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ISOTOPY OF 4-MANIFOLDS

FRANK QUINN

The principal result of this paper is that the group of homeomorphisms mod
isotopy (the “homeotopy” group) of a closed simply-connected 4-manifold is
equal to the automorphism group of the quadratic form on H,.

There is an analogy between simply-connected closed 4-manifolds and
connected surfaces, in that they are both classified by simple algebraic-
topological data. Surfaces are classified up to homeomorphism by the isomor-
phism class of the fundamental group. The 4-manifolds are classified up to
homeomorphism by the isomorphism class of the intersection form and the
Kirby-Siebenmann invariant in Z /2 [3]. The analogy now extends to automor-
phisms, in that in both cases homeomorphisms are classified by the induced
automorphism of the algebraic structure.

Other results include a “uniqueness” for handlebody structures on simply-
connected 5-manifolds, the determination of ,(TOP(4),/0(4)), and a pseudo-
isotopy theorem for simply connected 4-manifolds with boundary.

1. Statements of results

Suppose M is a closed oriented (topological) manifold of dimension 4. Then
intersections define a symmetric nonsingular bilinear form, denoted by A, on
H,M. A homeomorphism of manifolds induces an isometry of H,, and
isotopic homeomorphisms induce the same isometry. Therefore there is a
natural homomorphism from 7, TOP(M) (= homeomorphisms mod isotopy)
to Aut(H, M, \).

1.1 Theorem. Suppose M is a closed 1-connected 4-manifold. Then the
natural homomorphism wy TOP(M) — Aut(H,M, X) is an isomorphism.

Freedman (3] has shown this to be onto. For injectivity we show that
homeomorphisms which are equal on homology are isotopic, or equivalently
that a homeomorphism inducing the identity on homology is isotopic to the
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identity. We note the curious fact that there are homotopy equivalences which
are the identity on homology, but are not homotopic to the identity.

To prove injectivity we first show by a homotopy calculation that homotopy
equivalences inducing the identity on homology are detected by normal
invariants. This means a homeomorphism must be homotopic to the identity.
Second a standard 5-dimensional surgery argument shows that homotopy to
the identity implies pseudoisotopy to the identity. Finally pseudoisotopy is
shown to imply isotopy. The technically difficult step is the pseudoisotopy
theorem, which in this setting (1-connected closed) is due to B. Perron [12]. The
easier part (identity on homology implies pseudoisotopy) has also been shown
by M. Kreck [8] for the special case of stability smoothable homeomorphisms.

The next result concerns the classifying spaces TOP(rn)/PL(n). These clas-
sify PL structures on a given n-dimensional topological microbundle, and for
manifolds which are open or have dimension > 5, maps to this space classify
sliced concordance classes of PL structures. There is a stabilization map
TOP(n)/PL(n) - TOP/PL. One of the main results (the high-dimensional
“annulus conjecture”) of [7] is that the only nonvanishing homotopy group of
TOP/PL is Z/2 in dimension 3, and that the stabilization induces an isomor-
phism of m; in the “geometrically significant” range j < n, provided n > 5.
When n < 3 the spaces are contractible (see [7, p. 253]). When n = 4 the
stabilization was shown to be an isomorphism for j = 0,1,2 in [13, part III],
and j = 2,3 in [10]. The final “geometrically significant” case is settled here,
and as in the other cases it is the same as the stable group:

1.2 Theorem. «,TOP(4)/PL(4)= 0.

Lashof and Shaneson [9] have defined “S-smoothings” and “S-isotopies” to
be smoothings and isotopies of connected sums Mgk(S? X S?) for some k,
satisfying a regularity condition on the k(S? X S?). They showed that S-
smoothings are classified up to S-isotopy by lifts of the tangent microbundle of
M from B1opy, to Boy,. The calculation of the homotopy of the fiber makes
this result much more explicit. The calculation of the lower homotopy identi-
fied the obstruction to the existence of an S-smoothing to be the Kirby-Sieben-
mann obstruction in H*(M; Z/2). Theorem 1.2 implies (and indeed is
equivalent to) the only obstruction to S-isotopy of two structures is the relative
obstruction in H3(M; Z/2).

Next we consider the uniqueness of handlebody structures. A handlebody
structure on a manifold pair (M, d,M) is an identification of M with a collar
on d,M with locally finite collections of handles attached. In a 1-parameter
family of structures the following changes are allowed: change of attaching
embeddings by ambient isotopy, introduction or deletion of a cancelling pair
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of handles, change of order of attachment, and change of the identification
with M by isotopy. We also allow insertion or deletion of collars between
layers of handles. (This is essentially the same as changing attaching maps by
isotopy.)

It is a fundamental fact that not only do handlebody structures almost
always exist, but usually any two can be joined by a 1-parameter family (i.e.
the structure is unique up to such deformations). For topological manifolds the
existence result is that (M,9,M) has a handlebody structure if dim M + 4,
and when dim M = 4 if and only if M has a smooth structure. The final case
of this to be settled was dim M = 5 in [13, part III}. The uniqueness known to
date is that if dim M # 4,5 any two handlebody structures can be joined by a
1-parameter family, and when dim M = 4 this is the case if and only if the
corresponding smooth structures on M are sliced concordant. When dim M > §
this follows from [7], and in dimensions < 4 it is a consequence of the
hauptvermutung for 3-manifolds. The 5-dimensional case is still unsettled, but
we make a start on it here:

1.3 Theorem. Any two (topological) handlebody structures on a compact
1-connected 5-manifold pair can be joined by a 1-parameter family of structures.

The principal technical ingredient in these results is a study of 4-dimensional
pseudoisotopy. The main conclusion is:

1.4 Theorem. Suppose M is a compact simply-connected 4-manifold. Then a
pseudoisotopy of M which is the identity on the boundary is topologically isotopic
rel boundary to an isotopy. A smooth pseudoisotopy is smoothly isotopic to the
identity after connected sum with some number of copies of the identity on
S2 X S?X I

The topological case is an extension of a result of Perron [12], which applies
if M is closed or has a handlebody structure with no 1-handles. For smooth
compact higher dimensions manifolds the simply-connected case is due to Cerf
[2], and the general compact case to Hatcher and Wagoner [6]. The modifica-
tions necessary for the high-dimensional topological case are given by Pedersen
in the appendix to [1}. A high-dimensional noncompact version is given in [13,
part IV].

The final result we state here is a weak version of the assertion “1-connected
4-manifolds have handlebody structures with no 1-handles.” The assertion
itself is false. There are theorems asserting that j-connected manifolds need
not have < j handles, but they do not apply in codimension 3. Worse, there
are 1-connected 4-manifolds with no handlebody structure at all. However we
can weaken the conclusion a little to obtain a true statement. Note if a
manifold has no 1-handles then it is obtained from a collar on its boundary by
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adding handles of index <2, and then a 4-cell attached on S* in the
boundary.

1.5 Propesition. Suppose M is a compact 1-connected 4-manifold. Then
M = N U D, where N is a handlebody on M with handles of index < 2 and D
is a flat 4-cell.

This differs from “no 1-handles” in that the intersection N N D is not
specified to be S3. When M is closed this is due to P. Vogel, and later
Siebenmann (see [12]).

The paper is organized as follows: the main theorems are reduced to
pseudoisotopy results, Theorem 1.1 in §2, and Theorems 1.2, 1.3 in §3. §4
contains most of the technical material on pseudoisotopy. We follow the
traditional plan of considering a pseudoisotopy as two collar structures on
M X I, suppose they are joined by a 1-parameter family of handle structures,
and eliminate the handles from the family. This gives the stable smooth
version. It also shows that the topological version holds if the existence of
1-parameter families, as in 1.3, is assumed. Unfortunately the existence of
1-parameter families is deduced from the pseudoisotopy theorem, in §3. To
avoid a logical circularity, the material of §4 is applied in §5 to infinite
handlebodies, to obtain a codimension 2 result. Theorem 1.4 is deduced from
this and Proposition 1.5. The codimension 2 result is similar to the main
technical result of Perron [12], and it may be that the topological part of 1.4
can be deduced from Perron’s result and 1.5. Finally 1.5 is proved in §6.

