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SERIES AND NONLINEARIZABLE STRUCTURES

ALAN WEINSTEIN

Abstract

If g is a Lie algebra (over R), then the dual space g * carries a linear Poisson

structure π0 called the Lie-Poisson structure. The linearization question is
whether a Poisson structure π defined near 0 on g* and having the same

1-jet as τr0 at 0 is equivalent to π 0 on a neighborhood of 0. The answer to the

linearization question is yes if g is semisimple and π is analytic or if g is

semisimple of compact type and TΓ is C°° (Conn), but it can be no if

g = §I(2,R) and π is C0 0 (Weinstein). In this paper, we show that the

answer can be no for a C°° π if g is any semisimple algebra of noncompact

type with real rank at least two. The cases of real rank one other than

§I(2,R) are still open.

The construction of nonlinearizable examples involves an analysis of the

Poisson geometry of the subset of g* corresponding to the principal series

representations. This analysis, in turn, relies on showing the functorial nature

of the phase space for a classical particle in a Yang-Mills field (Sternberg,

Weinstein). A by-product of our results is an analog in Poisson geometry to

the correspondence between certain representations of g and of the associ-

ated Cartan motion algebra (Gell-Mann, Hermann, Mukunda, Mackey,

Dooley, and Rice).

0. Introduction

A Poisson structure on a manifold M may be defined as an antisymmetric
contravariant tensor field (bivector) m for which the Poisson bracket operation
on C°°(M) defined by {/, g] = [df Λ dg, π] satisfies the Jacobi identity. The
local classification problem for Poisson structures was reduced by the splitting
theorem in [23] to the case where π = 0 at the point m0 of interest. Near such
a point, one may truncate the Taylor series of π at first order to obtain a linear
Poisson structure of the form ir(j(x) = Σc^xk9 where the xi are local coordi-
nates centered around m0. Such a structure is called a Lie-Poisson structure,
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since the c^ are the structure constants of a Lie algebra g, which we call the

cotangent Lie algebra for π at m0. The Lie-Poisson structure lives naturally on

the dual g* of g; it was discovered and studied by Lie [12] (see [22]).

The linearization question is whether a Poisson structure is locally isomor-

phic to the Lie-Poisson structure on the dual of its cotangent Lie algebra. The

linearization question for Poisson structures having semisimple cotangent Lie

algebra was raised in [23] and was answered in the affirmative for the analytic

case in [1] and for the C 0 0 compact case in [2]. In this paper, we will construct

for each semisimple Lie algebra g of noncompact type and real rank at least 2

a nonlinearizable C°° Poisson structure whose cotangent Lie algebra is g. A

nonlinearizable example was already given in [23] for g = 31(2, R); the remain-

ing cases of real rank 1 remain open.

In §1, we introduce our general strategy, in which Poisson structures are

modified with the aid of infinitesimal automorphisms, and we state our main

result as Theorem 1.2. In §2, we construct a Poisson model for an open subset

of g * by using an analogy to the construction of the principal series represen-

tations by inducing. The Poisson model is analyzed and simplified in §3 with

the help of a new result in the geometry of Poisson manifolds, which states that

the construction of the phase space of a classical particle in a Yang-Mills field

([17], [20]) is functorial with respect to mappings of principal bundles and

Poisson manifolds. The results of §§2 and 3 are combined at the end of §3 to

produce the infinitesimal automorphisms needed for the proof of Theorem 1.2.

One of the by-products of our construction may be of interest for its own

sake and is discussed in §4. Given the Cartan decomposition g = ϊ θ §, we

consider in addition to g the "contracted" Lie algebra q>1 which is the

semidirect product ϊ x ^ with respect to the adjoint action of f on §>. (o>1 is

also called the Cartan motion algebra associated with g.) We show that there

are conic open subsets U and Uλ of g* and gf respectively and a homoge-

neous, f-equivariant Poisson automorphism i from U to Uv In other words, i

carries coadjoint orbits to coadjoint orbits and is a symplectomorphism on

each orbit with respect to the Lie-Kirillov-Kostant-Souriau symplectic struc-

ture. From the point of view of the "orbit method," this result suggests that

there should be a f-equivariant correspondence between certain representa-

tions of g and of QV In fact, after completing part of our work, we learned

from R. J. Blattner that such a correspondence was conjectured by Mackey

[13] based on the analysis of some special cases, and this reference led us to the

earlier work of Gell-Mann, Hermann [6], and Mukunda [16], which, along with

the more recent paper of Dooley and Rice [3], has been helpful guidance for

the present research. We hope that our results may be a useful step toward

carrying out Mackey's program in more generality.
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1. Raising the rank of Poisson structures

To "nonlinearize" the Lie-Poisson structure π 0 on g*, we will raise its rank

by 2 on a set whose closure contains the origin. To do so, we will replace the

bivector field π by π0 + X A 7, where X and Y are vector fields transverse to

the symplectic leaves of π0. The following lemma tells us when the new

structure satisfies the Jacobi identity.

(1.1) Lemma. // X and Y are infinitesimal automorphisms of a Poisson

structure π, then π + X A Y is a Poisson structure if and only if X, 7, and

[X, Y] are linearly dependent {e.g. if Xand Ycommute).

Proof. The Poisson bracket associated with a bivector field satisfies the

Jacobi identity if and only if the Schouten bracket of the field with itself is zero

[11].

If X is a vector field and π is a Poisson structure, then [X, π] is just the Lie

derivative of π by X and so is zero when X is an infinitesimal automorphism

of 7r. By the derivation property of the Schouten bracket, it follows that

[ X A y, 77] = 0 if X and Y are infinitesimal automorphisms of π. Finally, the

Schouten bracket of a bivector X A Y with itself is

[X A Y, X A Y] = [X A Y, X] A Y + X A[X A Y,Y]

= X A[Y, X] A Y - X A[X,Y] A Y

= -2XΛ yΛ[X,Y].

