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FOUR-MANIFOLDS WITH POSITIVE
CURVATURE OPERATOR

RICHARD S. HAMILTON

1. A compact surface with positive mean scalar curvature must be diffeomor-
phic to the sphere S2 or the real projective space RP2. A compact three-mani-
fold with positive Ricci curvature must be diffeomorphic to the sphere S3 or a
quotient of it by a finite group of fixed point free isometries in the standard
metric, such as the real projective space RP3 or a lens space L3

p q. This was
proven in [1]. Our main result is the following generalization to four dimen-
sions.

1.1. Theorem. A compact four-manifold with a positive curvature operator is

diffeomorphic to the sphere S4 or the real projective space RP4.

Here we regard the Riemannian curvature tensor Rm = {RiJkl} as a sym-
metric bilinear form on the two-forms Λ2 by letting

We say the manifold has a positive curvature operator if Rm(φ, φ) > 0 for all
two-forms φ Φ 0, and a nonnegative curvature operator if Rm(φ,φ) ^ 0 for
all φ.

These results extend to the case of nonnegative curvature. A compact surface
with nonnegative mean scalar curvature must be diffeomorphic to a quotient of
the sphere S 2 or the plane R2 by a group of fixed-point free isometries in the
standard metrics. The examples are the sphere S2, the real projective space
RP2, the torus T2 = Sι X S\ and the Klein bottle K2 = RP2#RP2 (where #
denotes the connected sum).

1.2. Theorem. A compact three-manifold with nonnegative Ricci curvature is

diffeomorphic to a quotient of one of the spaces S3 or S2 X Rι or R3 by a group

of fixed point free isometries in the standard metrics.

The quotients of S2 X R1 include S2 X S\ RP2 X S\ the unoriented S2

bundle over S\ and the connected sum K3 = RP3#RP3. The quotients of R3

are the torus T3 and five other flat three-manifolds.
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1.3. Theorem. A compact four-manifold with nonnegatiυe curvature operator

is diffeomorphic to a quotient of one of the spaces S4 or CP2 or S3 X Rι or

S2 X S2 or S2 X R2 or R4 by a finite group of fixed point free isometries in the

standard metric.

The only quotient of S4 is RP4, and there are no quotients of the complex
projective space CP 2. The quotients of S 3 X Rι include L3

pq X S1, where l?pq

is a lens space, and this gives an infinite number of examples, and also include
the unoriented S3 bundle over Sι and the connected sum K4 = RP4#RP4.
The quotients of S2 X S2 include S2 X RP2 and RP2 X RP2 and another
space where Z 2 acts on S2 X S2 as the antipodal map on each factor
simultaneously. The quotients of S 2 X R2 include RP2 X Γ2, S2 X K2, RP2

X K2, and unoriented S2 bundles over T2 and K2. The quotients of R4 give
the torus T4 and all the other flat four-manifolds. This gives a rich variety of
examples. It should be possible to find a complete classification.

These theorems are all proved by considering the parabolic Einstein equa-
tion

h8 = r g ~2Rc

on a compact manifold Λf, where r = / R/f 1 is the mean scalar curvature, Re
is the Ricci tensor, and n is the dimension. For a compact three-manifold with
positive Ricci curvature or a compact four-manifold with positive curvature
operator, the solution exists for all time t and converges as / -» oo to a metric
of a constant Riemannian curvature. For nonnegative curvature we find that
unless the curvature becomes strictly positive, the metric has a restricted
holonomy group whose Lie algebra is the image of the curvature operator, and
this allows us to identify the manifold.

We would like to thank Gerhard Huisken for a number of conversations
which were very useful in developing these results. Special thanks to G. Olivia
O'Donnell for her encouragement, and to the generous support of the Harewood
Foundation.

2. Most of the proof proceeds as in [1] and its generalization by Huisken [2]
to higher dimensions. The critical new part is to show that under the unnor-
malized evolution

(2-1) ^ = - 2 R c

the Riemannian curvature tensor must pinch toward a multiple of the identity
as the scalar curvature R blows up, in the sense that |Rm| < CRι~8 for some
δ > 0, where Rm is the traceless part of the Riemannian curvature tensor.
When this estimate holds, the rest of the proof goes through unchanged.
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To see that this happens, we must study the evolution of the curvature
tensor. From [1] we have

γtRiJkl = ΔRijkl + 2(Bijkl - Bιjlk + Bikjl - Biljk)

~\RpiRpjkl + RpjRipkl + RpkRijpl + RplRijkp)>

where Bijkl = RipjqRkplq.
The first step in simplifying these equations is a trick we learned from Karen

Uhlenbeck. We pick an abstract vector bundle V isomorphic to the tangent
bundle 7W, but with a fixed metric hah on the fibers. Then we choose (in an
arbitrary manner) an isometry u = { uι

a} between V and TM at time t = 0. We
let the isometry evolve by the equation

Then the pull-back metric hah = g^uι

au{ remains constant in time, since its
time derivative is zero, and u remains an isometry between the varying metric
g on 77V and the fixed metric h on V. Then we use u to pull back the curvature
tensor to a tensor on V

Rabcd = RijklUaUiUcUd-

We can also pull back the Levi-Civita connection Γ = {Tjk} on TN to a
connection Δ = {Δ"c} on V, where the covariant derivative of a section
v = { va} of V is given locally by

dxι ιb

Then we may take the covariant derivative of any tensors of V and TM. In
particular we have Z),ŵ  = 0 and D^^ = 0. We form the Laplacian of any
tensor as the trace of the second covariant derivative. Thus

ΔRahcd = g'ΦiDjR.^.

Under this transformation something magical happens—the last terms in the
curvature evolution equation disappear! We get

~faRabcd = ΔRahcd + 2(Bahcd - Bahdc + Bachd - Badbc),

where Babcd = RaehfRcedf. This transformation enlarges the invariance group
of the equation. We now have not only the diffeomorphism group of the
manifold M but also the gauge group of isometries of the bundle V. Any
change in the initial isometry u will just be tracked by all the subsequent
isometries. Needless to say this small increase in conceptual difficulty is well
rewarded by the great decrease in the difficulties of computation.
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Next we need to understand the quadratic terms. Using the first Bianchi

identity
n _ι_ n j _ n Λ

*abcd "•" nacdb "•" *adbc ~ U

we get
n n ^ ί D D \
^abef^cdef ~ Δ\nabcd Dabdc)'

Hence we recognize the first part of the quadratic terms as being just the

square of the curvature operator.

