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GEODESIC LENGTH FUNCTIONS
AND THE NIELSEN PROBLEM

SCOTT A. WOLPERT

0. Introduction

Fundamental to the synthetic geometry of a space is the behavior of

geodesies. The geometry of a noncomplete metric can be rather disappointing:

points may fail to be joined by geodesies and length minimizing curves may

fail to exist. The Weil-Petersson metric for Teichmύller space is not complete

[21]. Nevertheless we shall show that its synthetic geometry is quite similar to

that of a complete metric of negative curvature. Our main result is that every

pair of points is joined by a unique geodesic. Also we find that Teichmύller

space has an exhaustion by compact Weil-Petersson convex sets. In particular

the exponential map is a homeomorphism from its domain to Teichmύller

space, the analogue of the Hadamard-Cartan theorem, and furthermore the

exponential map is distance increasing, a standard result for complete negative

curvature metrics. We also show that a finite group of isometries has a fixed

point, the analogue of the Cartan center of mass result. A solution of the

Nielsen problem is an immediate corollary (see §6): every finite subgroup of

the mapping class group fixes a point of Teichmύller space [12].

For the study of geodesies completeness is used to bound sequences and arcs

away from infinity in the one-point compactification of a space. Our approach

is to substitute a natural class of proper convex functions for completeness.

The functions are the geodesic length functions introduced by Fricke-Klein [7],

later studied by Fenchel-Nielsen [6], Keen [11], Kerckhoff [12], [13], Thurston

[19], the author [22], [23], [24], [27], as well as others. Our main result on this

topic is that a geodesic length function is strictly convex along a Weil-

Petersson geodesic. In fact our results for the Weil-Petersson metric are based

on three observations: that proper geodesic length functions exist, their
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convexity along Weil-Petersson geodesies, and the negative sectional curvature

of the Weil-Petersson metric [20], [26] (see §§5 and 6).

We wish to compare and contrast the current convexity result with

Kerckhoff s original observation that the geodesic length functions are convex

along earthquake paths [12]. By way of comparison a positive proper sum of

length functions Σytfy/α., fly > 0, has a (unique) minimum, where by the

earthquake convexity the second derivative is positive definite. Recall that the

second derivative of a function at a critical point is coordinate independent (a

symmetric, 2-tensor), i.e., independent of the introduction of earthquakes. Now

heuristically by varying the fly the minimum point for the sum varies in an

open set and again by the earthquake convexity the second derivative is

positive definite at each such minimum. Thus, the convexity of the length

functions is partially independent of the use of earthquakes. Now by way of

contrast we remind the reader that not even the signature of the second

derivative is an intrinsic quantity on a smooth manifold. An example is in

order: the function f(x) = x2, x e R+, is convex but becomes concave after

the simple change of variables x(t) = tι/Λ. There is some evidence of this

phenomenon even in the current situation. A geodesic length function is

constant along an earthquake path provided a does not transversely intersect

the underlying lamination. By contrast a geodesic length function is strictly

convex along all Weil-Petersson geodesies.

Now, to get an idea of the Weil-Petersson geometry, we follow a suggestion

of Thurston for describing the metric at infinity in the complex dimension one

case. The moduli space for once punctured tori is the classical quotient

i//PSL(2; Z). By a result of Masur if a neighborhood of infinity is modeled by

the punctured disc PD = { z | 0 < | z | < l } , then the Weil-Petersson metric is

comparable to |<fe|2/|z|2(logl/|z|)3 at the origin [16]. By comparing longitudes

and meridians one finds that the surface of revolution S of {y = x2\ x > 0} in

R3 has the same asymptotic behavior at the origin. A longitude of S has

geodesic curvature ~ x for small x while the meridian has radius x3 and

geodesic curvature ~ x~3; thus the curvature of S behaves as -x~2 for small

JC. Indeed S has negative curvature, is geodesically convex, and obviously not

complete.

The manuscript is organized into six sections. The first is a review of

Teichmϋller theory, specifically the theory for first-order deformations: the

tangent and cotangent space of Teichmϋller space, the Weil-Petersson metric,

and the construction of normal coordinates by harmonic Beltrami differentials.

In §2 we present a new technique using line integrals for solving the Beltrami

equation. The nth order differential geometry of Teichmϋller space is given by
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calculating approximate solutions of the Beltrami equation valid to nth order.
For instance the tangent and cotangent space are first order, while of course
curvature is second order. There are many techniques valid for first order
calculations. Unfortunately this is not true for higher order, even for second
order. As a practical matter it is essential to have a technique with which one
can actually compute. The basis for our approach is the observation that an
analogy exists between Eichler integrals and the Beltrami equation. For a
hyperbolic surface of finite area and harmonic differentials the analogy pro-
vides a solution of the Beltrami equation by a line integral. Thus the standard
2-dimensional integral is replaced by a much simpler 1-dimensional integral.
An immediate consequence is that for a series expansion of a Beltrami
differential, convergent uniformly on compact sets, we may solve the equations
term-by-term. This was not possible by the previous techniques which would
require L°° convergence of the series.

