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INSTANTONS ON CP2

N. P. BUCHDAHL

0. Introduction
The purpose of this paper is to describe and classify the instantons on CP2

for the unitary and the classical compact simple Lie groups. The description
closely resembles that given for the instantons on S4 by Atiyah, Drinfeld,
Hitchin and Manin [3], both being based on the bijective correspondence
between instantons and holomorphic vector bundles on an associated complex
manifold known as the Ward correspondence.

Although the problem of describing instantons can be converted into one in
complex analysis and will be treated here strictly as such, its roots lie elsewhere
and the background will now be briefly outlined.

Let X be an oriented 4-dimensional Riemannian manifold and G a compact
Lie group. A G-instanton on A" is a G-vector bundle F on X with G-connection
V such that the curvature Fv is self-dual: * Fv = Fv, where * is the Hodge
• -operator acting on 2-forms on X. In these circumstances, the Yang-Mills
equations V * Fv = 0 are automatically satisfied by virtue of the Bianchi
identity VFV = 0, and solutions of the Yang-Mills equations are of consider-
able physical importance (see e.g. [1] or [17]).

The case G = SU(2) is of particular interest from both a physical and a
mathematical viewpoint. On the physical side, there is, for example, the
well-known result that if JC is spin, then the connection induced on the
self-dual spin bundle by the Levi-Civita connection is self-dual iff X is
Einstein. On the mathematical side, one has Donaldson's celebrated theorem
[9] on the intersection forms of smooth compact 4-manifolds, the proof of
which is based on topological properties of the space of Sί/(2)-ins tan tons of
second Chern class - 1 on the 4-fold in question (endowed with a suitable
metric). The existence of such instantons was proved by Taubes [19] amongst a
number of other results; these will be returned to shortly.
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For certain manifolds X, the problem of describing its G-instantons can be
converted into a problem in complex analysis, a process which is fully
described in the paper of Atiyah, Hitchin and Singer [4]. These are the
so-called self-dual spaces, namely those for which the anti-self-dual component
of the Weyl curvature vanishes identically. For such spaces there is an
associated complex 3-fold Z called the twistor space, which is fibered over X
with fiber CPX. There is a 1-1 correspondence (called the Ward correspondence)
between complex vector bundles on X with self-dual connection and holomor-
phic vector bundles satisfying certain conditions on Z; the imposition of a
G-structure on the bundle and connection on X corresponds to the imposition
of a certain holomorphic condition on the bundle on Z. There is an associated
correspondence between solutions of certain differential equations coupled to
an instanton and the analytic cohomology of the corresponding holomorphic
bundle; this is usually called the Penrose transform [14].

An instanton is called irreducible if there are no subbundles preserved by the
connection. In [4] it is shown that if X is compact and has positive scalar
curvature and G is semisimple, then the space of irreducible G-instantons of
fixed first Pontryagin class is either empty or a manifold of a specified
dimension.

The standard examples of self-dual spaces are S4 and CP2, each with its
usual metric. Both are Einstein and have positive scalar curvature, the former
being conformally flat. Hitchin [15] has in fact proved that these are the only
self-dual Einstein manifolds with positive scalar curvature. The twistor space
for S4 is CP3, whilst that for CP2 is the flag manifold F12. More esoteric
examples of self-dual spaces are provided by the K3 surfaces, each of which
admits an (anti-) self-dual metric as a consequence of Yau's affirmative proof
of the Calabi conjecture.

Returning to [4], the authors consider the particular case of G-instantons on
X = S4. Because of its elementary topology, the classification of G-instantons
on S4 for arbitrary compact G reduces to the case when G is connected,
simply-connected and simple, and a specific condition is given under which,
and only under which, a particular G-bundle admits an irreducible self-dual
G-connection. These results form a part of Taubes' existence theorem [19]
mentioned earlier, which can be stated as follows: If X is a compact,
connected, oriented Riemannian 4-fold which has no nonzero anti-self-dual
harmonic 2-forms and G is a compact, connected, simply-connected, simple
Lie group, then a G-bundle F on X admits an irreducible self-dual G-
connection if the G-bundle on S4 with the same first Pontryagin class does (X
is not required to be self-dual).
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For the classical groups G = SU(n\ Sp(n\ and SO(n), the problem of
describing the G-instantons on S4 was solved by Atiyah, Drinfeld, Hitchin and
Manin in [3]. Utilizing the Ward correspondence together with results and
techniques from the classification theory of holomorphic vector bundles on
complex projective spaces, they provide a description of instantons on S 4 in
terms of monads on CP3, i.e. (essentially) in terms of linear algebra. These
results are presented in detail in [2] and in [11], and parts of this paper are
derived from the former. Indeed, a significant portion of this paper is aimed at
replicating the ADHM construction for instantons on CP2 in such a way that
the similarity between the two cases is clearly evident.