I would like to thank M. Freedman and the referee for their comments on an
earlier version.

2. Automorphisms

In this section we prove Theorem 1.1 by showing that homologous homeo-
morphisms are isotopic. They are first shown to be homotopic (Proposition
2.1), then pseudoisotopic (Proposition 2.2). Theorem 1.4 then implies they are
isotopic. Throughout we assume M is a simply-connected closed topological
4-manifold.

Suppose f: M — M is a homotopy equivalence. Then there is a normal
invariant n(f) defined in [M; G/TOP] = H*(M; Z/2) @ H*(M; Z).

2.1 Proposition. n defines a bijection, from homotopy classes of maps
inducing the identity on homology, to the subgroup of H*(M; Z/2) orthogonal to
,.
Proof. Wall [16, p. 237] shows n is onto by identifying the subgroup of H?
with the torsion part of [M; G/PL] c [M; G/TOP), and showing this can be
realized. His construction will be described in more detail later. The image of n
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can be no larger than [M; G/PL] because the remaining Z /2 is the difference
of the Kirby-Siebenmann invariants of the domain and range, hence zero. It
remains to be seen that » is injective.

Let ¢: M > M Vv S* be the map which pinches off a top cell, and let 7:
S* > M be a map. Define (1) to be the composition (1,7)c: M - M Vv §*
— M. This is a map of M which is the identity on homology, and the
construction () defines a homomorphism from 7,(M) to such maps. The
first step is to show {-) is onto.

M is homotopy equivalent to a CW complex of the form (V™S?) U , D4,
where m is the rank of H,(M) and a: S* - V™S? is the attaching map of the
top cell [11]. Suppose f: M — M is the identity on homology. We may
suppose it is the identity on the 2-skeleton, since a map V"S? —» V"S? is
determined by homology. Since the identity preserves the attaching map, we
may assume f is the identity near dD*. Think of $* as D4U D* with the
boundaries identified, and define 7: S* - M to be f on D* and the identity
on D*. Then f = (), so the construction is onto.

The next step is to determine which maps () are homotopic to the identity,
and for this we need an explicit description of m,(M). The homomorphism
7,(V™S?) - m,(M) is onto if M # S*. To see this first note any 7: S* > M
must be trivial on H,, since otherwise in homology with coefficients prime to
the degree it would be degree 1, hence onto H,. But a map trivial on H,
deforms off the 4-cell into the 2-skeleton.

Denote the inclusion of the ith summand by x,: S* - V™S$?, then accord-
ing to the Hilton-Milnor theorem [17, p. 533], m,(V™S?) is generated by

(1) Whitehead products [[x;, x,], x,], with i > j < k,

(2) compositions [x;, x;]sm with i > j, where sn is the suspension of the
Hopf map, and

(3) compositions x nsn, which we denote by nf.

In m,(V™S?) these elements are independent, and those in (1) are of infinite
order, those in (2) and (3) have order 2 since sn has order 2. In #,(M) there
are additional relations from the attaching map of the top cell.

Identify the subgroup generated by the nf with H,(M; Z/2), generated by
x;. Then the argument of Wall [16, p. 237] shows that n{-) (normal invariant
of the associated map) is an isomorphism when restricted to the kernel of w,:
H,(M; Z/2) - Z/2. So to show the normal invariant is injective on homo-
topy classes it is sufficient to show that maps corresponding to elements of
type (1) or (2) are homotopic to the identity, and that a sum of #? elements not
in the kernel of w, (presuming there is one) gives a map homotopic to the
identity.
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As above represent M as V™S?U  D* and define a homotopy H,:
M X I— MV S3by: retract M X I to(V™S?)x I U, D* X {0}. Then map
this to M by projection on all but the kth S? component of the wedge. Map
the kth S? X I by the projection plus the degree 1 map to the 3-sphere. The
map H, (1) is the identity on the 2-skeleton of M. As above this means it is
obtained from the inclusion M - M Vv S3 by changing the top cell by some
element B8, € m,(M Vv §?). Denote the inclusion by y: $* > M V S?; then

Claim. 8, = X, A(x;, x, )y, x;]-

Here A denotes the pairing obtained by cup product of the corresponding
cohomology classes, evaluated on the fundamental class: A(x;, x;) = (x} U
x*)[M]. This is the inverse of the intersection form used in Theorem 1.1. I
would like to thank T. Cochran and N. Habegger for pointing out this
discrepancy.

We first show that the proposition follows from the claim. Since A is
nonsingular, the matrix (A(x;, x,)) has an inverse, (7, ;). Define homotopies
h; = Y, r ;H,; then the map k(1) is obtained by changing the top cell by
L . jBi- Substituting for B, from the claim we get & (1) = <[y, xj]>. Now
suppose T € my( M ). The composition (1, 7)k; is a homotopy from the identity
of M to the map <['r, xj]>. First let 7 = [x,, x,]; then this gives homotopies
of the generators of type (1) (< [[xi,xk], xj]>) to the identity. Second let
7= x;m; then we get a homotopy of ([x79,x J]> to the identity. Since
[xm, x;] = [x;, x,1sm + [[x;, x;], x,], and <[[xi, xj], xi]> is homotopic to the
identity, this gives homotopies from type (2) generators to the identity.

Finally recall that the attaching map of the top cell is given by a =
X< jA(x;, x)[x; x;] + Z,M(x;, x;)x;n [11]. Composing with s gives a homo-
topy from ¥, _ ;A(x;, x;)[x;, x;]s7 to L, w,(x,;)n?. Here we have used the fact
that n? is of order 2 to substitute w,(x,) for A(x,, x,). The first expression
involves generators of type (2), so gives a map homotopic to the identity.
Therefore <):i wz(xi)nf> is homotopic to the identity. If w, # 0, this is a
nonzero element not in the kernel of w,. As noted above this is sufficient to
show that the normal invariant is injective.

Proof of the claim. We describe B, explicitly as a homotopy S* X I —
(VmS? U, D*) V S? which takes S* X {0,1} to the basepoint (the center of
the 4-cell). On S3 x [0,1/3] go radially from the center to D% On S3 X
[1/3,2/3] it is the composition of the attaching map « with the homotopy
VmS§2x I - V™S? v S3 which is constant on all but the k th component, and
there is the identity plus the degree 1 map on S°>. Finally on S* X [2/3,1] go
radially back to the center.

The attaching map is given by @ = X, _ ;A(x;, x;)[x;, x;] + L, A(x;, x;)x;7.
This means there are a lot of little cells in $* whose complement is mapped to
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the basepoint, and whose interiors are mapped to some +[x;, x;] or +x,1. On
the complement the homotopy B, goes radially out to the boundary, sits there
at the basepoint a while, and then comes back. Such a map is canonically
nullhomotopic. Therefore 8, as a homotopy class decomposes as a sum of
pieces, one for each little cell. Denote by A4, the contribution from a cell where
the attaching map is [x,, x, ] if i # k, and is x,n if i = k. Note cells where the
attaching map is *[x,, x;] or £ x;7, give nullhomotopic elements of =, unless
one index is equal to k. Therefore 8, = ¥, A(x;, x,)A,. The final step is to
evaluate 4,.

The homotopy 4, associated to a little cell in dD* takes place in the image of
the cone on the cell. By compressing into the boundary we get a homotopy in
the 2-skeleton, which can be described as foilows: Choose S3 X I — D3 so it
takes S* X {0,1} U {pt} X I to a point in 0D?, and for t € [1/3,2/3] maps
each hemisphere of S* by the identity to D*. Compose this with a;; D3 —
V™S2, where a, =[x, x,] if i # k, and x,n if i = k. Finally on one hemi-
sphere modify this near 1/2 by pushing the kth S? over the S°.