In order to understand the other part, we need to regard the two-forms Λ2

on V as the Lie algebra so(n) of the Lie group of rotations of V. Choose a

local chart on V where hah is the identity. The metric on Λ2 is given by

| φ | 2 = <φ,φ>, where

and the Lie bracket is given by

It is easy to check that the tri-linear form ([φ, ψ], ω) is fully antisymmetric.

Choose an orthonormal basis φα = { φ"b} for the 2-forms on V. Then the inner

product on A2(V)

haβ=(Φa,Φβ)

is the identity matrix in the local chart. The Lie bracket is given by

where the c"β are the Lie structure constants relative to this basis. Note that

c<*βy = c$
βhyδ is fully antisymmetric since

The tensor Rabcd on V may be regarded as a symmetric bilinear form Maβ on

Λ 2 (F), where

Rabcd = MaβΦabΦcd'

There is a bilinear operation on the Maβ given by

(M#N)aβ = cayηcβδθMγδNηθ.

Clearly M#7V = 7V#M. In terms of the Lie algebra it is uniquely determined

by the condition

( φ Θ φ ) # (ψ(g>ψ)= [φ,ψ]<8>[φ,ψ].

Let us write M # = M#M for simplicity. Then M# corresponds to the tensor

Rabcd = ^aβΦabΦcd^



FOUR-MANIFOLDS WITH POSITIVE CURVATURE OPERATOR 157

where R*bcd = 2(Bacbd - Badbc). Consequently we can write the equation for
the evolution of the curvature tensor as

+ Rabcd

or equivalently as

We abbreviate the last equation as

3

dt
M = ΔM + M2 + M # .

Notice that while neither M 2 nor M * satisfies the Bianchi identity, their sum
does.

We can get a better feel for this equation by considering the operation A/#

in dimensions 3 and 4 in more detail. In dimension 3 the Lie structure
constants caβγ are given by 1/ Jΐ times the volume form of the metric. Hence
the matrix M # is just the adjoint matrix

1

or to be explicit

a b
d e

g h k

M* = detM 'Λ

# iek-fh fg-dk dh-eg\

= ch — bk ak — eg bg — ah

bf — ce cd — af ae — bd j

In dimension 4 the Lie algebra so (4) splits as a direct sum of two copies of
so(3). The volume form μabcd induces the star operation

Since ω** = ω, we get an orthogonal decomposition Λ2 = Λ2

+θ Λ2_ into the
eigenspaces of star with eigenvalues ± 1 . This gives a block decomposition of
M as

and we can compute

M =

M* = 2

B

B*
C*
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where A#, B#, C# are the adjoints of the 3 X 3 submatrices as before. This
makes the evolution of the curvature break up into the three equations

dtA"
\A +

\B +

\C +

A2

AB

C2

+

+

+

2A*

BC

2C*

+

f

+

B'B,

IB*,

'BB.

The reason we can handle dimension 4 is because we have this explicit
decomposition. Note that the Bianchi identity says that iτA = trC. Since
t r ^ 2 4- 2ixA# = (tr^) 2 and tτB'B = \B\2 = tr XBB, it is easy to see that the
Bianchi identity is preserved. Indeed,

I - \xA = Mr A + ( t r ^ ) 2 + \B\\ | - trC = ΔtrC +(trC) 2 + \B\2

όt όt

so t r ^ and trC satisfy the same equation.
3. Before proceeding, we make some remarks we shall need later on

functions which are not quite differentiable. If f(t) is a Lipshitz function of /,
we say

-f < c if km sup — 1—J-^J- < c,

where we take the lim sup of all forward difference quotients. Likewise we say

df CΛ , f(t + h)-f(t)
-f > c if hminf ^ f — J - Λ - L > c
at h\0 n

taking the liminf of all forward difference quotients. This is a useful notion
because of the following result.

3.1. Lemma. If f(a) < 0 and df/dt < 0 when / > 0 on a < t < b, then
f(b) < 0.

Proof. Pick ε > 0. We shall show/(ί) < et. Since

there must be some interval 0 < t < 8 on which f(t)^εt. Let 0 < / < c be
the largest such interval with c ^ b. Then by continuity /(/) < et on the closed
interval 0 < ί < c. If c < fc, we can find δ > 0 with f(t) < εί on 0 < / < c + δ,
since

/(c + Λ ) - / ( c ) Λkm sup :^Λ f—J-x-L < 0.

Therefore c = b. Since /(*) < εt on 0 < / < b for all ε > 0, we have f(b) < 0.
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3.2. Corollary. Iff (a) > 0 anddf/dt > 0 on a < t < b, thenf(b) ^ 0.
3.3. Corollary. Iff (a) < 0 anddf/dt < cf on a < / < b, thenf(b) < 0.
Proof. Let g = <?"c'/. Then dg/dt < 0.
We say df/dt < rfg/Λ if

l i m s u p / ( ' + * ) - / ( ' ) « l i m i n f * ( ' + » ) - * ( * ) .

3.4. Corollary. Iff(a) < g(α) α«J J//Λ < dg/dt on a < t < fc,

Proof. Let Λ = / — g. Let g be a smooth function of a real variable t and
another variable y e Rk and let /(ί) = sup{g(ί, y): J E 7 ) , where 7 is a
compact set. Then f(t) is Lipshitz, and we have the following very useful
estimate on its derivative.