§3 contains the initial discussion of the geodesic length functions. A general
formula for the second derivative of a geodesic length function is given. In §4
we calculate the Weil-Petersson Hessian of a geodesic length function. Our
result is that the Hessian is positive definite. Given a Fuchsian group Γ we
conjugate to ensure that a transformation z -> λz is contained in Γ. With this
normalization a holomorphic, Γ invariant, quadratic differential has a series
expansion

1 τ-

Observe that the individual terms are quite simple. A harmonic Beltrami
differential has a similar expansion also with simple terms. Our solution of the
second order Beltrami equation is given by integrating the individual terms, an
elementary procedure. §§5 and 6 are of a more general nature; the reader could
assume the convexity result and start with §5. For the main result, geodesic
length functions are substituted for completeness in the proof of the
Hadamard-Cartan theorem: the exponential map is a homeomorphism. We
also find that the exponential map is distance increasing and that a length
minimizing sequence converges to a geodesic. Finally in §6 applications are
considered. For a Kahler metric, such as the Weil-Petersson metric, the
Riemannian and complex Hessians are readily obtained from each other. A
consequence is that a geodesic length function is also strictly plurisub-
harmonic. Since proper length functions exist, a new proof is obtained that
Teichmϋller space is a Stein manifold [9]. Finally we apply Cartan's center of
mass argument: a finite group of Weil-Petersson isometries fixes a point.
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Once again I would like to thank Bill Thurston for his suggestions and

comments.

1. A Review of Teichmϋller theory and the Weil-Petersson geometry

1.1. For the sake of clarification we shall give a sketch of the necessary

background material. The first item is the solution of the Beltrami differential

equation [3]. With this as a basis we recall the constructions of holomorphic

coordinate charts, the Weil-Petersson metric, and the description of the Levi-

Civita connection via harmonic Beltrami differentials [1].

1.2. We shall recall the normalizations for solutions of the Beltrami equation

and the dependence of solutions on parameters. Consider a hyperbolic surface

R of finite area uniformized by a discrete group Γ c PSL(2; R) acting on the

upper half-plane H. Denote by B(T) the complex Banach space of Γ invariant

tensors of type d/dz Θ dz on H with measurable coefficients and finite L°°

norm. Denote by Q(T) the complex Banach space of Γ invariant holomorphic

tensors of type dz Θ dz with finite L1 norm on H/T. T o μ E £(Γ), HμH^ < 1,

we associate two normalized solutions / μ , wμ of the Beltrami equation:

Λ = /x/7, ze#,

(1.1) Λ = μ ϊ I T Λ , 2 G L ,
/ fixes 0,1, and oo;

wΈ = μwz, z^H,

(1.2) wz = 0, zGL,

w fixes0,1, and oo.

The reader will recall that fμT(fμ)~ι is a Fuchsian group, while in general

wμT{wμ)~ι is a quasi-Fuchsian group. The μ dependence of solutions is

studied in [4] and the main result is most readily stated for solutions fμ on the

unit disc D. In particular, define fμ = A~ιfμA for A the conformal transfor-

mation of D to H carrying ( - /, 1, /) to (0,1, oo). Ahlfors-Bers state their result

in terms of the Banach space AB^: consider those functions / continuous on D

with distributional derivatives fz and f-z and finite AB^ norm:

z\<zi \zχ — Z2\

with || 11̂  the standard Lp norm.

Theorem 1.1. Given p > 2 there exists an ε = ε(p), ε > 0, such that if μ(t)

varies real analytically in L00 with ||μ(0lloo < ε> thenfμ(t) varies real analytically

in ABΛ
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1.3. Let Tgn be the Teichmϋller space of genus g, n punctured surfaces. The
description of Teichmϋller space by Beltrami differentials is based On the
existence of an exponential map Φ: BX(T) -> Tgn given by associating to
μ G 5(Γ), 11 Ml I oo < 1> the (equivalence class of the marked) surface
H/fμT(fμ)~ι G Tgn. Φ is a holomorphic submersion at the origin and thus
the complex tangent space of Tgn at H/T is characterized as B(Γ)/KeτdΦ. It
should be no surprise to the reader that the explicit computation of dΦ is a
fundamental question of Teichmϋller theory. We now review the basic ap-
proach [1], [3].

There is an integral pairing of B(T) and Q(T): given μ e i?(Γ) and
φ e Q(T) associate (μ, φ) = fH/τ μφ. If we introduce N(T) = Q(T)± c £(Γ),
then with the obvious notation the main result is the following

Theorem 1.2. N(T) = KerdΦ.
Corollary 1.3. B(T)/N(T) ~ TlfiTg^ Q(T) ~ (Tι-°)*Tgn and the natural

pairing of tangent and cotangent spaces becomes B(T)/N(T) X Q(T) —> C.

It is clear from the above that in order to describe local coordinates on Tgn

we start with μv -',μd whose iV(Γ) cosets form a complex basis for
B(T)/N(T). By general principles a neighborhood of the origin in the span of
(μy} is mapped by Φ biholomorphically to its image in Tgn. We shall describe
a holomorphic coordinate chart Φ mapping a neighborhood U of the origin Cd

to an open set in Tgn. First pick U sufficiently small to ensure that ||μ(Olloo < 1
for t = (ί1? , td) G U, where μ(t) = Σy= 1^μy. A coordinate mapping Φ:
U -> Tgn is given simply by Φ(/) = [H/Tμ{t)], that is the tuple / is mapped to
the equivalence class of H/fμ(t)T(fμ(t)y\

An essential point for calculations is to have a description of the holomor-
phic coordinate vector fields for the chart Φ. To obtain the description we
consider for μ, v e B(T), HμĤ  < 1, the expression

v ft
- IMI 2 ft

The holomorphic coordinate fields of Φ are given as

3
dtj

= ( l / ω μ 7 ) modN(T μ^) e B(Tμ{t))/N(Tμ{t))

for / G [/. As a special case we observe that the tangent field of the curve
Φ(εμ) c Tgn, ε small, μ e B(T), is given by Lεμμ.