It follows that [π + X A y, π + X A Y]= -IX Λ 7 Λ [ I , Y\ which is

zero just when X, y, and [X, Y] are linearly dependent, q.e.d.

Now let Q be any semisimple Lie algebra of noncompact type with Cartan

decomposition g = f θ §>. A maximal abelian subalgebra α of § is called a

Cartan subalgebra of 3; its dimension d is called the real rank of g (or

sometimes the split rank of g, or the rank of the symmetric space G/K). In the

next two sections of this paper, we will construct a ^-dimensional space of

commuting infinitesimal automorphisms which are linearly independent and

transverse to the symplectic leaves on a set whose closure contains the origin.

Once we have found such a space, we will have proven the following theorem,

which is the main result of this paper.
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(1.2) Theorem. Let g be any semisimple Lie algebra of noncompact type with

real rank at least two. Then there is a Poisson structure whose cotangent Lie

algebra is g but which is not locally equivalent to the Lie-Poisson structure on g*.

2. A Poisson model for the principal series

The construction in this section is just the analog in Poisson geometry of the

following construction of the principal series by the method of induced

representations (see [3], [13], or [19]).

Let G be a noncompact semisimple Lie group, and KAN its Iwasawa

decomposition. If M is the centralizer of A in K, then P = MAN is called a

(minimal) parabolic subgroup. N is normal in P, so P/N is isomorphic to the

(direct) product M X A of commuting subgroups. Let η be an irreducible

representation of M and let ψ be a character of A, so that η ® exp(2π/ψ) is

an irreducible representation of M X A, and hence of P. The representation of

G obtained by inducing this is denoted by pηφ and is called a principal series

representation. Specifically, if Hη is the representation space for η, then the

representation space for pηi// consists of maps from G to Hη which are

equivariant with respect to the right action of P on G. The representation of G

on this space (which can also be thought of as the space of sections of an Hη

bundle over G/P) is then given by the left action of G on itself.

To form the symplectic model of this construction (see also [8] or [20]) we

begin with the Lie-Poisson manifold ( m X α ) * = m * X α * , which corre-

sponds to the direct sum of all the irreducible representation spaces of M X A.

(Each individual representation corresponds to a single coadjoint orbit in

(m X α)*.) The symplectic manifold T*G corresponds to the functions on G,

and their product Q = T*G X m* X α* corresponds to the space of functions

on G with values in the sum of the representation spaces. The group P acts on

Q via right translations on G and the adjoint action of P on P/N = M X A;

what corresponds to taking the P-equivariant functions in the definition of the

principal series is passing to the reduced manifold of Q at 0 e p*. (We refer

here to reduction of Poisson manifolds rather than of the symplectic manifolds

to which the reduction process is usually applied; see the Appendix.) This

reduced manifold, which we shall denote by^, then corresponds to the sum of

the representation spaces for all the principal series representations.

To get a more explicit description of /ί, we begin by using the left

translations in T*G to identify Q with G x g * X m * X α * and then, by the

Iwasawa decomposition, with G x ϊ * X α * X n * X m * X α * . The momen-

tum map J:Q -> p* for the action of P is given by J(g, k, a, n, m, a') =

(k\m - m,a - a\ n); the reduced manifold fι is J~l(0)/P.
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From the description of / just given, we know that J~λ(0) is

{(g, k, a,0, k I m , a)} as a subset of G X g* X m* X α*, so the projection of

/~1(0) into G X g* is an embedding. It will be convenient from this point on

to identify g * with g via the Killing form. In doing so, we must be careful to

interpret the 0 in the n* slot as meaning that the element "(A:, α,0)" of g*

corresponds to an element of the Killing-orthogonal space to π in g. This

orthogonal space is just $ (see [19, p. 23]), so we conclude that J'\0) is

diffeomorphic to G X p (and not G X ϊ X α). Thus we may identify ft as

(G X $)/P9 the homogeneous vector bundle over G/P with fiber p associated

to the adjoint representation of £. It follows that this bundle carries a Poisson

structure.

Our real interest is in understanding the Poisson structure on g * itself, using

the momentum mapping from fι to g* obtained by passing to the reduced

manifold the left action of G on T*G (and the trivial action on m* X α*).

This momentum map is given by right translations, since we used left transla-

tions to trivialize T*G above. If we identify g* with g by using the Killing

form, the final map S\ fι -> g is given by (the quotient by P of) (g, p) -> Kάg p.

The problem now is to find open subsets of ft and g between which the map

i is a diffeomorphism. As a first step, we shall find out where the differential

of & is an isomorphism. By G-equivariance, it suffices to look at points of the

form (id,/?), where the image of the differential of £ is Imad^ + $ its

"Killing orthogonal" space is Kerad^ Π n , so the condition on p is that its

centralizer contain no nonzero elements of n. Now we have the following

lemma. Note that the regular elements of α, defined in the proof of the lemma,

form an open dense subset of α.

(2.1) Lemma. Let p = m + a + n, where m e m, a e α, andn e π. If a is

a regular element of α, then the centralizer of p contains no nonzero elements

of n.
Proof. We consider the filtration n = n o c n 1 c ••• c n r = { 0 } , where

n, = [tt, Π . J . Suppose that p commutes with ri e nk. For each /, there

exists a set Rt of positive roots (for the action of α on g) such that the sum of

the corresponding root spaces is a complement to n / + 1 in πy; we may

decompose ri as nk+ι + Σeλ, where each eλ lies in a root space Eλ for some λ

in Rk. Since m commutes with α, its element m leaves invariant each π, and

each of the root spaces Eλ. Now if [p, ri] = [m, nk+ι] + Σ[m, eλ] + [a, nk+ι]

+ Σλ(a)eλ + [«, ri] is zero, then so is its component in each Eλ; i.e. 0 =

[m, eλ] + λ(a)eλ. For a to be a regular element of α means that λ(a) Φ 0 for

every root λ. But λ(a) is real, and all the eigenvalues of ad(m) are purely

imaginary because m belongs to the compact piece ϊ of the Iwasawa decom-
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position, so eλ must be zero. It follows that ri lies in nk+1 and hence, by

repetition of this argument, that ri = 0. q.e.d.