3.5. Lemma.

whereY(t)={y:g(t,y) = }
Proof. Choose a sequence of times ί, decreasing to t for which

lim

equals the lim sup. Choose y} e Y with f(tj) = g(tj, yj). This is possible, for
since Y is compact the maximum is attained. By passing to a subsequence we
can assume yj -> y. By continuity/(ί) = g(/, j>), so 7 G y(ί). Since g(t, yj) <
g(/, ^) we have

By the mean value theorem we can find 7J between tj and / with

g{tj,yj)-g(t,yj) 3

Since Tj-* t also we have

This proves the result.
4. To show the pinching result for the curvature tensor we need to use a

form of the maximum principle for systems of equations. The basic idea here
was suggested to us by Moe Hirsch. The effect of the heat equation is to
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average out the system of functions. Hence if the system lies in a convex set to
start, it will remain there. We start with a simple version.

Let M be a compact manifold with a Riemannian metric g, and let
/ = { fa} be a system of k functions on M. We regard / as a map of M into
Rk. Let U be an open subset of Rk and let φ: U c Rk -> Rk be a smooth
vector field on ί/. We let g and φ depend on time also. Then we consider the
nonlinear heat equation

(PDE) U=Δ/+φ(/)

with / = f0 at / = 0, and we suppose it has a solution for some time interval
0 < / < T. We let X be a closed convex subset of U c Rk containing the
initial data /0, and ask when the solution remains in X. To answer this we
study the ordinary differential equation

(ODE) f = Φ(/)

on U c Λ*, and ask when its solutions remain in X. We define the tangent
cone TfX to the closed convex set A' at a point / G dX as the smallest closed
convex cone with vertex at / which contains X. It is the intersection of all the
closed half-spaces containing X with / on the boundary of the half-space.

4.1. Lemma. The solutions of the ODE df/dt = φ(f) which start in the
closed convex set X will remain in X if and only if φ(/) G TfXfor allf E 3X

Proof. We say that a linear function / on Rk is a support function for X at
f(ΞdX and write / G SfX if |/| = 1 and /(/) > /(A:) for all other A: G X. Then
φ(/) G 7}X if and only if /(φ(/)) < 0 for all / €= SfX. Suppose /(Φ(/)) > 0
for some / G SyX Then

so /(/) is increasing and /cannot remain in X
To see the converse, first note that we may assume X is compact. This is

because we can modify the vector field φ(/) by multiplying by a cutoff
function which is everywhere nonnegative, equals one on a large ball, and
equals zero on a larger ball. The paths of solutions are unchanged inside the
first ball. Then we can intersect X with the second ball to make X convex and
compact. If there were a counterexample before the modification there would
still be one afterward.

Let s(f) be the distance from / to X, with s(f) = 0 if / G X. Then
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where the sup is over all k e dX and all / e SkX. This defines a compact
subset 7 of Rk X Rk. Hence by Lemma 3.5

where the sup is over all pairs (kj) with k e dX, I e SkX, and

This can happen only when k is the unique closest point in X to / and / is the
linear function of length 1 with gradient in the direction f - k.

We now use the fact that φ is smooth to estimate

for some constant C and all / and k in X. Then since l(φ(k)) < 0 by
hypothesis and \f- k\ = s(f) we have (d/dt)s(f) < Cy(/). Since *(/) = 0
to start, it must remain 0. This proves the lemma.

Now we prove the following result.
4.2. Theorem. // the solution of the ODE stays in X, then the solution of the

PDE stays in X.
Proof. As before we may assume X is compact. Again we let s(f) be the

distance of / e Rk from X and let

s(t) = sup s(f(x, t)) = sup/(/(x, 0 - k),
x

where the latter sup is over all x e N, all /c e 3Jf, and all I e SkX. Since this
set is compact, we can use Lemma 3.5 to see that

^ j ( 0 < sup -fil(f(x, t ) - k ) ,

where the sup is over all JC, k, I as above with l(f(x, t) - k) = s(t). Then x is
some point in N where f{x,t) is furthest from X, /c is the unique closest point
in X to /(x, /), and / is the linear function of length 1 with gradient in the
direction from k to /(x, ί) Now

Since /(/(x, 0) n a s i t s maximum at x, the term /(Δ/) = Δ/(/) < 0. As before
l(φ(k)) < 0 and

l(φ(f))<\φ(f)-4>(k)\<C\f-k\=Cs(t)

for some constant C. Thus (d/dt)s(t) < Cs(ί) and since 5(0 = 0 to start it
remains so. But this shows that f(x,t) remains in X.
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Next we generalize this result to vector bundles. Let V be a vector bundle
over a compact manifold Λf, and suppose V has a fixed metric h. Let g be a
metric on M, and A a connection on V compatible with h. Both g and A may
depend on time t. We can form the Laplacian of a section /of F as the trace
of the second covariant derivative with respect to g, using the connection A on
V and the Levi-Civita connection Γ on TM. Let V be an open subset of V and
let φ(f) be a vector field on F tangent to the fibers. Then we can form the
nonlinear heat equation

(PDE) f=Δ/+φ(/).

Let X be a closed subset of U c F. We ask when solutions of the PDE which
start in X will remain in X. We need to impose the conditions that X is
invariant under parallel translation by the connection A at each time, and that
each fiber of X is convex. Then we can judge the behavior of the PDE by
comparing to the ODE's

(ODE) a = φ{f)

in each fiber.
4.3. Theorem. // the solutions of the ODE's in each fiber remain in X, then

the solutions of the PDE remain in X.
Proof. Again modifying the equation we can assume X is compact. Using

the metric h in the fiber and writing \f - k\ for the Euclidean distance from /
to k in the metric A, we let s(t) be the maximum distance of any /(JC, /) from
the set X. Then

where the sup is taken over all x e N, all k e dX in the fiber over x, and all
support functions / e SkX at k in the fiber at x. The set of all such pairs (k91)
is a compact subset of F θ V*. Then as before

Jts(t) < sup -jjl(f(x, t ) - k ) ,

where the sup is over all x where the distance in the fiber from f(x91) to x is
maximal, k is the unique closest point in X to /(JC, t), and / is the linear
function of length 1 on the fiber of F at x with gradient in the direction from
k to/(x, /). Again

!/(/(*, 0-*)-/(*/)+ /(•(/))
and since l(Φ(h)) < 0 by hypothesis

- A) = Cs(t),
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where C is some constant bounding the first derivative of φ on a neighborhood
of X. We claim that /(Δ/) < 0 also. This will show

jt4t)< Cs(t)

and completes the proof.
If we extend a vector in a bundle from a point x by parallel translation

along geodesies emanating radially out of x, we get a smooth section of the
bundle such that all the symmetrized covariant derivatives at x are zero. We
extend k e V and / e F* in this manner. Since the metric in V is invariant
we continue to have |/| = 1, and since X is invariant under parallel translation
we continue to have k e d X and / a support function for X at k. Therefore

Ί(f(x,ί)-k)<s(t)

in the neighborhood. It follows that l(f(x,t) — k) has its maximum at x, so

at x. But A: and / have all their symmetrized covariant derivatives equal to zero
at x, so /(Δ/) < 0 at x. This completes the proof.