The plan of the remaining sections of this paper is as follows. In §1, relevant
details of the construction of twistor spaces are reviewed, and a precise
statement of the Ward correspondence is given. In §2, a variety of results and
definitions are collected together in preparation for the description of instan-
tons in the next section. In particular, the definition of monads and basic
properties thereof are given in this section. In §3, the description of U(n)-
instantons on CP2 in terms of unitary monads on the twistor space is pre-
sented; Sp(tt)- and SO(«)-instantons are described in terms of self-dual
monads. The fourth section gives an outline of the Penrose transform in
concrete terms, the purpose of which is to prove a technical result required for
the monad descriptions. In §5, classifying spaces for the various G-instantons
are constructed and precise topological conditions are given under which, and
only under which, the subspaces corresponding to irreducible instantons are
nonempty. The paper concludes with an example; namely, the construction of
the moduli space of 5ί/(2)-instantons on CP2 of second Chern class —1. (This
space was not only predicted by Donaldson, but he also constructed it—un-
published but cited in [16].)

Throughout, a hermitian form φ on a complex vector space V is regarded as
a linear map φ: V -> V* (satisfying φ* = φ), rather than an antilinear map
V -» V*. The associated inner product is (M, υ) := ϊi*φυ, with |M| 2 := (υ9 υ)
if ( , ) is positive definite. Little or no distinction is made between a vector
bundle and its locally free sheaf of sections.

Since completing the manuscript, I have learned that Donaldson has also
given an almost identical description of the instantons on CP2, published in
[10]. (His paper does not, however, include a proof that all instantons on CP2

are derived from the monad construction.)
The work presented here was completed while I was a visiting member of the

Mathematics Department at Tulane University, New Orleans, and revised
during my stay at the Max-Planck-Institut in Bonn. I am grateful to both
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institutions for their hospitality and support, and I wish to thank Professors
Ron Fintushel and Al Vitter of Tulane for many useful discussions.

1. The Ward correspondence

This section gives an outline of the construction of twistor spaces for
self-dual spaces and a precise statement of the correspondence between instan-
tons and holomorphic vector bundles on the twistor space. For details the
reader is referred to [4].

Let X be a compact, connected, oriented Riemannian 4-manifold. Although
X may not possess a spin structure, the projectiυe self-dual and anti-self-dual
spin bundles P(F+) and P(F_) on X always exist. The conformal structure
and orientation on X determine natural almost complex structures on each of
these bundles, and the almost complex structure on P(F±) is integrable iff
W± = 0, where W + is the self-dual component of the Weyl curvature and W_
is the anti-self-dual component. If W_= 0, X is called a self-dual space and
the complex manifold Z := P(F_) is called the twistor space for X.

Each fiber of the projection p: Z -> X is a complex protective line, called a
real line in Z, and it has normal bundle 0(1) Θ 0(1). There is an anti-
holomorphic involution σ\ Z ^> Z with no fixed points, given by the antipodal
map on each real line.

Conversely, if Z is a complex 3-manifold and L *-> Z is a copy of CPX with
normal bundle 0(1) Θ 0(1), the space M of deformations of L in Z is a
complex 4-manifold (near L) possessing a complex conformal structure de-
termined by the condition that two points in M are null-separated iff the
corresponding lines in Z intersect. An anti-holomorphic involution o\ Z -* Z
with no fixed points but leaving L fixed induces an anti-holomorphic involu-
tion σ: M -> Λ/, and the 4-real dimensional submanifold X of fixed points of
σ has a real conformal structure of definite signature. Z is fibered over X (near
L) with fiber CPX, and an orientation for X is determined by the condition
that the orientation class of the fibration Z -» X restricted to L is the
anti-holomorphic orientation.

Suppose now that X is a self-dual space with twistor space Z and F is a
complex vector bundle on X with connection V. Then E:= p*F is a complex
vector bundle with connection on Z, and the condition that this connection
induces a holomorphic structure on E is precisely that the anti-self-dual
component of F v be zero; i.e. that v be a self-dual connection on F. The
bundle E is then holomorphically trivial on every real line.
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Conversely, if £ is a holomorphic bundle on Z which is trivial on all real
lines, the bundle F on X defined by Fx:= T(p~\x\O(E)) has an induced
self-dual connection. This gives

Theorem 1 (Ward correspondence). There is a bijectiυe correspondence be-

tween complex vector bundles F on X with self-dual connection and holomorphic

vector bundles E on Z which are trivial on all real lines.

The assumption that X is compact is not used in the proof of this theorem,
and there is a slightly more general formulation of it in which X is replaced by
certain "nice" open subsets U of the space M of lines in Z. Although Z is not
fibered over M, there is an associated double fibration

where W:= {(m, z) e M X Z: zG/n). In this context, the way in which a
derived bundle on U acquires a self-dual connection is easily seen ([7], [12]) and
there is an associated Penrose transform which is a linear isomorphism from
Hp(μ(v~ι(U)), 0(E)) into the /rth cohomology of the complex

(1.1) 0 -* H°(U,Θ(F)) ^ H°{U,Qι(F))^ H°(U9Q
2(F)) - 0.

Here Ω1 and ίl2_ are respectively holomorphic 1-forms and anti-self-dual
2-forms on M. This transform will be explicitly described in §5 in the case
X = CP2.

If X is spin, the tautological line bundle of Z = P(F_) is holomorphic and
its fourth power is the canonical bundle of Z. Denoting this line bundle by
0 ( - l ) and by E(m) the bundle Θ(E) Θ Θ(m\ the Penrose transform is
actually defined on Hp(μ(v~\U)\ 0(E(m))\ with the complex (1.1) replaced
by a different one (involving tensor products of F with powers of the spin
bundles and with the differentials induced by the connection on F coupled to
the spin connections). If X is not spin, the bundle 0( — l) does not exist
globally on Z, but its even powers do always exist; indeed Θ( — 2) can be
defined as a square root of the canonical bundle on Z.