The next result will be useful when we look at the global injectivity of S. Let

α r c α be the set of regular elements, and l e t £ , . = m + α r + n c £ .

(2.2) Corollary. Under the adjoint representation, the subgroup N acts transi-

tively on each fiber of the projection from pr to m 4- ar along n. In particular,

any element of pr is conjugate under N to an element of m 4- α r.

Proof. By Lemma 2.1, each orbit of the action of iV on a fiber of the

projection is open. Since the fiber is connected, the action is transitive, q.e.d.

We shall now find a subset of p on which $ is injective. Note that, if

#(gi> Pi) = #(g2> Pi)> t h e n Pi a n d Pi are conjugate by g = g2g{\ If g

belongs to P, then both (g/5 pt) correspond to the same element of ^ , so there

is no loss of uniqueness. The question then reduces to when two elements of \)

can be conjugate by an element of G which does not belong to P. To give a

satisfactory answer to this question, we define α + to be the open positive Weyl

chamber, consisting of those a for which λ(a) > 0 for all positive roots, λ,

and we define £ + t o b e m + α + 4-n. Then we have the following result.

(2.3) Lemma. If two elements of p+ are conjugate by an element g of G, then

g belongs to P.

Proof. The proof is based on ideas from [4]. It proceeds in several steps.

Step 1. // a G α + , g G K, and Adg(a) G α + , then g G M. This is a

well-known fact about the isotropy representation of a symmetric space. (See

[5, Chapter VII, §2. Theorem 2.12]. By duality, it does not matter whether the

symmetric space is compact or noncompact.)

Step 2. // m 4- a G m + α + , g e K, and Adg{m 4- a) G m 4- α + , then

g G M. This follows from Step 1 because the adjoint action of K preserves the

Cartan decomposition.

Step 3. // m + a e m + α+, g e K, and Adg(m + a) e p+, then g e P.
To show this, we will consider the vector fields m^ and a^ on the flag

manifold G/P = K/M, corresponding to m and a respectively. The condition

Adg(m 4- a) G £ + implies that the point g - 1 M is a zero of the vector field

m _ + α _> . According to [4], α _> is the gradient of an M-invariant function, so

the vanishing of the sum m _ 4- a _ implies the vanishing of each term. In

particular, we must have Adg(a) e £; since Ad g (fl)e § and § Π p = α, it

follows that Adg(a) e α. Now the only way that Adg(<s + m) = Ad g(α)4-

A d g ( m ) can lie in p with Ad g in α is for Ad g (m) to lie in m. Thus

Adg(a + m) e (m 4- α) Π p + = m + α+, so by Step 2 we must have g ^ M.

Step 4. // m + a e m + α + , g e G , ««J Ad g (m + a) e t>+, ίAβΛ g e P .

Applying the Iwasawa decomposition to g"1, we may write g as gNgAgκ,

where gκ e AT, g^ G ̂ 4, and g^ G ΛΓ. We need to show that gκ G M.
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Since Ad Am + a) = AcL AcL Ad^ (m + a) e $,, we have Ad_ (m + a)

G p+ as well, because the adjoint actions of JV and A leave £ + invariant. The

result now follows from Step 3.

Step 5. Ifm + a + « G £ + , g G G, α/irf Ad g (m + fl + n ) E ( ) + , /λe/i g G P.

By Lemma 2.2, there is an element h oί N such that m + 0 + « = Adh(m + a).

Then Ad g Λ(ra + a) G £+, and so gΛ G P by Step 4; it follows that g E ? a s

well, q.e.d.

We may summarize the results of this section as follows.

(2.4) Theorem. Let G be a noncompact semisimple Lie group with Iwasawa

decomposition G = KAN and minimal parabolic subgroup P = MAN. Then the

reduced manifold /ι = (T*G X m* X α * ) 0 with respect to the action of P is

identifiable with the homogeneous vector bundle over G/P with fiber p (i.e. the

adjoint bundle of the principal bundle P -> G -> G/P), and so this bundle has a

natural Poisson structure with a hamiltonian action of G. The momentum

mapping £ of this action is given by (g, p) •-> Aά(g)p. The restriction of $ to

the conic open subbundle ft+ with fiber £ + = m + α + 4- n is a homogeneous

Poisson isomorphism of ft+ with an open conic subset U of g*.

3. Reduction of the structure group

and introduction of infinitesimal automorphisms

In the previous section, we identified an open subset U of g * with an open

subset ^ + in the reduced manifold ft = (T*G X m* X α * ) 0 (reduction with

respect to the action of P). The subset may be described explicitly as

/ + = (Γ*G X m* X α j ) o , where α * c α* is the subset which corresponds to

α + c α under the isomorphism given by the Killing form. (Note that m* X α j

is invariant under the action of P on m* X α*.) In this section, we will analyze

the Poisson manifold jι by considering it as a phase space for a classical

particle in a Yang-Mills field ([17], [20]). After recalling the general construc-

tion of such phase spaces, we will prove and apply a functoriality property of

the construction.

Let B be a principal bundle over a manifold X with structure group C, and

let Π be a hamiltonian C-space; i.e. Π is a Poisson manifold with a momen-

tum mapping / : Π -» c* for an action of C by Poisson automorphisms of Π.