Note this description takes place in SV §2V S*if i # k, and S? v §3 if
i = k. As an aid to visualization note that the attaching maps are the ones
which occur in the manifolds S? X S2, and CP? respectively. By drawing a
picture of the homotopy described above it can be seen directly that A; =
[x;, y]. Substituting this in the formula for B, yields the claim, and completes
the proof of 2.1.

2.2 Proposition. Suppose M is a 1-connected 4-manifold with connected
boundary. Then homeomorphisms of M which agree on dM and are homotopic
rel 9M are pseudoisotopic.

Proof. The homotopy given is a map F: M X I - M X I, which is a
homeomorphism on M X {0,1} U dM X I. This defines an element of the
structure set Stop(M X I1,3). A pseudoisotopy is such a homotopy which is
itself a homeomorphism, so to prove the proposition we show F is homotopic
rel 9M to a homeomorphism. For this it is sufficient to show the structure set
consists of a single element.

Since M is 1-connected the normal invariant defines a bijection
Stop(M X 1,3) = [(M X I),, 0; G/TOP, pt]. Here (-), denotes (-) with an
interior point removed. [(M X I),,3; G/TOP,pt] = [M,,0; £(G/TOP),pt],
and there is an exact sequence

- H3(M,d; Z) > [M,,d; 2(G/TOP),pt| - H'(M,d;Z/2) - .

The end groups are trivial since M is 1-connected and dM is connected. Thus
the middle group, and the structure set, is trivial as claimed.
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Proposition 2.1 and 2.2 imply that a self-homeomorphism which induces the
identity on homology is pseudoisotopic to the identity. Theorem 1.4 then
implies that it is isotopic to the identity, as required to complete 1.1. We note
that 2.2 and 1.4 both apply if M has boundary, which is held fixed. Therefore
extensions of 1.1 to the bounded case will follow from working out what
happens in the homotopy theory in 2.1. For example understanding automor-
phisms of manifolds with boundary an S* bundle over S? would be useful in
determining the uniqueness of embeddings S> ¢ M* with 1-connected comple-
ment.

3. Bundles and handle uniqueness

Theorems 1.2, on the homotopy of TOP(4)/0(4), and 1.3, on handlebody
structures on 5-manifolds, are deduced from the pseudoisotopy results in this
section.

Proof of Theorem 1.2. We show that any map f: S*— TOP(4)/0(4) is
nullhomotopic by studying the stable uniqueness of smooth structures on
4-manifolds.

A smooth structure on M* determines a classifying map M — By A
second smooth structure on the underlying topological manifold determines a
second map with the same image in Bropg. The difference is classified by a
map M — TOP(4)/0(4). If the smooth structures are sliced concordant, then
the map to TOP(4) /O(4) is nullhomotopic. (A sliced concordance is a smooth
structure on M X I with the given ones at the ends, and such that the
projection to I is a smooth submersion; see [7].)

In higher dimensions any map M" — TOP(n)/O(n) (M smooth) can be
realized as a difference of tangent bundles of smooth structures [7], so
7,(TOP(n)/0O(n)) can be determined by studying the uniqueness of smooth
structures on S”. In dimension 4 we follow the same plan, but have to stabilize
by connected sum with $% X S2.

If a map f: S* —» TOP(4)/0(4) is stabilized by connected sum with the
point map on copies of S? X S2, then for some k it can be realized as a
smooth structure on #(S? X S2) [10]. Since 7,(TOP(5)/0(5)) =0, when
crossed with R this structure is isotopic to the standard one. This means there
is a smooth structure on ($*(S? X S?2)) X I which is standard on one end, and
the structure corresponding to f on the other. This structure will define a sliced
concordance if we can arrange the projection to I to be a submersion.

The structure is a smooth A-cobordism, which according to [14] becomes a
smooth product after stabilization by connected sum along arcs with copies of
(8% % S?) X I. The product structure defines a pseudoisotopy. The stable
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smooth part of 1.4 implies that after further stabilizations there is an isotopy of
the pseudoisotopy to an isotopy. Since an isotopy followed by the projection to
I is a submersion, this defines a sliced concordance of structures on
tm(S? X §?), some m. As explained above this means there is a nullhomotopy
of fgmp, where p: §? X S§? - TOP(4)/0O(4) is the point map.

Adding point maps gives an extension of f over the mapping cylinder of the
degree 1 map $"(S? X S?) > S* Let X denote the union of this mapping
cylinder with the cone on #”(S? X S?). The argument above implies that the
original map on S* extends over X, i.. there is a factorization of f as
S* > X - TOP(4)/0(4). But the inclusion S* - X is nullhomotopic, so f is
nulthomotopic, and «,(TOP(4)/0(4)) = 0.

To see this last point, the nullhomotopy of S* — X, write $7(S? X S?) as
(V2mS?)u , D* where a is a sum of Whitehead products of components. X is
almost the suspension of this; X = [S(V?"S?)V §*] U .., D°. But suspen-
sions of Whitehead products are trivial, so sa = 0, and the 5-cell is attached to
the S* by the identity. Therefore the inclusion of S* is nullhomotopic.

Proof of Theorem 1.3. Denote the 5-manifold pair by (M, d,M ). Decom-
pose M as W, U W,, where W, is a collar on d,M union the 0-, 1-, and
2-handles of the first handlebody structure, and W, is a collar on 3;W union
the 3-, 4-, and 5-handles. Decompose M similarly as V; U V,, with respect to
the second structure. The first step is to deform the second handlebody
structure until W, is a subhandlebody of it. This is done by smoothing things
as much as possible.

Let S € d,M be a set with one point in each component; then d,M — S has
a smooth structure [13, part III]. This determines arcs S X I in the collar in
W,. The handles in W, are attached on neighborhoods of 0- and 1-spheres, so
we may arrange by isotopy that they are disjoint from S X I, and smooth [13,
part III], [15]. This gives W, — S X I a smooth structure. ¥; is smoothed
similarly.

Next, by isotopy rel 9, M, we may assume the collars in ¥; and W, agree in a
neighborhood of the arcs S X I in each. Isotope W, into V;, rel S X I, by
shrinking the collar and pushing the handles off the duals of the handles in V.
It is now possible to change the inclusion W, € V; by isotopy reld,M U S X I
to be smooth on W, — S X I. This is because M is 5-dimensional, so [7]
applies, and H3(M,9,M; Z/2) = 0.

Smooth manifolds have smooth handle structures which are unique up to
deformation through 1-parameter families, so the structure on W, extends to
one on V;, which can be deformed to the original one. In other words, the
second handlebody structure on M can be deformed to one which has V; as a
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subhandlebody. By fixing these handles we are reduced to consideration of V,,
so we may assume that one handle structure has no handles of index < 2.
Repeat this argument to eliminate the dual handles of V,; then the theorem is
reduced to the case where one structure has no handles at all.

Suppose, then, that M = N X I, and there is a second handle structure on
(M, N X {0}). According to the h-cobordism theorem of [3] the second
structure can be deformed to one with no handles (recall we have assumed M
1-connected). The homeomorphism between these two product structures is a
pseudoisotopy. According to Theorem 1.4 a pseudoisotopy is isotopic rel N X
{0} to the identity. This isotopy completes the deformation of the second
handle structure to the first.