The complex (1.1) is elliptic when restricted to the real submanifold X Π U,
and by taking direct limits over "nice" Stein U containing X one obtains the
same Penrose transform as described by Hitchin in [14], but which he obtains
by direct methods from the fibration Z -* X. Either way, the important result
is that the combined Penrose-Ward construction defines an equivalence of the

category of holomorphic bundles on Z which are trivial on real lines with the

category of complex vector bundles on X with self-dual connection, where
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morphisms in the latter category are by definition bundle morphisms commut-
ing with the connections. The equivalence is compatible with the standard
operations of homological algebra: sums, duals, quotients, tensor products, etc.

If E is a holomorphic bundle on Z, then so too is σ*E and moreover, the
latter is trivial on every real line on which E is trivial. Hence one obtains a
functor E •-* σ *E on the category of holomorphic bundles on Z trivial on all
real lines, where if φ: Ex -> E2 is a morphism, φσ:= σ*φ: σ*Ex -> σ*E2 is the
associated morphism. The corresponding functor on bundles on X with
self-dual connection is simply complex conjugation.

Let F be a hermitian vector bundle on X with hermitian connection v
which is self-dual, and let φ: F -» F * be the hermitian form (always positive
definite). To say that V is hermitian is to say that φ commutes with the
connections of F and F*, so if E is the corresponding bundle on Z, φ
corresponds via the Penrose transform to a holomorphic map φ: E -> σ*E*
satisfying φ°* = φ. Moreover, φ induces a positive definite hermitian form on
sections of E over real lines. Conversely, if F has no hermitian structure a
priori and E possesses a map φ with these properties, then there is an induced
hermitian form on F which is compatible with the connection. This is the
twistor description of l/(«)-instantons.

Since every compact Lie group G has an embedding in U(n) for some w, the
problem of describing the G-instantons on X is converted into that of
describing all holomorphic bundles on Z corresponding to ί/(Λ)-instantons,
and specifying the conditions under which the structure group can be reduced
from U(n) to G in terms of holomorphic conditions on the bundles on Z. For
example, if E corresponds to a £/(«)-instanton F, then F is an SU(n)-
instanton iff det E is trivial.

The groups in addition to U(n) which are considered here are the classical
simple groups SU(n), Sp(w), and SO(n). An Sp(«)-instanton is a U(2n)-
instanton F with a compatible symplectic structure; that is, a linear isomor-
phism a: F -> F* commuting with the connections and satisfying a* = - α
and ά*φ~ιa = φ. Similarly, the complexification of an SΌ(«)-instanton is a
£/(fl)-instanton F with a compatible orthogonal structure; i.e. a linear isomor-
phism a: F -* F* commuting with the connections and satisfying α* = +α
and α*φ - 1α = φ. When these conditions are included in the Ward correspon-
dence, the following is obtained:

Theorem 2. For G = U(n\ 5(/(w), Sp(«), there is a bijectiυe correspon-
dence between G-instantons on X and holomorphic vector bundles E on Z which
are trivial on real lines and for which

(a) for G = U(n): E has rank n and there is an isomorphism φ: E -> σ*E*
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with φ σ * = φ which induces a positive hermitian form on sections of E over real

lines',

(b) for G = SU(n): the same as (a) with the additional constraint that det E

is trivial;

(c) for G = Sp(rt): the same as (a) except that E has rank 2n and there is an

isomorphism a: E -> E* satisfying a* = —a and aσ*φσ~ιa = φ;

(d) for G = SO(n): the same as (a) and there exists an isomorphism a:

E -> E* satisfying a* - + α and α σ *φ σ " 1 « = Φ

An isomorphism φ: £ -> σ * £ * satisfying φ σ * = φ will be called a unitary

structure on £ ; it is certainly not a hermitian form, but there should be no

confusion as all morphisms on Z are required to be holomorphic. The

structure will be called positive if it induces a positive definite hermitian form

on sections of E over all real lines. A map a: E -* E* satisfying a* = —a

(resp. + α ) will be called a symplectic structure (resp. orthogonal structure) on

E, and it is compatible with a unitary structure φ if it satisfies aσ*φσ~ιa = φ.

As mentioned earlier, an irreducible instanton F is one which has no

subbundles preserved by the connection. It follows easily using the Penrose

transform that F is irreducible iff the corresponding bundle E on Z is simple, i.e.

its only endomorphisms are scalar multiples of the identity. By decomposing a

general instanton into a sum of irreducibles, the following is then a straightfor-

ward application of the Function Calculus:

Lemma 1. The structures listed in Theorem 2 are unique up to bundle

isomorphism.

2. Preliminaries

This section commences with the basic definitions and properties of monads,

the objects in terms of which instantons will subsequently be described; much

of this material is taken directly from [18]. Following this is a discussion of the

twistor space for CP 2, together with a collection of basic results central to the

description. The section concludes with a discussion of the topological classifi-

cation of instantons.

Let Z be a compact complex manifold. A monad M on Z is a complex of

(holomorphic) vector bundles on Z of the form

which is exact at A and C and such that the image of a is a subbundle of B.

