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GEOMETRY OF MAPS
BETWEEN GENERALIZED FLAG MANIFOLDS

M. A. GUEST

A classical problem in Differential Geometry is the construction and classifi-

cation of minimal immersions between Riemannian manifolds. A recently

studied variant of this problem is obtained on replacing minimal immersions

by harmonic maps. If the manifolds are homogeneous with respect to the

actions of certain Lie groups, and are equipped with homogeneous Rieman-

nian metrics, one naturally expects the theory of Lie groups to play a role. We

shall use this principle, in a very specific situation, to produce new examples of

harmonic maps.

In §1 we summarize well-known facts concerning homogeneous geometric

structures on homogeneous spaces G/H, and in §2 we discuss the second

fundamental form of a map G/H -> G''/H' which is induced by a homomor-

phism Θ:G -> G\ Our basic result appears in §3 (Theorem 3.4), this being a

necessary and sufficient algebraic condition for such a map to be harmonic,

when G/H and Gf/H' are generalized flag manifolds and G' is the unitary

group. An important example is discussed in §4, namely that of the "higher

order Gauss maps" of the maximal projective weight orbit of an irreducible

representation of G. The harmonic maps which arise this way are very special,

being "homogeneous," but in §5 we show how they may be modified to

produce large families of "nonhomogeneous" examples.

Lest this program seem too uninspiring, we shall attempt to give some

justification and to point out connections with other problems of current

interest. The principal motivation was provided by the paper [15], in particular

the results concerning harmonic maps from C P 1 to CP", and the author is

grateful to Professor James Eells and John Wood for discussing their results. If

/ : C P 1 -» C P " is holomorphic, there are the well-known holomorphic "associ-

ated curves" fθ9fl9f2, (see [18, Chapter 2, §4]); /. is the map from C P 1
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into the Grassmannian Gr / + 1(C" + 1) of (/ + l)-planes in C" + 1 defined locally
(using homogeneous coordinates) by the formula

y ; ( z ) = / ( z ) Λ / ' ( z ) Λ Λ/«>( z).

In [15] it is shown that the map

f^-.CP1 - CP", /(,,(z) =/,_1(z)± nf,(z),

is harmonic with respect to the standard Kahler metrics of CP1 and CP", and
(what is more surprising) conversely, that any harmonic map of CP1 into CP"
must arise by this construction. Thus one has a description of harmonic maps
in terms of holomorphic maps. Since the appearance of [15], further construc-
tions of harmonic maps from Riemann surfaces into Hermitian symmetric
spaces have been given by various authors, and some idea of these develop-
ments may be obtained from the papers [9], [10], [11], [25]. (A classification of
harmonic maps from CP1 into a complex Grassmannian has recently been
achieved by S. S. Chern and J. G. Wolfson and by F. E. Burstall and J. C.
Wood, for example.) The relevance of the present article is that it provides a
generalization in a different direction: the constructions of §§4 and 5, when
applied to the Lie group G = SU2, give (without introducing local coordinates)
a description of all harmonic maps from CP1 to CP". This group-theoretic
approach also provides a connection between [15] and earlier work of W.-Y.
Hsiang, H. B. Lawson, M. do Carmo, and N. R. Wallach on minimal immer-
sions of homogeneous spaces (see [28], for example).

A second reason for wishing to have explicit examples of harmonic maps
comes from Mathematical Physics. The problem of studying the critical points
of some functional on a space of maps is difficult to treat by general methods,
yet considerable progress has been made in recent years in particular cases, for
example with the Yang-Mills functional and the Yang-Mills-Higgs functional
(see [3], [4], [27]). The energy functional (defined on the space of smooth maps
between two Kahler manifolds, say), whose critical points are precisely the
harmonic maps, is more tractable from the point of view of calculations than
these two examples, but appears to share some of their significant properties.
For example, the maps of minimum energy (in a fixed homotopy class) are
distinguished geometrically—they are the holomorphic (or antiholomorphic)
maps. Moreover, they are characterized as the solutions to the Cauchy-
Riemann equations, which are first order, whereas a general critical point is a
solution of the "harmonic map equation" twdf= 0, which is second order.
The minima may often be used to construct nonminimal critical points, and as
we remarked above, all nonminimal critical points are obtained in the case of
maps from CP 1 to CP"; a quite different situation where this happens (for the
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Yang-Mills functional) is described in [3]. Further discussion of these features

of the energy functional may be found in [7], [8], [19], while a deeper

connection with the Yang-Mills and Yang-Mills-Higgs functionals is given in
[ 2 ]

I am grateful for the hospitality of the Institute des Hautes Etudes Scien-

tifiques and the Mathematical Sciences Research Institute at the time when

this work began, and wish to thank Dan Freed, Professor Bertram Kostant,

and Professor Blaine Lawson for valuable comments.

1. Invariant geometric structures on flag manifolds

A flag manifold is a homogeneous space G/T, where G is a compact simple

Lie group and T is a maximal torus. For example, if G is the special unitary

group SUn, and T consists of the subgroup of diagonal matrices, G/T may be

identified with the set of "full flags" {0} = Eo c Eλ c c En_γ c En =

CM, where Et is a subspace of Cn of dimension i. This will be denoted

F(l ,2, , n) or simply Fn. A generalized flag manifold is a homogeneous

space G/C(S) where C(S) is a centralizer of a (not necessarily maximal) torus

S. For example, if G = SUn, C(S) must be conjugate to a subgroup of the

form S(U X ••• XUn), where the positive integers nv-- ,nk satisfy nλ

+ +nk = n. If mi• = nx + + «,., the quotient SUn/S(Unι X X Unk)

may be identified with the set F(mλ, , mk) of "partial flags" {0} = Eo c

Emιc •" c Emk χ c Emk = C". The complex Grassmannians (Gr r(C") =

F(r, n)) and projective spaces (CPn~ι = F(l, n)) are familiar examples; these

turn out to be the only spaces, amongst those of the form F{mλ,- , mk),

which are Hermitian symmetric. In this paper we shall exploit the richer

geometrical properties of the spaces Fn (or, more generally, G/T) which may

be thought of as at the "opposite extreme" to a symmetric space. Our basic

reference on homogeneous spaces is [5].

