surfaces either of the Liouville properties is equivalent to

having a Green function and so each is a quasi-isometry invariant. Moser's

Harnack theorem [10] proves that any surface quasi-isometric to R* with its

usual metric possesses the strong Liouville property and Kanai [6] has ex-

tended this to manifolds roughly isometric to Rd. All the examples are

consistent with the following positive

Conjecture. The Liouville property is a quasi-isometry invariant among mani-

folds of polynomial volume growth.
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Certainly the example here has exponential growth. If such a conjecture were

true it would widen the class of surfaces having the Liouville property quite

considerably—for many special cases are known (e.g. Yau [16] has proved that

any manifold of nonnegative curvature has the weak Liouville property).

There is a well-known dictionary relating the potential theoretic properties

(Liouville, Green Function, etc.) and associated probabilistic statements (trivial

shift invariant tail σ-field, transience, etc.) and in the case of constant negative

curvature with ergodic properties of the geodesic flow. We give the following

easy additional characterization of the weak Liouville property: If in M there

is a surface S with M\S having two components Mv M2 and two points

x( e Mt such that the probability of hitting S from xi is strictly less than one

for i = 1,2, then M does not have the weak Liouville property. If no such

surface exists, then M does have the weak Liouville property. (On the one

hand let S be a level set for the harmonic function; on the other let h(x) be

the probability starting from x that Brownian motion finishes on the compo-

nent Mv)

We give one final motivation for studying quasi-equivalence of Markov

chains. Let Λ be a finitely generated group and (g/)"= 1 a set of generators. If v

is a measure on Λ supported by ( g ^ 1 ) " ^ , then v defines a Markov chain by

Suppose v is symmetric (that is to say ^ ( g ) = ^ ( g ~ 1 ) f o r each g e Λ) and

that the minimal support of v is (gi

±ι)"=ι. Then the walk is reversible. What

properties of the random walk are independent of the choice of symmetric v

(or of (g,))—in other words what properties of the walk are algebraic in-

variants of Λ? Recurrence is one such property. We say A c Λ is ω-absorbing

if Xn eventually enters A and stays there for ever (that is Ĉ 4 is thin at

infinity). For the free group on two generators the property of being co-

absorbing is not independent of v\ It would be most interesting to know

whether the property of being co-absorbing is an algebraic invariant for

abelian, nilpόtent, soluble, or amenable groups. (Note: one only considers

random walks coming from symmetric v.) If it failed to be invariant even for

nilpotent groups, then much simpler examples for instability of the Liouville

properties than the one given in this paper would be available.

We now summarize our main example and outline the structure of the paper.

The main theme will be to construct Markov chain examples and then build

manifolds which look like the Markov chains.

§1 introduces reversible Markov chains more fully than here.

§2 introduces a simple pair of quasi-equivalent reversible Markov chains

exhibiting instability of the weak Liouville property. Although this example is
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unsatisfactory in many ways and will not carry over to manifolds, we learn one

important point. Suppose X is a countable set admitting two quasi-equivalent

reversible Markov structures a, b. Suppose (X, a) and (X, b) are both Liouville.

If there is a subset A c X which is ω-absorbing for (X, a) while not for (X, b),

then there is a simple construction of a new pair of Markov chains exhibiting

the required instability of the Liouville property.

§3 considers simple random walks on the free group Γ presented by the two

generators a and b without relations. If the walk is generated by a symmetric

measure v on {a±ι, b±ι], then Theorem 3.6 proves that the set of words with

more b's than a9s is ω-absorbing if v puts most of its mass on {b±1} but not

ω-absorbing if v puts most of its mass on {a ±ι}. This does not complete the

paper because (being nonamenable) Γ has no Liouville property.

§4 explains how to construct a manifold modelling a reversible Markov

chain. The main theorem is 4.3; however this on its own would not be enough

to obtain all the properties the model and the original chain have in common.

It is often important to exploit the symmetry of the Laplace Beltrami operator

in addition to 4.3 to get sharp results.

§5 considers the manifold model of the simple random walk on Γ and shows

how the arguments used in §3 when combined with 4.3 allow one to deduce the

analogous theorem on the instability of ω-absorbing sets as Theorem 3.6.

Again there are plenty of bounded harmonic functions.

§6 is concerned with modifying the Markov chain on Γ in a nonstationary

way so as to make it strong Liouville without invalidating Theorem 3.6 which

gives the instability of ω-absorbing sets. It is the most laborious part of the

construction using "symmetries" of the group to simplify the presentation.

§7 goes through the by now routine extension argument to turn the instabil-

ity of ω-absorbing sets for Liouville Markov chains into an instability of the

Liouville property. The final conclusion is that there are two quasi-equivalent

chains—one has only constant positive harmonic functions, the other has an

exactly two-dimensional cone of positive harmonic functions all of which are

bounded. Thus the example is not even weakly Liouville.

§8 carries out analogous arguments to those in §§6 and 7 for the manifold

examples. The same conclusions hold, however there are differences in the

details.

1. Quasi-equivalent reversible Markov chains

Let X be a countable set and q = ( ^ / 7 ) / J G X be a symmetric positive

function on X X X, zero on the diagonal and with iτi = ΣJ<ΞX qij < oo for all /.

Because q is symmetric it determines a special type of Markov chain on X
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called a reversible Markov chain. This chain can either be viewed in continuous

time in which case the qtj is the Poisson rate of jumping from i to j and iτi is

the depletion rate from site z, or it can be viewed in discrete time in which case

Pu = Qij/mi *s ^ e probability that the next jump will be to site j given that the

process is currently at /'. The connection between the two processes is that the

discrete process records precisely the jumps of the continuous time process.

Reversibility is significant because in this case alone the infinitesimal generator

of the Markov chain is symmetric. Henceforth and without further mention all

our Markov chains will be reversible.

The Laplace-Beltrami operator on a Riemannian manifold is also symmetric.

The discrete and continuous set-ups determine Dirichlet spaces and these

spaces are fairly similar. The similarity between the two does not guarantee all

that much, however it is often true that properties of Brownian motion on

manifolds can be mimicked on reversible Markov chains and vice versa [9],

[14], [5].

With this in mind we proceed as follows. We say q, q' determine quasi-

equivalent reversible Markov chains on X if for some C > 1 we have q^/C <
aij < Qr/y f°Γ aU U j G X We will give two examples of pairs of quasi-

equivalent Markov chains, one of each pair admits nonconstant bounded

harmonic functions, the other does not. (A harmonic function on X is any

function / with the property iτifi - Σj Φ, q^fj = 0, in other words / composed

with the discrete time Markov chain gives a martingale.) The first pair is

relatively simple to describe but does not seem to have a manifold analogue.

The second example has common features with the first example but is

altogether harder. However, it does allow a manifold analogue and because one

can say things about positive harmonic functions in this case, it is a stronger

Markov chain example.

2. The simple Markov chain example

Our construction has two parts. Our final state space will be Z X Z X C2

(where C2 = {0,1} is the cyclic group of order 2) but initially we consider only

Z x Z . We define quasi-equivalent rate matrices qλ as follows: q^ = 0 unless

i,j E Z X Z are nearest neighbors in the geometric sense. Let j = (r, s); then

9(r,j-l),(r,j) ~ Λ Z a n C l a(r-l,s),(r,s) ~ l

all other terms being determined by symmetry (see for example Figure 1).

Now translations do not preserve qλ, rather they multiply all the rates by a

fixed power of 2. Since the transition probabilities pfj = qfj/^i are not affected

by such transformations we see that the Markov chain (in discrete time) is
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invariant under the group action. Let vλ(j) = p@j0)j. We see that h is harmonic

o n Z x Z for qλ if and only if vλ * h = h. As Z X Z is abelian the classical

theorem of Choquet and Deny [3] implies that if h is bounded and harmonic,

then h is constant. So we have the weak Liouville property:

Proposition 2.1. (Z X Z,qλ) admits only constant bounded harmonic func-

tions.

Let Xt be independent random variables with values in Z X Z and law vλ.

One observes that the random walk from (0,0) determined by qλ can be

realised as Zn = ΣJ2 Xt. If μλ = E(Xx)9 then by the strong law of large numbers

[2] n~ιZn converges to μλ almost surely. In particular, one observes that if

λ > 1, then Zn eventually remains strictly above the diagonal {(r, r ) | r E Z }

in Z X Z, and if λ < 1, then it remains strictly below. We will require the

following rather weak consequence.

Proposition 2.2. There is a subset A c Z X Z and two choices λ, λ' > 0 so

that the qλ process finally enters A and remains there with probability one and

the qλ process quits A without ever returning to it—again with probability one.