1.4. An obvious method for studying the quotient space B(T)/N(T) is to
choose a representative from each coset. A natural choice is to consider
the harmonic Beltrami differentials. If HB(Γ) is the subspace of harmonic
Beltrami differentials then the natural map /: HB(Γ) -> B(T)/N(T), induced



280 SCOTT A. WOLPERT

by the inclusion, is a complex linear isomorphism. Consequently HB(Γ)
provides an alternate model for the tangent space at [H/T] of Tgn. Further-
more the Weil-Petersson metric is easily described on HB(Γ).

A Beltrami differential μ e B(T) on H is harmonic provided there exists a
φ e <2(Γ) such that μ = (z - z)2φ(z). The Weil-Petersson Hermitian pairing
on HB(Γ) is simply

(μ, v) = / μvdA
JΉ/T

for μ, v e HB(Γ) and Λ4 is the area element of the hyperbolic metric [1], [2].
Recall that the metric is Kahler: by definition gW P(μ, v) = 2Re(μ, v) is the
Riemannian pairing and ωWP(μ, v) = -2Im(μ,ί>) is the Kahler form. For
the sake of background we recall that the metric is not complete [21], has
negative sectional curvature [20], [26], and that the Kahler form defines a
protective embedding of Jίg, the moduli space of stable curves [25].

The starting point for us will be the local Riemannian geometry. Choose
Mi'*' '^d G HB(Γ) to be a unitary frame and consider the coordinate chart
Φ: Cd -+ Tgn given by Φ(t) = [H/1^% μ(t) = Σ?=1/yμy, In Φ local coordi-
nates the Weil-Petersson metric is given in a special form [1], [2]:

Harmonic Beltrami differentials define normal coordinates. In particular the
first derivatives of g w p and thus the Christoffel symbols vanish at t = 0,
equivalently the Levi-Civita connection is Euclidean at the origin. The reader
will recall that the curvature tensor involves the second derivatives of the
metric and thus these terms are not zero by virtue of negative curvature. The
benefit of choosing unitary normal coordinates is that an expression at / = 0
involving at most the first derivatives of the metric is an intrinsic quantity, i.e.
independent of the coordinate chart. We shall consider four such quantities for
the above defined t normal coordinates at t = 0.

Geodesies are the first example. Since the connection is Euclidean at the
origin, a line γ ( τ ) c C ^ , T G R , through the t origin will have order 2 contact
with a geodesic [17]. The second example is the Riemannian Hessian, Hess^, of
a function / o n Cd. The directional derivative d2f(y(τ))/dτ2 at r = 0 is the
Hessian (a symmetric 2-tensor) evaluated as Hess^ KOXΉO)) [17]. To see this
recall that Hess/(ί/, V) = UVf - (DaV)f for D covariant differentiation and
£/, V vector fields. Since the t coordinates are normal, DυV = 0 at 0 for U, V
coordinate vector fields. The third example is the Laplacian. By definition the
Laplacian is the metric trace of the Hessian and in as much as the metric is
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Euclidean at t = 0 this is just the trace in local coordinates [17]. For the final
example we consider a tensor defined from the complex structure. The complex
Hessian of a function h is the exterior 2-form

For t = u 4- iυ certainly hti= huu + hvv, a sum of terms from the Riemannian
Hessian.

Our plan is to show that the second directional derivative of a geodesic
length function la is positive along a coordinate axis for coordinates given by
harmonic Beltrami differentials. The two results, that a geodesic length func-
tion is convex along Weil-Petersson geodesies and that a geodesic length
function is strictly plurisubharmonic, follow by the above discussion. In fact
since a harmonic Beltrami differential of unit norm can be included in a
unitary basis it will suffice to consider the directional derivative

d2ί ( Rε)
^ — - , Rε = H/fεμT(fεμ)~\ atε = 0, μ e H B ( Γ ) .
d ε

The calculation starts in §3.3 and is completed in §4.

2. Solution of the Beltrami equation by line integrals

2.1. A holomorphic quadratic differential φ(z), z e if, determines a
harmonic Beltrami differential μ = (z - z)2φ and the vector field F on H
giving the infinitesimal deformation, where F^ = μ. If φ is expanded in an
infinite series, one is naturally tempted to try to solve the potential equation
FΈ = μ term-by-term. The standard convergence estimates are for μ in Lp and
certainly do not permit such an approach. Our key observation is that for μ
harmonic a solution of the above equation is analogous to the classical Eichler
integral [15]. We exploit the analogy to give a solution by a line integral.
Consequently, for a series expansion of φ we can solve the potential equation
term-by-term. The formalism of Teichmϋller theory requires the standard
solutions (1.1) and (1.2) of the Beltrami equation. Before considering applica-
tions we must express the standard solutions in terms of the line integral. This
will not be done by direct computation; rather the standard solutions are
characterized by their formal properties. Accordingly we start with a review of
the standard solutions {3].

2.2. Consider the solutions of the Beltrami equation in the infinitesimal case,
namely w[μ] = dwεμ/dε (see (1.2)) and f[μ] = dfεμ/dε (see (1.1)) at ε = 0 [3],
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[4]. The solutions are uniquely characterized for w[μ] by

wΈ = μ o n H,

W; = 0 on L,

w vanishes at 0,1 and is

o(\z\ ) for \z\ large,

and for/[ju] by

f-z = μ on H,

f vanishes at 0 1 and is

oy\z\ ) for \z\ large.