The negative of the Killing form of G is a positive definite inner product

( , > on the Lie algebra L(G) = Q, and if H is a Lie subgroup with Lie algebra

L(H) = ί), one has an orthogonal decomposition

L(G) = L(G/H) θ L(H)

which is in fact an //-module decomposition for the restriction to H of the

adjoint representation of G. The tangent bundle T(G/H) of G/H is the

homogeneous bundle associated to the principal bundle G -> G/H via the

//-module L(G/H). We shall sometimes write G/H = M, L{G/H) = L(M)

= m, to simplify notation. An "//-invariant geometric structure" of T(G/H)
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is thus obtained by specifying one for L(G/H), and it is with such geometric
structures that we shall be concerned. We assume that H = C(S) for some
subtorus of the maximal torus T; there is a Γ-module decomposition

L(G/T)®C= Σ Ea,
αeΔ

where Δ c L(Γ)* is the set of roots and Ea is the root space corresponding to
a e Δ. We refer to [1], [21] for elementary properties of roots, and for Lie
theory in general. One then has

L(G/H)®C = Σ £«>

where Δ c / / / c Δ is the subset of complementary roots (see §1 of [5]).
An //-invariant almost complex structure on G/H corresponds to an H-

invariant endomorphism / of L(G/H) with J2 = -I. If H = T, such endo-
morphisms correspond to decompositions Δ = Δ + U Δ~ with the property
Δ~= {-a\a e Δ + }, whereby the decomposition L{G/T) Θ C = L(G/T)l0

θ L(G/T)01 into (1,0) and (0,1) parts is given by

The almost complex structure is integrable precisely when Δ+ is the set of
positive roots with respect to a choice of fundamental Weyl chamber in L(T)
[5]. Throughout this article, we fix a fundamental Weyl chamber D in L(Γ),
with dual chamber D* in L(Γ)* and set of positive roots Δ+, and we denote
by J the corresponding complex structure on G/T. The decomposition of
L(G/T) as a real Γ-module may conveniently be written as

L(G/T)= Σ Va,
αeΔ+

where Va ® C = Ea θ E_a. A general (Γ-invariant) almost complex structure
is specified by whether or not it agrees with / on each Fα, so there are 2 |Δ+i

possibilities. Note that if L(G/H) is an irreducible //-module, and G/H
admits an //-invariant almost complex structure, then it admits only two such
(and these are conjugate).

Similar comments apply to invariant Riemannian metrics on G/H, which we
shall identify with invariant inner products on L(G/H). A Γ-invariant metric
(( , )) is specified by how it differs from ( , ) (minus the Killing form) on
each Va. Since an irreducible module has a one-dimensional family of invariant
metrics, (( , >> = ( , >r for some function r:Δ + -> R+, where ( , )r is the
metric defined by (x, y)r= r(a)(x9 y) for all JC, y e Va. (The same notation
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will be used for an inner product on L(G/H) and the induced inner product
on L(G/H)*.) Clearly ( , >r is Hermitian with respect to /, hence one has a
nondegenerate 2-form ωr defined by

ωr(X9 Y) = (X, JY)r9 I J E L(G/T).

If ( , ) r is a Kahler metric, ωr is given by

ω r(Jf,y) = γ([Jf,y] L ( Γ ) ), X,YeL(G/T)9

for some γ G /)*, because each class in H2(G/T;R) = L(T)* contains a
unique invariant 2-form (see [17]). In this case, r(a) = (γ, a).

More generally one may consider an //-invariant affine connection on G/H,
i.e., an //-invariant covariant derivative operator

V :Γ(Γ(G///)) -> T(T*(G/H) ® T(G/H)).

This corresponds to an //-module transformation

Λ :L(G///) ® L(G/H) -> L(G/H)

as we shall explain in some detail, following [23], since this provides an
opportunity to establish notation for later use. First, L(G) refers to the Lie
algebra of left-invariant vector fields on G, and G acts naturally on the coset
space G/H = {gH\g G G) on the left. If X G L(G), we denote by X* the
vector field on G/H defined by ** H = (d/dt)(exρtX g//) | , = 0 . The reader
should beware of sign errors in the literature stemming from the fact that
[X*,Y*]= -[X,Y]*. If Lz denotes the Lie derivative with respect to the
vector field Z e Γ(Γ(G///)), the operator

V z - LZ:T(T(G/H)) -> Γ(Γ(G///))

is linear over functions (i.e., it defines a (1, l)-tensor). With Z = X* for
X G L(G), homogeneity of V implies that this (l,l)-tensor is determined by
its behavior at the identity coset o e G/H. By definition, (V z ) w depends only
on Zm (for any m G G///). These remarks show that the operator v is
determined by the //-invariant linear map Λ defined by

A(X, Y) = (v^*y* - LX*Y*)O9 x, Y G L(σ//f).

Conversely, any such map Λ defines an //-invariant connection (see [23,
Volume II, Chapter 10, Theorem 2.1]). This is the required correspondence.

The canonical connection is given by Λ = 0; this is characterized by the
property that its geodesies through o G G/H are given by exponentiating
one-parameter subgroups of G, and parallel translation is induced by the
natural action of G on G/H. (Alternatively, the splitting L(G) = L(G/H) Θ
L(H) defines a connection in the principal bundle G -» G/H, in the sense of
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[23], from which the canonical connection is obtained via the standard proce-
dure for passing from principal bundles to associated vector bundles.) The
Riemannian (or Levi-Civita) connection associated to the metric ( , > (intro-
duced above) will be called the Killing connection; this is given by A(X, 7)
= \[X, Y]L(G/H) (the component of \[X, Y] lying in L(G/H)). To prove this,
first use the conditions W (U, V) = (VWU, V) + (U, V WV) ("compatibility
with the metric") and V ί / F= VVU + [U,V] ("torsion free") to obtain the
identity

(W9U)-W (U,V)

(V9[w9u]) - <u,[v,w]).
Now take U = X*, V = 7*, W = Z* for X,Y,Z^ L(G/H). Since (7*, Z*>
is constant, X* (7*, Z*) = 0 (etc.), and since ( , ) is bi-invariant,
<7*, [Z*, X*]) + <[Z*, 7*], X*) = 0. The formula for Λ follows.

The Riemannian connection associated to an invariant Kahler metric on
G/H will be referred to as a Kahler connection; the covariant derivative
operator here is obtained by "realifying" a complex operator

D:T(T(G/H)ιfi) -> T((T(G/H) Θ C)* Θ T(G/H)ιfi)

which may be written as D = Dl0 θ D01 using the decomposition T(G/H) ®
C = T(G/H)l0 θ T(G/H)01. Hence the connection is determined by com-
plex i/-module transformations

Aιfi:L(G/H)ιfi β L(G/H)lfi - L(G/H)lfi,

Aoy.L(G/H)OΛ 0 L{G/H)U0 -+ L(G/H)ιs>,

which are defined in analogy with Λ. To determine these (following [17]),
recall [18, Chapter 0, §5] that D is characterized in terms of the complex
structure J and the Hermitian metric h of G/H by the properties:

(1) D01 = 3 (the "3-operator" of the holomorphic bundle T(G/H)l0\
(2) dh(X, 7) = h(DX, 7) + h(X, DY), I J e T(T(G/H)10).
If I J E L(G/H)l0, one defines in the obvious way X*, 7* e

Γ(Γ(G/i/) 1 0) and these are holomorphic vector fields. By (1), (Z>01)**7* =
9** 7* = 0. Hence

which, it should be noted, depends only on the complex structure and not on
A. By (2), Λ(/)^7*,Z*) + /i(7*,Z)^Z*) = 0 for X, 7, Z e L(G/H)l0,
which in terms of the underlying Riemannian metric gives (2)^*7*, Z*) r +
( 7 * , D ^ Z * > r = 0, hence

where the adjoint is taken with respect to h.