We will say A is ω-absorbing for the qλ process and (^-transient for the

qλ-process.
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We now explain a simple construction which we use again later in the more

sophisticated example. Take the set Z X Z X C2, where C2 = {0,1}, and

define two symmetric rates on the set so that the Z X Z coordinate Z, of the

random walk in continuous time ( Z p Wt) is independent of the C2 coordinate

Wt and looks exactly like the qλ (qλ )-process defined above. The C2 coordi-

nate Wt alternates at a positive rate only when Zt is in A, and then at a rate

comparable to the jumping rates prevailing in Z X Z at Zt. To be precise, if

m, n e Z X Z, / = 0 or 1, then

P(m,ι),(n,ι) = ^(m,n), P(m,ι),(n,ι) = #(m,n) >

and if m e A we also put

P(m,0),(m,l) = 2^ #m,n = ^m' P(m,0),(m,l) = Z^ #m,n = ^m?
n e Z x Z n e Z x Z

otherwise the rates are zero. We have the following.

Theorem 2.3. (Z X Z X C2, p) admits no bounded nonconstant harmonic

function. (Z X Z X C2, p') admits a two-dimensional space of bounded harmonic

functions.

Proof. Let /z be a positive bounded harmonic function on (Z X Z X C2, p)

and let A denote its reflection in the C2 coordinate. This is also harmonic and

(h + A)/2 is a constant c because it is C2 invariant and so induces a bounded

harmonic function on (Z X Z, # λ ) . It follows that if A((m, 0)) > c, then A(m, 1)

< c, etc. If the random walk Xt induced by p has coordinates (Z,, Wt\ then

with probability one Wt changes value infinitely many times as t -> oo because

A is ω-absorbing for Z Γ Therefore l imsup, .^ A(X,) ^ c and liminf,^^ h(Xt)

< c. But h(Xt) is a bounded martingale, hence its limit exists almost surely

and h(Xt) can be recovered from this limit by conditional expectation. Thus

h{Xt) = c with probability one and so A is constant.

We now consider the process X[ = (Z/, Wt') induced by p'. We note that, in

contrast with the previous case, with probability one W/ changes value only

finitely many times as t increases to infinity (because A is transient for Z/). It

follows that if A0(JC) = P (W/ is eventually 01 Wo = x), then Ao is a noncon-

stant bounded harmonic function o n Z x Z x C 2 ; A 1 = l - A 0 i s another.

Let / be bounded and harmonic so that 0 < / < c ( A o + A1);it follows from

the lattice property [4] for potential theory (or the martingale convergence

theorem since Ao, hλ are bounded) that f = fλ + / 2 , where fi < cht, i = 0,1

and f is harmonic. Because of the particular choice of Ao, hλ here we see that

the decomposition of / is unique. Abstractly this is because the measures on

the Martin boundary giving rise to Ao, hλ are mutually singular. A simple

proof in our situation comes from the following observation. Any bounded
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harmonic function g satisfying \g\ < hλ and \g\ < h2 is identically zero,

\g(x)\= E*( lim g ( X n ' ) ) | < E * ( Urn min{ho(x;), *,(
\ n• oo ' \ \ n»oo

But clearly

n—• oo

lim
/7->oo

because h^X^) converges to 1 if W eventually stays in {/} and to zero

otherwise. To show / 0 = chQ let / 0 be the reflection of f0 with respect to C2,

then f0 < cohv As before /0 4- / 0 is the constant function c e IR+. However

c = ch0 + chx is the unique decomposition of c subordinate to Λo, Λx so

/ 0 = c/z0. We have proved that the space of bounded harmonic functions is two

dimensional.

3. co-absorbing sets for the free group on two generators Γ

Let Γ = (a9 b \) be the free group on two generators. For each p e (0,1)

we may define a measure Pp on the sequences (Xn)n>0 in Γ1^1 starting with

Xo = e (the identity element) and making Xn into a Markov random walk with

transition probabilities

(p/2 Hg = a±\

P(Xn+ι = gXn) = \ (1 - p)/2 if g = b±x,

vO otherwise.

T h e process proceeds by left multiplication by generators a n d their inverses

a n d has symmetr ic transition probabilities (pgh)g,h<=τ> thus ^ ^s a reversible

r a n d o m walk in the sense described earlier (simply take the rates equal to the

transition probabilities).

In this section we are interested in behavior as p varies. It is well known

that for all 0 < p < 1 we have Pp (X returns to e infinitely often) < 1 and so

X is transient. Any element g G Γ has a unique shortest expression as a

product of the elements a, a~ι, b, b~ι known as its reduced form. Let stf(g)

denote the number of α ± 1 ' s and £3{g) the number of b±ι's in the reduced

form of g. Our objective will be to show in Theorem 3.6 that if p is very small

then

Pp{s/(Xn) < 3t(Xn) for all but finitely many n) = 1.

Thus we note that if A = {g e Γ; s/(g) < 8&{g)} then A is co-absorbing for

p very small and letting pf = 1 - p we observe that $A is absorbing if p is

close enough to one.
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Problem. Kingman's subadditive ergodic theorem [7] applies here and

allows one to prove that limn_^(y0 s/(Xn)/n = s/^ and ]imn^QO@(Xn)/n =

38^ exist; moreover 1 > s/^ + 96^ > 0. It is tempting to consider s/^/^^ = cp

as a function of p and prove that it is strictly increasing. We do not know for

certain that it is monotone; however it will be clear from the arguments below

that for small enough p we have cp < 1. Surely cp is strictly increasing.1

Our proof of Theorem 3.6 has two parts; an algebraic part and a probabilis-

tic part. We consider first the algebra. Recall that if p is very small, then Xn is

generated by adding many fc's on the left with only an occasional a. We say

g G Γ is a term if g = aσb\ where σ = ± 1 and τ e l . Let (g^fLi be a fixed

sequence of terms and consider fn = gngn-ι - — g\ Ξ Γ. If fn_ι is in reduced

form there is a canonical way of cancelling gnfn_x into reduced form. Because

of this we may talk about terms remaining inviolate at the nth multiplication.

Definition 3.1. The term g, is inviolate infn if

(i) fi_ι does not begin with b±ι in reduced form,

(ii) the a ± λ in g, has never been cancelled in the successive reductions of

Sj+ifj t o / / + i i n reduced form(/ <y < n - 1).
We say g, expands f if s^{ft) > ^ ( / ί _ χ ) ; otherwise gz contracts f (and

We will obtain an estimate of the number of terms of fn which are inviolate:

A term is said to be violated in fn if it is not inviolate. We say gj is violated on

the right if it is already violated in fβ otherwise it is violated from the left.

Proposition 3.2. The number of violated terms gJ9 j < n, is at most three

times the number of contracting terms in (g,)^!-

Proof. Let us consider what happens when gj+ifj is cancelled to give the

reduced form of fJ+v If any currently unviolated term of fj is now violated we

see that it must be the leftmost such term and it is actually violated from the

left; in this case gJ+ι is simultaneously violated from the right and gJ+ι will

be contracting. On the other hand if g7 + 1 does not contract / but is still

violated at this stage, then it must be from the right and f must begin with a

power of b; therefore gy was contracting.

We see that the number of terms violated on the left is at most the number

of contracting terms; the number violated on the right is at most twice the

number of contracting terms.

Remark. The number of violated terms in fn = gn gλ is at most

\{n -s/(fn)) (because (n -s/(fn))/2 is exactly the number of contracting

terms in (g f )7-i).

1 It is. See acknowledgment at the end of this paper.
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The main idea of §3 is the following: Sample the evolution of Xn at the

successive occasions tJ9 where Xt +ιX~ι is a term. It is quite easy to show that

for small p the number of contracting terms will be small compared with j .

Proposition 3.2 then allows us to estimate the number of unviolated terms. The

number of fe's in each term are independent and the numbers in the unviolated

terms form a lower bound for SS{Xt), so finally a version of the strong law of

large numbers (allowing a certain percentage of terms to be deleted) gives the

asymptotic lower estimate for 38(Xt)/j\ but s/(Xt) <y. Combining these we

will get the required result.

The strong law of large numbers states that if Xt are independent identically

distributed random variables with fiilite mean μ, then N~ιΣχ Xt -> μ point-

wise almost surely. We are interested in obtaining a lower bound for various

partial sums obtained by deleting ΘN terms Yj < N, in highly nonindependent

ways.

Suppose Yj> 0 and λ is chosen so that P(Yj> λ) > θ. Let Yjλ = Yj if

Yj<λ and = 0 if YJ > λ. We have the following.