We observe that a (8, 1)-connected controlled version of 1.4 (in the sense of
[13]) would imply uniqueness of handlebody structures on all 5-manifolds.
Proceed as above, but in the last paragraph note that the projection p: M - N
is a (8, 1)-connected (8, h)-cobordism over N for all § > 0. According to the
controlled A-cobordism theorem [13, part III] there is a deformation of the
second handlebody structure to a product structure of radius less than any
given 8. This defines a § pseudoisotopy [13, part IV]. Applying a controlled
version of 1.4 would complete the deformation between the structures. The
controlled version has the further advantage that it can be reduced to noncom-
pact manifolds which can be smoothed, thereby avoiding the question of
existence of 1-parameter families to get the argument started.

4. Cancelling handles

In this section we show how to cancel handles from a 1-parameter family of
handlebody structures on a 1-connected manifold. If a pseudoisotopy can be
joined to the identity by a finite 1-parameter family, then applying this
repeatedly eliminates all the handles. This leaves an isotopy to the identity,
proving Theorem 1.4 under the assumption that there is a 1-parameter family.

The problem is reduced to a study of isotopies of 2-spheres in a 4-manifold
in §4.1. §§4.2-4.4 describe simplifications of the structure of such isotopies. In
§4.5 a criterion for cancellation is given. Finally in §4.6 the criterion is verified
in the topological case, and in the smooth case after sum with S X S2.

4.1 Reduction to “eyes.” Think of the product structure on (M X I, M X {0})
as a handlebody without handles, and a pseudoisotopy as a second such
structure. Presume that the two structures are connected by a 1-parameter
family of structures, with only finitely many handles. According to Hatcher
and Wagoner [6, IV3, p. 214] there is a deformation of this family to one which
has only 2- and 3-handles, no handle additions, and independent birth and
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death points (a nested family of “eyes.” Beware that the reduction to a single
eye requires dimension > 5, so does not apply here.) What this means is that
at ¢, some number of cancelling 2, 3 handle pairs are introduced, then the
3-handle attaching maps are changed by ambient isotopy (all together), until at
t; they again intersect only the corresponding 2-handles in single points. Then
they are all cancelled.

We give a detailed view of such an isotopy. Let N denote the level between
the 2- and 3-handles, 4; denote the dual boundary 2-spheres of the 2-handles,
and B, denote the boundary spheres of the 2-handles. The isotopy moves the
B, with respect to the 4,. Generically these will be transverse except at a finite
number of values of the parameter. At these values intersection points appear
or disappear in pairs, by a small “finger move” along an arc, or by a “Whitney
move” across a 2-disk (see [4, Chapter 1]).

After a finger or Whitney move there is a small Whitney disk or arc
respectively, which can be used to reverse the move. Reversing the time
parameter in the isotopy interchanges the two types of moves.

In intervals where intersections do not change, the isotopy can be extended
to an ambient isotopy of the union A; U B,. This can be used to compare the
data for adjacent moves; suppose a move occurs at s, and no moves occur
between s and ¢. Apply the ambient isotopy to the small arc or Whitney disk
at s, to get a “large” arc or Whitney disk at time ¢. Doing this for the first
move on each side of ¢ gives two arcs, an arc and a disk, or two disks, at 7.

The first observation is that if the data for these adjacent moves is disjoint at
t, then they can be done simultaneously, or slid past each other to change the
order of occurrence. This is because the moves take place in small neighbor-
hoods of the data. Since two arcs, or an arc and a disk, are disjoint in a
4-manifold this means we can slide all the finger moves left to occur at one
time f;, and all Whitney moves right to a time ¢,,. The picture is then that the
B, are changed by finger moves all at once, move by joint ambient isotopy with
the A4;, and then the extra intersections are removed by Whitney moves all at
once. At some intermediate time we see two complete sets of Whitney disks for
the extra intersections, and these essentially determine the isotopy. We will
denote the disks coming from the finger moves by V,, and the ones from the
Whitney moves by W,. The problem in dimension 4 is that the W and V disks
may intersect. There can be interior intersection points, and since the
boundaries are arcs on 2-spheres, there can be boundary intersections.

The cancellation problem can be reduced to a single pair of handles. Choose
a pair, say 4;, B,, and slide the finger and Whitney moves involving only these
handles slightly to the inside, to occur at times ¢, > 7, and 7,,; <,. Then 4,,
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FIGURE 1

B, intersect in only one point from birth to just before #;,, and from just after
t,, to death. They can therefore be cancelled on these intervals. The picture is
now: all 4,, B, except A,, B, appear at once, and the B; change by finger
moves through the 4; at time ¢,. Then A4,, B, appear, and B, changes by
finger moves through 4, at time 7,,. Next Whitney moves occur at ¢,; to
remove the extra intersections of 4,, B,, and they are cancelled. After that the
B, are moved again, and are cancelled. The graphic is depicted in Figure 1. The
family over the inner interval can be considered a 1-parameter family of
structures on the intermediate level between A4; and B;, i > 2. If this can be
deformed to one in which 4,, B, always intersect in a single point, then they
can be cancelled, thereby simplifying the original family. We caution that the
A,, B, birth is not “independent” in that the handles intersect the other
handles when they appear. This means the inner “eye” in the graphic cannot
be disengaged and moved outside the others.

4.2 Deformations of isotopies. To change a 1-parameter family of handle-
bodies we deform the isotopy of the middle level through isotopies. For this we
describe changes in the families of disks which determine the isotopy. These
deformations are smooth if the data used (disks, etc.) are smooth.

The simplest modification is isotopy of one family of disks, keeping A, B
invariant. Whitney disks depending on a parameter yield isotopies depending
on a parameter, hence a deformation. So for example we can do a finger move
to push a V disk through a W, or a Whitney move to reduce 'W intersections.
We can also do “half” finger and Whitney moves of boundary curves of V,
utilizing arcs and disks in 4 or B. We will find useful a move which involves
pushing across a disk while pivoting one end around an 4B intersection point.
The data for this is a disk D in A (or B) bounded by one arc in 0V, one arc in
oW, and containing one 4B intersection point and one VW boundary intersec-
tion. Push W across D holding the AB point fixed to remove the VW
intersection (see Figure 2).
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Splitting. Suppose an embedded arc is given on a V disk, going from the A
side to the B side. Change B by a finger move along the arc through A. The V
disk is split into two disks, and a new W disk is introduced (see Figure 3).

Sums. In this operation two V disks are cut apart and reassembled. The data
is an embedded square S, with two edges on V disks, one on 4, and one on B.
Figure 4 provides a model. New V disks are obtained by cutting the given ones
along the boundary edges of S, and glueing in two parallel copies of S. If the
interior of S is disjoint from 4, B and the V disks, then the new disks are
embedded Whitney disks, so specify a new isotopy. To see a deformation
between the two isotopies, imagine the original V' disks pushed along S until
they share an arc. When they touch they describe a “generalized” Whitney
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move, where B is pushed across X X I, “X” denoting a cross-shaped graph. It
is easy to arrange that the deformation of Whitney isotopies converges to this
X X I move. Then note that the new V disks can be deformed to the same
X X I object, so the isotopies they specify also can be deformed to the X X I
move. Putting these together gives a deformation between the isotopies.

On the 2-sphere 4 (or B) this operation is depicted in Figure 5. Note in
particular the boundary of the square divides the V' arcs into two sides, and
there is one +1 and one —1 intersection point on each side.

We begin assembling the data needed to construct sum squares. Suppose df
is a map from the boundary of a square which satisfies the evident necessary
conditions; two edges are embedded in V, one in 4, and one in B. Those in 4
and B should intersect V" disks only in the endpoints and should have one +1
and one —1 intersection point on each side (in the sense above). Then 9f
extends to an immersion f of a neighborhood of the square in the model. To
see this note that map 9f extends to some immersion of a disk, which can be
arranged to agree with the model except near some small interval on the
boundary. Here the framings of the boundary from the data in the model, and
from the contractibility of the disk may not agree. This can be fixed by
spinning the disk [4, Chapter 1]. These immersions may intersect themselves
and anything else 2-dimensional. The next step is to give ways to avoid these
intersections.