GEOMETRY OF MAPS 229

Although the Riemannian connections described above are those of primary
interest, several results in §3 will be stated for the Riemannian connection
associated to the general Γ-invariant metric ( , )Γ on G/T, so we shall need to
know the corresponding map Λ. As in the calculation for the Killing connec-
tion, we find

.y*, z*>r = ([x*, Y*], z*>r - (7*, [x*,z*]>r - <**,[7*,z*]>r

from which it follows (see [23, Volume II, Chapter 10, §3]) that Λ may be
written in the form A(X, 7) = \[X, Y]L(G/T) + U(X9 7). Here, U e
(S2L(G/T)*) <8> L(G/T) is determined by the condition

An explicit formula for £/ will be given in §2.
Finally, we make some remarks on the particular flag manifold Fn, in the

light of the preceding discussion. The description of Fn as the space of flags in
C" endows it naturally with the structure of a complex manifold; indeed it is a
homogeneous space of the complex group G1WC. This agrees with the invariant
complex structure defined by the choice of positive roots {xi - *,•},•>, for SUn

(with respect to the standard maximal torus £(6^ X X L )̂), and thus is
determined in practice by choosing the standard ordered basis of Cn. It would
therefore have been more logical (if less conventional) to define Fn as the space
of ordered n-tuples of lines in C", which are mutually orthogonal for the
standard Hermitian inner product (this space being naturally isomorphic to
SUn/S{Uι X X ί/χ)). However, since we shall always consider Fn with the
complex structure just defined, the original definition is satisfactory. There are
tautologously defined holomorphic vector bundles on Fn whose fibers over a
flag {0} = Eo c Ex c c En_1 c En = Cn are Eθ9 El9- 9En respectively.
We denote these bundles by the same letters EQ9 Ev- -, En. There are corre-
sponding line bundles Ll9 L2, , Ln, where L, (= (£, _i) ~L Π£,) is the homo-
geneous bundle induced by the representation λj S ^ X ••• X Uλ) -> Uλ

given by projecting to the zth factor. One has Tl0Fn = Σi>JLi Θ L*. The
corresponding S(Uλ X — ' X ί/1)-module decomposition is L(Fn) Θ C =
Σ ^ y λ Φλ*. As a subbundle of FnxCn+ι, each bundle L, acquires a
Hermitian metric, hence so does Σi>JLi 8 LJ\ the corresponding Riemannian
metric on Fn may be described alternatively as that which is induced via the
natural embedding Fn -> CPn'1 X XCP""1, where each CPn~ι s
SUn/S(Uι X !/„_!> has the Riemannian metric ( , >. From this one sees that
the metric on Fn is 2( , >. (Note that a quite different metric is obtained
on Fn using the holomorphic embedding Fn -> Gr^C 1 ) X Gr2(Cw)
X xGr^.^C 7 ) ; if each Grassmannian has the metric ( , ), Fn acquires
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the Kahler metric corresponding to the weight

i.e., half the sum of the positive roots. In general, γ = i Σ α e Δ + a gives perhaps
the most natural invariant Kahler metric on G/Ύ, this being the essentially
unique invariant Kahler-Einstein metric [17].)

The notation introduced here will be extended to the generalized flag
manifold F(ml9- -,mk), i.e., the tautologous holomorphic vector bundles
will be denoted E0,Emι,- ,Emk, and we shall write Lx; = (Em _i)-L Π£W /,
this being a homogeneous vector bundle induced by the representation

2. The fundamental forms of homogeneous maps

Let θ: G -> G' be a homomoφhism of compact Lie groups G, G' such that
Θ(H) c //' for certain subgroups //, //'. We write L(G) = g, L ( # ) = ί),
L(G/H) = m, with similar definitions for g', ί)', πxr. Denote by fθ: G/H ->
G'/H' the induced map of homogeneous spaces. The derivative dfθ is de-
termined by its restriction t o o G G/H, which is the //-module transformation
dfθ\m -> m' given in terms of the Lie algebra homomoφhism θ: g -> g' by

We fix invariant connections on G/H, G''/H' given by Λ, Λ'. The iterated
covariant derivative V'""VΛ) G Γ(®'T*(G/i/) ® ffιT(G'/H')) will be
called the /th fundamental form of J/tf (/ ^ 2). We use the same notation for
the corresponding //-module transformation

^ ®'m-> xn'

Lemma 2.1. For I j E m ,

+ A'(θ(X)m.,θ(Y)m.)-θ(A(X,Y))m.

= \θ{X)v,dfe{Y)) + A'(dfe(X),dfe(Y)) - df$(A(X,Y)).

Proof. By definition, v(dfe)(X*, Y*) = Vx,dfθ{Y*) - dfθ(vx*Y*). Note
that df,{Y*) = θ(Y)*»fβ, so V^rf/^y*) = (VdMx^(Y)*)ofe (using the
formula for the pull-back connection in §1 of [13]) = (Vβ(X)*o/β(Y)*)° fe.
Hence
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The second term is equal to θ([X,Y]m)m, - θ(A(X,Y))m,, because of the
formula for Λ in §1 and that for dfθ above. To evaluate the first term We need
an expression for (v ί /*F*)owhen ί/,Ke g'. Writing U = Uγ + ί/m,, we may
replace U* by (t/m')* since VAB is tensorial in A. Writing V = F̂ / + Fm/, we
obtain

on applying the formula for Λ' given in §1. Since VAB - LAB is tensorial in
^ O J = 0, we have

Thus ( V ^ * ) o = -[ί/m,,K]m, + Λ*(£/m,,Fm,). Setting U= Θ{X\ V = Θ(Y\
we obtain the required formula after a short calculation.

Examples. (1) For the canonical connections on G/H and Gf/H\

v(dfθ)(X,Y) = [Θ{X)W, θ(Y)m.] = [β{X)v, dfθ(Y)].