Theorem 3.3. If for each N the subset IN of {1, , N) has at most ΘN

elements, then

lim N~ι Σ Yj> E ( ^ λ ) .

Proof. By applying the strong law to Σ1J=ιχ(XJ > λ) we see that for large

iV there will always be at least ΘN terms Xj > λ, j < N. So for large N we

always have

Xj>N ~l

Letting N tend to infinity and using the strong law again gives the result.

Later we will not wish to assume the Xt are independent—but only nearly

so. Using the next very simple lemma we quickly obtain the required modifica-

tion of the result above.

Lemma 3.4. Let W,Yl9Y2, be random variables and suppose that for

each λ, i we have the conditional distributional inequality

holding almost surely. After enlarging the underlying sample space one may find

Wi independent and distributed like Wso that P( Yι ^ Wt) = 1 for all i.

Now we can give the appropriate modification of Theorem 3.3. Suppose the

Yi satisfy the hypothesis of Lemma 3.4 for some Wt ^ 0.
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Theorem 3.5. Suppose P(W > λ) > θ and for each N the set IN c (1, , n}

has \IN\^ ΘN. Then

lim Σ Yi>^{Wx).
7V->oo Kj<N

Remark. Given Lemma 3.4, Theorem 3.5 is a trivial extension of Theorem

3.3. Lemma 3.4 must be well known as it is totally elementary.

We now prove our main theorem of §3. Let tl912, ' " denote the successive

times that XnX~}x e {α ± 1 }, and put gk = XtkXΓk\- Then gk is a term a°kbTk,

where σk= + 1, 7k^Έ. The random variables (σk,τk) are independent with

ok = ± 1 with equal probabilities.

In any case the probability that gk is contracting is at most \ supy P(τx = j),

independent of the £,, / Φ k. So again using Lemma 3.4 we have

ϊίϊn N~λ\{k ^ N such that gk is contracting} | < \ sup P(τ x = y ) .

Using Proposition 3.2 we have that if θ(p) = \ supyP^ =y) then

ΐίϊn N~ι\{k < N\gk is violated in XtJ | < ί(/?).

We note that θ(p)is easily estimated and tends to zero as p tends to zero.

We wish to estimate Sβ{Xt ) from below. Certainly

N-^ixJ > N-1 Σ kl
{ k I gk not violated}

Suppose now that ε is fixed small and μ large. Choose p so that θ(p) < ε

and P O T J > μ) > 1 - ε, and λ so that 2ε > PdrJ > λ) > ε. Then

Applying Theorem 3.3 we have

lim N-ι8(XtN)> lim A^"1 Σ | τ Λ | ̂  μ ( l — 3ε) .
Λ/-*oo Λ^^oo Kk<N

{k\gk not violated)

On the other hand N~ls/(Xtfi) < 1 for all N. Since μ(l - 3ε) can be made

arbitrarily large we obtain the following. For each R there is a p0 such that if

p < p0 then

lim

In fact we have virtually proved the following:
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Theorem 3.6. For each R there is a p0 so that if p < p0, then

lim {a(Xn)/sf(Xn))>R Ppa.s.

Proof. Choose p0 so that if p < p0, then l i m ^ ^ N " 1 ^ ^ ) > R. Since

< N for tN < n < tN+v it is enough to prove that

lim inf N~ιSS{Xn)>R.

Suppose that N'λdl{XtN) > R and N'ιSS{Xn) < (1 - δ)R for some n in

[tN, tN+1). Then tN+1 - tN must exceed δNR. The distribution of tN+1 - tN is

easily calculated as

and because Σ%=ι(Σy=[N8R] p(l ~ P)j) is finite, an appeal to the Borel-Cantelli

Lemma implies that tN+ι - tN is less than δNR for all but finitely many N.

Thus

lim inf N-ι£(Xn)>(l-δ)R.

But δ was arbitrary and so the theorem is proved.

4. The Riemann surface analogue of a discrete reversible Markov chain

First we describe the building blocks.

Let Q be a compact Riemann surface with r disjoint analytic discs excised

from it; let ̂ (d) = S(dv- -,dr) denote Q with r cylinders Cz attached to it on

the r bounding circles—with conformal radius 1 and lengths dt. (Such

arrangements have also been considered in [14]). We wish to consider Brownian

motion zt started in Q and run until it first leaves S through one of the

cylinders C,. First we show that if the dt are all large, then the position of z0 in

Q does not much affect the exit law of zt from S.

If z 0 = x e S, then let μx denote the law of z on its first exit from S. Of

course for all x in S the probability measures μx are mutually absolutely

continuous.

Proposition 4.1. For each Q, ε > 0 there is an R so that if dt > R,

/ = 1, , r, then

I < 1 + ε for allx.y e Q.



INSTABILITY OF THE LIOUVILLE PROPERTY 45

Proof. It is well known that if / is continuous on 35, then f(x) = μx(f)

defines the unique harmonic function on S with continuous extension to / on

dS. The theorem can be restated in terms of Harnack constants:

= sup
h(x)

h{y)
h positive, harmonic on S and continuous on S

It follows by including S(dv d2,--, dr) in S(d{, d29--, d'r) that

Jjuv | |oo is monotone decreasing in dλ,d2,— -,dr. Let dλ = d2 = =

dr = R and suppose supxv^Q\\dμx/dμy\\oo does not tend to zero as R tends to

+ oo. We now use the compactness (in the topology of uniform convergence on

compact sets) of the family of positive harmonic functions normalized to be 1

at a fixed point to construct a nonconstant positive harmonic function on

S(oo, oo, , oo). However S(oo, oo, , oo) is conformally a compact surface

with r points removed, so zt is recurrent here and every positive harmonic

function is constant. This contradiction proves that the probability of z leaving

S through Ci given z 0 = x e Q is essentially independent of the starting point

x £ ( 3 (providing dt > R for all /).

Now we show how

pf(x) = P(z, quits S(dl9> -,dr) throughCx \z0 = x e Q)

essentially depends only on the dt and not on which circles in Q got attached

to which cylinders. In particular if di = dj, then pt - pj. This observation

finally rests on the symmetry of the Laplace-Beltrami operator so is perhaps

not as obvious as it might first seem.

Theorem 4.2. Let π be a permutation of 1,2, , r , and define πά to be

(Λtf-̂  ' ^ - O τ h e n

pf(x)(l + εΓ 2 <p«(x) < (1 + e)2pf(x) for all x e Q

providing di > R for all i.

Proof. Suppose it were not true; then we may assume there is at least one /

such that

inf pf(x)> sup pζf(x).

One is noticeably more likely to leave S through the tube of length di in its

original position than in its transposed position. We also have

sup ΣPj(*)< i n f Σ
x^Q jψi x^Q jΦi

because ΣJPJ(X) = 1.
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We now form a Riemann surface without boundary as follows. Take a single

copy of S(ά) and another of S(πά) and join them to form a surface S' by

identifying the two cylinders of length dj for each j Φ i. So S' is a compact

surface with two cylinders (say Ci9 C") emerging from it—both of length dt.

We now take Z copies (S^)m e z of S" and join them together by identifying Ct

in S^ with C? in S^+i for each m to form a surface TV.

We claim that because of the inequalities above the surface N has a

transient Brownian motion. This is impossible because TV is a Z -cover of a

compact manifold [9], [14]. (This is where we use the symmetry.)

To see that z is transient consider the successive stopping times s0 < sx < s2

• at which z emerges from a tube at the opposite end to that at which it

entered. Suppose zs is in the Q c 5(d) c S^ for some m e Z. Consider zs

zs is in the Q c S(ά) c S^9 where m is either m — 1, m, or m + 1. One has

the obvious estimates

^ J sup/>;?(*) sup £/>/(*),

50 if z5 is not in the same copy of Q as zs it will, with probability strictly

greater than \, move to the right—independently of the position of zs. It

follows that zs will drift to the right and so will be transient (use Lemma 3.4).

We now discuss how in a certain sense one can approximate a reversible

Markov chain by a Riemann surface with reasonable expectation that the

Brownian motion on the manifold and the Markov chain will have similar

properties. However we should note that at best, the similarity between the

Brownian motion and the Markov chain is no better than that between two

quasi-equivalent Markov chains or quasi-isometric manifolds. Since the pur-

pose of this paper is to exhibit important qualitative properties not stable

under such transformation, caution is always required.