It follows immediately that /(z) = w(z) + w(z). Similarly it is not difficult to

verify that (w(γ)/γ' - w) is a quadratic polynomial for μ e ^(Γ) and γ E Γ ,

where a ' will be used to denote the derivative of a holomorphic function. Also

an important observation, related to the Bers embedding, is the equation

w[(z - z)2φ(z)]'" =2φ(z), z G L .
An alternative approach for infinitesimal deformations is to consider vector

fields on the universal cover. Classically this approach becomes the study of

the Eichler integral [15]. For ψ(w) a holomorphic quadratic differential on L

consider the integral

(2.1) E(v)= f (υ-u)2ψ(u)du,

w, υ, v0 in L and υQ fixed. It is immediate that E "' — 2ψ, a basic equation. E

is to be considered as a holomorphic vector field. Provided ψ is Γ invariant the

period Py = E(y)/y' - £, γ e Γ, represents the infinitesimal perturbation of

γ (the Lie algebra of SL(2; C) is quadratic polynomials, accordingly pγ is a

quadratic polynomial). The period is given by an elementary integral as we

now recall:

£(γ)/γ' - E = Γ {jV ~ f ψ(u) du - f (v - «)2ψ(M) du

(2.2) =Γ {]V~]fMu)du- (\v-uf4,{u)du
y'(υ)y'(u)

(v-u)2y(u)du = Py,
y '%
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where the identity

y'(u)y'(v) _ 1

{yu-yυf (u - vf

has been used. Certainly py is a quadratic polynomial in υ.

2.3. Now by analogy with the Eichler integral we introduce the integral

(2.3) F(z)=/Z (z-t)2φ(t)dt,

t, z, z 0 in 77, z 0 fixed, and φ e g(Γ) . The potential equation Fτ =

(z — z)2φ(z) is an immediate consequence of differentiation under the in-

tegral. Next we consider the periods of F.

Claim 2.1. For ψ(z) = φ(z), z G 77, αwrf t;0 = z 0 //ze integrals E and F

have identical periods.

Proof. By a calculation analogous to (2.2) we have for γ G Γ that

F(y)/y'-F= h (z - t)2φ(t) dt.

The conclusion follows on substituting ί = w, φ(w) = ψ(w), and γ ( z 0 ) = γ(z 0 )

(note Γ c PSL(2; R)).

Motivated by the above observation we introduce for φ e g ( Γ ) the function

(2.4) ^ ( z ) /
\E(z), Z <Ξ L for ψ(z) = φ(z) and v0 = z 0 .

The next step is to show that !F and w[(z - z)2φ] differ by a quadratic

polynomial. On L we have that &'" = w//r = 2φ(z) and thus for the

restriction to L certainly w - J ^ = q, a quadratic polynomial.

Claim 2.2. G = w — 3P— q is a T-inυariant, holomorphic vector field on

HU L.

Proof. G(z), z G L, is identically zero and thus it remains to consider

G(z), z G 77. By construction w-z = Jζ = Fz on 77 and thus G is indeed

holomorphic. Now for γ G Γ we consider the period G{y)/yf — G; recall that

the γ period of each of >v, J^, and q is a quadratic polynomial on 77 U L.

Thus the γ period of G is a polynomial; since G actually vanishes on L the γ

period is trivial. This is the desired conclusion: G is a Γ-invariant, holomor-

phic vector field.

The final step of the argument is to use the Riemann-Roch theorem to

conclude that G vanishes identically. Indeed by Riemann-Roch if G defines a

vector field on H/T which vanishes at the punctures, then G is trivial.
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Claim 2.3. Given H/T of finite hyperbolic area, then G, as above, defines a

vector field on H/T vanishing at the punctures.

Proof. Of course our approach is to estimate the growth of G at a Γ
cusp. The hyperbolic metric for the punctured disc PD, (0 < |τ| < 1}, is
|dτ| 2/|τ | 2(logl/ |τ |) 2 . Thus a vector field, holomorphic on PD, extends to be
holomorphic on the disc {|τ| < 1} and vanishing at the origin provided the
(intrinsic) norm

|τ|log 1/1 TI

is for instance O(|τ|~1 / 2) at 0. Passing to the universal cover H of PD by
substituting T = exp(-//(z - a)), a e R, we obtain the equivalent condition

Imz
is O exp

1 Imz
2 U-a\\

for V, the lift of V, and z approaching a nontangentially.

Now we assume a represents a cusp of Γ and estimate the norm of G. Since

w and q are continuous on C the estimate is immediate for these terms. Only

the integral F remains, F = // (z - t) φ(t) dt. By hypothesis |(z - z)2φ| is

bounded and thus it suffices to bound

Choosing the line segment zz0 as the path of integration we may bound the

integral by

I- I2

I z — z 01 max —

for / varying on z~z0. That this last quantity is bounded by exp(^ Im z/|z - α|2)
for z approaching a nontangentially is left for the reader to check. In
conclusion G = w — &— q satisfies the desired estimate and therefore extends
to be holomorphic on H/T vanishing at the punctures of H/T, the desired
result

The main result of the chapter now follows.
Theorem 2.4. With the above notation, the potential w and the integral &

differ on H U L by a quadratic polynomial. In particular JF extends to a

continuous function on C.

Corollary 2.5. With the above notation, the potential f and the integral

) + J ^ ( z ) differ on H U L by a quadratic polynomial with real coefficients.
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As an exercise we show that if Γ is conjugated such that γ: z -> λz is an
element of the group, then it is easy to solve for the coefficients a and c of the
polynomial q(z) = az2 + bz 4- c. The same technique may be applied if it is
known that 1 is a fixed point of an element of Γ.