Then there is a product hamiltonian action of C on T*B X Π; the reduced

Poisson manifold (T*B X Π ) o is denoted by Y(C,B,U) and called the

Yang-Mills-Higgs phase space for a classical particle with configuration space X

and internal phase space Π. (See the Appendix for a brief discussion of

reduction of Poisson manifolds.) Y(C, B,Tί) is a bundle over X which is a

fiber product of the associated Π bundle over X with the cotangent bundle
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T *X, where the latter is considered as an affine bundle rather than as a vector
bundle over X. Given a connection on the principal bundle B, Y(C, B,U) can
be identified with the Π bundle over T*X which is associated to the pullback
of the principal bundle B under the projection T*X -> X. In the construction
of the symplectic model fi+ for the principal series, the configuration space is
the generalized flag manifold Φ = G/P, the principal bundle is G -> G/P
with structure group P, and the internal phase space is m* X αί; i.e. fc+ =
Y(P,G, m* x α*).

From the Iwasawa decompositions G = KAN and P = MAN, we see that
the flag manifold Φ has an alternative description as K/M. (This was already
observed in the course of the proof of Lemma 2.3.) In other words, the
principal bundle P -» G -» Φ admits a reduction of structure group to M -> K
-> Φ. Since the new structure group M inherits a hamiltonian action on
m* X αj, we can form the new phase space Y(M, K, m* X α!f), which has the
same configuration space and internal phase space as before; only the structure
group has been changed. It is reasonable to expect that this reduction of
structure group does not affect the final outcome of the construction; we shall
show below that this is indeed the case. The advantage of the realization of / +

as Y(M, K, m* X α!f) is that the smaller structure group M acts trivially on
the factor α* in the internal phase space m* X α*; this enables us to promote
arbitrary diffeomorphisms of α* to Poisson automorphisms of / + , and vector
fields on α * to infinitesimal Poisson automorphisms of ^ + .

We will state and prove below a general theorem which contains all of the
properties of the Yang-Mills phase space construction which we will need. It is
easiest to state this theorem in terms of a category which we now describe. For
convenience, we will use the letter " G " rather than " C " to denote the general
structure group.

(3.1) Definition. A classical Yang-Mills-Higgs setup is a triple (G, B, Π),
where G is a Lie group, B is a principal G-bundle (i.e. a manifold on which G
acts freely from the right), and Π is a hamiltonian G-space. (Π is the internal
phase space of the setup; any manifold X provided with a diffeomorphism
with B/G may serve as the configuration space.) The setups are the objects in
a category Γ in which a morphism from (G l9 Bv Γ^) to (G2, B2, Π 2 ) is a triple
(λ, φ, /) of mappings with the following properties.

(a) λ: Gλ -> G2 is a homomorphism of Lie groups; we denote by λ* : gf ->
gf the dual of the associated homomorphism of Lie algebras.

(b) φ: Bλ -> B2 is a λ-equivariant mapping such that the induced mapping
φ/ from Bλ/Gλ to B2/G2 is an embedding onto an open subset. (If λ is an
identity mapping and φ/ is a diffeomorphism, then φ is called a gauge
transformation.)
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(c) /: Π 1 -» Π 2 is a mapping of hamiltonian spaces; i.e. / is a λ-equivariant
Poisson mapping and the diagram

is commutative.1

(3.2) Theorem. Y is a functor from the category Γ of classical Yang-Mills-
Higgs data to the category of Poisson manifolds. Thus, for every morphism
(λ, φ,/) from (G1? Bv Uλ) to (G2, B2, Π 2 ) there is an induced Poisson mapping
7(λ,φ,/) from Y(GvBvUι) to Y(G2,B2,Π2). If σ/ and f are diffeomor-
phisms, then Y(λ, φ, /) is also a diffeomorphism.

(3.3) Remark. The functor Y can be extended to the larger category in
which the condition that φ/ be an open embedding is dropped. In this case,
though, the result of applying Y to a morphism may no longer be a Poisson
mapping; rather, it may be a more general relation between the domain and
target, as in the "symplectic category" [21]. This already happens when G and
Π are trivial, in which case B/G = B, φ/ = φ, Y(G,B,U)= T*B, and
7(λ, φ, /) is the conormal bundle to the graph of φ.

Proof of Theorem 3.2. We shall reduce the construction and analysis of the
morphisms 7(λ, φ, /) to some special cases. First of all, for the subcategory of
Γ in which λ and / are identity mappings ("gauge transformations covering
open embeddings"), the theorem follows directly from the fact that the
construction of Y(G, B, Π) involves no arbitrary choices.

We look next at trivialized bundles. Since reduction by the trivial group Go

has no effect at all, Y(G0, X, Π) is simply the product Poisson manifold
Γ * I X Π. (Here, and elsewhere, we identify a set with the set of its singleton
subsets.) Given an object (G, B, Π) of Γ, a local cross section of B is a map
σ: X -> 2?, where A" is a manifold and σ/: X -> B/G is required to be an open
embedding. Each cross section σ may be considered as a morphism
(1^, σ, id): (Go, X, Π) »-> (G, B, Π), where 1G is the (inclusion of the point in

1 Note that if / is any λ-equivariant Poisson mapping, then λ* ° J2 ° f = Jλ is necessarily a

momentum mapping for the action of Gx on Uλ (Lemma 3.2 of [14]), but it could differ from Jλ

by a mapping δ: Π^ -> g* which is constant on symplectic leaves and whose image lies in the

fixed point set of the coadjoint representation of G. This fixed point set is zero for many Lie

algebras, including all the semisimple ones, in which case any equivariant Poisson mapping is a

mapping of hamiltonian spaces.
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Go to the) identity element of G. In accordance with what is expected from the
statement of the theorem, we will construct in terms of σ a Poisson mapping
7(1G, σ, id) from Γ * I x Π t o 7(G, B, Π) which is an open embedding (and a
diffeomorphism if the open embedding σ/: X -> B/G is a diffeomorphism).