Let X be a countable set; let atj be a positive symmetric function on

XXX; and suppose (i) that \{y \ axy > 0} | < / VJC G X and (ϋ) axy < K for

all x, y e X. We construct the Riemannian manifold out of / basic building

blocks. Take / fixed compact surfaces and excise j discs from the j th to form

Qj, and then form Sj(d{9 -,dj) = Sj(άj) by adjoining j cylinders C{ to Qβ

the / th having lengths dj and radius 1. Now for each point x e X, take a copy

Tx of Sj(dXi d2,- - , dj) where j is chosen to coincide with the number of y

such that axv > 0; label the tubes Dx y rather than (Ci)
J

i==1 and let dxy be the

length R/axv of the tube Dxy. Now let N = Uχ(=χTx/^ , where - is the

equivalence relation which identifies Dx y and Dy x whenever axy > 0.
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The claim is that Brownian motion zt on N has approximately the same

behavior as the discrete time random walk on X determined by atj. One

observes that this approximation improves as R increases. Let sn denote the

nth occasion that zt exits from one of the tubes Dx y having entered from the

other end. At this time zs e Tx for some unique x in X. Let Xn be this x.

Then (Xn)™=0 is a non-Markov random walk on X.

Theorem 4.3. Given ε, there is an R such that

(1 - ε)ax (1 + ε)axv

^y'^Xaxy' V^V

for each x, y ^ X.

In other words, up to a factor (1 + ε) the transition probabilities of Xn are

exactly those of the reversible Markov chain and to the same extent are

independent of the previous history of the path.

Remark. It is enough to prove that if ε > 0 is chosen and R is given by

Proposition 4.1, then

Theorem 4.3'.

P(z. quits S(d^ d2,- , dr) through Q \ z0 =

(1 + ε)4/di

for all x e Q providing dk^ R for all k < r.

Proof. Surprisingly, Theorem 4.2 is at the heart of it all. Run z until 7\

when it first exits S(R,R9—,R), and then until T2 when it next returns to Q

or first exits S(dv- -,dr) whichever occurs first. By Theorem 4.2 we can

interchange our tubes of length R without much changing the probabilities so

P(rΓl e C,) < 1(1 + ε)2

independent of / or the starting point z 0 G Q. But given that zTi is a distance

R along the tube C, of length di9 the probability that it exits at the open end at

T2 is R/di and at the Q end is 1 - R/dv It follows that

(λ+Al I < p(XTi e Open end of C() < ̂ ^ - j

for each i; if zTi is not in dS(dv -,dr) it is in Q and so we may iterate the

argument allowing a proportion

(ϊ+e)±2R
r dt
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of the remaining Brownian paths to terminate on the open end of C,. On each
occasion we put approximately the same proportions of the existing paths on
the open ends of the tubes ( C , ) ^ . Eventually all paths will be included in this
iteration so we see that the probabilities of exit from the various tubes must
also be in these approximate proportions:

P(z, exits S(dι,'",dr) through C, )

(1 + ε)2/dι _ (1 + ε)4/dt

" (l + e ) " ^ ) " 1 ΣUi(^)"1

and is also

v - 1

This is what we required.

5. A manifold model of the free group Γ and an extension of Theorem 3.6

Let Q be a compact Riemann surface with four discs excised from it and let
S(R/p, R/p, R/q, R/q) be the surface obtained by adjoining four tubes
which on this occasion we label Ca±ι, Cb±\. Now take Γ copies (Sg)g€ΞΓ of
S(R/p, R/p, R/q, R/q) (where p + q = 1) and let ~ be the equivalence
relation identifying Ca-\ in Sg with Ca in Sa-ig, Ch-\ in Sg with Cb in Sb-ig,
etc. Then M = \Jg€=ΓSg is a Riemann surface without boundary with Γ acting
as a discontinuous group of isometries on it by h e. Γ taking Sg onto Sgh.
M/T is a compact manifold obtained by adjoining two more handles to Q.

As in §4, let zt be Brownian motion on M, and let sn be the «th occasion
that zt emerges from one of the tubes Cg±ι, g e {a, b}, having last entered it
from the other end. At that time sn, the Brownian path zt is at an interior
point of exactly one Sg, g e Γ; let Xn be that g. We have the following
immediate consequence of Theorem 4.3.

Proposition 5.1. Fix ε > 0. Then there is an R such that for any sequence

Xo, - , Xn_ι we have the uniform estimates

2 ( 1 + e) v " ""

for all choices of p and i = + 1 .
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So, as before, although X is not Markov, in this quite precise sense it is

nearly so. Sufficiently nearly so that the arguments in §3 may be repeated. Let

tN be the TVth occasion that XnX~}x = a±ι, and consider the term gN =

XtXΓn\ = ad»bf". If we let px = (I + ε)p and p2 = (1 - έ)p we have the

following estimates.

Theorem 5.2.

where i > 0, /, J G Z .

From these estimates it is trivial that if /?0 is chosen as in Theorem 3.6 and p

is less than po(l + ε)~\ then the arguments and estimates in the proof of

Theorem 3.6 apply equally here.

6. A nonstationary random walk on Γ

the elimination of positive harmonic functions

In §3 we introduced a parametrized family of random walks on Γ with the

significant property that Γ admitted subsets which were ω-absorbing for one

choice of parameter but not for others. However any stationary random walk

on a nonamenable group (such as Γ) will admit nonconstant bounded harmonic

functions. So the idea of constructing an example by joining two copies as in

§2 will not work. In this section we will describe nonspatially homogeneous

modifications to the random walks on Γ introduced in §3. The resulting

Markov chains retain the property concerning ω-absorption but do not admit

positive harmonic functions. Later sections will extend these modifications to

the manifold model and construct the final example.

In [9] a sufficient condition was given for a positive harmonic function on a

manifold to be completely determined by its values at a particular sequence of

points xn. Although it was not explicitly pointed out there, the sequence did

not need to consist of distinct points; letting them all coincide, one has the

following condition which is sufficient (and obviously necessary) for the

nonexistence of positive harmonic functions.

Let (X, pi ) be any Markov chain and let Aι <z X be a sequence of subsets

of X with LU, = X. Let Bt D At be a second sequence of sets with the

property Σk€=B pjk = 1 whenever j e At. We will talk about a numerical
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function / being harmonic on Bt if ΣkGXpJkf(k) = f(j) whenever j e Bt.

We may then"consider the Harnack constant ct of the pair (Ai9 Bt). That is

c, = sup
h(x)

x, y G Ai9 h positive on X and harmonic on
h(y)

We note that in any situation where Ai is finite and communication in Bt

between any two sites of At is possible, then c7 is finite.

Lemma 6.1 [9]. Let xi be a sequence in X. Any positive harmonic function on

X is uniquely determined by its values on (xt) if there is a choice of pairs

(Aj c Bt) with xi e Ai9 LU, = X, and a uniform bound C on the Harnack

constants Cj of the pairs A i9 Bt.

In particular if ΠiAi is nonempty, then we deduce from Lemma 6.1 that all

positive harmonic functions are constant. (The referee has pointed out that in

this special case one has a simpler argument because sup h < c inf h and if h is

nonconstant we may assume the right-hand side is zero.) We now explain in

detail the modified walks on Γ.

Let θn be a permutation of the 4 3n~ι reduced words of length n. Choose

the permutation so that it is of order 3 " " 1 with our equal orbits: the reduced

words commencing on the left with a, a'1, b, and b~ι respectively. Let g e Γ

be of reduced length at least n\ there is a unique factorization of g into gxg2

with \gλ\ + \g2\ = |g|, \g2\ = n. Define gθn = gι(g2θn). Then because θn does

not alter the leftmost element of g2 we see that \gθn\ = \g\ and so we have

extended θn to be a permutation of the words of length m for each m > n.

With a bit of thought the sequence (θn)n==1 can be arranged so that (θn)
3 = θn_λ

whenever both are defined. The essence of θn is that if we apply it to an

element g with |g| » w, then gθ and g have essentially the same numbers of

fl's and b's etc.

Define symmetric rates τ{p) on Γ as follows

P_
2

1 i f ( i ) g 1 = g 2 f l l l

± 1 and(i i ) | g 1 | e [Rn,Sn],

0 otherwise,

where Rn, Sn are fixed integers satisfying n < Rn < Sn < Rn+ι for each n.