4.3 Transverse spheres. We recall that “transverse spheres” for a family of
surfaces { S;} consist of a family of framed immersed 2-spheres { S/}, so that
each S, intersects only S/, and then only in one point.

The first remark is that the A, have embedded transverse spheres, disjoint
from each other and the B,. Since the birth points are independent (before the
modification at the end of 4.1), at birth the B, themselves are embedded
transverse spheres for the 4,. Denote by A’ parallel copies of the B,. The B,
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are then changed by finger moves through the A,, which we may assume take
place along arcs disjoint from the spheres A’. This gives, at the intermediate
time, embedded A’ disjoint from the B, and the disks V, from the finger
moves.

Similarly the B, have embedded transverse spheres disjoint from each other
and the 4,. (Note however that the 4' and the B’ intersect each other.) This
implies that the inclusion N — 4 U BU V — N is an isomorphism on funda-
mental group. It is onto by general position. To see it is injective, suppose a
loop bounds a disk which intersects A U B U V. First push the disk off ¥V
through A or B. Then remove intersections with 4 and B by connected sums
with A* and B". This gives a disk which is disjoint from 4 U B U V. The same
construction shows more precisely: if there is a framed immersion of a surface
with boundary disjoint from 4 U B U V, then there is a framed immersion
completely disjoint, and with the same framed boundary.

The next conclusion is that an immersed sum square has a framed embedded
transverse sphere. More precisely suppose S is an immersion of the model
which intersects ¥, in exactly one boundary arc. Then there is a framed
embedded sphere disjoint from 4 U B U V which intersects S in exactly one
point. The easiest way to see this is to temporarily undo the finger move, by
pushing B across V;. S is converted into a surface P with an edge on the finger
move arc. A small linking 2-sphere to the arc intersects P in one point, and is
disjoint from everything else. Now perform the finger move in a smaller
neighborhood of the arc, to recover the original B, V, S.

Figure 6 shows 4 and P in the 3-dimensional “present,” while B extends
into the past and future. The linking 2-sphere is represented as a disk which
intersects the finger arc in one point. The rim of the disk is in the present, and
a sphere is obtained by shifting copies of the disk into both the past and
future. S is also in the present except for a twist into the future near the AB
intersection point, to get to V.



358 FRANK QUINN

As a corollary of this we can conclude that if N is 1-connected, then an
appropriate embedding of the boundary of a sum square extends to an
embedding of the entire model, with interior disjoint from 4 U B U V. In 4.3
it was shown that an embedding of the boundary extends to an immersion of
the model. The transverse spheres for 4 and B can be used to construct from
this an immersion with interior disjoint from 4 U B U V. Then connected
sums with the framed embedded transverse sphere disjoint from A U B U V
can be used to remove the self-intersections.

4.4 Simplification of boundary curves. We begin the actual proof of the
Theorem 1.4. The situation is a pair of spheres 4, B in a l-connected
4-manifold N, and two collections V,, W, of Whitney disks which each
eliminate all but one of the AB intersections. The V, intersect A4 in disjointly
embedded arcs, with AB intersection points as endpoints. The W, intersect
similarly, so the union is a collection of immersed circles and either one arc, or
an isolated point. The objective of this section is to deform the situation to one
in which V' U W intersects A and B in single embedded arcs.
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FIGURE 7

First we show how to reduce the number of intersections between 9V and
oW on A. Choose an intersection point which is adjacent on dW to an
endpoint in common with a 9V arc. Join the two 0¥ components by an arc 9,5
with interior disjoint from ¥ U W and with one +1 and one —1 V endpoint
on each side, as in Figure 7. (If the two pieces of V in Figure 7 are actually on
the same component of 9V, then split it. This does not introduce intersection
points.) This can be extended to an embedding of the boundary of a sum
square, hence by 4.3 to an embedded sum square. Performing the sum
operation does not reduce intersections, but it leaves a disk in 4 which can be
used for the “rotating” move of 4.2 to remove an intersection (see Figure 8).
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Proceeding by induction we can arrange that 0V U oW have no interior
intersections on A. This means it is a union of embedded circles, and an arc or
isolated point. We assume there is an arc, since an isolated point can be
converted to an arc by introducing a trivial finger move, then cancelling the
isolated point with one of the new intersections. By joining a V' segment on an
“outermost” circle to one on the arc and extending to a sum disk as above, the
circles can be added to the arc. (By outermost we mean that it can be
connected to the arc without crossing another circle.) Repeating this operation
reduces (07 U 0W) N A to an embedded arc.

The next step is to improve the boundary arcs on B, but with as little
damage as possible to the ones on 4. During the procedure we suppose: The
boundaries on A are the one embedded arc and disjointly embedded circles, all
“outermost” and positively oriented with respect to an orientation of A. Note
that going from the +1 toward the —1 intersection points on a V' segment
determines an orientation of the circle, so choice of an “outside” orients a
neighborhood of the circle. The improvement above yields a single arc on A4,
so we begin with this hypothesis satisfied.

As above locate a useful 9,S arc in B, and add segments going across the V'
disks. We extend this to an embedding of the boundary of a sum square by
joining the endpoints on A. If the endpoints do not lie on a single circle, then
the “outermost” hypothesis implies that they can be joined by an embedded
arc with interior disjoint from 9V U aW. If they both lie on circles, then the
orientation hypothesis implies that the + intersection condition is satisfied. If
one is on the arc, then coming in on the correct side of the arc gives the
condition. If the endpoints lie on a single circle, then join them through the
interior of the circle. In all cases when the resulting S is extended to a sum
square and the sum operation performed, we again get an arc and outermost
circles. The orientations will be correct except possibly in one case. If both
endpoints are on the arc, then they can be joined by a 0S segment coming in
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on either side of the arc. One side splits off a circle with the incorrect
orientation, but there is always a choice which gives the correct orientation.

Proceed as above to eliminate VW intersections on B, and then simplify the
pattern to be an embedded arc. When this is done the pattern on A will also be
an embedded arc, since for each ¥V or W disk, its intersection arc with A joins
the same pair of points of A N B as its intersection with B.

4.5 A replacement criterion. Suppose a 1-parameter family has a single AB
pair, and V and W disks intersecting A and B in embedded arcs (i.e. the output
of 4.4). Suppose there is a second set of disjoint Whitney disks W~ with
boundaries parallel to those of W, and with interiors disjoint from W. Then there
is a deformation from the given family to the family with disks V, W ~ .

Unlike the manipulations of the previous sections, new handles are added
and cancelled during this deformation. The argument is similar to an un-
published one of K. Igusa for pseudoisotopies of 5-manifolds.

Corollary. Suppose A, B, V, W are as above, and there are disks W ~ with
interiors disjoint from both V and W. Then there is a deformation of the
pseudoisotopy to an isotopy.

Proof of the corollary. According to 4.5 we can deform the family to the one
with disks V, W ~. Since these disks are disjoint they can be “cancelled.” By
this we mean that by gradually pushing across more and more of W ~ before
completing the finger move gives a deformation to an isotopy such that 4 and
B always have a single point of intersection. The handles can then be
cancelled, leaving an isotopy.

Proof of 4.5. Begin with the 4, B, V, W family. Choose a product 4 X I
near A, with 4 on one end and a sphere A~ on the other. Displace copies of
W~ to give Whitney disks, disjoint from the W, for the A~ B intersections
(see Figure 9). We interpret this data as specifying a 1-parameter family:
introduce the 4, B as usual, then do the finger moves, then push B across both
the W and W ~ to reduce both 4B and 4~ B intersections back to one point.
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Then cancel 4 and B as usual. Since 4~ is not part of a handle, the push
across W~ does not effect the intersections. Gradually pushing across less and
less of the W ~ therefore gives a deformation from the new family to the
original one. If, by some maneuver, we could deform the new family so that
A~ rather than A was the dual sphere of the 2-handle, then the pushes across
W would become inessential. Phasing them out would give a deformation to
the family with V, W~ data. Putting the deformations together would give the
deformation required for 2.5.