To construct the Poisson mapping associated with a cross section, note first
that (1G, σ, id) extends naturally to a morphism (id, T, id) :(G, X X G, Π) ->
(G, 5, Π); T is just the local trivialization induced by the local section σ.
According to the first paragraph of this proof, we have a Poisson mapping
7(id, T, id): Y(G, X X G, Π) -> 7(G, 5, Π) which is an open embedding, so
that it suffices to find a Poisson isomorphism 7(1G, ox, Π) from T*X X U =
7(G0, X, Π) to Y(G, X X G, Π); here, σ^ is the distinguished cross section of
the trivial bundle XX G.

The space Y(G, I X G , Π ) is, by definition, the reduction at 0 of
Γ * ( I x G ) x Π b y the action of G. Since T*(X X G) is naturally symplecto-
morphic to T*X X Γ*G, and G acts trivially on X, Y(G, X X G, Π) ~ T*X
X (Γ*G X Π) o , and so it remains to find a Poisson isomorphism from Π to
(T*G X Π) o . Such an isomorphism (actually its inverse) is described in
Proposition A.4 in the Appendix. Using this isomorphism, we can immediately
construct 7(1G, α ^ , Π ) : P I x Π ^ Y(G, X X G, Π).

Next, we shall study 7(λ,φ,/) in the case when the principal bundles Bλ

and B2 have suitably related trivializations. Namely, let σλ: X -> Bλ be a local
section defined on some manifold X, inducing the local trivialization τλ\X X
Gx -> Bv If φ:Bλ -> Z?2 is a bundle mapping, then σ2 = φ ° σx is a local
section of B2. Then σ2 induces a local trivialization τ2: X X G2 -> # 2

 s u c h ^ a t

^ o φ o ^ l x Gx -> X X G2 is given simply by (w, g) -^ (w, λ(g)).

Now, as we have just seen, Y(Giy XX Gi9 Π,) is naturally isomoφhic to the
Poisson manifold product T*XX Π^ Since Gt has "disappeared" here, we
simply define 7(λ, τ2'

1 ° φ ° τx, / ) : Γ*X X Π ^ Γ*X X Π 2 to be the map-
ping (x, ξ, θ) -> (x, ξ,/(β)) for JC E I , ξ G Γ/JST, and (9 e Πx. This is obvi-
ously a Poisson mapping. We wish to use it to define Y(λ,φ,f) between the
open subsets of 7(G 1 ,£ 1 ,Π 1 ) and 7(G2, 5 2 ,Π 2 ) lying over σλ/(X) and
o2/(X) respectively by the formula

7 ( λ , φ , / ) = 7(id,τ 2,id)o7(λ,τ 2- 1oφoT l,/)o7( i d,τ 1- 1,id).

What remains to be shown is that this definition is independent of the choice
of the local cross section σ.

To verify this independence, we take another cross section oλ of Bv defined
on the same manifold X as σλ and with σx/ = σλ/, (These assumptions on σx

are not essential but are made for simplicity of notation.) Then, as above, we
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define the cross section σ2 = φ ° σλ of B2 and the corresponding local trivializa-

tions T : X X Gy -> /?,-. We need to show that

7(id,τ 2,id)o7(λ,τ 2- 1oφo I l )/)o7(id,τ 1- 1,id)

= 7(id,τ 2,id)oy(λ,τ 2- 1oφoT l,/)oy(id,τ 1- 1,id).

For each /, the local trivializations τ and τ are related by the gauge
transformation γ, = τ'1^: X X Gι ,-> X X Gf , which may also be considered as
a map γ, from X to Gz. The relations σ2 = φ°σ 1 and σ2 = φ ° σx

 a n c* the
λ-equivariance of φ imply that γ2 = λ ° 7̂ . Each γ induces a Poisson automor-
phism y(id,γ,,id) of 7(GZ, * X G^Π,.) = Γ * I X Π,.. Since by construction
I21 ° Φ ° 1\ = T2~1 ° Φ ° τi> ^e functoriality of y when applied to gauge
transformations implies that the equation to be proven (at the end of the
preceding paragraph) is equivalent to

y(id,γ 2 , id)oy(λ,τ 2 - 1 oφo T l ,/) = y(λ,τ 2 - 1 oφo T l ,/)oy(id,γ 1 , id).

Recalling that y(λ,T^1 o φ o T l , / ) : T*X x Π 1 ^ Γ * I x Π 2 i s defined as
the mapping (x,ξ,θ) -> (x,ξ,f(θ)\ it remains to obtain an explicit formula
for the lifted gauge transformations y(id, yi9 id): T*X X Πi; -> T*X X Π,-.

y(G, X X G, Π) is defined as (Γ*( Jf X G) X Π) o = T*X X (Γ*G X Π) o .
According to the appendix, it is isomorphic to T*X XU by the map
(x,ί, g,-/(*_i)/(β),β)-> (x,ξ,gβ). Given a gauge transformation γ:(x,g)
-* (x, γ(x)g) o f l X G , we will lift it to T*X X Γ*G X Π and then push it
down to the reduced manifold. The lift of γ to the tangent bundle TX X TG is
given by

(x9δx,g,δ) ~ (x,δx,y(x)g>Tlnx)(δg) 4- TrgoTy(8x)).

Similarly, the lift of γ"1 is given by

(x,δx,g,δg) * {x,δx,rl(x)g,Tl.-Hx){δg) + TrgoTy-ι(δ*))'

In particular, for the lift of γ"1,

(x, δx, y(x), δg) ~ (x, δx, 1C9 TlrHx)(δg) + TrrHx) o Txy(δx)).