For suitable choice of Rn, Sn this will have all the required properties. The

evolution of (X\r, Γ) is best understood in continuous time. Xf evolves by

being left multiplied by a ± x 's and b ± ι 's at rates p/29 q/2 and occasionally

(when the length of the word lies in one of the bands [Rn, Sn]) the rightmost n
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letters of X' are modified at rate 1. We may couple X' with the stationary

random walk introduced in §3 by letting Xt = (Xt[ Z/-"1) (Xt[ J ^ " 1 ) ,

where t denotes the zth occasion that X' is modified on the left and n is

We will now prove that providing the Rn, Sn satisfy l i m ^ ^ n ιRn= oo,

then

r Li*;) y hW Ί
/ (χ\ = , l i m / (χ\ = 1

In particular we see that as p varies, the set of { g | la(g) > lb(g)} can be made

either ω-absorbing or the complement of such a set.

First observe that l(Xt')/t tends to a strictly positive limit for each choice of

p. In particular with probability one there will be a last time Tε that

infy > ,(|X/l/lXt'\) < 1 - ε. From this time onward simple algebra allows one to

estimate \X~ιXt'\ as follows.

Lemma 6.2. For any t > Tεwe have

After / exceeds Tε it is clear that never again will \Xt'\ go below k

after having exceeded Rk. In particular a simple induction argument shows

that X[ and X^Xf 1 ^ differ only in the last K terms, where K = max{A: |Ξs

e [Γε, 0, X's e [Λ^, S J } , so l ^ " 1 ^ / - 1 ^ / ! < 2A and the result follows.

Remark. As Rk/k -^ oo we see that

\X-%'\ *\XTt\ +\X^\ + (?*'{ί for all t > Tε.

In particular as t goes to oo, A" goes to infinity and \X~1Xt'\ = o(\Xt'\).

Because the Rn, Sndo not depend on p we have shown that the remarks of §3

carry over to the Markov chains X[ obtained as p varies.

Now, using Lemma 6.1 we wish to prove that providing Sn — Rn grows

more rapidly than ( 3 w ~ 1 ) 2 + ε for some ε > 0, then (Γ,r(/?)) does not admit

positive harmonic functions. Our arguments in the Markov chain and Mani-

fold cases are not the same; in the latter case we obtain an existential theorem

for each fixed p (or finite selection of /?'s) but no estimate of growth of rate of

Sn — Rn', in the Markov chain case one obtains much sharper results. The main

problem is to eliminate positive harmonic functions—bounded harmonic

functions are easier.
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The main technical result will be the following:

Proposition 6.3. If \y\ = Rn and T = inf{/| |Xt'\ > Sn}, then

c pi(x^Aθt>\\x;\>Rnvt<τ) "

Remark. The theorem says that translating A by θn does not affect the

hitting probabilities. This is not surprising because, conditioned on \Xt'\ never

going below Rn, we may decouple the X and θ actions completely and make

them independent.

Proof. Let Θ, be a continuous time random walk on the cyclic group of

permutations (θj\j < 3""1) jumping from θj -> θ^±ι with rate one, and let

Xt be chosen independently to be the simple random walk on Γ determined in

§3 with Xo = γ and |γ | = Rn but conditioned so that \Xt\ > γ, Vs < T. Then

we have Xt&t is identical in law to X[ conditioned so that \X'S\ > γ for all

s < T. This separation of X[ into two parts, together with the approximate

equidistribution, will yield the theorem.

For general times s the two variables Xs9 θs are not independent, however if

tλ < t2 < < ts R < < tk denote the successive jump times of Xn

then (®tk)keN and (Xtk)ke\
 a r e independent Markov chains for tk < T. So

P γ ( Jfr e A) = Σ Σ P(xtke Aθ?\ tk=τ) P(θ, f t = θi).
k>SH-RH O ^ Γ 1

But as Sn - Rn > ( 3 w " 1 ) 2 + ε and tk is always greater than Sn - Rn it follows

that Θ, is approximately equidistributed and

So

and the right-hand side is invariant under replacing A by Aθn

 j'. So the lemma

is proved modulo the claim that the random walk on the cyclic group with 3 " " 1

elements (#,/) given by Qtk is approximately equidistributed by the time

k > Sn - Rn > ( 3 w - 1 ) 2 + ε .

This can be shown with an explicit calculation using the probability gener-

ating function of a geometric mixture of balanced binomial distributions or by

using more general central limit type theorems.
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As we are unable to use such sharp techniques or to obtain the rate of

convergence in the manifold case we do not give further details of the

computation here. Rather we explain the significance of Proposition 6.3.

Let us now suppose that |γ o | < «; we run the unconditioned X[ from

γ 0 = XQ until T\ the first time \X[\ > Sn. We wish to compute Py{Xj e A)

and show that it does not depend much on the choice of γ0. This is achieved by

splitting the walk (Xt')o<t<τ into three parts. Let τx denote the time X[ last

exits ( |γ | < n) and τ2 the time of last exit from {|γ| < Rn). Both of these

times are splitting (but not stopping) times so A7+ v Xt'+T2

 a r e both Markov

processes—in fact (Xt'+τ.ytZo~T/ is identical in distribution to X[ started on

{|γ| = n (or Rn)} but conditioned to remain in ( |γ | ^ n (or Rn)}. Moreover,

conditional on X'Ύ, the process Xt'+T is independent of X-, t < τv So we have

\Ύι\ = n

But we claim that Pyι(X^ e A\ \X's\ ^ n, Vs < T) is essentially (to within a

fixed factor independent of A, n) independent of the choice of yv To see this

we repeat the splitting argument and condition on XΊ\

= Σ p
\Ύi\ = Rn

and by Proposition 6.2 this equals (to within fixed small multiples)

x;\>Rn,Vs<τ), \fj

but the random walk on {γ | |γ | > n) is preserved by θj (because 6I was

chosen so that (β^Ϋ = θ^_λ) so this last expression equals

Σ P

Using the θj invariance again,

and contracting the sum again we have

ί.eA\\x;\ >n,Vs< T ) , Vy < 3"" 1 .

Let μx - - μ 4 E Γ be representatives of the four orbits Ov , OA determined

by the θn action on the words of length n. We have



54 TERRY LYONS

Consider PΎo(XTι e Ot). There is a lower bound c depending only on p

for P(\X;\ ^ \XQ\, V/ > 0) which is independent of the position of Xo. It

follows that on |γ o | = n we have PΎo(Xτ e Oi)> c1? V γ 0 E 0f.; moreover

(Pγ°( XTι e O, ) is harmonic on |γ o | < n and since γ0 is at most a word of length

4 away from any of the Oι if |γ o | = n - 1, there is a second constant c2 such

that PyQ(X quits |γ | < n through O, ) > c2, |γ o | = w - 1; it follows that

P γ ( X τ e Of.) > q c j , Vγ with |γ | = « — 1 and hence by the minimum prin-

ciple for all γ with |γ| < n.

Combining PΎo(XTι e θ , ) - l with the expression for P γ°(Xf e A) above

we have

4

1

for all γ 0 with |γ o | < n. The right-hand side does not depend on γ 0 so we have

proved:

Theorem 6.4. There is an absolute constant C depending only on the choice of

(Rn, S X - i such that if A c {γ e Γ| |γ| = Sn] and T = infs{\X^\ > Sn}> then

sup Py(Xj e A) < C inf P γ ( A^ e ^4).

Remark. It follows that if h > 0 is harmonic on |γ| < Sn, then

sup

Thus by Lemma 6.1 and the remark following it, Γ with the new random walk

X't admits no positive harmonic functions.

7. Completing the Markov chain example

§6 was dedicated to constructing a one-parameter family of reversible

Markov chains X' on Γ with the following properties.

(i) For any choice of the parameter p the random walk on Γ admits no

global positive harmonic functions other than constants.

(ii) For one choice of p it follows that la(Xt') > lh(Xt') for all large t with

probability one, for another lh(X^) > la(Xl).

(iii) There is a uniform upper bound (six) on the number of sites in Γ one

can jump to from a given site. Further the rates of jumping to these sites given

by r(/?) are also uniformly bounded.
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We now proceed as in §2. Let Π = Γ X (0,1), and give it reversible Markov

chain structure by defining π(p) by

π(p; (γ, j ) , (y',s)) = r{p\ γ , γ ' ) , γ , γ ' e Γ, Vs e {0,1},

and

π(p; (γ ,0), ( γ , l ) ) = *(/>; ( γ , l ) , (γ,0)) = 1 i f/ β (γ) > / , (γ) .

We extend π to Π X Π by making it zero if not otherwise specified as above.

The Γ coordinate of this new process Yt on Π is indistinguishable from X't.

So for p = Pi close to 1 the process Yt eventually stays in {/α(γ) > lb(y)} X

(0,1} and so crosses from one copy of Γ to the other infinitely many times

with probability one; if p is small, Yt will stay on one copy of Γ or the other

for large t. We prove our main theorem.