(2) For the Killing connections on G/H and G'/H',

v(dfβ)(x,γ) = *(

Note that this is symmetric in X and Y, and that it coincides with the formula
of the previous example when G/H, G'/H' are symmetric spaces.

It will be convenient to use "complex" notation in future. With this in mind,
we fix a basis {ea}a(=Δof L(G/T) ® C which satisfies:

(1) ea e Ea9 a e Δ,
(2) <^α, e^) = -1 if α + Ŝ = 0, = 0 otherwise.

Here, ( , ) denotes both minus the Killing form and its complex linear
extension to L(G) Θ C. (In general, maps will be extended by complex
linearity from now on, without change of notation or further comment.) Such a
basis of L(G/T) Φ C has the additional well-known properties:

(4) [ea,eβ] = Naβea+β if α + β e Δ, = 0 if 0 * α + /? £ Δ.
In terms of this basis of L(G/T) ® C the map t/, for which the Riemannian

connection with respect to the metric ( , >r is given by A(X, Y)

= i[X> Y]L(G/T)®C + u(x>γ) ( s e e §!)» i s readily computed as

γ e Δ
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0 if γ Φ a + /?,

Hr(\β\)-r(\a\))Nayr(\a if γ = a + β,

(and where \a\ = a if a e Δ+, \a\ = -a if -α e Δ+). Thus, if ( , >r is Kahler
and α , ^ G Λ + , U(e_a9eβ) = i [ e . β , ^ ] . Hence Λ 0 1(^_α,^) = [ e . α , ^ ] , in
agreement with the general results of §1. As an example, if G/T = Fn and if
for a = xι; - jcy we write eα = e, y, r(|α|) = rij9 then Λ is given by

v K / if •/ = fc>

/rΛ J e , , 7 if i = /,rit, -
lO otherwise.

If ( , )Γ is Kahler, this simplifies further to

These formulas may now be used in conjunction with Lemma 2.1, to give
further examples.

Recall that a map f:M-*Nof manifolds with connections is said to be
totally geodesic if V(df) = 0, and that if the connection on M is that
associated to a Riemannian metric, / is said to be harmonic if iW(df) = 0,
where the trace is taken with respect to the metric on M. For general
information on harmonic maps see [12], [13].

Lemma 2.2. Let H = T. If the connection on G/T is that associated to the
Riemannian metric ( , ) r, then fθ is harmonic if and only if the element

ΣαeΔ(lA(lαl))(£α ® e-«) ZιS *'w tne kernel of the linear transformation
V(dfθ):L(G/T) ® L(G/T) -> L{G'/H'\

Proof. As a basis over R for L{G/T) c L(G/T) Θ C one may take the
elements
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for a G Δ+. This is orthonormal with respect to ( , ) r. Hence fθ is harmonic if
and only if the element

Σ [(ea - e_a) ®{ea - e_a) -(ea + e_a) ®{ea + e_a)]/r(a)
α€=Δ +

= - Σ (*««*-« + *-«« OΛ(«)

is in the kernel of V(dfθ). q.e.d.
We conclude this section with some generalities concerning osculating flags.

If E c F are bundles over a manifold M with connections V£, VF, the
formula

defines an element B2 e Γ(Hom(ΓM $ £, i7)) called the second fundamental
form of E in F. Writing £ = Ea\ we define £ ( 2 ) c F by

for each m e M; this is a bundle over the open subset of M consisting of
points m for which E^ has maximal dimension. The procedure may be
repeated: given a flag £ ( 1 ) c E(2) c c £<'"> c F, replace E by £ ( / ) in the
formula above to obtain Bi+ι e Γ(Hom(ΓM Θ £ ( / ) , F))9 then define

The construction terminates after a finite number of steps, and we call the
resulting flag of bundles £ ( 1 ) c £ ( 2 ) c (defined over an open subset of
M) the osculating flag of E in F. More generally, a similar construction is
possible if the inclusion E c F is replaced by any bundle map. For example, if
f:M -* N is a map of manifolds with connections, we may take E = TM,
F = f~\TN\ in which case the subbundle £ ( / ) of f~\TN) is generated by df
and the fundamental forms V ( # ) , , Vi~1(df). For the special case fθ: G/i/
-> G'/H\ the bundles £ ( / ) are defined everywhere, by homogeneity, and the
osculating flag is determined by the corresponding flag of //-modules

dfθ(xn) = xnι c m2 c c m'.

Proposition 2.3. IfG'/H' is a symmetric space with its canonical connection,
the osculating flag satisfies

= m/_1+[0(mV,m/_1] (i > 2)

in particular is independent of the invariant connection on G/H).
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Proof. First, m 2 is spanned by xax and vectors of the form (VΘ(X)*Θ(Y)*)O

for I j G m (see the proof of Lemma 2.1). As in Lemma 2.1,

(VΘ(X)*Θ(Y)*)O = -[θ(x)m>, Θ(Y)} n, + A'(o(x)m>, θ(γ)n.)

= -[θ(X)m,,θ(Y)]m,

(as Λ' = 0). This gives the first stated expression for m 2 ; the second follows as

[m', m'] c ί)' (since G''///' is symmetric). The general case may be obtained

by induction, q.e.d.

If now G''///' (and hence m') has an invariant metric, one obtains an

//-module decomposition

m' = ίx θ I 2 θ

by writing lλ = dfθ(m), Iz = (m^J1 Πm (, This (or the corresponding bundle

decomposition) will be referred to as the osculating space decomposition for fθ.

(In classical terms, li is the ith osculating space a t o E G/H. For more details

of this, see §11 of [28].)

3. Projective weight orbits of unitary representations

Let θ: G -> Un + ι be a homomorphism, i.e., a unitary representation of G on

C w + 1 . As usual, θ will also denote the corresponding Lie algebra representa-

tion 0 : L ( G ) ® C - > L ( ί / M + 1 ) Θ C . To simplify notation, however, the opera-

tor on Cn+1 corresponding to θ(x) e L(Un+1) ® C = End(CM + 1) will be indi-

cated by JΓ -> Λ: H .̂ Let Fo, Vl9 -,Vn be any ordered basis of C" + 1, ortho-

normal with respect to the standard Hermitian inner product, consisting of

weight vectors of θ. Let the corresponding weights b e Λ ^ Λ ^ sΛ,, e L(T)*.