The bundle E := ker b/im a is called the cohomology of M, denoted by E( M).
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A morphism m: M -» M' of monads is a triple m = (μ, p, p) of bundle
morphisms such that

0 > A' • Bf • C > 0

commutes, and with composition defined in the obvious way, the set of
monads on Z forms a category.

For each morphism m: M -» W there is an associated morphism e(m):
E(M) -> E(M') induced by taking cohomology, and this gives a functor from
the category of monads to the category of (holomorphic) vector bundles on Z.
The following lemma and its accompanying corollary are taken directly from
[18].

Lemma 2. Let M, W be monads on Z and E := £(M), £" := E(M'). The
map e: Hom(M, M') -* Hom(£, E') is bijectiυe if the following cohomology
groups vanish: Hom(B,A'), Hom(C, B'\ H\Z,C* ® A'), H\Z,B*®A'),
H\Z,C* ® B'\ H2(Z,C* ® A').

Corollary 2. // the hypotheses of Lemma 2 are satisfied for the pairs
(M,Mr), (M,M), (M',M'), and (M',M), then the isomorphisms of the
monads M, M' correspond bijectiυely under e to the isomorphisms of the
associated bundles E, £".

The proof of Lemma 2 is straightforward albeit tedious, requiring the
writing-out of the displays for the monads M, M'. The display associated to
the monad M is the commutative diagram with exact rows and columns

T U
A = A
T T
0 0

where Q := cokerα and K:= kerb. This display determines the monad M and
from it one can read off the rank and total Chern class of E = E(M):
rk E = rk B - rk A - rkC and c(£) = c(B)c(A)-ιc(C)-\
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The monads describing instantons will have certain additional structures:

the dual M * of a monad M is the monad

M*:0 -> C*^> B*^>A* - 0,

and M is said to possess a self-dual structure if there is an isomorphism α:

M ^> M* such that α* = ±α. When a* = +a the structure is called orthogo-

nal, and when α* = - α it is called symplectic. M itself is called self-dual

(orthogonal, symplectic) if C = A* and b = a*a for some self-dual (orthogo-

nal, symplectic) structure α: 2? -> 5*. Note that if α = (μ, α, *>): M -> M* is

a self-dual structure, the monad ΛΓ: 0 - > Λ - > i ? - > Λ * - > 0 h a s cohomology

E(M) and is self-dual since ι>b = a*a. The self-dual structure on M' is

( ± l , α , l ) as α* = + α.

A further type of structure which can be imposed on a monad in some

circumstances is a unitary structure: if Z is the twistor space of a self-dual

space X, a unitary structure on a monad M is an isomorphism φ: M -* σ*M*

satisfying φ σ * = φ. Here σ*M* is the monad

σ*M*: 0 -* σ*C*^σ*5*fl->*σ*Λ* -> 0.

By definition, a unitary structure on M incorporates a unitary structure on B,

and the former will be called positive if the latter is positive. A unitary

structure φ and a self-dual structure a are compatible if ασ*φσ"1α = φ. The

monad M itself is called unitary if c = σ*A* and Z> = aσ*φ for some unitary

structure φ on B, and the unitary structure on M in this case is (1, φ, 1). As in

the self-dual case, the cohomology of a monad with unitary structure is always

the cohomology of a uniquely determined unitary monad.

Morphisms of unitary (resp. self-dual) monads are monad morphisms pre-

serving unitary (resp. self-dual) structures, i.e. p: M -> M' satisfies pσ*φ'p = Φ

(resp. p*a'p = a).

This completes the introduction to monads, and the next task is to look at

the space Z on which the monads of interest to this paper are defined.

Let V be a 3-dimensional complex vector space, which will remain

fixed hereafter. Denote by F the set of pairs (LVL2) such that L; is an /-

dimensional linear subspace of V with Lx c L2, given the structure of a

complex manifold by the transitive action of GL(F): F = GL(F)/isotropy

group of a point. Similarly, let Fx and F2 respectively denote the spaces of 1-

and 2-dimensional linear subspaces of V, so F is a hypersurface in Fx x F2. If

Fj is identified with P(K) and F2 with P(K*), then F = {(z,w) ε P(K) x

P(K*): wz = 0}. Moreover, there are canonical projections /?,: F -». F,- which

exhibit F as a locally trivial holomorphic fibration over F, with fiber CP^
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Denote by Θ(p,q) the sheaf p*Oψλ(p) ®P*®γ2(q\ so the normal bundle
of F in F1 X F2 is 0(1,1) and the canonical bundle is 0 ( - 2 , - 2 ) . If

χ : = Cl(0(l,O)) and y = (^(0(0,1)) are the first Chern classes of these basic
line bundles, the Leray-Hirsch theorem gives

i / * ( F , Z ) = Z[x9 y]/x\ y\x2+y2- xy

for the cohomology ring of F. The fundamental class of F is x2y = xy2 Ξ

Let φ0 be a fixed positive definite hermitian form on F, and define σ:
F -> F by σ(Lx, L2) := ( L ^ , L^\ where ± denotes orthogonal complement
with respect to φ0. σ is anti-holomorphic, has no fixed points and its fixed
lines are precisely the fibers of the surjection p0: F -> P(F) defined by
po(L1, L2) '= Li Π L2. These are the real lines in F, and when restricted to
each such line, σ is the antipodal map.