Theorem 7.1. (Π,7r(/)1)) admits no nonconstant positive harmonic functions,

(Π,77(/72)) admits precisely a two-dimensional cone of positive harmonic func-

tions, and all positive harmonic functions are bounded.

Proof. For any p, we note that if h is π(p) harmonic and hr denotes its

reflection (i.e., /zr((γ,O)) = A((γ, 1)), etc.), then hr is also harmonic. Moreover

h 4- hr is constant because (Γ, r(p)) admitted no positive harmonic functions

except constants. So we always have A(γ,0) + Λ(γ, 1) = c independent of

γ G Γ . The positive harmonic functions on Π form a convex cone, and when

normalized to be one at any fixed x0 G Π one obtains a compact set because

the Harnack conditions alluded to before 6.1 give equi-continuity and uniform

boundedness on bounded sets. It follows that every positive harmonic function

is a convex combination of extremal (or minimal) positive harmonic functions

(that is, functions on the extreme Martin boundary). Such an extremal func-

tion h has the property that if hx > 0 is harmonic with ahx < /*, a > 0, then

βhx = h for some β. It is a simple consequence of this that if h is extremal

harmonic, then either (i) l im,^^ h(Y/) = 0 for almost all w and for all

starting points x = YQ, or (ii) P ^ l i m , ^ ^ h(Y/) e (0, c}) = 1 for all x and

some c. Let

( lim h(Yt)'X{ lim h(Yt) e (a,b

Then 0 < hλ < A, hλ is harmonic, and ]imt_J,OQh(Yt)/hι{Yt) = 1 if l im,^^ Yt

G (a, b\ a> 0. By varying a, b we see that if h is unbounded and minimal
then (i) applies. If h is bounded and minimal then (ii) applies.

We will now show that for any p, any minimal positive harmonic function h

on [Π, π(p)] must be bounded. Let Yt be the random walk, and let Ϋt denote

its reflection. Then Yt is also a Markov chain determined by π(p). If h is
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unbounded then (i) implies

but A(γ,0) + A(γ, 1) is constant independent of γ so A must be zero—a

contradiction. Thus all minimal harmonic functions are bounded.

We now consider the cases p small and p close to 1. The latter is easy; let A

be a bounded minimal harmonic function normalized so that A(γ, 0) + A(γ, 1)

= 2. Then because Yt crosses between Γ X {0} and Γ X {1} at arbitrarily

large times and at these times h(Yt) crosses the value 1 we have with Px

probability one for all x

lim Λ(y,) = l .
ί-+oo

But h(x) = Έx(hmt_^QO h(Yt))\ so A is constant as required.

Let p be small and hx(x) be defined to be Px(limt_ooYt E Γ X {0}) and

A2 = A[, so that hx + A2 = 1. As in §2.3 a standard probabilistic or lattice type

argument shows that any positive harmonic function with HAŷ  < 1 satisfies

A = h[ + A2, where h\ < A,, i = 1,2. If A1? A2 are minimal, then A would be a

linear combination of them, and the theorem would be proven.

Suppose h < hv Then lirn,.,^ h(Yt) > 0 implies that Xt is eventually in

Γ X {0} so l i m , ^ ~hr(Yt) = 0. But A + hr = c so it follows that with proba-

bility one either lim, __ O0h{Yt) = c and lim, _ ^ Ar(7,) = 0 or lim, _ ^ h\Yt) = c

and l i m , ^ ^ h(Yt) = 0 according to whether 7, is eventually in Γ X {0} or not.

Identifying the limiting values of the two bounded martingales h(Yt) and

chx(Yt) we see that A = cA, so Ax is minimal. The argument for A2 is identical

and hence we finally have any positive harmonic function as a linear combina-

tion of hλ and A2 as claimed.

8. The manifold example

In this section we describe a pair of surfaces, quasi-isometrically equivalent,

such that the first admits nonconstant bounded harmonic functions while the

second does not even admit positive nonconstant harmonic functions. Follow-

ing §4, we will build our examples along the same lines as the Markov chain

examples in §§6 and 7. In those sections the reader will recall that first we had

a simple translation invariant walk on Γ, then we introduced some links

between the reduced words g with \g\ e [Rn, Sn] enabling the process to jump

from one such word to another in relatively few steps providing both such

words agreed in all but the rightmost n letters. This allowed us to eradicate

positive harmonic functions while leaving untouched the asymptotic ratio of

<z's to b's in the reduced word. Finally we took two identical copies of this

modified random walk on Γ and allowed the process to flip between them if it
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is positioned on an element of Γ with more α's than Z>'s. This constituted the

final example. The point was that the process has two ways of getting to

infinity if a's are rare compared with Z>'s because in this case the process

eventually stays on one or other copy of Γ. If α's were more common than b's

in the evolution of the random walk then the process oscillates between the two

copies of Γ; so there is only one way to go to infinity and the function theory

is trivial.

We now introduce three manifolds L, M, N each covering a compact

manifold K and such that one may identify the fibers of L, M, N over K with

Γ, Γ, and Γ X C2 respectively. Γ will act on L so that L/T is K and, in the

correspondence of §4, L essentially corresponds to the simple random walk,

M to the modified one, and N to the double copy of Γ. N admits an isometry

3P without fixed point, consistent with the covering, such that ^ 2 = identity,

and N/ {&) = M. This corresponds to reflection. The metrics are all inherited

from K. It is by varying the metric on K smoothly that we get the different

behavior.

Let Q be a compact Riemann surface with eight discs excised; form S by

attaching to it four pairs of cylinders (Cα±i, Cb±i, Q±i, Q»±i) with conformal

radius 1 and lengths (in pairs) R/p, R/\ - p, 1, and 1 respectively. The

compact manifold K is obtained by identifying the two cylinders in each pair

by overlaying them with the open end of one cylinder corresponding to the join

with Q of the other. Of course there is an ambiguity concerning the angular

orientation of the two cylinders but this is of no significance and we let it be

fixed once and for all. In any case K is a compact Riemann surface with at

least four handles, two of which we think of as variable in length.

To obtain the manifolds L, M, N we follow the reversible Markov chain

constructions.

(a) L: Identify the pairs Q±i, Q,±i in S and take Γ copies [ 5 ( g ) ] g e Γ o f the

resulting surface S. Identify Ca(g) c S(g) with Ca-\(ag) and Cb(g) with

Cb-ι(bg). The resulting manifold L has no free cylinders and in fact has a Γ

action on it such that L/T = K.

(b) M: Identify the pair of cylinders C#>± is S to form S and then take Γ

copies ( S ( g ) ) g e Γ

 o f t l u s N o w c n o o s e ° < R

n < s

n < Rn+ι < ''' W e m a k e

identifications as follows: identify

ca

ct

cβ

cβ

,(*)
,(g)

•ω
(g)

with

with

with

with

Cβ-i(βg),

Cb-l(bg):

cβAgθn)

Cβ-Λg) 1*1« U
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So M is obtained from L by cutting the θ handle at S(g) whenever
\g\ e [Rn,Sn] and rejoining it with the corresponding parts of the handles at

(c) TV: Let X = T X C2, where Γ is generated by a, b and C2 by c (so
c2 = e and c commutes with a, b). Each x has a unique expression x = gc\
i = 0,1, and we extend our definitions of length, etc., to X by |JC| = \g\,
s/(x) =jf(g\ etc. Now take X copies [S(x)]xeX of S and identify Ca(x)
with Cfl-i(αx), Q(x) with Cb-χ(bx\ Gθ(x) with Q-iOcflJ if \x\ e [*„,£„],
Q(JC) with Q-I(JC) if |JC| € U[jRn, SJ, and finally Q,(x) with Q,-I(CJC) if
s/(x) > &(x) and Q,(x) with Q -I(JC) if J/(JC) < ^(JC). To obtain the
symmetry & let « e S(X) and let «' ΰe the element of S(Cx) corresponding to
n under the natural isometry of S{x) and S(cx). Define &>(n) = ri\ it is clear
that 9 is of order two, compatible with the covering of K, without fixed
points, and such that N/ {&) = M.

We have constructed L, M, N. Fix Q, R, [Rn, Sn]™=1. Then as p varies we
generate four 1-parameter families of homeomorphic manifolds K(p), M(p),
N(p), and K(p). For each p we may give K(p) the metric of constant
negative curvature - 1 consistent with the conformal structure and lift this up
to L(p), etc. If pv p2 are two choices of p we may take a diffeomorphism φ
of K{px) and K(p2). Because K(pt) is compact this is a quasi-isometry and
so lifts up giving quasi-isometries of K{pi), L(pt), M{pt) for / = 1,2. Of
course these quasi-isometries behave uniformly with respect to any local
measure of distortion.