In our applications we have a principal G-bundle P over M where G is a
compact Lie group, £ is a vector space with a metric and G acts on E
preserving the metric, φ is a G-invariant vector field on £, and Z is a closed
convex subset of E invarient under φ. Then solutions of the equation

f = Δ/+Φ(/)
for vectors / in P X G E remain in the set X = P X G Z.

5. By the results in §2 we can reduce the study of the evolution equation for
the metric to the study of the equation

ot

for the symmetric bilinear form M on the Lie algebra so(n). All we need is to
show that if M is the traceless part of M, then \M\ < C\M\ι~8 for some δ > 0
and some constant c.

Let E be the vector space of symmetric bilinear forms M on the Lie algebra
so(n).

5.1. Definition. We say that a subset Z c E is a pinching set if
(1) Z is closed and convex.
(2) Z is invariant under the action of the Lie group O(n).
(3) Z is invariant under the flow of the ODE

dt
(4) \M\ < C\M\ι~8 for some C and all M ̂  Z.
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We say that an open subset U in so(n) satisfies the pinching condition if
every compact subset of U is contained in a pinching set Z as above.

5.2. Convergence criterion. If U satisfies the pinching condition, and
trM > 0 for all M e Z, then every metric whose curvature lies in U will evolve
as t -» oo to a metric of constant positive curvature.

Proof. Let P be the principal tangent bundle and form the associated
bundle V = P XG E, where G = 0(n) and E is the vector space of symmetric
bilinear forms on so(n). Since the manifold is compact, we can find a pinching
set Z as above such that at time / = 0 the curvature operator M lies in
X = P XG Z. Then it will remain in X by the argument in §4. This gives us
the required pinching estimate \M\ < C\M\ι~8.

To demonstrate how this works in practice, we shall first reprove the
pinching result for three-manifolds.

Let us study the ordinary differential equation

4~M = M2 + M*
at

on 3 X 3 symmetric matrices M. We can diagonalize M with eigenvalues
mι < m2 < m3. Then M2 and M # are also diagonal, so M remains diagonal.
We get the three equations

^ 2 . ^ 2 . ^ 2 .

T ^ I = yyι{ + m2m39 ~Tm2 = m i "*" ̂ i ^ 3 , ~Tm3 = W 3 "*" ̂ i ^ 2

Note that
^ ( m 2 - mx) = (m2 - m^(m2 + mx- m3)

so that if mx < m2 to start it remains so. Hence the inequalities mx < m2 < m3

persist. Nonnegative sectional curvature corresponds to mι > 0, and this
inequality is clearly preserved since i f θ < m 1 < m 2 < m 3 , then

~7~Wl\ = WIj ~h YYl2ϊYl3 ^ 0 .

Nonnegative Ricci curvature corresponds to the inequality mλ + m 2 ̂  0, and
this inequality is also preserved. For note that 2 m 2 > m 1 + w 2 ^ 0 s o m 3 >
m2 > 0. Then

— (mι 4- m 2 ) = mj + m 2 + m3(m1 + m 2 ) > 0.

Theorem. For αwy C we cα« choose 8 > 0 swfl// enough so that for any K the
closed convex set defined by the inequalities

(a) mλ + m2> 0,
(b) m2 + m3 < C(mx + m2),
(c) m3 - mx < ^(m! + m2 4- m^ 1 " 5 .

is preserved by the flow of the differential equation.
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Proof. We have already seen that (a) is preserved by itself. For (b) we

compute

d ί \ ^2(^2 ~ ^1)

— \o%(mλ 4- m2) = m1 4- m3 + ^ + ^ > mι 4- m3,

d ( x m 2 ( w 3 — m 2 )
— log(m 2 4- m 3 ) = m1 + m3 < wx + m 3 .
uί Yn2 ~τ Yn3

This shows that the ratio oϊ m1 -\- m2 to m2 + m3 improves.

To see that (c) is preserved, we compute

— (m 3 - mx) = (m3 - m1)(m3 + mx - m2),

m
2

m3) = (mι + m2 + m3)(m3 + mx — m2)

4- m2(mι + m2) + w?3(tf?2 —

N o w m2 > 0, w x + m2 > 0, m 3 ̂  0, a n d m2 — mλ^ 0 . T h e r e f o r e

d

— log(m3 - m x) = m3

4- m 2 4- m 3 ) > m3 + mx - m 2 4-
dt m1 + m 2 + m 3

When (b) holds

ΪYl3 ^ YYΪ2 4- W3 ^ C^Wt̂  + ^ 2 / ^

m3 + mλ — m2 ^ m1 + m2 4- m3

and hence with ε = 1/36C2

d
-r log(mι 4- m2 4- m 3 ) > (1 4- ε)(w 3 4- mι — m2).

Therefore with 1 — 8 = 1/(1 4- ε) the ratio of m3 — m1 to(mλ + m2 4- m3)
ι~8

improves.

For any compact set of M with m 1 + m 2 > 0 we can find a set of the form

(a)-(c) which contains it. Then the inequality \M\ < C\M\ι~s holds on this

set.

6. Now we consider the case of a four-manifold. The Lie algebra decomposes

as so (4) = so (3) θ $0(3) corresponding to Λ2 = Λ 2

+θ Λ2_, and the matrix M

decomposes as

A B'

C)
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The evolution equation for M,

dt

gives rise to the system of equations

at

at

at
'BB + 2C*,

where A, B, and C are all 3 X 3 matrices and A# = (detΛ) lA~x is the

adjoint. Recall that \xA = trC by the Bianchi identity.