First observe that since w fixes 0 and is o(|z|2) for \z\ large, it follows that
the period (a vector field) w(λz)/λ — w(z) vanishes at 0 and oo, thus is a
multiple of z (in fact λz for λε = w(λz)/w(z) = λ(l + ελ)). By the above we
have that

w(λz)/λ - w{z) = (J^+ q)(λz)/λ - ( * • + q)(z)

= a(λ - l ) z 2 + c(X~l - 1) + ίz° (z-t)2φ(t)dt.
J \ 1

Equating coefficients

fz° φ(t)dt, c = λ/(λ-l)f z ° ί2φ(ί)Λ,

and of course the known formula [10]

λ = - 2 fΣ° tφ(t)dΐ.

The goal of §4 is to compute the second variation of the multiplier of the
transformation γ: z -> λz. The vector field zd/dz commutes with γ and thus
the deformation of γ induced by zd/dz is trivial. It suffices to determine
3F+ q modulo z8/3z in order to calculate the variation of γ. In §4 we shall
explicitly see that the variation is independent of the coefficient of zd/dz.

3. Variations of a geodesic length function

3.1. Basic invariants of a hyperbolic metric are the lengths of the unique
geodesic representatives of the free homotopy classes. Fricke-Klein observed
that the geodesic lengths are a complete set of invariants; by choosing classes
av-"9ap appropriately the associated map from Teichmύller space Tgn to Rp

is a smooth embedding. More recently Kerckhoff observed that the geodesic
length functions are convex along Thurston's earthquake paths [12]. Following
this lead we calculated the first and second Lie derivative of a geodesic length
function along a simple earthquake path: the derivatives are evaluated in terms
of the trigonometry of the corresponding geodesies on the surface [23]. Recall
that on a differentiable manifold the second derivative of a function is not
intrinsically defined; a normalization is required. Differentiation along unit
speed earthquakes is such a normalization but the result is neither symmetric
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nor a tensor. An alternative is to consider unit speed Weil-Petersson geodesies.
The resulting derivative, a symmetric 2-tensor, is the (Riemannian) Hessian.
Recall further that the trace of the Hessian is the Laplacian and as mentioned
in §1 it is easy to obtain the complex Hessian from the Riemannian Hessian.

This section is divided into two parts: the basic formula for the exterior
derivative dla, la a geodesic length function, and the preliminary calculation of
the second derivative of la.

3.2. A Beltrami differential determines a curve in Teichmύller space. Specifi-
cally consider a surface R uniformized by the upper half-plane H and a group
Γ. Let μ G L°°(Γ) be a Γ-invariant Beltrami differential and fμ the solution of
the Beltrami equation (1.1). The 1-parameter family Rε = H/fεT(fε)~ι, fε =
/ ε / i, ε small, defines a curve in Tgn. Our goal is to compute d2lγ(Rε)/dε2 at
ε = 0; the first derivative dly(Rε)/dε is simply the pairing of the tangent
direction determined by μ and the 1-form dly. For the sake of normalization
we again assume that γ lifts to the positive imaginary axis and that the
associated deck transformation is z -> λz. The following is a classical result
[18].

Theorem 3.1. With the above notation, at ε = 0

l<\z\<γ Z 2

where dE is Euclidean area.

3.3. We proceed and calculate the second derivative. The formula is elemen-
tary given the above result and the description of the tangent field of the curve
Rε e T At Rε the tangent is represented by Lεμμ e B{Rε\

(3.1)
i-M2//"

•(/*)"

and let / = dfeμ/dε at ε = 0.
Theorem 3.2. With the above notation, at ε = 0

<|z|<λ

Proof. For w = / ε(z), fε = fεμ, by the previous theorem applied to the w
structure, i.e. ε small but arbitrary,
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where / ε(λz) = Λ(ε)/ε(z). The change of variables w = / ε(z) gives the for-
mula

By Theorem 1.1 the solution fε varies real analytically in AB^, p > 2, and
hence for the sector 1 < \z\ < λ we find that fε varies in L00 and // varies in
Lp, p > 2, both real analytically. We differentiate under the integral using
that fε = z 4- εf + O(ε2) and obtain the desired formula.

4. Calculation of the second derivative of /γ

4.1. The plan is straightforward. By normalization, Γ contains a transforma-
tion z -^> λz and thus μ = (z - z)2φ admits a series expansion (μ is a
27r//logλ periodic function of logz). Substituting the expansions into the
integrand of Theorem 3.2, a quadratic form in μ, we integrate term-by-term.
We find that in analogy to the orthogonality of the functions {sin2mnx) in
L2(0,1) that only the diagonal terms of the integral are nonzero and in fact
each is positive. Of course this is the main result.

The discussion is divided into two parts. In §4.2 we introduce the series
expansion of μ and use the method of §2 to obtain the expansion of zfz — /. In
§4.3 we substitute the expansions into the integral of Theorem 3.2 and
calculate term-by-term.