The space M of deformations of some real line L *-» F can be identified with
¥λ X F 2 \ F , where (L;, L' 2)e M corresponds to the line {(Ll9Lλ + L\)\
Lx c L2} in F. The involution σ on M induced by σ is given by σ(Z/l5 L2) =
(Z/^ , Z/^), and the subspace P(V) of real lines in F is embedded in M as the
anti-holomorphic diagonal {(L\, L'^)}. The lines in F corresponding to the
points of M will be called complex lines.

As mentioned in the first section, M has a natural (holomorphic) conformal
structure determined by the condition that two points lie on a common null
geodesic iff the corresponding lines in F intersect. The restriction of this
structure to the real submanifold P(F)«-» M gives a definite real conformal
structure on P(K), this being precisely the conformal class of the Fubini-Study
metric induced by φ0.

If z:= ^(0(1)) e H2(P(V\ Z) denotes the canonical generator of
i/*(P(F),Z), then the homomorphism i/*(P(F),Z) -> #*(F,Z) induced by
p0 is generated by z »-> y — x. If L «-* F is a real (or indeed complex) line and
h <= H2(L, Z) is its fundamental class, the map #*(F, Z) -> if *(L, Z) induced
by inclusion is generated by x -> Λ, y >-+ h; that is, 0(/>,#)|L = 0L(/> + 4)
Since -x(j> - x) 2 = JC2^, the orientation acquired by P(F) as the space of
real lines in F agrees with its standard orientation as a compact complex
manifold. In this way, F is realized as the twistor space for CP2 = P(F).

The fiber of 0(-l,O) (resp. 0(0, -1)) at (Ll9 L2) e F is the 1-dimensional
vector space Lλ (resp. (F/L 2)*). Hence the fiber of σ*0(-l,O) at (Ll9 L2) is
L£=(V/L2)*; i.e., σ*0(-l,O) = 0(0,-1). It follows that σ*0(p9q) «
Θ(q, p) for any /?, q\ a particular choice of isomorphism will be made later.

The analytic cohomology of the bundles 0(/?, q) can be determined from the
embedding F *+ ¥λ X F2 and the Bott Rules for CPrt [18], or more directly
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from Bott's original paper [5]. The result is i/r(F, Θ(p, q)) = 0 unless r is the
minimum number of transpositions needed to arrange the sequence (0, p +
1, p + q + 2) in increasing order, and in this case

dim tf'(F,0(/>,9)) = (-l) r(/> + \){q + l)(/> + q + 2).

Since i/^F, 0) = 0 = i/2(F, Θ), the bundles 0(/?, #) represent all holomor-
phic (and topological) line bundles on F. Classifying all holomorphic bundles
on F of rank greater than 1 is of course more involved, as it is in the case of
CP,,. In the latter case, an important stepping-stone in the classification process
is a theorem of Beilinson, of which the following lemma is an analogue for the
current situation. The proof is a modification of the proof of Beilinson's
theorem in [18].

Lemma 3. Let E be a holomorphic vector bundle on F. Then there is a
spectral sequence E{*q converging to

Er =

~ \ 0 otherwise

with

E^q = 0 ifp < - 3 orp > 0,

- l , -1)) ® C 0 ( - 1 , -1) ,

and exact sequences
(2.1)

//*(£(-1,0)) ®C0(-1,1)

••• - //«(£(-l,O))®c0(O, - 1 ) - E- 1 '"- e
tf«(£(l,-l))®c0(O, -1)

(2.2)
O, - 1 ) ) ® C 0(O, - 2 )

(where Hq(E(a, b)) := H%F, Θ(E) ® Θ(a, b)).
Proof. Denote by ττι and π2 the projections Γ x F ^ F onto first and

second factors respectively, and let Θ{p,q){r,s)'\= πfΘ(p,q) ® π?Θ(r,s).
From the Bott Rules,

Hι(F X F, 0(O,O)(1, -2) ' ) = C = Hι(F X F, 0(-2,l)(O,O)'),

so let R be the extension

0 -> ̂ ( l ,0)( l , - 1 ) ' Θ Θ(-191)(PA)' ^R^ 0(1,O)(O,1)' -^ 0
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corresponding t o l θ l ε Hι(F X F, 0(0, Oχi, - 2 ) ' θ 0(-2,iχθ,O)') Then
H°(F X F, R) = V* $ K, so Λ has a canonical section s corresponding to
1 e EndF = K* Θ K It is straightforward to check that the zero set of s is
precisely the diagonal Δ in F X F, giving the Koszul resolution of ΘA

(2.3) 0 -> A3R* -» Λ2Λ* ^ r ^ ( 5 ^ ί Δ ^ 0 .

If £ is a holomoφhic vector bundle on F, tensor through (2.3) by πfE,
delete the last term on the right and take direct images under ττ2. This gives the
spectral sequence Eξ%q = π£(π?E ® A~PR*) converging to

E if r — 0,
0 otherwise.

One has

and the sequences (2.1), (2.2) follow similarly using the definition of R and the
identification A2R* = R β det Λ*. q.e.d.

As in [18], there are other versions of this result (e.g. replace ®{p,q) by
@(q,p) throughout), but the above suffices for current purposes.