The lines [Vt] G C P n are fixed points for the induced action of Γ, and we shall

be interested in the geometrical properties of the orbits G - [V^ = {[θ(g)Vi]\g

e G} c CP". It will be convenient to consider G [Vt] as the image of the

map

where C[F;] is the centralizer in Un+ι of [Vt]. This in turn will be considered as

the composition

where fθ is the map of §2 and tπi is the natural projection

SUn + 1/S(Ux X ••• Xί/χ)-> £ / Λ + I / C [ F ; . ] induced by the inclusion of the

maximal torus S ^ X X t/j) = Π J U Q ^ ] in C[F;]. In this section we shall

give necessary and sufficient conditions for fVj to be harmonic (Corollary 3.6).
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The map fVj was obtained by selecting the weight vector Vt. More generally,

one may select a flag {0} = £ 0 c ^ c c Emkχ c Emk = Cn+ι (denoted

σ), where the mΓplane Emj is spanned by a subset of {V0,-—9Vn}, and this

defines a map

fσ:G/T^F(ml9 >>,mk)

which may be expressed as a composition in a similar way:

/ —* n +1 —* \ ̂  1»* * " ' ^ fc / '

Our main result, Theorem 3.4, is a necessary and sufficient condition for fσ to

be harmonic, from which Corollary 3.6 will follow.

We begin with some remarks on complex structures.

Lemma 3.1. The vector ea Vi is either zero or a weight vector with weight

Λ, + a.

Proof. This is an elementary fact, which we state only because it will be

used several times. It follows from the equations hea — eah = [h,ea] =

2vfΛa(h)ea9 h Vi] = 2iτ{-ϊA^V^ (h e L(T) ® C). q.e.d.
On G/T we retain the complex structure / of §1 determined by a fixed

choice Δ + of positive roots, and on Fn+1 we take the standard complex

structure Jn + ι given by the choice of positive roots,

J C , - Xj E : L ( S { U λ X ••• X l / j ) ) * , 0 < 7 < Ϊ < Λ .

Definition 3.2. Le/ 51 be any torus. If λ e L(S)*, the associated one-

dimensional complex S-module, whose character χ.S^S1 is given by

χ(exp(5)) = exp(2ττV^Tλ(5)), will be denoted p\

With this convention, the invariant complex structures /, Jn + ι are described

by the following decompositions:

L(G/Γ)®C=( Σ Pα)®( Σ P")

where the first summand is the (1,0) component in each case.

Proposition 3.3. The map fθ is holomorphic with respect to /, Jn+ι if for each

weight Aj and positive root α, Λy + a either is not a weight, or is a weight Λ7

with i > j .

Proof. Assume the condition on the weights holds. If fθ is not holomor-

phic, dfθ(ea) has nonzero component in pXi~xJ for some / < j . Hence ea Vj

has nonzero component in the line spanned by Vt. By Lemma 3.1, ea V-
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(being nonzero) is a weight vector with weight Λy + α, so its component in the

line spanned by Vt is too. Hence Λy + α = Ay with i < j , which is a contradic-

tion, q.e.d.

On the generalized flag manifold F(mv- -,mk) we shall take the standard

complex structure of §1, i.e., that for which

L(F)li0 = Σ K ® λ*.

As an SCt/j X • • X ί/^-module,

λ, ® λ* = £

where Λ, = ( r | F r e £^._ i Π £ m . } . Thus, if the flag σ is the standard full flag

with Et = [Vθ9- *, ̂ _χ] (brackets denote linear span), then πσ is the identity

map and the complex structure on F is / π + 1 . At the opposite extreme, if the

flag σ is {0} c [Vt] c C" + 1 , then ττσ = w,-. The complex structure o n f = CP"

is that for which

Thus, τry is holomorphic if and only if / = n. (More generally, πσ is holomor-

phic if and only if s > t for all s e Ai9 t G AJ with i > j.)

From now on, we shall fix the metric ( , > on F(mv- ,mk). When

F = CP", this is a multiple of the Fubini-Study metric, and is Kahler with

respect to the chosen complex structure. We write pt for orthogonal projection

onto the subspace E^ γ Π £ m = [Vr \ r e At] of C M + 1 .

Theorem 3.4. Let G/T have the metric ( , >r. The map fσ:G/T^>

F(mv' - -,mk) is harmonic if and only if the operators

(*) Σ Piea(Pi ~ Pj)e-aPj/r(\*\)

on Cn + ι are all zero for 0 < i Φ j < k.

Proof. Applying 2.1 and 2.2 to /σ, we find the condition for fσ to be

harmonic to be

(**) α<=Δ

where the decomposition L(SUn+ι) ® C = m' θ £)' is that given by

F{mλ,' - , mk), and A is the linear map defining the Riemannian connection

for ( , ) r . We have used the fact that the map A' defining the connection on
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F(ml9-',mk) is given by A'(X,Y) = i[X,Y]m> (see §1). Now, from the
formulas for Λ in §§1 and 2 we see that A(ea, e_a) = 0 for all α G i , so the
third term in (**) vanishes. As the bracket is skew symmetric, the second term
vanishes (on summing over Δ). Thus, the condition for fσ to be harmonic is
that ΣΛ e Δ(l/r(|α|))0(έ?β) Θ θ(e_a) is in the kernel of the map

®2(L(SUn+ι) ®C)-+m\

{X9Y)~[Xγ,Ym.],

the bracket being that of L(SUn+ι) ® C. Recall that m' = Σ ^ λ , ® λ*.
We shall prove that the component in λ, ® λ* of the image of
Σa(=Δ(l/r(\a\))θ(ea) ® θ(e-a)ιs precisely the operator (*). Let us write θ(ea)
= X= ΣaΦhX

aJy, where Xa<b is the component of X <Ξ L(Fn+ι) ® C in
px«~x\ and similarly θ(e_a) = Y = Σ ^ , , YβΛ If ^ e Ai9 t e ^ , the compo-
nent of [ Jfb/, Ym,] in p^~ x ' is

which may be written as

Γ Σ *"•', Σ

This is the element of pXs X/ = Hom(p*',p**) represented by the operator
eaPie-a + e-aPjea Summing over .y e ^4/5 r G Λy gives the operator

Pi(eaPi*-a - e-aPje«)Pj>

and summing finally over α e A gives (*), as required.
Remarks. (1) Since pf = ρ( and e* = e_a (as operators on C"+ 1), the

theorem remains true if the operator (*) is required to be zero only for / < j .
(2) An alternative expression for the operator (*) occurs in the proof,

namely:

Σ ( ( / > , O U O -{p,e-a)(Pjea))Pj/r{\ab.

(3) The theorem remains true if the connection associated to ( , ) is replaced
by the canonical connection on F(mV' —,mk); in this case Λr = 0 and the
second term in (**) is replaced by zero. When k = 2, both these connections
are essentially the same as the standard Kahler connection.