4.2. Given φ e <2(Γ), φ admits an expansion

Φ = — Σ*anz ' where ε =
z2f~"" ' l o δ λ '

A branch of logz holomorphic on H and real at 1 is now fixed and the
convergence of the series is uniform on compact subsets of H. We proceed to
calculate zfz — f term-by-term. Picking up the discussion of §2.3

w =&+ q

= [z (z-t)2φdt + - i — h φdt +bz+ τ±- h t2φdt.
z0 Λ z 0 Λ LzQ

The linear term bz of q is annihilated by the operator (z3/9z - 1) and so does
not contribute to zf2 - f. Thus for our purposes

(4.1) / = z22ReΛ + z2Re£ + 2ReC,
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A(z)=Γφdt+- r- Γ° φdt, B(z)= -lίtφdt,
Λ o \-KJχ-ιZo Λo

t'φdt.

Now recalling 3/3z Re/z = h' for /* holomoφhic the reader will check that

(4.2) zfz-f=z22ReA - 2ReC,

the remaining terms cancel.

If we substitute the expansion φ = (l/z2)Σnanz
εn and integrate term-by-

term we obtain

ε n - 1

fεn-\

tεn

1 - λ εn — 1

εn + 1 1 - λ- 1 L εn + 1

where in each case the equation (λ ί ) ε w = ίεw has been used to simplify the

expression. The proof is now complete.

Lemma 4.1. With the above notation, if φ = ( l/z 2 )Σ r t anz
εn, then

~ -εn — 1 « _ ε « + l

converging uniformly on compact subsets of H.

4.3. We are ready to evaluate the integral

4 r a
π Λ<|z|<λ Z3

the integrand is in L1 and the series converge uniformly on compact sets. We

integrate term-by-term and treat separately the terms for A and C. The

computation for the general term of the expansion A is considered in the

following lemma.

Lemma 4.2. For γ, δ e C

*JL -Re-^—τdE = 0 ifmΦ±n,

Re
δz~

βfi - 1

_ ε « - l

-εn - 1

with equality only if γ = δ = 0.
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Proof. In polar coordinates z = reιθ the first integral becomes

-4 f Re(e<*^) Re(e-''-ί^V) sin20 - dβ.
J \ εn - 1 ) r

Now ze = exp(-2τr0/logλ)(cos27rρ + /sin2πp) for p = logr/logλ and the
result follows from the p integration. To compute the second integral replace
the real part of

εw - 1 —εn — 1

by the sum of the term and its conjugate. Integrating in p, 0 < p < 1, we

obtain

— i j (\yzεn\2 +\8z-εn\2 + 2Re(<T2lV)) sϊn2θdθ,

or completing the square and substituting \zε\ = eιεθ we have

*(«.-!) + δeiθa-εn)\2sin2θdθ.

The positivity is now clear and the proof is complete.
Corollary 4.3. With the above notation, the integral

z — z) φ— Re A dE

is positive provided φ is nontriviaL
Proof. Apply the preceding lemma for the series expansion of φ and A. The

result follows.
The computation for the general term of C is considered in the following.
Lemma4.4. For γ , ί e C

( z . z - ) 2 ( ϊ ϊ ^ ^ ) J. R e ( H _ + iL__),E , 0,

i'/Λ equality only if y = δ - 0.
Proo/. In polar coordinates the first integral becomes

4 / Rsie-VyF") Reί e ' 9 ^ ^ - ) sin2(9 y rftf.

Again the result follows on integration of p = logr/logλ. By the method of
Lemma 4.2 the p integration of the second integral leaves

l + ! ε n | 2
/ (|γz ε w |2 + |δz-*"|2 + 2Re(e2i*γδ))
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and on completing the square

^ θ dθ.

The positivity is immediate.

Corollary 4.5. With the above notation, the integral

- R e f (z -
IT J z 3 /

is positive provided φ is nontrivial.

Proof. Apply the preceding lemma for the series expansion of φ and C.

The main result follows immediately from (4.2), Corollaries 4.3 and 4.5, and

the discussion of the Hessian in §1.4.

Theorem 4.6. The Weil-Petersson Hessian of a geodesic length function is

positive definite.

Corollary 4.7. A geodesic length function is strictly convex along a Weil-

Petersson geodesic.

Corollary 4.8. A geodesic length function is subharmonic as well as strictly

plurisubharmonic.

5. Convexity of the geodesic length sublevel sets

5.1. A basic property of a complete Riemannian manifold is that an

arbitrary pair of points is joined by a geodesic. On the other hand starting with

an arbitrary complete manifold and removing a closed set one can obtain a

manifold, where points may not be joined by a geodesic. Given that the

Weil-Petersson metric is not complete the convexity of Tg n is an open

problem.

Our main result is that Tgn is geodesically convex: every pair of points is

joined by a unique geodesic. In fact we show the analogue of the Hadamard-

Cartan result: the exponential map is a homeomorphism. The main result of

the previous section suggests an even stronger result. Recall that the normal

curvature of the level surface of a function is given by its Hessian. The la level

surfaces are locally strictly convex, relative to the inward normal—grad la. We

find the following result: the sublevel sets SL(α, M) = {p\la(p) < M), a

arbitrary, are geodesically convex. Pursuing the analogy with a complete,

negative curvature manifold we consider the Weil-Petersson distance. Our

result is that geodesies are uniquely length minimizing and thus the distance

between points is measured along the unique geodesic connecting them.
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The proof that Tg n is convex relies on three observations: special sums of

geodesic length functions are proper [12], the Weil-Petersson metric has

negative sectional curvature [20], [26], and the positivity of the Hessian of an

la. An underlying principle is that starting with a convex set C the construc-

tions of geometry give points and geodesies again in C. Since Tgn is exhausted

by the convex sets SL(α, M), completeness is not required.