Applications of Lemma 3 are simplified whenever certain cohomology
groups are known to vanish, and to this end, several tools are available.

First is a pair of exact sequences on F:

(a) O ^ 0 ( - 3 , O ) ^ K(-2,0)-> 0}->0,

(b) 0 -> 0 ( - l , -1) -• Qi -> 0 ( - 2 , l ) -> 0,

where Ωj := pfΩ1^. (2.4)(a) is the pull-back of the Euler sequence on Fλ twisted
by 0(-3,O) with the identification (Ωj)* = Ωj ® (detΩ})* = Ωj(3,0); (2.4)(b)
arises from the fact that F is essentially the projectivized holomoφhic tangent
bundle on Fv

The second tool is Serre Duality, which in this context states that HP(E) =
H3p(E*(-2, -2))* for a holomoφhic bundle E on F.

Third is the Riemann-Roch formula, and for current puφoses the following
less general expression suffices:

2){n{p + \){q + 1) - l(p - q) - I2 - 2k]
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if c(E) = 1 + l(x - y) 4- kxy, τk(E) = n, where

The remaining pieces of information are cohomology vanishing statements,
specific to instanton bundles. If E is trivial on a real line L, then
H°(L,E(p,q)\L) = 0 if p 4- q < 0 since 0(/>,#)|L = 0L(P + ?)• τ h u s i f ^
is trivial on every real line in F, //°(F, £(/>, #)) = 0 for p 4- # < 0, since any
section of E(p, q) must vanish at every point. A somewhat deeper result is the
Atiyah-Drinfeld-Hitchin-Manin vanishing theorem for instanton bundles,
which plays a crucial role in the classification of instantons on 5 4 . If E
corresponds to a £/(rt)-instanton Fon P(F), the Penrose transform identifies
Hι(¥, £( —1, -1)) with solutions of the conformally invariant Laplace equa-
tion (V*V + ^R)s = 0 on P(F), where R is the scalar curvature of the
metric and * denotes formal adjoint. Since R > 0 the only global solution of
this equation is s = 0 (for details, see [14]). To summarize these results for
future reference:

Lemma 4. If E corresponds to a U(n)-instanton on P(F), H°(¥, E(p, q)) =
0 ifp + q < 0 andHι(F,E(-l, -1)) = 0.

To complete this section, a brief discussion of the topological classification
of instantons will now be given.

Let X be a compact, connected orientable 4-manifold. The complex vector
bundles F on X are classified up to topological isomorphism by their rank and
their first and second Chern classes c^F) e H2i(X,Z), i = 1,2. Thus the
ί/(/i)-bundles F on X are classified by cx{F) and c2(F), and for the
simply-connected groups G = SU(n), Sp(«), the second Chern class along
classifies the G-bundles on X (the standard representation of G being assumed
in each case).

In the case of SO(n), its double-covering group Spin(«) is simply-connected
for n > 2 and the structure group of an 5Ό(«)-bundle Fon Jfcan be lifted to
Spin(rt) iff its'second Stiefel-Whitney class w2(F) e H2(X,Z2) vanishes. If
n > 2 and n Φ 4, SO(n) is simple and the SΌ(«)-bundles F on X are
classified in these cases by w2(F) and the first Pontryagin class
/?!(F):= -c 2 (F<8 R C) [8]. The group 50(4) is not simple and the 50(4)-
bundles F on X are classified by pλ(F\ w2(F) and the 4th Stiefel-Whitney
class w4(F) <Ξ H\X9Z).

A choice of orientation for X determines an isomorphism H4(X,Z) = Z via
evaluation on the orientation class, and by means of this the characteristic
classes c2(F\ px(F\ and w4(F) are identified with integers (or integers mod2
in the last case). Not all integers are necessarily realized in this way however;
there is an identity w2 = pλ (mod 2), which implies for example, that every
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SO(n)-bundle on 5 4 has even first Pontryagin class. In fact, p1 is actually
determined mod 4 by w2, vv4 using cohomology operations [8] which implies
for example that for an 50(3)-bundle F on 5 4 or CP2, pλ(F) = 0 (mod4) in
the former case and px(F) Ξ O O Γ I (mod4) in the latter. Indeed, on both
these spaces the relationship between pl9 w2, and w4 mea ns that SO(n)-
bundles are classified top"ologically by pλ alone for any n > 2. Every integer of
the form 4m or 4m + 1 (resp. 4m) occurs as the first Pontryagin class of an
5(9(3)-bundle on CP2 (resp. 54), and every integer (resp. even integer) occurs
as the first Pontryagin class of an 50(4)-bundle on CP2 (resp. S4). Every pair
of integers (r, s) (resp. (0, s)) occurs as the first and second Chern classes of a
£/(2)-bundle on CP2 (resp. S4) [18].

The following terminology for describing the topological type of a G-
instanton (F, v ) on X = S4 or CP2 will be adopted here: for G = SU(n) or
Sp(fl), the index of the instanton will be the integer (corresponding to)
— c2{F)\ for G = SO(n), the index will be the integer pλ{F). A Spin(«)-
instanton will be defined to be an 5O(w)-instanton of even index and the
index of a Spin(«)-instanton (F, V) will be \pλ{F). For X = CP2, the index of
a t/(rt)-instanton (i%V) will be the pair of integers (ky I) such that c(F) = 1
— Iz — kz2\ i.e. cλ(F) = —Iz and c2{F) = — kz2. These definitions are con-
sistent with those in [4] except in the case of Spin(«) for n < 7, where the
authors of [4] use the isomorphism Spin(3) - 5(7(2), Spin(4) = SU(2) X 51/(2),
Spin(5) = Sp(2), and Spin(6) « 5[/(4).