Corollary 3.5. Let σ be the flag {0} c [Vh,- , Vik] c C" + 1, and let p9 p^
denote the orthogonal projections onto [V^- -,Vik], [V^,- , Vik]

x respectively.
IfG/Thas the metric ( , >r, and Gr^(CM+1) has the metric ( , > (the essentially
unique invariant Kahler metric), the map

fo:G/T->Grk(C"+1)
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is harmonic if and only if [Vi9- , Vik] is preserved by the operator

0) Σ ea\p±-p)e_a/r(\a\)

or, equivalently, by the operator

(ϋ) Σ (eaP
±e_a- e_apea)/r(a).

αeA+

Proof. From Theorem 3.4 and Remark (1) above, the condition for fσ to

be harmonic is that the operator

Σ P±ea(p±-p)e_apM\a\)
αeΔ

be zero. This proves the assertion concerning the operator (i). Rewriting this

condition as in Remark (2), we have

Σ P±{eap
±e_a-e_apea)p/r(\a\) = O.

oeΔ

Since

{eap
±e_a - e_apea) ~{e_ap

±ea - eape_a)

= e«(/>± +P)e-a~ *-a(P + / ? ± K = *<fi-a ~ β-*e«

acts as a scalar on each [V(], it preserves [Vt; , , Vik], so we may replace the

sum over a e Δ by the sum over a e Δ+. The assertion concerning the

operator (ii) now follows.

Corollary 3.6. Let V be a weight vector of the representation θ. If G/T has

the metric ( , >Γ, and CP" has the metric ( , >, the map fv: G/T -> CP" is

harmonic if and only if V is an eigenvector of the operator

θr= Σ eae_Jr{a).

Proof. Without loss of generality we may assume V = Vt for some / and

apply Corollary 3.5. Since ea Vt and Vt are weight vectors for distinct weights

(see Lemma 3.1), they are orthogonal, hence the operator (ii) of Corollary 3.5

reduces to θr. q.e.d.

In the following theorem we list some situations where Corollary 3.6 applies.

Theorem 3.7. Let θ be a representation as in Corollary 3.6.

(1) Weight vectors Fo, , Vn may be chosen so that each map fv is harmonic

with respect to the metrics ( , >r of G/T and ( , > of CP".

(2) // V is a weight vector of multiplicity one, fv is harmonic with respect to

the metric ( , >r of G/T and ( , > of CP".

(3) // θ is irreducible, and V is any weight vector, fv is harmonic with respect

to the metrics ( , > of G/T and ( , > of CP".
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Proof. (1) The operator θr of Corollary 3.6 is Hermitian and preserves

weight spaces, hence one may take a basis of its eigenvectors in each weight

space.

(2) The weight space [V] is preserved by θr.

(3) The weight vector V is an eigenvector of θr if and only if it is an

eigenvector of Σ α e Δ e α e _ α (this is (i) of Corollary 3.5). This is the case if and

only if V is an eigenvector of the Casimir operator (with respect to a suitable

basis of L(G) Θ C extending {ea}a<=A) of θ. As θ is irreducible, the Casimir

operator acts as a scalar, q.e.d.

A version of part (2) of the theorem exists for the case fσ:G/T -> Gr*(Cn + 1 ) :

if the subspace [Vi9- , Vt] is a single weight space of 0, then fσ is harmonic.

This is because the operator Σa€= A(l/r(\a\))e a( p -1 —p)e_a of Corollary 3.5
preserves weight spaces.

It may be appropriate to make some remarks on the relations between
harmonic maps and minimal immersions at this point. Let / : Mm -> N" be an
immersion of Riemannian manifolds, whose dimensions are m, n and whose
metrics are g, h respectively. It is said to be isometric if g = f~ιh. For such an

immersion /, the "mean curvature normal; at x e Mm is defined classically to

be {\/m)\wdfx. (The fact that g = f'ιh allows one to show [13] that vdfx is

in the normal space df(TxM)± .) If the mean curvature normal is zero for all

x G M m , / is said to be minimal. Hence an isometric immersion is minimal if

and only if it is a harmonic map (i.e., a solution of iτvdf = 0). In variational

terms, an isometric immersion is minimal if and only if it is a (local) extremum

for the volume functional

/-> [ Idet/"1/*!1/2,
JM

whereas a map is harmonic if and only if it is a (local) extremum for the energy

functional

/ - > * / tr/"1/*.

The previous remarks assert that, if one restricts attention to the space of

isometric immersions, the critical points of these two functional coincide (see

§2 of [14]).

Proposition 3.8. Assume that the action of the isotropy subgroup Gi of [V^

on L(G [Vt\) is irreducible. If G/T has the metric ( , ) {minus the Killing

form), fv is harmonic if and only if the orbit G [V^ is minimally embedded with

respect to the induced metric.

Proof. The map fv may be factored as the composition
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of the projection at of G/T onto the orbit G [Vt] = G/G^ followed by the

inclusion map bt. With respect to the metrics ( , > on G/T and G/Gz, α, is a

Riemannian submersion (i.e., a submersion which is an isometry on horizontal

tangent vectors), and (see §4 of [12]) bt ° ai is harmonic if and only if bt is. The

induced metric on G [Vj] is invariant under the action of Gy, hence it must be

a( , ) for some a > 0, as this action of Gt is irreducible. Thus, G [Vf] is

minimally embedded if and only if fv is harmonic with respect to α( , ).

From the form of the energy functional one sees that this is true if and only if

fv is harmonic with respect to ( , >. q.e.d.

In [22], W.-Y. Hsiang observed that, if a Lie group G acts on a Riemannian

manifold M, the orbit of a point is minimally embedded if and only if its

volume is extremal, where the volume functional is now restricted to the space

of orbits of the given type. In particular, an orbit of "isolated type" is

minimally embedded. This provides another proof of Theorem 3.7 (2) (and of

the assertion following Theorem 3.7). On the other hand, Theorem 3.7 (3)

should be compared with a result of N. R. Wallach (Proposition 8.1 of [28])

which says that if θ: G -> SOn + ι is an irreducible real representation, then any

isotropy irreducible orbit of G in the sphere 5" c R" + 1 is minimally em-

bedded.

4. Example: the Gauss maps of a projective weight orbit

In this section we shall describe a situation of particular geometrical

significance where Corollary 3.5 applies. Let Θ:G -> Un+ι be an irreducible

representation, with weights Λo, , An arranged to satisfy the condition of

Proposition 3.3, and choose weight vectors Fo, , Vn. Thus Λ o is the maximal

weight, and fVn = mn ° fθ is holomorphic. Since ea Vn = 0 for all α G Δ+, it

follows from Corollary 3.6 that fv is harmonic, whatever metric ( , >r is

assigned to G/T. The roots α e i + for which e_a Vn Φ 0 define a set of

positive complementary roots Δc [vn] f°Γ t n e homogeneous space G [FJ, and

hence an invariant complex structure. With respect to this, the embedding

G [Vn]-+ CPn is holomorphic, in accordance with Borel-Weil theory [6].