Before outlining the remaining arguments we remark that the role of R is
unimportant here except that any sufficiently large R would suffice. All that is
required is that Theorem 4.3 should apply with a sufficiently small ε. However
it would be tedious to keep track of how small ε should be—the suspicious
reader can check that only finitely many such ε will be introduced and that
their values do not depend on the choice of (Rn, Sn)™=ι (although they may
well depend on pl9 p2).

To complete our arguments, first we fix two values px (close to zero) and p2

(close to one) of our parameter p such that for essentially any choice of
pairs (Rn,Sn)™=ι the Brownian motion on M(pλ) eventually stays in
Uĵ (g) < &(g) S(g) and for M(p2) eventually stays in the complement of this set.

Second, we choose (Rn,Sn)™=ι, which until now we have thought of as
variables, so that M(pλ) admits no positive harmonic functions for / = 1,2.

Finally we show how these two properties of M{pt) are enough for one to
conclude that N(pι) admits an exactly two-dimensional cone of positive
harmonic functions, all of them bounded, whereas N(p2) only admits constant
positive harmonic functions.
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The first and third of these final arguments are mere mimics of the

arguments in §§6 and 7. The second argument is different in as much as the

analogue of §6.3 exists but has a different proof which (as we mentioned

before) will not give a quantitative estimate for Sn — Rn in terms of n. We take

more care over this part than the other two. The arguments involve (in a not

very deep way) the use of a boundary Harnack principle and the consideration

of extremal positive harmonic functions.

Because most of our effort will be concentrated on M we introduce some

extra notation here which will be helpful later. Let rGl^J and consider all the

4 y~ι tubes Cg>g-i(g) which connect Q(g) with Q(gf), where \g\ = r,

|g' | = r - 1, and g'g~λ e {a±ι, b±ι}, and let Dr denote the collection of all

4 y~ι circles which bisect these cylinders C g g -i(g) into two equal cylinders

of half the length. Then M\Dr has two components. We let B(r) be the

relatively compact part and E(r) its complement. We let Ars = ErΠ Bs if

r < s. We think of Br as the ball of "radius" r, E{r) as its exterior, D(r) as its

boundary, and Ars as the annulus.

Lemma 8.1. There are pλ < p2 Ξ (0,1) such that for all large R and essen-

tially all choices of (Rn, Sn)™=ι the Brownian motion of M(pι) eventually stays

in \J^{g)<@(g)S(g) whereas Brownian motion on M(p2) eventually stays in

Όjs(g) > &(g) S(g) and these two sets are disjoint.

Proof. As before, we first operate on L. Let px be small so that the

arguments of §3 prove that the translation invariant walk on Γ given by Ppι

finds the set {g\&(g) > 2s/(g)} absorbing. Now choose R to be large

enough so that in the sense of §5 the Brownian motion on L gives rise to a

nearly Markov walk on Γ to which the arguments of §3 also apply and enable

one to deduce that U ^ ( g ) < 2 ^ ( g ) / 3 ^ ( g ) is absorbing in L(pλ). Repeat the

procedure for p2 chosen close to one with the role of a and b reversed.

Now we must compare the motions on M, L. Let zt denote the Brownian

motion on M(p) which for definiteness has z 0 e Q(e). Then projecting to K

and taking the unique lift in L which starts in Q(e) we obtain a Brownian

motion Lzt on L started in Q(e). Of course z,, Lzt are far from

independent—they are coupled in a rather precise way. Suppose zs e Q(g)

and the first Q(h) (\h\ Φ \g\) visited by z after time s is Q(g'). Then

\g'\ - \g\ G { -1,1} . Moreover if R is chosen large enough we can obtain

independent of the values of z p g, etc. Choose ε so that
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Let sλ be the first time zt leaves S(e), and let Xλ be the unique element g of

Γ such that zSχ e Q(g) c S(g). Let J Π be the first time zt leaves S(XJl_l) after

time j , , . ! , and Xn the unique element h of Γ such that zSn e β(A), etc.

Combining the remarks of the last paragraph with an independent lower

bound for the probability that |Jfw+1| Φ \Xn\ we see that Hnirt_+00(|Ar,I|//i) > 0.

Following simpler but similar arguments to those in §3 we also see that

lim (s/(Xn)/n) > 0 and lim (&(Xn)/n) > 0.
n-* oo /2-*oo

Suppose now that (Rn,Sn)™=ι satisfy « = o(Rn);2 then two properties

follow. First, there is a time T < oo after which there does not exist a

triple k, m < m' with T < m < m', \Xm\ e [Λ*, SJ , and |XW,| < /c. Second,

max{/:|3m < Λ , | Z J e [Λ Λ ,SJ} is o(\Xn\) and o(|/i|).

Let LXn be the unique g e Γ such that Lzs e β(g) . Then looking back at

the purely algebraic Lemma 6.2 we see that \LX~ι A l̂ = o(|Xw |). It follows

that

n) I = o(\Xn\) = o(n) = O(J*(XH))9

This proves the lemma.

We now wish to choose our sequences [Rn9Sn]™xl so that M(pt) has no

positive harmonic functions, i = 1,2. But before doing this we need some

general discussion of boundary Harnack principles. A boundary Harnack

principle takes the following from [1]:

Let hv A 2 be positive harmonic functions on some open set U c Rd, let V

be an open set intersecting 3[/, and let K be a compact subset of U lying

strictly inside V. Suppose hv h2 are both zero on W Π V. Then hι/h2 extends

to be continuous on K and there are absolute constants cx < 1 < c2 such that

Such a principle does not in general hold without some conditions being

imposed on dU. We are interested in the special case where U is a cylinder (or

annulus) and hl9 h2 are both positive, harmonic on the cylinder U, and zero at

one end 3 ^ of U. In this case it is elementary to prove that h1/h2 has a C 0 0

extension to 3 ^ , moreover its derivatives on dxU are all controlled in their size

by the value of hι/h2 at any fixed point in 3xί/ U U.

Consider the action of θn on {g ^ T\\g\> n}. This action extends to

En c M by taking S(g) to S(gθn). Checking that this is compatible with the

identifications which make up M is quite routine except when |g| e [Rk,Sk]

2This is our weak hypothesis on the (Rn,Sn).
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for some k < n. In this case the construction of M identifies Cθ(g) with

Cθ\(gθk)—to be compatible with the above θn action it is thus necessary that

Cθ(gθn) is identified with Cθ-ι((gθk)θn); this will only happen if θkθn = θnθk.

Again this follows because θ* = θn_v

We now prove the essential technical result, the statement is essentially

equivalent to that of Proposition 6.3, but the proof is not the same.

Let T(r) denote the first time zt hits Dr, t > 0.

Proposition 8.2. For each a > 1, «, Rn there is an S (which might depend

on the parameter p) such that if Sn> S and F is any subset of DSn we have for all

x e DR

Px(zT(Sn)^F\T(Rn)>T(Sn))
a~ι < - < a V/.

( θ ( ) ( ) )

Remark 1. In other words if Brownian motion is started on the inner

boundary of the annular region AR Si and is conditioned to remain in ARiSn

until it hits the outer boundary Ds, then it is essentially as likely to leave

through any translate Fθn of F as it is through F itself.

Remark 2. It might not be clear what is meant by Brownian motion started

on DR conditioned to leave AR Sn through Ds. To make this precise we

reinterpret the statement in terms of positive harmonic functions. If x e AR s

the conditonal probability is easily interpreted:

Let hF be the positive harmonic function on AR s obtained by solving the

Dirichlet problem with value I o n F and zero elsewhere on dA R s . The claim

is that the conditional probability

P*(znSπ)<=F\T(Rn)>T(Sn))

is just hF(x)/hDs(x) for x e ARnS^ As both of these positive harmonic

functions hF, hD are zero on DR and near DR , AR s just looks like a

union of cylinders we may apply the boundary Harnack principle to see that

h F/h D extends continuously to DR . The value of this ratio is then what we

mean by the above conditional probability when x e DR .

To obtain the claimed identification of the conditional probability with the

ratio of positive harmonic functions let T denote the first time z quits ARnSn.