We introduce the eigenvalues ax < a2 < a3 of A and bx ^ b2 ^ b3 of 5 and

<?! < c 2 < c3 of C. Since 5 is not symmetric and does not map a vector space

to itself, we need to explain the eigenvalues of B. For an appropriate choice of

an orthonormal basis xl9 x2, x3 of Λ2

+ the matrix

A =

Then xl9 x2, x3 are eigenvectors with eigenvalues al9 a2, a3. For an ap-

propriate choice of orthonormal bases yf, y2 , y3 of Λ2

+ and y{, j 2 " > Λ °f

Λ2_ the matrix

0

0

0
α2

0

0
0

a

B =

0 0\
b2 0
0 Z>3/

with 0 < bx < b2 < b3, and this property uniquely determines the eigenvalues

of B. In fact they are the eigenvalues of the symmetric matrices Jβ'B or ]/^BB.

We call yf, y2 , y3 and ^f, ^2~, Λ~ eigenvectors of 5. And for an

appropriate choice of an orthonormal basis z1? z2, z3 of Λ2_ the matrix

cx 0 0

0 c2 0

0 0 c,

Then z1? z 2, z3 are eigenvectors of C with eigenvalues cv c2, c3.
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We shall make our estimates using the functions al9 a3, b2 + b3,cvc3.

We shall also use the function a — 2b + c, where a = aλ + a2 + a3 = c =
c i + C2 + C3 a n d b = bλ + bx+ bv Note that

, ^ ) : | J C X I = l } ,

a3 = sup{A{x39x3): \x3\ = l } ,

cx = inf {Ciz^zJ : \zλ\= l } ,

c3 = sup{C(z 3 , z 3 ) : | z 3 | = l } .

Moreover the inf or sup is attained when the various vectors are eigenvectors in

some orthonormal bases with the corresponding eigenvalues. As a result we see

that aλ and cλ are concave while a3 and c3 and b2 + b3 are convex functions

of the matrices A, B, and C. Moreover we can compute their derivatives by

Lemma 3.5. We assume M ^ 0.

6.1. Lemma.

> \a\ + b\

-

c\

Proof. To estimate the derivative of αx we have to evaluate

A1 + £ ' £ + 2Λ #

at a unit eigenvector xx where ^(x x , x ^ = av Then ^42(x!, x x) = a\, and

BιB(xλ, xλ) > ft2 since 6? is the smallest eigenvalue of Bιb, and ^ # (xχ, x x) =

2a2a3. To estimate the derivative of a3 we have to evaluate A2 + B*B 4- 2^4*

at a unit eigenvector x3 where ^4(x3,x3) = Λ3. Then A2(x3,x3) = a3, and

BίB(x3, x3) < Z>3 since b\ is the largest eigenvector of B'B, and ^4#(x3, x 3 ) =

2aλa2.

To estimate the derivative of b2 + fe3 we must evaluate

dB, + -\.dB,+ _x



168 RICHARD S. HAMILTON

where y2", y2 , 3̂+» Λ~ a r e u n ^ eigenvectors of 5 with eigenvalues b2 and ft3,

so B(y2, y2) = b2 and B(y3 , y3) = b3. The supremum is also obtained when

the bases (y2, y3) a n d θ 2 " , j>3~) are rotated by the same angle, but this leaves

the computation unchanged. Now

^ = AB + BC+2B*.
dt

Since we identify matrices and bilinear forms by writing P(x, y) = (x, Py) in

general, and since By2~ = b2y2

+ and By3 = b3y3 , we have

Write ά2 = A(y2, y2) and ά3 = v4(_y3

+, y3). Then α 2 + α 3 < a2 4- α3, and

consequently since all the eigenvalues are nonnegative

ά2b2 + ά3b3 < &2b2 4- a3b3.

This inequality follows directly from

Therefore

AB(yi > yϊ) + ^ ^ ( Λ + , Λ") < β 2 ^ 2 + «3*3

Likewise

^ C ( j 2

+ , Λ " ) 4- 5 C ( Λ

+ , y3) < fe2c2 + V 3 ?

and finally B*(y2

+, y2) = 2bλb3 and B#(y3

+,y3~) = 2bλb2. The estimates for

cλ and c3 are the same as for aλ and α 3. This proves the lemma.

Finally we must estimate the derivative of the function a — 2 b + c. The

function a = trA = c = trC is linear. The function b = bλ + 62 4- b3 is not

linear but it is convex, since b = suptr2?Γ, where the sup is taken over all

orthogonal transformations T: Λ2

+-» Λ2_. To see this is true, choose coordi-

nates in which B is diagonal with entries bλ < b2 < b3. Then

and / n , t22, t33 < 1 with equality only when T is the identity. Therefore the

function a — 2b 4- c is concave.

6.2. Lemma.

-τ-(α - 2b 4- c) > (αx 4- 26X 4- c j ίέ i - 2ft 4- c).

Proof. By Lemma 3.5
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evaluated in those coordinates where B is diagonal as above. Now

Recalling that P* = P#P, where in general P#Q is defined by

with εaβy the permutation tensor, we see that P#Q gives a symmetric bilinear
operation on matrices, and

2(A* - 2B* + C # ) = (A - C ) # + (Λ + IB + C)#(Λ - 25 + C).

Next we use the fact that for 3 X 3 matrices P

(trP) 2 = tri>2 + 2 t r P # .

If P = A - C, then trP = 0, so

tr(Λ-C)#= -\iτ{A-C)\

Now the trace of the square of a symmetric matrix is the sum of the squares of
its entries. Using the parallelogram law

we see that

tr(v4 - B)2 + tr(C - B)2 - \ iτ(A - C)2 = \ iτ{A - 2B + C)2 > 0.

Therefore

^-{a - 2b 4- c) > iτ(A 4- 2B 4- C)#(A - 2B + C).