It is convenient to denote the composite derivative Tr~-ι(x) o Txy: ΓXX »-» g by
y'(x). Now pulling back cotangent vectors by the dual of the lift of γ"1 and
forming the product with the identity map on Π gives, for the lift of the gauge
transformation γ to Γ*( X X G) X Π,

To apply the natural isomorphism from Y(G, X X G, Π) to Γ*G X Π, we
must set μ = -J(θ). Then (JC, f, 1G, -/(β), ff) goes to (JC, ̂ , β), while
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goes to (JC, ξ + [γ'(*)]*(-J(θ)), y{x)θ). In other words, 7(id, γ, id): T*X X Π

^ P l x Π i s given by (x, f, θ) -> (*, £ + [γ'(*)l *(-/(«)), ?(*)«)•

We are ready to prove that

7( id,γ 2 , id)oy(λ,τ 2 - 1 oφo T l ? /)= 7(λ,τ 2 - 1 oφo T l ? /)o7(id,γ 1 , id).

The left-hand side maps (x,ξ,θ) to (JC, f + [%(x)]*(-J2(f(θ))),y2(x)f(θ)),

while the right-hand side maps (JC, ξ9 θ) to (JC, ξ + [γί(jc)] (-Λ(*))> ϊ i ( * ) / ( * ) )

The first components of the two sides of the equation are both equal to x.

The λ-equivariance of / and the fact that γ2 = λ ° γx yield immediately the

equality of the third components. For the second components, we use the

relation γ2 = λ ° yx once again. Since λ is a homomorphism,

r^Hx) ° Ϋ2 = \-\x) ° λ o yλ = λ o r--Hx) ° γx.

Differentiating at x and transposing yields [γ 2 (*)]* = [ ϊ ί ( * ) ] * ° λ*. Combin-

ing this with the equation λ*°J2°f=Jι (/ is a mapping of hamiltonian

spaces) gives [%(*)]*(-/ 2(/(0)) = [y{(x)]*(-Jι(θ)), which implies the equal-

ity of the second components.

This completes the verification that 7 ( λ , φ , / ) , as constructed in terms of

local trivializations, is well defined. The properties of Y(λ,φ,f) follow im-

mediately from the construction, q.e.d.

All the ingredients are now in place to complete the proof of Theorem 12.

Let χ l 5 , χd be commuting vector fields with compact support on Rd which

are linearly independent at some point. (They can be constructed by pulling

back the coordinate vector fields via a diffeomorphism with rapidly growing

derivatives from a cube to all of R .̂) Next, let Uv U2, * be a sequence of

open cubes with disjoint closures in α j such that the origin is in the closure of

the union of the L '̂s. For each /, let α / 1 ? ,aid be commuting vector fields

with compact support in U^ which are linearly independent at some point.

Then if one chooses a sequence of numbers cv c2, which vanishes suffi-

ciently rapidly, the commuting vector fields αy = c^j + c2a2j + extend

smoothly to α * and are linearly independent on a set whose closure contains

the origin.

The vector fields α l 5 -9ad may be lifted in the obvious way to m* X α*,

where they are commuting infinitesimal Poisson automorphisms equivariant

with respect to the action of M. By Theorem 3.2, these vector fields may

be lifted to commuting infinitesimal Poisson automorphisms βλ βd of

Y(M, K9 m* X α*) whose support is contained in the closure of 7(M, K, m*

X α*) and which are linearly independent on a set whose closure contains

7(M, K, m* X {0}). Since, by Theorem 3.2 once again, there is a Poisson
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isomorphism from 7(M, K, m* X α*) to 7(P,G, m* X α*) associated with

the inclusions M <z P and A' c G, j8l5 , βd may be transferred to commut-

ing infinitesimal Poisson automorphisms γ1?- 9yd oϊ ft = Y{P, G, m* X α*)

whose support is the closure of / + = Y(P, G, m* X αj) and which are linearly

independent on a set whose closure contains Y(P, G, m* X {0}).

Now, by Theorem 2.4, there is a diffeomorphism $ from ^ + to a conic open

subset of g*. Using $, we may transfer γ 1 } ,yd to commuting infinitesimal

Poisson automorphisms of <£'(/+) e g * ; as long as the sequence cl9 c2,

decreases rapidly enough, these extend smoothly to infinitesimal automor-

phisms δ 1, ,8d of g*.

In fact, the vector fields δ^ ^ are linearly independent modulo the

tangent spaces of the symplectic leaves on a subset of g* whose closure

contains the origin. To see this, it suffices to verify the same thing for yl9 , yd

in y£+, or for βl9 , βd in Y(M, K, m* X a%). Now in the local representation

of Y(M, K, m* X α*) as a product Γ * I X m* X α*, the symplectic leaves

are products of the form T*X X (symplectic leaf in m*) X (point in α*),

while the vector fields βl9- -,βd point in the direction of the α* factor and

are given by α l 9 ,α r f . It is now obvious that, on an open set whose closure

contains the origin, these vector fields are linearly independent modulo the

tangent spaces to the symplectic leaves.

Let π be the bivector field on g * representing the Lie-Poisson structure. For

d ^ 2, we may form the bivector field TΓ + [8λ A δ2], which has the same 1-jet

at 0 as 77. According to the discussion in §2, TΓ + [δx Λ δ2] is a Poisson

structure whose rank is 2 greater than the rank of TΓ on an open set whose

closure contains the origin, so it cannot be locally equivalent to TΓ. The proof of

Theorem 1.2 is thus complete.

4. Equivalence with the Cartan motion algebra

In this section, we will prove and discuss the following theorem, which is a

consequence of Theorem 3.2.

(4.1) Theorem. Let Q = ϊ Θ §> be the Cartan decomposition of a semisimple

Lie algebra of noncompact type, and let gx = ϊ Xs % be the corresponding

Cartan motion algebra. Then there is a homogeneous K-equiυariant Poisson

isomorphism i between conic open subsets ί / c g * and Uλ c gf.