The proposition is therefore reduced to finding handle moves which switch
the dual sphere of the 2-handle from A to A~ . Consider the level below the
2-handle. This is obtained from N by cutting out 4 and replacing it by a
1-sphere. In particular the product A X I gets filled in to a 3-disk with 4~ as
boundary. Use this disk to introduce a cancelling pair of 1, 2 handles.
Proceeding downward this looks like adding a 3-handle on 4~ , and then
adding a 4-handle on the 3-sphere gotten from the core of the 3-handle and the
3-disk bounding A~ . Dually (from the bottom up) we see a 1- and a 2-handle,
with A~ C N as the dual sphere of this new 2-handle. Cancelling these near the
ends of the family gives a new family with graphic depicted by Figure 10. Here
the finger move of B through A takes place at ¢, and the Whitney move at ¢,,.
The boundary sphere of the upper 2-handle intersects the dual of the 1-handle
in a single point. Cancel these from before ¢, to after ¢,,, to get a family with
graphic depicted by Figure 11.

FIGURE 10

FIGURE 11
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The 1-handle pieces on the ends intersect both 2-handles in exactly one
point, so they can be cancelled by pushing through a dovetail singularity [6,
Chapter V, 1.4]. The resulting family is as before, except that the sphere 4~ is
now the dual sphere of the 2-handle.

4.6 Completion of the proof. Suppose the situation is as in 4.4; ¥V and W
disks with union intersecting 4 and B in embedded arcs. We show that W can
be changed to have interior disjoint from V. Since 4.5 shows that such a
situation can be cancelled, this completes the proof in the case under consider-
ation, when the pseudoisotopy can be joined to the identity by a 1-parameter
family of finite handlebody structures.

The first step is to arrange the disks in ¥ and W to have trivial algebraic
intersection numbers. Begin with a small linking sphere to the boundary arc on
A of each component of V. These intersect ¥ in one point, but intersect 4 in
two points of opposite orientation. According to 4.3, A has an embedded
transverse sphere disjoint from B U W. Add copies of this to the linking
spheres to remove the intersections with A4. This yields a collection of em-
bedded spheres disjoint from 4 U B U W, and since copies were added in
pairs with opposite orientation, the algebraic intersections with V" are the same
as transverse spheres. Adding copies of these to W at VW intersection points
gives new disks W =, which have trivial algebraic intersections with V. Since
the W and the spheres are disjointly embedded, W = can be arranged to be
embedded with interiors disjoint from W. Applying 4.5 exchanges W ~ for W,
and accomplishes the desired improvement.

In the topological case, W satisfies the isotopy criterion of [3], [4] to be
isotopic rel A U B to have interior disjoint from V. In the smooth case, we now
take connected sum with the identity pseudoisotopy on copies of S? X S2.
This changes the intermediate level N in the handlebody by connected sum
with $? X S§2, so according to [14] after some number of such modifications
there is a smooth isotopy of Wrel 4 U B to have interior disjoint from V. As
above this implies that the handle pair 4, B can then be cancelled, so
completes the proof.

For the convenience of nonexperts we sketch how the isotopy theorems
follow from the more familiar embedding theorems. First, it is possible to do
finger moves of W through V so that V' has framed immersed transverse
spheres disjoint from 4 U B U W. For this note it was shown above that there
are algebraically transverse spheres disjoint from 4 U B U W. Choose
Whitney disks (using the 1-connectedness of N) for the extra intersections
between these spheres and V. Make these disks disjoint from ¥ by pushing
through 4, and then from 4 and B using transverse spheres disjoint from V.
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Then make W disjoint from these disks by pushing off through V. This changes
W by finger moves through V. Finally the spheres can be pushed across these
Whitney disks to eliminate extra intersections with ¥, without introducing
intersections with anything else.

Next, again use the 1-connectedness of M to choose immersed Whitney
disks for all the VW intersections. Again use transverse spheres for 4 and B
disjoint from W to get Whitney disks disjoint from 4 U B U W. Then use the
transverse spheres for V' just found to make them disjoint from ¥V as well.
Deleting an open tubular neighborhood of A UBU WU V leaves a 1-
connected manifold with framed immersed disks (the Whitney disks). These
disks have algebraic duals (the linking torii of the VW intersections), so the
topological embedding theorem applies to give disjointly embedded framed
disks with the same framed boundaries. These are embedded Whitney disks for
the VW intersections, so can be used to construct an isotopy of W disjoint
from V.

In the smooth case, connected sums with $2 X S? introduce a lot of pairs of
embedded spheres intersecting in points. If we form the connected sum of a
framed Whitney disk with one of these spheres, the other gives a framed
embedded transverse sphere for the result. These spheres can be used to
remove intersections and self-intersections, yielding smoothly embedded Whit-
ney disks. Then there is a smooth isotopy separating W from V.

This completes the sketch of the isotopy theorem. As a final note on the
method we observe that the simplification procedure does not work for
intersections between 4 and B spheres with different indices. Here rather than
arcs we have circles of boundaries of W and V disks. When constructing V' we
used connected sums with A’ along arcs in 4, to remove intersection of a
linking sphere with 4. With a circle of boundaries one of these arcs must cross
the circle, introducing a nontrivial algebraic intersection between V' and W. It
is therefore impossible to find transverse spheres V' disjoint from W.

5. Codimension 2

Suppose M is a compact 1-connected 4-manifold, and X € M is obtained
by adding handles of index < 2 to dM. Suppose that # is a pseudoisotopy
which is the identity on M.

Proposition. 4 is isotopic rel M to a pseudoisotopy which is the identity on X.

The point is to prove this without making assumptions about handlebody
structures, since otherwise the result of §4 implies 4 is isotopic to the identity
on all of M.
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This result and 1.5 complete the proof of the pseudoisotopy Theorem 1.4:
apply it to the N of 1.5, then 4 is isotopic to h; which is the identity except on
M — N, which is contained in a disk. But the Alexander trick (pushing toward
0) shows pseudoisotopies of the disk are isotopic to the identity. Applying this
to h, gives an isotopy of 4 to the identity.

We may suppose that 4 is the identity on a ball B disjoint from X. Let 0 be
the origin of B, and denote M — {0} by M,. h restricts to give a pseudoiso-
topy of M,,. Since M, is noncompact and H>(M,,dM,) = 0, smoothing theory
([7] and [13, part III]) apply to show M|, has a smooth structure, and that 4 is
isotopic to a smooth pseudoisotopy. This means it is joined to the identity by a
1-parameter family of handlebodies, but with infinitely many handles. Only
finitely many will intersect X. The plan of the proof is to cancel the handles in
the family which intersect X, using the result of the previous section. Cancell-
ing a handle rearranges the remaining handles in the family, and care is
necessary to avoid introducing new intersections with X.

Let M, — [0, o0) be the map which is (1 /radius) — 1 on the ball, and takes
the complement of the ball to 0. We will use the controlled topology of [13],
with control in [0, co). With this particular control space we can avoid a lot of
technical detail. Generally in controlled arguments when ¢ > 0 is given there is
some & > 0 so that data with § control implies a conclusion with ¢ control.
However if a control is given, any a > 0, then we can obtain & control by
composing with a compressing homeomorphism [0, c0) — [0, o0). Allowing
such compressions means we can speak generically of “control” without having
to continually specify ¢, 8, etc. Note also that control allowing compressions is
equivalent to requiring that everything be proper.

5.1 Lemma (Reduction to “eyes”). The 1-parameter family of handlebody
structures on M, X I can be deformed to one with handles of controlled diameter,
only 2- and 3-handles, independent birth and death points, and no handle
additions.