5.2. We start by considering proper sums of the la.

Definition 5.1. A family of closed geodesies {aj}
fJι

=ι fills up a hyperbolic

surface R provided each component of R - Uy αy is topologically a disc or a

cylinder with one boundary contained in dR.

The following result is the first ingredient for our approach [12].

Lemma 5.2. If A = {«y)7=i fills up R, [R] e Tgn, then the sum LA = Σjlaj

is a proper function.

We cite an elementary application. By Theorem 4.6 the Hessian of LA is

everywhere positive definite. In particular at a critical point its index is zero.

LA is a Morse function on Tgn. It follows immediately that Tg n as well as the

sublevel sets SL(Λ, M) = { p j LA(p) < M} are cells.

5.3. Negative curvature will be used to ensure the absence of conjugate

points along a geodesic; a result independent of completeness [14]. Specifically

consider a Riemannian manifold N and a geodesic γ from p to q such that

q = expp(v\ q is the exponential of v at p. Recall that a vector v is in the

domain of the exponential map at p provided the geodesic with initial data

(/?,£>) is defined on the interval [0,1]. For nonpositive curvature the differential

of exp^ at v e Tp(N), the p tangent space, is an isomorphism. The proof uses

the description of the differential of exp by Jacobi fields; the curvature

hypothesis is used to estimate from below the length of a Jacobi field.

We cite a simple consequence. On its domain, exp^ is a local homeomor-

phism. Equivalently, provided p is joined to q by a geodesic, every point of a

neighborhood of q is also joined to p by a geodesic.

5.4. The uniqueness of geodesies is an easy consequence of negative curva-

ture and thus the existence is the main question. Given a family A which fills

up and M > 0 we consider the sublevel set SL(^, M) = {p\LA(p) < M).

Theorem 5.3. Every pair of points of SL(Λ, M) is joined by a geodesic in

SL(Λ, M).

Proof. SL(Λ, M) is open and connected; the proof is by connectedness.

Fix p e SL(^4, M) and define / to be the set of points joined to p by a

geodesic in SL(^4, M). The exponential exp^ is a local homeomorphism at p\ J

is nonempty. Now we check that J is open. Given q e / by definition there

exists a geodesic γ from p to q with γ c SL(A, M). As noted above there

exists a neighborhood U c SL(^4, M) of q such that a point r of U is joined to
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p by a geodesic β. Now LA(r), LA(p) < M and LA is convex along β. It
follows that β c SL(Λ, M) and thus [/ c /.

It remains to show that J is closed. Consider a sequence {qn} c / with
qn -> ̂  G SL(̂ 4, M). By hypothesis each gn is joined to /? by a geodesic γΛ.
LA is proper thus its sublevel sets are precompact. By passing to a subsequence
(same notation) we can assume that yn -> γ* c SL(Λ, M). By a standard
argument γ* is a geodesic from p to #* and since LA(p), LA(q*) < M the
convexity ensures that γ* c SL(A, M). We have that q+ c /; / is closed and
the proof is complete.

Corollary 5.4. The exponential map is a homeomorphism.

Proof. Teichmύller space is a cell, thus it will suffice to show that the
exponential map from an arbitrary point is a covering. To this end recall that a
proper local homeomorphism of Hausdorff spaces is a covering. In the
previous subsection we observed that the exponential map, given negative
curvature, is a local homeomorphism. All that remains is to show that the
exponential map is proper. Certainly it will suffice to show that the preimage
of SL(Λ, M) is compact.

The expp preimage of SL(A, M) is described by considering geodesies
leaving p. Given v a unit tangent vector at /?, consider the ray y(t) = expp(tv).
If γ(ί) has maximal domain [0, oo), then by the strict convexity of LA(y(t))
there exists a unique t0 such that LA(y(t0)) = M. On the other hand if γ(/)
has maximal domain [0, c), c finite, then since y(t) cannot be prolonged it
must be proper. Since LA is proper and strictly convex, again there exists a
unique t0 such that LA(y(t0)) = M. We may consider the quantity /0(ι0 as a
function on the unit tangent sphere and certainly the preimage of SL(A,M) is
the subset {w|||w|| < foί^/IM!)} °̂  ^ e P tangent space. Provided we show
that t0 is a continuous function of υ it follows that the preimage is a compact
subset of the tangent space and thus a compact subset of the domain of exp .̂
By the implicit function theorem t0 is a smooth function of v (cxpp is a local
diffeomorphism and we avoid the minimum of LA, the unique point where dLA

vanishes). The proof is complete.

Corollary 5.5. Let B = {βj} be an arbitrary family of closed geodesies and

LB = Σjlβ its length function. The sublevel set SL(2?, M) is convex.

Proof. Given p,q e SL(2?, M), LB is convex along the unique geo-
desic γ(7), 0 < ί < 1, connecting the pair. Consequently LB(y(t)) <
max{Lβ(/>), LB(q)} < M, 0 < ί < 1.

Corollary 5.6. Tg n has an exhaustion by compact Weil-Petersson convex sets.

Proof. If A = {0/17=1 fills up, then by Lemma 5.2 and Corollary 5.5 the

sublevel sets SL(Λ,Λf), M G Z + , provide an exhaustion.
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5.5. An important property of a complete manifold of nonpositive curvature
is that the exponential map is distance increasing. The natural analogue of this
result is valid for the Weil-Petersson metric. As an application we have that
Weil-Petersson geodesies are uniquely length minimizing.