Proof. The subset U is just the image <?(/+) discussed in the previous two

sections. Recalling that fi+= 7(G, P, m* X αj), we will now carry out a

similar construction starting with gx instead of g, which will arrive once again

at7(M,Λ:, m* X α*).
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Corresponding to the Iwasawa decomposition g = ϊ Θ α Θ n, we have the

decomposition Q1 = f θ α θ n 1 , where nx is the orthogonal complement of α

in £ with respect to the (^-invariant) Killing form of g. Notice that, by

projection along I, nι is A^-equivariantly isomorphic to n, and §> = α θ nι is

X-equivariantly isomoφhic to a ® n. Also note that m c f is the centralizer

of (the generic element of) α whether we are looking in gx or in g.

Next, we form the "parabolic" subalgebra •p1 = m θ £ = m θ α θ n 1 c g 1 ,

which has the structure of the semidirect product m Xλ §. By analogy with

what we did in g, we form the phase space / 1 + = Y(PV Gl9m* X α*), which

admits a momentum mapping δx into gf. Since G1/Pι is naturally diffeomor-

phic to K/M9 just as G/P was, Theorem 3.2 tells us that the Poisson manifold

Y(PV Gl9 m* X a%) is isomoφhic to 7(M, K9m* X αj) and hence to fc+ and

to <?(/+); all these isomoφhisms are easily checked to be ̂ Γ-equivariant. Thus,

if we let Uλ be δx{jιXΛ)9 the appropriate composition of the isomoφhisms just

mentioned, we will have proven the theorem once we verify that δλ is an

embedding.

This time it is simple enough to work directly with the coadjoint repre-

sentation on gf itself. (In any case, we do not have a nondegenerate Killing

form available to take us equivariantly over to gx.) The construction of

Y(Pl9Gl9 m* X α*) begins, similarly to that of Y(P,G, m* X α*), with the

Poisson manifold product Qx = T*GX X m* X α j . Using the left translations

in T*Gl9 we may identify Qx with G 1 X g f X m * X α ί and then with

Gj X f * X Q* X nf X m* X QJ. The momentum map for the action of Pλ on

this product is Jλ: (g, k, a, n, m, a') •-> (k\m - m,a - a\ n\ from which we

see that J{\0) = {(g,k,a9θ,k\m,a)} as a subset of Gγ X gf X m* X α*.

Thus the projection of J{\0) into Gλ X gf is an embedding onto Gλ X f * X

CL% X {0}. The momentum mapping δx for the left action of Gl9 given by πgAί

translations in T*GV is (the quotient by Pλ of) (g, /c, α) •-> Ad*(/c, α).

The injectivity of δλ on Y(Pl9Gl9 m* X αj) is equivalent to Lemma 4.2

below. An infinitesimal version of the proof of the lemma also shows that the

differential of δλ is an isomoφhism at each point, so δλ is an embedding.

(4.2) Lemma. If Ad*(κ + a) = (/c' + a') for elements (/c, a) and (κ\ a') of

m* X α* αm/g e G1 ? then g belongs to Pv

Proof. The projection of gf onto §* = α * X n * , the dual of an ideal, is

equivariant with respect to the coadjoint action, so we must have Ad*(α) = a'.

We decompose g as ks, with k e K and s ^ S (the subgroup corresponding to

§); since S is abelian, we must have AdJ(α) = a'. Since both α and α r belong

to α*, it follows from well-known properties of the action of K on §>* « § (see

[5, Chapter VII, §2]) that k belongs to M, and so g = to e MS = Pv
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Remarks. 1. The subset Uλ consists of all elements of gf whose projection

into §> * is regular, so it is dense. On the other hand, U (or, more precisely, its

counterpart in g) consists just of those regular elements lying on maximally

split Cartan subalgebras, and so it is generally not dense. The simplest example

is given by g = §I(2,R), in which U is the exterior of the cone of nilpotent

elements. The corresponding Cartan motion algebra is the euclidean algebra

e(2), in which U1 is the complement of a line. The Poisson isomorphism i maps

hyperboloids of one sheet in §1(2, R) symplectically onto cylinders in e(2)*.

2. Using Theorem 4.1, we can give another description of the infinitesimal

Poisson automorphisms which are used in the proof of Theorem 1.2. As is

noted in the Appendix, the Lie-Poisson structure on the dual gf = (f X ^ ) *

may be thought of as the semidirect product of ϊ * with the trivial Poisson

manifold §*, so that the entire group of £-equivariant diffeomorphisms of §*

acts as automorphisms of (ϊ Xs §)*, and so AΓ-equivariant vector fields on §*

lift to infinitesimal automorphisms of ( ϊ X5 §)*. Since the generic K orbit in

§* has codimension equal to the real rank d of g, one can find d commuting

and linearly independent ΛΓ-equivariant vector fields supported in the set of

regular elements.

3. The map i seems to be closely related to the "Gell-Mann formula" ([6],

[13], [16]) which produces representations of g from representations of gx. Let

Xl9- , Xa, Z 1 ? , Zh be a basis of g, where the "compact generators"

Xv- - , Xa lie in f and the "noncompact generators" Z l 5 , Zb lie in §. Let

Z{, , Zf

h be a corresponding set of "abelian generators," so that Xl9- , Xa,

Z{, — ,Zb form a basis of QV A Gell-Mann formula for a particular represen-

tation ρx of Qλ consists of a collection of polynomials zi = fz(jc, z') with the

property that, if xt = Pi(Xt) and z\ = pλ{Z-) are the operators generating p l 5

then the operators xv- , χa, ξλ(x, z'\ -,ξb(x, z') generate a representation

pof g.

If we think of (x, z') and (x, z) as coordinates on gj* and g* respectively,

then (x, z') ^> (x,ξ(x, z')) becomes a map from gf to g*. In fact, the map

should be thought of as defined only on the coadjoint orbit in gf correspond-

ing to the representation pv The polynomials used for different representa-

tions are different, but the various Gell-Mann formulas will combine to give a

smooth mapping from a subset of gf to g*. This should be a Poisson

mapping, corresponding to the fact that the Gell-Mann formulas take repre-

sentations to representations.