There is a "Gauss map" G/T -* Gr^(C" + 1 ) whose value a t o G G/T is the

Λ>plane [e_a V~ \a e Δ£. [ K j ] . Since the vectors e_a Vn here are weight

vectors for distinct weights, we can assume (by rechoosing Fo, , Vn_1) that

each e_a Vn is some Vf, with the notation of Corollary 3.5, this Gauss map is

fσ:G/T-+ Gr^(C w + 1 ) . We shall verify presently the condition of Corollary

3.5, hence fσ is harmonic. This is a special case of Theorem 4.3 below,

concerning all " higher order Gauss maps" of fv. To define these maps, we use

the holomorphic osculating flag of fv as introduced in §2, which is a flag of
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complex (/^-modules

uo) = πti c m 2 c . . . c L{CP")U0.

With the conventions of §3,

n-l I n-1

L(c/> Λ ) l f 0 = Σ ρx"~x'= Σ pX

ι = 0 I / = 0
hence there is an associated flag of submodules of Cn+ι = (L"IQ pXi) θ p x "

which we write as

n o c Π l c ••• c C " + 1

( n 0 = p*% and if i > 0, n, = ρx" θ (p~Xn ® tn ,-)*). Finally we define f 0 = n 0 ,

ii-(ni_l)
±nni(i>0).

Definition 4.1. // the weight vectors Fo, , Vn are chosen to be compatible

with this decomposition, in the sense that ϊ, = [Vj\j ^ At] for some subset

Aι a {0,1, , n}, then the ith Gauss map is the map

defined by the flag {0} c f. c C π + 1 .

P r o p o s i t i o n 4 . 2 . The flag n o c π 1 c ••• c C " + 1 m a y be identified a s

follows:

n f . = [e_aι -" e_ak- Vn\au- -9ak e Δ + , 0 < * < i]

wίϊA /Ae understanding that e_a -'' e_a Vn = Vn if k = 0.

Proof. By definition, n 0 = [Frt]. The remarks above concerning G [Vn]

give the case i = 1. According to Proposition 2.3 we have m, = xni_ι +

[^(wιi,o)»m/-i]mίo f o r ι ^ 2 ' t h e b r a c k e t b e i n 8 t l i at of L(SUn+ι) ® C c
End(C" + 1 ) , where we identify mί f 0 = L(CPn)h0 = (Σ^ px")* ® px" with a
subpace of £ ( ^ + 1)1,0 c End(C n + 1 ) . We shall show that this translates into
the formula

π, = n / _ 1 + [ e _ α . X | X e n , _ 1 , α e Δ + ]

from which the proposition follows by induction. First, note that the action of

ea on (Σ"IQ ρXi)* ® PXn (via Lie bracket) corresponds to the natural action of

e_a on C w + 1 = (Σ^o 1 Px') θ Px" Hence

a -X\Xe n,-.!, α e ΔJ. [

An induction argument now shows that one may replace ^c-[vn] ^y Δ+. To

start this, take X E: nι and β e Δ+; we have to show that e_β • I E Π 1 +

[e_a - X\ X G nl9 a G Δ J . [ K J ] . It is sufficient to take X = e_γ Fw and to

assume β ^ Δ J . [ κ ]? so that e_^ Fw = 0. Then

e_βe_γ - Vn = e_ye_β - Vn +[e_β,e_y] Vn = [ e ^ , e _ γ ] Vn G Π l .

The inductive step is similar.
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Theorem 4.3. Let θ: G -> Un + ιbe an irreducible representation, with weights

Λo, , An ordered so that for all a e Δ+, Λ, + α either is not a weight or is Λy

for some j > i. Let Cn + ι = f 0 Θ lx Θ be the decomposition described above

corresponding to the osculating space decomposition for the projective maximal

weight orbit {i.e., for fv ). Then the Gauss maps

faι:G/T^Qτni(C + 1 ) ( f , = [ F y | 7 e Λ , . ] , d i m f , = «,)

are harmonic, with respect to the metric ( , ) r on G/T and the metric ( , > on

GrHl(CH+ι)
Proof. Note that

e-« * / c n / + 1 ( α e Λ + , / > 0),

(The first is true by Proposition 4.2, the second may be proved by induction on

/ on making use of the relation eaeβ - eβea = [ea, eβ] and the fact that
ea ' K = O ) Since (ea)* = e_a (as operators on C" + 1 ) , these give

e.-in.y^in^V (a e Δ+, / > 1),

^..•(n.^cίn,.)^ (αeΔ+,/>0).
It follows that

n e . α f , c f , ® f , + 1 ( α e Δ + , i > 0 ) ,

We shall show that f, is invariant under the operators eape_a — e_ap
± ea and

eap
±e_a — e_apea for a e Δ+, hence fa is harmonic by Corollary 3.5 (p

denotes orthogonal projection onto f,). If the identities

are multiplied by ea, e_a respectively and then subtracted, we obtain

{eae_a - e_aea) X= (eape_a - e_ap
±ea) X + {eap^e_a - e_apea) X.

If X G f f., we see from the formulas (*) that

{eaP
±e.a-e_apea)'X^ti®ti+1.

Since (eae_a — e_aea) l G f ( . (tt has a basis consisting of weight vectors,

with respect to which eae_a - e_aea acts diagonally), we deduce that in fact

( * « / * - « - e-aP±*a) ' * e f/» (e«P±e-« ~ e.ap
±ea) - l e f , .

as required, q.e.d.
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More geometrically, this result may be phrased as follows. The flag of
osculating bundles for the holomorhic embedding /: G [Vn] -> CPn defines in
a tautologous way a holomorphic map

into the (partial) flag bundle of T(CPn)10 (mι,= dimm,). But there is a
natural equivalence

F(ml9 m2,- )(T(CPn)h0) = F(l, mx + 1, m2 + 1, , n + 1)

so one obtains a holomorphic map from G [Vn] (and hence from G/T) into
the generalized flag manifold F(l, m1 + 1, m2 + 1, ,fl + 1). Theorem 4.3
asserts that the maps defined by composing with the natural projections onto
the Grassmannians Gr/fI._OT._i(Cl+1) are all harmonic.