3. Description of instantons

In this section, three different unitary monads are canonically constructed
from a bundle E corresponding to a ί/(«)-instanton, each having cohomology
E and being of a particularly simple form. It is shown that the isomorphism
classes of such bundles correspond bijectively to the isomorphism classes of
such monads. The description of Sp(«)- and 50(«)-instantons is obtained by
imposing self-dual structures on the monads.

The development is along the lines of Atiyah's presentations in [2].
The simplest case, that of {/(l)-instantons, will first be dealt with. If Θ(p, q)

corresponds to a ί/(l)-instanton, then q = —p on purely topological grounds.
The bundle Θ(p, —p) is trivial on every real (indeed, complex) line in F. An
isomorphism A: σ*Θ( —1,0) -» (9(0, -1) gives an isomorphism

V=H°(F,Θ(0,l)) -> #°(F, σ* 0(1,0)) = F *
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which is a multiple of φ0. Hence there is a canonical choice of isomorphism h

inducing precisely φ0, and with it, a canonical isomorphism A σ : 0 ( - l , O ) - > σ *

0(0, - 1 ) ; Aσ ® A*: ©(-1,1) -> σ * 0 ( - l , l ) * then induces a negative defi-

nite form on sections of 0( -1,1) over real lines, as is easily checked. Thus the

line bundles on F corresponding to f/(l)-instantons on P(F) are precisely

those of the form 0(/>, —p) for ^ e Z ; i.e. the /?th powers of the pull-back of

the tautological bundle on P(F).

Henceforth the bundles Θ(q, p) and o*Θ(p,q) will be identified by means

of A, Aσ above.

Suppose now that ( £ , φ) corresponds to a t/(«)-instanton of index (k, I) on

P(F); ( £ \ φ ) will remain fixed throughout this section. The cohomology

vanishing statements of Lemma 4 apply not only to E but also to E* ( = σ*E)

or either of these bundles twisted by a power of 0(1, —1) since all of them

correspond to ί/(w)-ins tan tons; this fact will be exploited to great advantage

subsequently.

By Lemma 4, Hp(E( — l, — 1)) vanishes for p = 0,1 and by Serre duality it

also vanishes for p = 3,2. Thus

(3.1) H*{E{p,q)) = 0 if p + q + 2 = 0.

From (2.4) $ £(1, -1), it now follows that

Hp(E(-l,0)) = HP(ti\ ® £(1, -1)) = HP + 1(E(-2, -1)),

and by Serre duality together with the isomorphism E = σ *£ * one has

-2, -1)) = //2"'(£*(0, -1))* = //2

By Lemma 4, it follows that // p(£(-l,0)) vanishes for /? ¥= 1, so the same

is true for HP(E(Q, -1)) = iP(£(l , - iχ-1,0)). From the Riemann-Roch

formula it follows

' / ί ' ( £ ( 0 - l ) ) = 0 for/>#l;

Let AΊ, /L2 be the complex vector spaces defined by K? := Hl(E(0, -1))

and ^2*:= //H^ί-l.O)); although the isomorphism £ = σ*£* gives Kt =

X",-* as above, it is useful to retain the distinction.

Let ζ>i be the extension of Kf(09l) by E corresponding to 1 G

Hom( Aγ\ Λ\*) = H\Hom(K?(0,1), £)), described by the exact sequence

(3.3) 0^E^Ql^Kf(09l)'+0.
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Using the isomorphism σ*E* ^ E, σ*(3.3)* gives a second exact sequence

(3.4) 0-> ^ ( - 1 , 0 ) - > & - > £ - > ( > ,

where Qλ := σ*gf. Note that Qx is the extension of E by ^ ( - 1 , 0 ) corre-

sponding to the image of 1 e End Kλ under the isomorphism

λ = K? ® Kx = Hι(σ*[E{0, - 1 ) ] ) ® ^

Dualizing (3.3) and using the Bott Rules gives ^ ( β f ί - l , 0)) =

F ( £ * ( - l , 0 ) ) for all /?. This implies that for each extension of E by

Θ{ — 1,0) there is a unique and compatible extension of Qγ by 0( — 1,0). If Wx

is the extension of Qλ by ^ ( - 1 , 0 ) corresponding to (3.4), the compatibility

means that there is a commutative diagram:

(3.5)

Combining (3.3), (3.5), and (3.5) gives the commutative diagram with exact

rows and columns:

0 0

ΐ T

0 > E > Qx • Jf * (0 ,1) - 0

T T _ II
(3.6) 0 • ρ x > Wx v Kx*{091) - 0

ΐ T

^ ( - 1 , 0 ) = ΛΓχί-1,0)

ΐ T
0 0

That is, the display for a monad M^ 0 -• AΊ(-l,0) -> ^ -> Aχ*(0,l) -> 0

with cohomology E.