Theorem 4.1 produces, by geometric methods, a Poisson mapping of the

kind just described. It would be very interesting to have an explicit formula for

this mapping and to see if it could be converted into Gell-Mann formulas. It is
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likely that there will occur some problems of "quantization" type, since some

information is lost when one passes from the universal enveloping algebra of g

to the Poisson algebra of functions on g*. In fact, the work of Hermann [6]

suggests that Gell-Mann formulas should exist only for certain g, while our

Poisson map exists for all semisimple Lie algebras of noncompact type.

In the same vein, our results seem to be related to the work of Joseph [7]

concerning the Gelfand-Kirillov conjecture on the structure of the quotient

skew-field of a universal enveloping algebra. An isomorphism between two

such fields is the "quantized" version of a rational isomorphism between open

sets in Lie-Poisson manifolds.

4. Tudor Ratiu has suggested that the g* <-» g* Poisson correspondence

may also be useful for understanding some of the basic integrability theorems

for hamiltonian systems of Toda type, such as that of Kostant [9] and Symes

[18].

Appendix. Poisson reduction

The reader is referred to [10] and [14] for further details regarding the

material in this Appendix.

We begin with a definition of reduction for Poisson manifolds. For our

purposes, it will be sufficient to consider reduction only at O e g * . (The

general case may be reduced with some effort to this one with the aid of the

"shifting lemma"; see [15].)

(A.I) Lemma. Let Ξ be a hamiltonian G-space with momentum mapping

K:Ξ -• g*. Then the restriction to K~ι(0) of the Poisson bracket of any two

G-inυariant functions on Ξ depends only on the restriction of the functions to

K-\0).

Proof. It suffices to show that the hamiltonian vector field for every

(/-invariant hamiltonian function on Ξ is tangent to K'1^), but that is an

immediate consequence of Noether's theorem (the conservation of K for any

(/-invariant hamiltonian system.) q.e.d.

If 0 is a weakly regular value of K so that K~ι(0) is a manifold, and the

action of G on K~ι(0) is sufficiently regular so that K~l(0)/G is also a

manifold, then K~l(0)/G with its Poisson structure inherited from Ξ/G

(thanks to Lemma A.I) is denoted by Ξo. It is called the reduced Poisson

manifold of Ξ at 0 (with respect to the action of G).

Poisson semidirect products. In §3, we need to analyze reduced manifolds

of the form (Γ*G X Π ) o , where Π is a hamiltonian G space. It is interesting

to consider for a moment the more general situation where Π is any Poisson
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manifold on which G acts by automorphisms. The quotient Poisson manifold
(T*G X Π)/G, where G acts on the factor T*G by the lifts of right transla-
tions, is diffeomorphic to g* X Π under the correspondence ^:[(g, μ,0)] •->
(r*μ, g~ιθ). The induced Poisson structure on g* X Π is not the product
structure, unless the action of G is trivial. In fact, the induced bracket is given
by

{A,B}(μ,θ) = (μ,[δA/δμ,δB/δμ\) 4- π(δA /δθ, δB/δθ)

+ (δA/δμ)u B-(δB/δμ)u.A.

The 77 in the second term on the right is the tensor giving the Poisson structure
on Π. In the last two terms, which represent the deviation of the bracket from
the product bracket, (δA/δμ)u and (δB/δμ)u are the vector fields on Π
corresponding to δA/δμ and δB/δμ in g. We denote the Poisson manifold
g * X Π with this induced Poisson bracket by g * X s Π and call it the
semidirect product of g* and Π with respect to the action of G on Π.
(Actually, it depends only on the infinitesimal action of g.) If ϊ) is a Lie
algebra on which g acts by derivations, so that the dual action on ί)* is a
Poisson action, then the Poisson semidirect product g * X s ί) * is naturally
isomorphic to the dual of the semidirect product Lie algebra ( g X j ) * . A
direct consequence of this observation is that the entire group of G-equivariant
Poisson automorphisms of ί)* lifts to a group of Poisson automorphisms of
(gX 5 ί))*, so that the linear structure of ί)* is irrelevant for the semidirect
product construction. In particular, if ί) is abelian, then all the G-equivariant
diffeomorphisms on ί)* lift to Poisson automorphisms of the semidirect
product.

The next proposition (due to Krishnaprasad and Marsden [10]) shows that a
momentum mapping serves to "decouple" the factors in a Poisson semidirect
product.

(A.2) Proposition. Let Π be a hamiltonian G-space with momentum mapping

J:U -+ g*. Then the diffeomorphism / / : g * X J Π - ^ g * x Π defined by

J'(μ,θ) = (μ + J(θ),θ) is an isomorphism between the semidirect product and

direct product Poisson structures. Thus, the composite J*°!F is a Poisson

isomorphism between the quotient manifold (Γ*G X Π ) / G and the product

g*xΠ.
(A.3) Corollary. If the Lie algebra g acts on the Lie algebra t) by inner

derivations via a homomorphism from g to ί), then the semidirect product algebra

Q Xsί) is isomorphic to the direct product Q X ί).
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It is now quite simple to analyze the reduced manifold (T*G X Π) o . The
momentum mapping ^ : Γ * G x Π - > g * i s given by K(g, μ, θ) = l*μ + /(#),
so ^^(O) is defined by the equation /*/x = -J(θ). Under the correspondence
&, (T*G X Π ) o = K-\0)/G goes to the submanifold of g* X5 Π defined by
μ = -J(θ). Finally, applying the Poisson isomorphism J' takes (T*G X Π ) o

to the submanifold of Q * X Π defined by μ = 0. This is obviously a Poisson
submanifold (corroborating Lemma A.I) isomorphic to Π. Thus we have
proven:

(A.4) Proposition. Let Π be a hamiltonian G-space with momentum mapping

J. Then the reduced manifold (T*G X Π ) o is naturally isomorphic to Π under

the mapping (g, -/(*_i}./(0),0) -> g#.
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