Then T(Rn) > T(Sn) is precisely the statement zΓ e Ds, but if zτ is in Ds

then zT(S ) is in F if and only if zτ is in F\ so we restate our conditional

probability as

λ PX(ZT<Ξ Fand z Γ e Ds )

V τ ' τ S J PX(Z<ΞD )
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However F c Ds so this equals

Px(zτ(ΞF) hF{x)

PX(zrr G D c ) Λr, (x)

as required. Of course this is just the normal Doob A-transform procedure—the

only slightly novel remark is that the existence of a boundary Harnack

principle allows one to start the process at a point x on the boundary

providing the boundary values of the conditioning h are zero in a neighbor-

hood of x.

Proof. We wish to prove that if x is in D then providing Sn is large enough

one has

*-* < τ*n' ϊrr\ < *•
nDs \X) nFθJ

n\
x)

Suppose it were not true; fix a > 0 and let Sn -> oo. A simple compactness

argument (using the equi-continuity provided by the boundary and usual

Harnack principles) shows the existence of x e DR, j < 3"" 1 , and h positive

harmonic on ERn (where Sn is taken to be oo in the construction of M) such

that h(xθtΐ)/h(x) > a. We prove this to be impossible.

The positive harmonic functions on ER which are zero on DRn and are

normalized to be one at some fixed point form a compact convex set (again

this uses BHP). It is enough to prove that the extremal ones are invariant

under θn—for then they all are. But if h is extremal this means it is minimal, so

that if 0 < h < ch, then h = dh for some constants c, d.

In ER with the hypothesis that Sn = oo we have a uniform estimate for

y G ER of d(y, yθn), and because we have uniform estimates on curvature,

etc. this can be translated into a uniform Harnack estimate: for all h > 0

harmonic on ERn and zero on DRn we have h(y)> Ch(yθn) for all y e ERn

and some fixed C It follows that if h is minimal, then h(yθ^) = Φ(j)h(y)

Vy, where φ is a real character on the cyclic group of order 3"" 1 . Of course the

only such character is the constant one so h(-θ^) = h( ) as required. This

completes the proof.

We may use Proposition 8.2 to define the (Rn,Sn)™=1 inductively. Choose

Rx arbitrarily and fix a > 1. Suppose Rn is determined; let S(pλ), S(p2) be

the values of S determined by 8.2 with this value of a and the two choices of p

determined earlier. Choose Sn = m&x(S(pι),S(p2)) and Rn+ι > Sn so that

n = o(Rn). We claim that M(pt), i = 1,2, as constructed will have no positive

harmonic functions.
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To prove that M admits no nonconstant positive harmonic functions we

proceed from Proposition 8.2 as we did from Proposition 6.3 in §6 for the

Markov chain case. We prove

Proposition 8.3. There is a β such that for any choice of n, x, y e Bn, and

F c Ds the estimate

holds.

Remark. It follows from this proposition that any positive harmonic func-

tion A on BSn satisfies l/β < h(x)/h(y) < β for all x, y e Bn. But UBn = M

and in the sense of [9] the pairs (Bn, Bs) form a cover by uniform Harnack

pairs. It follows that any positive harmonic function defined on all of M is

uniquely determined by its value at any single point x e f)Bn; this is non-

empty and so the positive harmonic function is constant.

Proof. Although slightly technical, the following argument is in essence a

repeat of the Markov chain argument. To simplify notation let T denote the

first time zt leaves Bs, τλ the last time before T that zt leaves Bn, and τ2 the

last time before Q that zt leaves Bs. Let η- = 0 if zt never enters Bn (i = 1) or

Bs (/ = 2). We may condition on the value of BTi as follows. If x e An Rn,

then

Px(zQ e F\τx = 0) = Ex(P**Q(zQ e F\τ2 = 0) | τ x = o).

Using Lemma 8.2 we see that the choice of [Rn,Sn]™=1 ensures that the

integrand on the right-hand side varies by a factor at most a if F is replaced

by FΘJ for any choice of j . It follows that we may extend the conclusion of 8.2

slightly to

« < — Γ - ^ — T < « V e Z ,

for all x in An R . But, because the θ action is defined outside Bn, we may

move x rather than F and obtain

a~ι < < a

for all JC G AnRn and all j < 3y x (although we do not use it, the same

estimates hold true of the unconditional probability that Z, first exits AnSj

through F).
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Let O = U{Q(g)\ \g\ = Λ}, and partition O into Ol9 02> O3, 0 4 according to

the leftmost letter of g in reduced form. Let H be the first time z, hits O and

H the first time that zt hits O after τΎ (i.e. after finally entering ΛnsJ.

Suppose x is in Bn\ by conditioning on the value of zH we have

But we may apply Harnack to see that the value of Py(zQ G i71 τx = 0) does

not change by more than a bounded factor /? as y varies over β ( g ) for some

fixed g with \g\ = n (β is independent of g, n, etc.). The earlier remarks

guarantee that as one changes x to xθj one does not change the value of the

expression by more than a factor a. So we have that

>*(*A e O,)P*(re e F|τx = 0)

where xi is any fixed point in Ot.

To finish the argument we claim that there is a universal lower bound γ on

Px(zff G Ot) for x G Bn and i = 1 4. For then we have

< P*(zQ e F) < (α/))£P"(zβ e f | T l = 0)
1

for all x G J5W; in other words to within a factor (aβ)2/y the probability of the

unconditional process hitting F does not depend on x e Bn. This proves the

theorem subject to our claimed lower bound on Px(zfj e Ot). First we recall

that when considering the discrete skeleton I , G Γ of z p we saw that there is

an independent lower bound on the probability of the length of Xi ever

decreasing below its current value independent of the value of Xt. The same

arguments also prove that (for large enough R) there is a δ such that if z 0 is in

O, then the probability of zt ever reentering the ball Bn (which is slightly

separated from O) is at most (1 - S < 1) independent of the value of z0, n. It

follows that with probability at least δ (where δ is independent of the value of

zff) we have H = H. So δPx{zH G Of.) < Px(zfj G 0.). It is enough to give a

lower bound ε on the value of Px(zH G 0f.) independent of x G J5Π, /, w and

then put γ = δε.
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Let h\x) = Px(zH G Oy), hι is positive and harmonic off O. Dn is a union
of circles each of which bisects a cylinder terminating at O. If the cylinder
terminates at O,, then h has value at least \ on that circle. However we have a
uniform upper estimate (6 Diam(^)) on the distance within Dn from any one
of the 4 3'7"1 boundary circles in Dn and the nearest of the special ones which
bisect cylinders terminating in Ot (3n~ι in all). We also have a uniform lower
bound of R/2 on the distance from the boundary of Bn to the edge of the
domain of harmonicity of h. It follows from the constant negative curvature of
M (lift to the universal cover) that these distance estimates can be turned into
Harnack estimates; using these we obtain a lower estimate ε for the value of ti
on Dn independent of n, i. But by the minimum principle this estimate extends
to Bn and we have the estimates

hι(x)>ε VxGUn, P ^ e θ / ) > i e = μ,

as we required.
This proves that M(pέ) has no nonconstant positive harmonic functions. It

is probable that the reader will be put off by the technicality of the above
argument. He should not be—the main point is that once the Brownian
traveller has emerged from Bn for the last time the only thing which really
affects his probability of hitting F c DSn is which of the four equivalence
classes of words of length n he chooses to enter ΛnSn through. Because there
are only four and they are all evenly spread out through Bn the probability of
last exiting through Ot is much the same as the probability of last exiting
through Oj, j Φ i. Unfortunately one has to prove it.

It is plain sailing to prove that N(pλ) admits precisely two linearly indepen-
dent positive harmonic functions (both bounded of course) and N(p2) admits
only the constant functions. One simply repeats the arguments of §7 with small
changes. First reflection is replaced by 0* action (so h\x) = h(@x), etc.).
Then the argument for i = 1 goes through word-for-word; for / = 2 one
follows §7 to prove that any minimal harmonic function is bounded. Then one
uses Harnack to prove that if h + hr = 2 c, then we have c/θ < h(z) < cθ for
all z G UxGTxC2^(x)>aMS(x)9 but the latter is an absorbing set in M(p2)
so the estimate propogates to all z e M(p2). In particular h cannot be
minimal unless it is constant (because it is subordinated by c/θ). This
argument would also work in §7 but the appeal to Harnack is not necessary
there.

Acknowledgment. The author is very grateful for the helpful discussions he
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Drasin, and O. Pretzel. After the main part of this manuscript was prepared
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raised the question of what happens to limn_+O0(s/(Xn)/&(Xn)) when p is
close to \ for the simple random walk case. This was solved completely in the
ensuing discussion mainly by M. Barlow, T. K. Carne, W. Kendall and D.
Williams. It will be published as a separate note.
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