For example, let θ be the mth symmetric power Smλ of the standard
representation λ:SUn + ι -^ SUn + ι of G = SUn+v This is irreducible, with
maximal projective weight orbit G -[VN]= G/H = CPn (N + 1 = dimS^λ,
H = Si^ X £/„)). With the notation of §1, λ | H decomposes as λλ Θ λw, and
the decomposition Cw + 1 = ϊ o θ f 1 θ turns out to coincide with the
decomposition

of Θ\H = ^""(λ! θ λ j into irreducible ^-modules. The corresponding decom-
position L(CPN)lQ = ίx θ I 2 θ is therefore

which is also equal to

L(G/H)h0ΘS2L(G/H)h0(B •••

(recall from §2 that I, = (m^^1- Πm, and Ix = L(G/H)10). For further
details and examples see [20]. It should be pointed out that this example is very
special; for a general irreducible representation 0, the //-module f, will not in
general be irreducible, and the //-module I,, will in general be a proper
submodule of S'LiG/H)^ (i > 1).

5. Nonhomogeneous maps

The main theorem of this section expresses the relation between Theorem 4.3
and the results of [15]; further developments of Theorem 4.3 will be treated in
a subsequent article. We begin with an alternative approach to Theorem 4.3,
when G/T has a Kάhler metric, based on [15].
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Lemma 5.1. Let M be a Kάhler manifold, and let the flag manifold F =

F(aλ, a2, n + 1) have any invariant Kάhler metic. If

(1) fis holomorphic, and

(2) f is horizontal with respect to the projection π:F -> Gra2_aι(Cn + ι ) ,

then π ° fis harmonic (with respect to the given metric on M and the metric ( , )

on Grai_aι(C"+ι)).

Note. As in §1 we decompose Tl0F as L2 ® L% + L3 ® L% + L3 ® L%;

the subbundle L2<8> L\ + L 3 Θ L\ is called the horizontal subbundle. To say

that / is horizontal with respect to m means df(Tl0M) c L2® L\ + L3® L\.

Proof. The lemma is a version of the "fundamental composition principle"

(Lemma 3.5 of [15]). One has

Vd(π o f)(X,Y) = dπ(vdf(X,Y)) + Vdπ(df(X), df(Y)),

hence it suffices to show that

(a) / is harmonic, and

(b) vdπ is zero on vectors of the form df(e_a) Θ df(ea), a e Δ+.

Part (a) follows from a well-known result of A. Lichnerowicz (see [26]), since

/ is a holomorphic map between Kahler manifolds. To verify (b), note that by

Lemma 2.1,

where G'/H' = G r θ 2 _ α i ( C π + 1 ) and Λ gives the connection on F. If X is

horizontal, X^ = 0, so certainly the first term [Xγ, Ym>] is zero when X =

df(e_a), Y = df(ea). Since/ is holomorphic,

A(df(e_a), df{ea))m, = A0Λ(df{e.a), df(ea))m, = [df(e_a), df(ea)]m,

(using the formula for Λ 0 1 in §1), and this is zero as [m r, m'] c £)'. Hence the

second term is also zero when X = df(e_a), Y = df(ea).

Alternative proof of Theorem 4.3. Let σ be the flag {0} c n , ^ c n f c Cn + 1.

We shall apply Lemma 5.1 with M = G/T, f = /σ; note that the map fσ of

Theorem 4.3 is π <> fσ. Certainly fσ is holomoφhic, and it is horizontal with

respect to m because of the formulas

(*) *-« ϊ, c ϊ, θ ϊ / + 1 , e . I ( c ! ( θ f M

derived at the beginning of the proof of Theorem 4.3. Hence fσ is harmonic,

q.e.d.

This alternative method allows us to prove the following generalization of

Theorem 4.3. A nonzero (n + 1) X (n + 1) complex matrix P e End(Cn + 1 )

induces a transformation

[P]:CPn -[kerP] -* CP"
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which defines an element of PG1M + 1C when P is nonsingular. As in projective

geometry we shall refer to [P] as a projectivity. If σ e F(mv- , mk) is a flag,

[P] σ (when defined) shall mean the flag obtained by applying P to the

subspaces defining σ; thus [P] σ e F(nv , « ;) for some nx,' --, Πj. Now

consider the map fσ = TΓ ° fσ of Theorem 4.3. We define

by the formula

whenever this makes sense.

Theorem 5.2. For any P (for which fξi is defined), f£ is harmonic with

respect to any Kάhler metric on G/T and the metric ( , ) on Grα _a(Cn + 1).

Proof. The map m •-> [P] - fσ(m) is holomorphic, since fo is. It is horizon-

tal with respect to π, since /σ is (the horizontally condition is a linear

condition in TF). Hence fξ is harmonic, by Lemma 5.1. q.e.d.

As we have remarked in the introduction, this is of interest even in the

simplest case G = SU2: the harmonic maps produced on applying Theorem 5.2

to the irreducible representations θ = Smλ of SU2 (m = 0,1,2, ) give all

harmonic maps C P 1 -> CPn (with respect to standard Kahler metrics). To

explain this, we continue the discussion of the example at the end of §4 in the

case n = 1 (here N = m). The holomorphic map fv :CPι -> C P m is a ra-

tional normal curve of degree m, and the decomposition C m + 1 = f o θ f 1 θ

is just the decomposition of C w + 1 into weight spaces:

C m + 1 = [ F m ] φ [ F m _ 1 ] Φ .

Hence the z'th Gauss map fσ is fv : CP1 -> C P m , i.e., the embedding of the

zth projective weight orbit. The sequence of maps fVm, fVm_ι, * * has already

been considered by other authors, in greater generality [15], [24]. Indeed, if

g.CP1 -> CPm is any holomorphic map, one defines the zth "transform"

g ( / ) : C P 1 -» CPm (locally, using homogeneous coordinates) by

g(i)(z) = g(z) Λ g\z) Λ Λgί " - 1 ^ ) 1 Πg(z) A g'(z) Λ Ag^(z).

One of the main results of [15] is that g (/) is harmonic and, conversely, any

harmonic map CP1 -> C P 1 is of the form g ( / ) for suitable g and i. Now, it is

well known that g may be obtained by applying a projectivity [P] to some

rational normal curve / : C P 1 ^ C P M (n ^ m). To be explicit, g (being

algebraic) may be written as
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where p£z) = Σ%0PijZj is a polynomial, so g = [P] •/ where P = (/?,,) and
/(z) = [1; z; z"]. (We suppress trivial identifications such as the inclusion
of CPm in CPn.) Since the rational normal curve / is projectively equivalent to
any other such curve, we may as well assume that g = [P] j v ^ i.e. g = [P] fθQ

with the notation of Theorem 4.3. By linearity, g(/) = /£, hence the most
general harmonic map g(/) is of the type occurring in 5.2, as asserted.
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