This is the controlled analog of 4.1, which comes from Hatcher and
Wagoner [6, §IV3]. The clearest “reason” this should be so is that the
arguments of Hatcher and Wagoner can be modified to work with control, the
modifications being specified in [13], particularly part IV. This is satisfactory
up to the elimination of handle additions, which requires the vanishing of a
Wh, group. For the controlled analog, note M, is controlled relatively
1-connected over [0, o0) (because inverses of points in (0, o0) are copies of D*,
the inverse of 0 is M-int(B), and these are all 1-connected). The controlled
analog of Wh, then vanishes for two reasons. First it is a locally finite
homology group [13, II and IV], and the locally finite homology of [0, o) is
trivial with any (constant) coefficient spectrum. The second reason is that the



ISOTOPY OF 4-MANIFOLDS 365

controlled pseudoisotopy obstruction group for trivial local fundamental group
vanishes over any space [13, IV, Theorem 1.2]. Once the controlled Wh, is
known to vanish, the arguments of Hatcher and Wagoner can be used to
eliminate handle additions in a controlled manner.

The difficulty with this “reason” is that the details of the controlled analog
of Wh,, and its connection to handle additions, have not yet been worked out.
To get a technically complete proof of 1.5 we use the fact that in this situation
higher-dimensional controlled pseudoisotopies are trivial, and use the proof of
the stability theorem as far as possible. Since this is somewhat technical we
postpone it until after using it to complete the proof of the proposition.

5.2 Proof of the proposition. As in 4.1 a family consisting only of “eyes” is
determined by an isotopy of the intermediate level, which first introduces and
then removes intersections of boundary and dual spheres. As in §4 we denote
the level between the handles by N, the dual spheres of the 2-handles by A4,,
and the attaching spheres of the 3-handles by B,. Denote by V" the disks
associated to the finger moves of B through 4, and by W the Whitney disks
which remove these intersections.

When they first appear in the family the handles can be described as
follows: Begin with a disjoint collection of embedded 2-disks {D;} in M,.
Then add 2-handles attached on the boundary circles of the disks to a collar on
M,,, then 3-handles on the 2-spheres obtained by glueing together the disks and
the cores of the 2-handles. The disjointness of the 2-disks corresponds to the
“independence” of the births in the 1-parameter family.

The isotopy of N takes place in a neighborhood of this data, so the
pseudoisotopy is isotopic to the identity on any part of M, which can be
moved disjoint from the data. As a first application we note that the data is all
2-dimensional, so can be made disjoint from the spines of the 0- and 1-handles
of X. The pseudoisotopy is therefore isotopic to the identity on these handles.
The problem arises with the 2-handles of X, whose spines may intersect the
data in isolated points.

Since X is compact and the D, V, W are controlled, there is some » so that
D,, V', and W'/ are disjoint from X for j > n. We claim that the pair 4;, B,
can be cancelled from the family by the method of §4 in such a way that the
data for the remaining handles is still disjoint from X for j > n. If this is the
case, then we can cancel the first n — 1 handles in the same way, and end up
with all the data disjoint from X. As above this means the pseudoisotopy is the
identity on X, which is the desired conclusion of the proposition.

The modifications in 4.4 and 4.5 involve pushing things across disks. Note
that if, in modifying the disks V!'!, the modifications take place in the
complement of the other V disks (which is easily arranged) then these other
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disks remain part of the data for the modified family. These modifications can
usually not be arranged to be disjoint from the W disks. However the W
intersect the modification disks in points, so are changed by finger moves. The
2-handles of X also may intersect the modification disks in points, but by
general position the finger moves of W can be arranged to miss these points.
The V modifications therefore do not introduce new XW intersections. Simi-
larly the W modifications do not introduce new XV intersections.

In 4.5 it is shown that a W disk can be replaced by a disk W ~ provided it is
disjoint from all W disks. The particular W ~ considered in 4.5, and con-
structed in 4.6, allowed modification of 4,, B; so that they always intersect in
a single point during the isotopy, hence could be cancelled. The replacement
does not change any of the other disks. The modification involves pushing
across a disk, so as above does not introduce new intersections of the other
disks and X. This leaves consideration of the cancellation.

Change the order of attachment in the handlebodies so that the 2-handles of
index > 1 are attached before that of index 1. Let P denote the level
between the first and other 2-handles; then P is the intermediate level in the
handlebody obtained by cancelling the first pair of handles. As above the
cancelling pair of handles arises from a disk D; in P. Changes of the pair 4,
B, in N which do not introduce new intersections between them can be
realized (up to ambient isotopy) by changes in D,. In particular we describe
intersections with other handles from this point of view.

A finger move of B, through A; corresponds to a finger move of the disk D,
through A4, with cancelling Whitney disk VY. An intersection of B; with 4,
corresponds to a disk in B, parallel to D;. Therefore a finger move of B,
through A4, corresponds to pushing B; across a parallel of D,, and the disk V!
joins the two resulting pieces of B; parallel to D, (see Figure 12). Putting these
together we see that finger moves of B; through 4; and finger moves of B,
through 4, yield, after cancellation, many finger moves of B, through 4.
There is, however a choice of disks for these new moves. If we imagine the
finger move of D, through A being done first, and then B; pushed parallel to
D,, the new intersections have V disks parallel to V1. If we push B, parallel to
D, first, then do the finger moves of D; (and all its parallels), the new
intersections get disks parallel to V'/1. By reversing this picture we see there is
also a choice of Whitney disks W which undo these intersections.

Now consider an intersection formed in this way between A; and B; when
one of the indices is at least n. According to the above we may arrange that the
new V and W disks are parallel either to ones with index 1, j or i, 1. Choose
the larger of i, j, which by supposition is at least n. Then by choice of n the
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D, finger move of finger move of B; parallel
D, through 4; to D, (= through B,)
FIGURE 12

original V, W disks are disjoint from X, so parallels will be also. This means
that the new data after cancellation is still disjoint from X when one index is
at least n. This completes the proof of the proposition.

5.3 Proof of Lemma 5.1. We will discuss technical details of proofs in [13,
part IV], and in the remainder of this section references of the form Proposi-
tion IV.3.2 are to that paper.

First, it is possible to find a 1-parameter family with only 2- and 3-handles
on M, X I joining the pseudoisotopy to the identity. (This is the controlled
version of Hatcher-Wagoner [6, V.3.1].) Further, using the “exchange lemma”
as in Hatcher-Wagoner [6, p. 214], it can be arranged that there are no handle
additions among the 2-handles. The objective is to eliminate handle additions
among the 3-handles.

The next step is to consider deformations of a stabilization of this family
through 2-parameter families. These 2-parameter families will be used as
guides for simplification of the 1-parameter family. An appropriate product
family on (M, X D¥) X I has a deformation through a 2-parameter family to
one with no handles, and that only handles of two indices occur during the
deformation. That there is a deformation to the trivial family is Theorem
IV.1.2. That the deformation only involves two indices follows from the
general simplification procedure of Hatcher and Wagoner if the total dimen-
sion k + 4 is at least 7. If kK + 4 > 6 the proof of the stability Theorem 1V.3.2
also gives such a deformation. The statement of the theorem includes k + 4 = 5,
but the proof in that case uses a low-dimensional argument of K. Igusa (similar
to 4.5 in this paper) which involves three indices.

Now consider the proof of Proposition 1V.3.2, which simplifies the 2-
parameter family. At the end of the proof of the lemma on 1-parameter
families we cannot eliminate death points. Therefore when m = 4 that state-
ment should assert there is a deformation to a family with graphic constant



368 FRANK QUINN

except for death points. In the main body of the proof this is used to clear lines
in the trace off an arc. When m =4 we can clear all lines off except
intersections with death curves. But using the uniqueness of death these curves
can usually be pushed off the {1} end of the arc. This can be done in steps 1, 2,
4, and 5 of the proof, to eliminate dovetails, i/i + 1 points, crossings of
addition curves, and closed loops.