When M > 0 and

M = [ Λ B

VB C)

we see that A 4- 2B + C > 0 and A - 2B -\- C > Q, by applying Λf to the
vectors (x, x) and (x, - x ) . If P and ζ) are two symmetric 3 x 3 matrices with
P, Q > 0, and /?! is the smallest eigenvalue of P while q is the trace of Q, then

t r P # ρ > / ? ^ .

To see this, choose coordinates where Q is diagonal with eigenvalues qλ < q2

< q3. Then

and /7n, /?22, P33 > Pi Applying this with P = A + 2B + C and

<2 = Λ - 2 5 + C,
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we see that the smallest eigenvalue pλ> ax + 2bx + cλ while the trace q = a

- 2 b + c. This finishes the proof of the lemma.

In the subsequent discussion we will need to know when certain sets are

convex. In general if / is a convex function and g is a concave function, the set

where / < g is convex. The following result will be useful.

6.3. Lemma. If f and g are concave and positive and if a + β = 1, then fagβ

is concave.

Proof. Let z = xayβ on x, y > 0. The matrix of second partial derivatives is

which has one zero eigenvalue and one negative. Therefore z = xayβ is a

concave function of x and y. Let h = fagβ and put

zι = Λ ί ^ ) , z2 = A(ϋ 2), z = h((vι

Then x ^ (JCX + x 2 ) / 2 a n d ^ > (Λ + Λ ) / 2 S O

^ 2 2

so h is concave also.

7. We are now in a position to verify that the open set U = {M > 0} of

positive curvature operators satisfies the pinching condition of 5.2.

7.1. Theorem. // we choose successively constants G large enough, H large

enough, 8 small enough, J large enough, ε small enough, K large enough, θ

small enough, and L large enough, with each depending on those chosen before,

then the set Z of M > 0 defined by the inequalities

(2) a3 < Haι andc3 < Hcλ,

(3) (b2 + b3)
2+δ < JaιCι(a -2b + c)δ,

(5) a3 < aλ + La\~θ and c3 < cx + Lc}""

w a pinching set for the flow of the ODE in the sense of Definition 5.1. Moreover

every compact subset ofU= {M > 0} lies in some such pinching set Z.

Proof. Clearly Z is closed. Given any compact subset of U, we can make

the large constants large enough to contain it, since there will be a lower bound

on al9 cl9 and a - 2b + c. This follows since if M > 0, then A > 0, C > 0,

and A - 2B + C > 0 (adding the matrices after identifying Λ2

+ and Λ2_ by an

isometry). That Z is convex follows from Lemma 6.3. It is clear that Z is
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invariant under the action of O(4) on the space of matrices M, because this
action first induces rotations on Λ2

+ and Λ2_ and these leave the eigenvalues
unchanged. All that remains to be shown is that Z is invariant under the flow
of the ODE. We shall show in fact that the sets defined by each successive
group of inequalities is preserved. Note first that M ̂  0 is preserved, so we
can assume 0 < ax < a2 < a3, 0 < bλ < b2 < b3, 0 < cλ < c2 < c3.

We start by estimating the time derivative of the logarithm of the different
functions.

7.2. Lemma.

— log;*! > 2bλ + 2a3 + — ι — — — + 2 - 1 ( α 2 - ax),

-loga3<a3 + 2aι + --—(a3-a2),

J \)

+- b3) < 2bx + a3 + c3 - [(α3 - β2) + ( c 3 - c 2 )],

^ logc3 < c3 + 2cx + - i - - ^ ( c 3 - c 2),
αr c3 c3

— log(α - 2Z? + c)
λ

Proof. This follows just by rewriting Lemmas 6.1 and 6.2. Of course there
may be a problem taking the logarithm of zero. But this will not concern us
anyway, because if b3 = 0 then B = 0 and B will remain zero; while if a3 = 0
then 4̂ = 0 and (since M ^ 0) B = 0 also and then A remains 0, and C = 0
also since trA = trC.

We see immediately that

and hence the inequaltiy (b2 + ί>3)
2 < Gαjq is preserved for any constant G.

Then δf < G^q. Since trΛ - trC

a3 +(3G

which shows δf/tf 3 < 30^^ Then

l > 2
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so if H > 3G + 2

-log-^i/^-^.

Then if we let / = a3/aλ - J ϊ w e have J//Λ + a3f < 0 which shows if / < 0

to start it remains so. Thus the inequalities a3 < Haι and likewise c3 < i /q

are preserved.

For the third inequality we need to use the terms we threw away in the first.

We start with this estimate.

7.3. Lemma. // (b2 4- b3)
2 < Ga1c1 and a3 < Hal9 and if 8 < min(l/4//,

1/ yl2>GH\ then

(aΛ — bΛ) 2b7 / \ Λ/ \

Proof. We consider two cases:

Case 1: bλ < ^ ^ 2 . In this case we have

2: fcx > ^ ^ 2 . In this case, since cλ < 3a3 < 3//^^ and b2 4-

Gaλcλ < }/3GH av we have

b2 + b3 aλ

and this completes the proof.

As a consequence we see that (if 8 < 2)

(7.4) ^ log " l C l > δ ( a 3 " fli) + δ ( c 3 - q ) .

Since we also have

we conclude that the inequality

will be preserved for any constant /.

7.5. Corollary. There exists η > 0 such that on the set defined by the

inequality (3) we have b < (1 - η)a.

Proof. If b < α/2 = c/2, this is trivial. If b > a/2, then b2 + 63 ̂  fb > \a

and for some constant k we have

a2+δ ^ ka2(a - b)8

which makes a < k(a — b) for some k, or 6 < (1 — η)β for some η.
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7.6. Corollary. There exists λ > 0 such that on the set defined by inequality

(3) we have

Proof. Since ηa < a - b < 3(a3 - b^ we must have either a3 - aλ > \t\a

or ax - bx > £770. The result follows.

Now we already saw from 7.4 that

and we also have

so it follows that

— log > λa.

But it is easy to bound

— log(b2 4- b3) < 2bx 4- a3 4- c3 < 4α

since in fact 2fex < α3 4- c3 < 2α. Then if ε is small enough

and it follows that the inequality (b2 + b3)
2+ε < Jβ^q is preserved for any K.