It is important to clarify a distinction before starting the proofs. Associated
to a Riemannian metric are two measures of displacement. The first, the
infinitesimal metric, gives the length of tangent vectors. The second, the
distance function, gives the distance between points, defined by the infimum
over all paths joining the points. Finally we remind the reader that a Rieman-
nian metric defines a Euclidean metric (in both senses) in each tangent space.

Lemma 5.7. The Weil-Petersson exponential map is distance increasing for

the infinitesimal metrics.

Proof. Let LA be a proper length function and p e Tgn. The standard
proof may be applied to the set e x p ^ S L ^ , M)) c Tp(Tgn) [14].

Corollary 5.8. A Weil-Petersson length minimizing sequence converges to the

geodesic.

Proof. Start with a minimizing sequence { γ w ( / ) | 0 < ί < J π } o f unit speed
arcs joining p to q such that limj|γj | = )xvs\ndn = d(p,q) and γ(/), 0 < t <
dy, is the unique unit speed geodesic joining p to q. Furthermore choose LA a
proper length function and M > LA(p), LA(q). SL(A, M) is compact and γ
is a positive distance ε from 3SL(v4, M). For ε0 = min{ε, d(p,q)} the arcs
{yn(t)\0 < t < εo} are contained in SL(A, M); at the very least the sequence
has a subsequence (same notation) convergent to an arc γ*(0 on the interval
0 < / < ε0. We shall consider the lifts to Tp(Tgn):

9 = H) {) l(())

The first part of the argument is to show that %(t) = y(t) for 0 < / < ε0. The
approach is to use the Euclidean metric δ of the tangent space and argue by
contradiction. If the claim is false then there exists a tv 0 < tx < ε0, such that
Ϋ*(Ί) φ Y(*i) Since γ*(0 has speed at most 1 (by Lemma 5.5) and γ(0 is the
line connecting 0 to q we have that S(%(tx),q) > δ(γ(ίi), q) — dy - tv Now
the sequence (γw(ίi)} converges to y+itj and thus the limit of the lengths of
the segments {yn(t)\tx < t < dn) is at least 8{%{tλ\q) > dy - tλ. Applying
Lemma 5.5 to the exp^ images of these arcs we have

limdn~tι>δ(%(tι),q)>dy- tl9
n

hence \\mndn > dy. This is a contradiction of the sequence {yn} being length
minimizing.
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The remainder of the argument is essentially finite induction. By the claim

the initial segments γ*(r) and γ(/), 0 < / < ε0, coincide; repeat the argument

starting at γ*(ε0)
 = Y(εo) After a finite number of steps we have γ* = γ. The

proof is complete.

Corollary 5.9. Weil-Petersson distance is measured along geodesies.

Proof. The distance between a pair of points is given by a length minimiz-

ing sequence. By the above result the limiting length is simply the length along

the geodesic.

6. Tg n is Stein and the Nielsen problem

6.1. As applications of the convexity of the Weil-Petersson geometry we give

new proofs that Tgn is Stein and of the Nielsen realization problem. In fact the

former result is now immediate. The length function of a family A that fills up

is proper and plurisubharmonic (Lemma 5.2 and Corollary 4.8), the result

follows [9]. For the second result we shall apply Cartan's original center of

mass argument.

6.2. For a complete metric of nonpositive curvature the distance from a fixed

point to a geodesic is a convex function along the geodesic [14]. This property

carries over to the present situation, given the results of Theorem 5.3 and

Corollary 5.6 on the behavior of geodesies.

Mg n, the genus g, n puncture, mapping class group, acts on Tgn by

Weil-Petersson isometries. The following result is sufficient for the Nielsen

problem.

Theorem 6.1. Let G be a finite group of Weil-Petersson isometries. G has a

fixed point.

Proof. Choose a point p e Tgn and consider the G-invariant function

D(q) = Σy<=Gd(q, y(p)\ D is the Weil-Petersson distance of q to the G orbit

of p. The plan is to show that D has a unique minimum, the center of mass of

the G orbit of p. Since D is clearly G-invariant its unique minimum will be a G

fixed point.

The first step is to show that D has minima. Choose LA the length function

of a family that fills up and M > LA(y(p)) for all γ G G. We shall show that

D has minima and they are contained in S = {r\LA(r) < M }. As discussed

in the previous section dS = LA~
1(M) is a smooth hypersurface bounding a

cell. To establish the existence of D minima it is sufficient to prove that grad D

is strictly outward pointing on dS. We start by recalling the description of the

gradient of the distance function: Let f(x) = d(r,x) and let β be the unit

speed geodesic connecting r and s; then grad/(s) = β\s. Now consider that r
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is an interior point of S and s is a boundary point. Since LA(s) > LA(r\ the
strict convexity of LA along β provides that LA is strictly increasing at s\

(grad LA, grad f)s = (grad
dL

dβ
> 0

(relative to the Weil-Petersson metric). Certainly grad LA is the normal direc-
tion on dS and thus grad d(r,x) is strictly outward pointing on dS. D is a sum
of terms d(r,x); gradD is strictly outward pointing. Minima of D exist and
are contained in S.

The final step is to show that there exists a unique minimum. Proceeding by
contradiction, connect qx and q2, minima of D, by a geodesic β. By virtue of
negative curvature D is strictly convex along β forcing qλ = q2. There is a
unique minimum and the argument is complete.

As a last remark we point out that a variant of the Kerckhoff argument can
be substituted for the Cartan result. The length function LA of a family that
fills up is (/-invariant. By properness, LA has at least one minimum and by
Corollary 4.7, LA would be strictly convex along a geodesic connecting two
candidate minima, a contradiction.
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