The 2-parameter family is parametrized by I X I, with the family on M, X I
over {0} X I and no handles over the rest of the boundary of 1 X I. After the
modifications above the birth-death and addition curves are generically arcs
and circles in I X I. We claim we can modify the family so that on each
component projection to the second coordinate is single-valued. To see this
consider horizontal arcs to points where a curve locally fails to be single-
valued. Use the lemma to clear everything but death curves off this, and note
no multivalued phenomena is introduced. Push the death curves out past the
end of the arc, again in a convex way, and pull the bad point on the curve
along the arc and off the edge.

We can now distinguish curves of births and deaths, depending on which
happens when we cross the curve going horizontally from {0} X I. Birth curves
can be pulled over the edge using the independence of birth hypothesis. (In the
graphic on the edge this corresponds to joining eyes which lie over disjoint
intervals.) Death curves can be pushed out past the addition curves, near the
boundary of I X I. Inside the death curves this leaves disjoint addition curves,
with their boundaries on {0} X I.

Next we may arrange that for any given handle the addition curves occur in
unnested parallel collections. Again this is done by pushing pieces of the curves
off the edge along horizontal lines (see Figure 13).

death curve —

parallel
collection

addition curve —

pushing line —

FIGURE 13
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In the intermediate level N, passing through an addition corresponds to
specifying an arc from some B; sphere to a B, and changing B, by connected
sum with a parallel copy of B,. Passing through additions on the ends of one of
these families corresponds to sums along a collection of disjoint arcs from B,
to various B;. Starting on both sides of the collection (above and below on the
left boundary, in Figure 13) and moving into the interior specifies two such
collections of arcs. The fact that the additions are endpoints of addition curves
in the 2-parameter family means that these arcs are homotopic. But this means
the picture obtained by going all the way through both ends of the collection
is: B, is changed by connected sum along embedded arcs, then is changed by
“undoing” sums along homotopic arcs. Such inverse pairs of additions can be
omitted from the family (Hatcher-Wagoner [6, p. 83]).

- Applying this to all of the collections of addition curves eliminates all of the
additions from the 1-parameter family. The point of arranging the curves in
unnested collections is that this can be done all at once, therefore with control.
The result therefore satisfies the conditions in the conclusion of the lemma.

6. The decomposition

In this section a 1-connected 4-manifold is shown to have a decomposition
as described in Proposition 1.5. This is first done in the case M has a
handlebody structure, then the general case is done using an infinite handle-
body structure in the complement of a point.

Suppose M is a finite handlebody, and denote by C, the cellular chain
complex with Z coefficients. Since H,;(M) = 0 there is a splitting homomor-
phism s: C; — C, so that C, = (imd) & (im sd). Stabily these summands are
free, and we can choose bases for them so that the resulting basis for C, is
related to the cellular basis by elementary matrices. Stabilization can be
realized by adding cancelling pairs of handles, and elementary matrices can be
realized by sliding handles over other handles. Therefore we can arrange that
the summands (imd) and (im s9) are generated by handles.

Define A to be the union of the 0- and 1-handles, and the 2-handles in
(im sd), and let N be the remainder of the handlebody. Dualizing we see that
N is obtained from dM by adding handles of index < 2, as desired for the
proposition. By construction A has the homology of a point, and the proposi-
tion is completed by showing that A is contained in a disk.

The boundary X of A is a homology 3-sphere. By Freedman [3] there is a
1-connected homology H-cobordism of = to S3, say W. (More directly, note A
minus an open ball gives an H-cobordism, and W can be constructed by killing
the fundamental group of this.) We get an A-cobordism rel boundary from N



370 FRANK QUINN

WxI
MUWU W

W)
> copy of
> x]

T
Mxl( / L ¥ x1I

M \r
FIGURE 14

to NUs WU (—W) by attaching WX I to N X I on a copy of = X I in
N X {1} (see Figure 14). The h-cobordism theorem implies that these two
manifolds are homeomorphic, so A is contained in a copy of (— W) U A inside
M. However (— W) U A is a homotopy 4-disk (1-connected because W is) with
boundary S, so is homeomorphic to D*.

This completes the proof when M has a handlebody structure. In general
begin with a ball B C M, and denote M — {0} by M,,. Let M — [0, o0) be the
map which is (1 /radius) — 1 on the ball, and takes the complement of the ball
to 0. As in the previous section (see the note there) we use controlled topology
with control in [0, c0). Let J be a regular neighborhood of a radial arc in the
ball. Note the pair (M, — int J, 3J) is controlled relatively 1-connected over
[0, o). This is because inverses of points in (0, c0) are copies of D* and the
inverse of 0 is M — int B, and these are all 1-connected.

According to [13, part III] M, has a smooth structure in which we may
assume J is a smooth submanifold. Choose a handlebody structure on M,
obtained by adding handles of controlled diameter to J. Let C, (= Cyu(M,, J))
be the relative cellular chains, considered as geometric modules on [0, o0). The
controlled 1-connectivity over [0, oo) implies there are controlled homomor-
phisms s: C, = C; and s: C; = C, such that sd0 + 9s =1 on C;, and ds = 1
on C,. Using s and simple chain constructions one can change C, by
stabilization and changing bases by controlled elementary matrices until it is a
direct sum of C, > C; > D and 4 - A ® B — B (the dimensions in the
latter are 2, 1, 0). This corresponds to the splitting of C, in the finite handle
case. The algebraic manipulations can be realized by controlled handle moves,
so there is a controlled handlebody structure whose cellular chain complex has
this form. Define V' to be the union of handles correspondingto 4 —» 4 & B
— B, and N the rest of the manifold.

As above N is obtained from dM by adding handles of index < 2, but there
are infinitely many of them. Since they are controlled with respect to the
inverse of the radius in B, they converge to the point 0 € B. If we can find a
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locally flat 4-disk which contains ¥ U J X {0}, then it can be enlarged a little
to contain all but finitely many handles of N. The enlarged disk and these
finitely many handles then satisfy the statement of the proposition.

Define V' N N = Z. By construction V' is a controlled H(= homology)-
cobordism between 3J = R® and =. Do controlled 1- and 2-surgeries on V to
obtain a controlled 1-connected H-cobordism, say W. For this particular V
this process can be described fairly explicitly. Cancel the 0-handles of V,
introducing only 1- and 2-handles in the process [13, I, §6]. Then we get a
structure on V with only 1- and 2-handles, and boundary homomorphism
C, = C; a controlled isomorphism. Join the ends of the 1-handles by em-
bedded arcs to get framed embedded circles in V. Do surgery on these, then the
result has only 2-handles, with chain group 2C,. Half a basis for this is
represented by framed embedded 2-spheres (the ones coming from the surgery).
According to the controlled embedding theorem of [13, part III] there are
framed embedded 2-spheres controlled homotopic to these, which additionally
have controlled 1-connected complement. Do surgery on these spheres to
obtain W.

As above there is a controlled h-cobordism from N to N U W U (—W).
The controlled h-cobordism theorem [13, part III] asserts this has a product
structure, so the ends are homeomorphic. In particular V' U J is contained, in
M,, in a copy of (— W) U V U J. This is contractible, 1-connected at co, and
has boundary R?, so Freedman’s characterization identifies it as a half-space.
Adding the point {0} gives a 4-disk. Denote this disk (- W)U VU J U {0}
by D.

According to the above, the proof will be completed by seeing that D is
locally flat in M. It is except possibly at the point {0}, but a theorem of Kirby
(see [3]) asserts that nonlocally flat points cannot be isolated in this dimension.
Therefore it is locally flat at {0} as well. This also follows, of course, from the
much more general flattening theorems of [13, part III].
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