7.7. Corollary. For some constant k and some θ > 0 we have b\ < ka\~θa3

on the previous set.

Proof. Use aγ < Λ3 < /ίfl! and q < c = α < 3α3.

We can now show that the last inequalities (5) are preserved.

7.8. Lemma. Letf = (ax 4- La\~e)/a3. If θ > 0 is made small enough, and

if L is then made large enough, we will have df/dt ^ 0 for f ^ 1. Consequently

the set / ^ 1 is preserved.

Proof. We have from 7.2 (d/dt)loga1 > ax + 2a3 and therefore

Also from 7.2 and using b\ < ka\ θa3 we have

d
— log α 3 < 0 3 4 - 2 ^ + A-'
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We can use

°l

 β l + La]""1 > * ~ *

and aλ 4- 2a3 < 3a3 < 3/f̂ ! to write

J-log/> (α3 - α 1)-(3^L + A:)̂ 1"*.

Now if / < 1, then a3- ax> La\~\ so df/dt > 0 provided L > 30#L 4- A:.
This will hold if we first make θ so small that 3ΘH < ^, and then make L so
large that L^ 2k. A similar argument works for the inequality in c. This
completes the proof of Theorem 7.1.

8. We now study nonnegative curvature. Let N be a compact manifold with
a metric g = {g/7}, V & vector bundle over N with a metric A = {haβ} and a
connection A = { ^ } , and suppose A is fixed but g and A may vary with
time t. We form the Laplacian of a section /of Vas Δ/ = g'WjDjf using the
metric g on ΓM and the Levi-Civita connection and the connection A.

8.1. Lemma. Suppose df/dt = Δ/ 4- φ(/). Lei s(/) 6e α convex function on
the bundle invariant under parallel translation whose level curves s(f)^c are
preserved by the ODE df/dt = φ(/). Then the inequality s(f)^cis preserved
by the PDE for any constant c. Furthermore if s(f) < c at one point at time
t = 0, then s(f)<c everywhere on Mfor all t > 0.

Proof. Let A be a function on M with s(f) < A < c, and if s(f) < c at
some point p we can make A < c at that point. Then we solve the system for
the pair (/, A)

The set X = {(/, A): ί ( / ) < h} is closed and convex since if J ( / X ) < hλ and

2 2 '

and X is invariant under parallel translation. Therefore X is preserved, and
s(f) < c. H h < c Sit one point at / = 0, then h < c everywhere for t > 0 by
the strong maximum principle, so s(f) < c for t > 0.

8.2. Lemma. Let M be a symmetric bilinear form on V. Suppose M satisfies a
heat equation dM/dt = AM + φ(M), where the matrix φ(M) > 0 for all
M > 0. Then if M > 0 αί fr'me t = 0, ί remains so for t ^ 0. Moreover there
exists an interval 0 < t < 8 on which the rank of M is constant and the null space
of M is invariant under parallel translation and invariant in time and also lies in
the null space of φ(M).
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Proof. The convex cone M > 0 is invariant under parallel translation, and if
φ(M) > 0 then the ODE dM/dt = φ(M) preserves the cone M > 0. Hence so
does the PDE. Let w^ < m2 < ••• < m π be the eigenvalues of M. Then
mx + - - +mk is a. concave function of M and is invariant under parallel
translation, since

mι + + mk = inf { trM\P: P c F is a subspace of dim k }.

Note that dim null M ̂  k <=> mx 4- +wA: = 0. If mx + +mk > 0 at
one point at ί = 0, it will be greater than 0 everywhere at all subsequent times.
It follows that rank M remains constant on some interval 0 < / < δ.

Let υ be any smooth section of V in null M on 0 < t < δ. Then

0 = £
Since A/^t;" = 0, the last term disappears. Also

0 = A^oΌ') = ( 4 ^ ) o V + Agk'D

+ 2Mαβg
k'Dkv

αDy

and again the last term vanishes. Since

0 = Dk(Mαβv") = {DkMαβ)υα + MαβDkυ
α

we get from the evolution equation

2Maf$g
klDkv

aDy 4- φ{M)aβv«υt = 0.

Since M > 0 and φ(M) > 0, we must have v e nullφ(M) and D ^ α e null M
for all k. This shows nullM c nullφ(M) and nullM is invariant under
parallel translation.

To see null M is also invariant in time, note first that Δva lies in null M,
since it is invariant under parallel translation. Then

0 = gkιDk{MaβDιV«) =

and so gklDkMafiDtO
a = 0. Then

0 = Δ(Maβv«) = ΔMaβv
a

and hence (ΔMαjg)yfl = 0. Then

0 = };(Maβv«) = MJ

Now nullM c nullφ(M), so φ(M)aβv
a = 0 also. Thus Maβdva/dt = 0, and

dv/dt lies in nullM also whenever υ does. This shows nullM is invariant in
time.



176 RICHARD S. HAMILTON

We apply this to the heat equation for the curvature tensor

όt

Note that if M > 0, then M2 > 0 and M# > 0 since

Hence for 0 < t < 8 the null space of M has constant rank and is invariant in
time and under parallel translation. Moreover the null space of M must also lie
in the null space of M *. The image of M is everything perpendicular to the
null space. Diagonalize M so that Maβ = 0 if a < k and Maa > 0 if a > k.
Then we must have Mfa = 0 also for a < k, so caβy = 0 if α < k and
/?, γ > k. This first says that the image of M is a Lie subalgebra. (In fact it will
be the subalgebra of the restricted holonomy group.) This proves the following
result.

8.3. Theorem. // M > 0 at t = 0, then for some interval 0 < t < 8 the
image of M is a Lie subalgebra of constant rank invariant under parallel
translation and invariant in time.

For example, if W is the Kahler manifold CP", then the image of M is
u{n) c so(2n).

9. Now we apply this result in dimensions 3 and 4. In dimension 3 we have

at

where M# is the adjoint matrix. The only Lie subalgebras of so(3) are {0},
so (3) itself, and any one-dimensional subspace. The first case is where M = 0
and the second where M is invertible. In the third case, the null space of M is
spanned by a translation-invariant 2-form φ/y. We can write φ/7 = μijkv

k for a
translation invariant vector vk. This gives locally a product decomposition by
the following result.

Lemma. // the tangent bundle TM has an orthogonal decomposition TM =

Vλ Φ V2, where Vx and V2 are invariant under parallel translation, then locally

there is a product decomposition M = Mx X M2 such that the metric on M is the

product of metrics on Mx and M2 and Vx = TMλ, V2= TM2.

Proof. Since the subbundles are invariant under parallel translation, they
must satisfy the Frόbenius integrability condition, because if X, Y e Vv then

[X,Y] = DXY - DYX<E Vv

Choose coordinates {*', xa] corresponding to the induced product decomposi-
tion. Then since the tangent space decomposition is invariant under parallel
translation, all the Christoffel symbols Γ^, Γ^, Γ/*, Γ$ must vanish. This
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makes (θ/9.xα)g/7 = 0 and (d/dxι)gaβ = 0. Hence gtj is a function only of the
xk and gaβ only of the xy. Also gia = 0 since TMX ± TM2. Hence the metric is
a product metric.

Even in case the three-manifold has only nonnegative Ricci curvature RiJ we
still obtain the same decomposition. The sectional curvatures are the eigenval-
ues of the Einstein tensor Etj where

Eij=\Rgij-Rij or RiJ = EgiJ-EiJ,

R = giJRtJ and E = g % .

Since Etj corresponds to Maβ, we write Paβ = (hySMyδ)haβ - Maβ correspond-
ing to the Ricci tensor. Then Paβ satisfies the evolution equation

P Δ P + Q

where Qaβ is quadratic in Paβ. In fact when Paβ is diagonal, then Qaβ is also,
and if

J
we can compute

Clearly Q > 0 if P > 0. Moreover if P has a nontrivial null space, say λ = 0,
the corresponding term p = 0 only if μ = v also. But in this case the sectional
curvature is already nonnegative, and the previous argument applies.

Then the manifold splits locally as a product M 3 = M2 X Rι, where M2 is
a surface of positive curvature and R1 is flat. Since the curvature on the
two-dimensional leaves is bounded below (by the compactness of M) we see
each leaf is compact (by Myer's theorem) and either a sphere or a projective
space.

We claim the universal cover M is isometric to a product S2 X R1 with some
(possibly nonstandard) positive curvature metric on S2. To see this, pick one
leaf, and if it is a projective space take its double cover. Call this S2. The local
product decomposition gives an isometry of S2 X Rι to iV3 by analytic
continuation. Since S2 X Rι is complete it must be the universal cover, and
Λf3 is a quotient of S 2 X Rι by isometries. If the metric on S2 is nonstandard,
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we can replace it by a conformally equivalent metric with constant curvature.
This will not change the group of isometries.

Here are the possibilities in dimension 4, classified by the holonomy group.

1. fl«{*}.
Here M is flat so M = RA.

2. g = so(2).
Note g cannot embed in just one factor of so(3) X so (3). This is because
trA = trC by the Bianchi identity, so A = 0 if and only if C = 0. Here the
image of M is spanned by a single two-form φ, and the Bianchi identity
guarantees φ comes from a two-plane. This gives locally a product decomposi-
tion M = P2 X R2

9 where the leaves P2 have positive curvature and R2 is
flat. Since M is compact, the curvature of each leaf is bounded below, so if
each leaf is compact then the universal cover of each leaf is S2. This gives an
isometry S2 X R2 -> M, so S2 X R2 is the universal cover. If we replace the
metric on S2 by the conformal one with constant positive curvature, the group
of isometries is unchanged. Hence M is a quotient of S2 X R2 by standard
isometries.

3. Q = so(2) X so(2).
In this case there are two invariant 2-forms φ e Λ2

+ and ψ e Λ2_. If we take
them to have unit length, then φ + ψ and φ — ψ are two perpendicular
2-planes. Here M splits locally as a product M = P2 X Q2, where P2 and ζ?2

are two surfaces of positive curvature. Again each leaf is compact and has
positive curvature, and there is an isometry S2 X S2 -> M which identifies
S 2 X S 2 as the universal cover. If we replace each metric on S2 by the
conformal one of constant curvature the group of isometries is unchanged.
Hence M is a quotient of S 2 X S 2 by standard isometries.

4. g = so(3).
Note again g cannot be just one factor of so (3) X so (3) by the Bianchi
identity. In fact, since any Lie algebra preserving map of so (3) to so (3) must
be a multiple of the identity, and since tτA = trC, we see that g embeds as
{φ + Pφ}, where P is an isometry of Λ2. to Λ2_. But if φ e Λ2

+ and ψ e A2.,
then φ + ψ is a two-plane if and only if \φ\ = |ψ|. Thus g = ImM is a
three-dimensional space of two-planes. The Lie bracket of two planes is zero if
they are perpendicular. Therefore g consists of all two-planes contained in a
three dimensional subspace. This shows locally M = P3 X Rι, where P3 has
positive sectional curvature. As before we see that the leaves are all compact,
and the universal cover of M is S 3 X Rι, where 5 3 is a three-sphere with some
metric of positive sectional curvature. Moreover if we deform the metric on S 3

to the constant curvature metric by the heat equation, the isometry group is
unchanged. Hence M is a quotient of S3 X R1 by standard isometries.



FOUR-MANIFOLDS WITH POSITIVE CURVATURE OPERATOR 179

5. g = so(3) X so(2).
Each Lie algebra preserving map so (3) -> so (3) and so(2) -> so (3) is either
zero or an isometry. It follows that so(3) maps to one factor in so (3) X so (3)
and so (2) maps into the other. Suppose the so (2) factor is included in Λ2

+.
(The other case is similar.) Then there is a uniquely determined 2-form
ω e Λ2

+ of length 1 which is invariant under parallel translation. This gives M
the structure of a Kahler manifold. Since the holomorphic bisectional curva-
ture is positive, M is biholomorphic to the complex projective space CP2 by
Yau's proof of the Frankel conjecture.

6. o = so(3) X so(3).
Here M > 0 so the manifold is S4 or RP4 by our previous result.
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