It remains now to identify the bundle Wv

Applying Lemma 3 to ^ ( 0 , — 1), one has the following: from the display

(3.6) ® Θ(0, -1) and the Bott rules, H\Wλφ, -1)) = H%Qλφ, -1)) for all q.

By construction, //°(#*((),0)) -> Hl(E(0, -1)) is an isomorphism, so by (3.2)

and the Bott Rules, Hq(Qx(0, -1)) = 0 for all q. Hence E^q = 0 for all q.

Similarly, Hq(Wλ(-\, -2)) = H^Q^-l, -2)) = 0 for all q, so £f 3 ^ also

vanishes for all q. Hence £ f * = E£q.
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For the Ex

Uq terms one needs to compute Hq(Wλ{-\, -1)) and
Hq(Wι(l, -2)), inserting these into the sequence (2.1). From (3.6), (3.1), and
the Bott rules,

Hq(Wx(-\, -1)) = # * ( & ( - 1 , -1)) = 0,

Hq{Wλ(\, -2)) = Hq(Qx(h -2)) = H<(E(19 -2)) ,

for all q. Hence Ex

hq = Hq(E(\, -2)) <8>c 0(0, -1).
For the Ex

Zq terms, the relevant groups are Hq(Wx(0, -2)) and
Hq(Wx(-2, -1)). As above, J/^tt^O,-2)) = 0 and Jff*(Wi(-2,-1)) =
//«(£(-2, -1)) for all 9 , so Ex

Zq = Hq(E(-29 -1)) 0 C 0(-1,O).
Since //°(F,0(1, -1)) = 0, the differentials £f 2 « -> Ef1^ are all zero, so

£p^ _ £p,q^ Applying now the conclusion of Lemma 3, it follows that
Hq(E(\, -2)) is nonzero only for q = 1, Hq(E(-2, -1)) is nonzero only for
q = 2, and there is an exact sequence

0 -> /f1^!. -2)) 0 0(0, -1) - ^ ( 0 , -1)

^ H2(E(-2, -1)) 0 0(- l ,O) -> 0.

Since i/*(F, 0(1, -1)) = 0, this sequence has a unique splitting, and with
Nx:= H\E(\, -2)) and the identification H2(E(-2, -l)) = Hl(E(-l90))
= λ̂ 2*, the net result is the identification Wx = Nx Θ ^ 2 * ( - l , l ) . To sum-
marize the results so far, E is the cohomology of a uniquely determined
monad

(3.7) Mλ: 0 -> AΊ(-1,O) -^ Nx Θ Jf2 ( - l , l ) -^ AΊ(O,1) -> 0,

where A'̂  A 2̂, and Λ̂  are complex vector spaces of dimensions k + ^/(/ + 1),
A: + {1(1 - 1), and « + k + ^/(/ + 3) respectively.

The pair (Aίv σ*Mf) satisfies the hypotheses of Corollary 2, and it follows
that there is a unique unitary structure φx: Mx -+ σ*Mx* inducing φ on
cohomology. If φx = (μ,φl9v), then v* = μ G Aut Kx and the unitary struc-
ture φx on JVX θ Jf2*(-1,1) is of the form φx = φx θ χ 2 0 Λσ 0 A* for some
hermitian forms φv χ 2 on JVX, Jf2*» respectively. Since vb = flσ*φl5 b in (3.7)
can be replaced by vb to give a uniquely determined unitary monad

In fact, it is not necessary to apply Corollary 2 at this stage, for if the
construction is carefully traced through it is found that Wx already possesses a
canonical unitary structure φλ with b = aσ*φv However, the corollary does
imply the important result that (M^φJ is essentially unique: if (M{,φ\) is
another unitary monad of the same form with (E(M{),e(φ\)) - (E,φ\ then
the corollary implies (M/, φ\) ~ (Mv φx).
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The construction could equally well have commenced with #2*(l,0) rather
than Kf(0,l), and the conclusion would then have been that E is the
cohomology of a uniquely determined unitary monad

(3.8) M2\ 0 -> K2(0, -1) A N2 θ # * ( 1 , - l ) ^ - £ * 2 * ( l , 0 ) -> 0,

where N2:= H2(E(-1,0)) = Hι(E(-2,1)) is a complex vector space of

dimension n + k + ^/(/ - 3). (Lemma 3 is applied to W2(-l,0) for the

fastest derivation.) As before, (M2, Φ2) *s unique up to isomoφhism of unitary

monads of this form. Note that this implies M2(E) — M1(£( —1,1)) ®

0(1, -1) and Af2(σ*£) = σ*M1(£>), where M,(£) denotes the unitary monads

canonically constructed from E as above.

Neither of the pairs (Mx, Mf), (M2, M2*) satisfies the hypotheses of
Corollary 2 (except in the degenerate case Kx = 0 or K2 = 0) so that a
symplectic or orthogonal structure on E is not induced by a corresponding
structure on either of these monads (except when E is trivial). To bypass this
difficulty, and also to dispense with the need to choose between Mx or M2 to
describe £, both descriptions can be chosen simultaneously by commencing
the construction with Λ\*(0,1) θ K£(l,0) and proceeding as before. The end
result is that E is then described as the cohomology of a uniquely determined
unitary monad

( 3 9 ) M3: 0 -> A A W^o*A* -> 0,

^ : = ^ ( - 1 , 0 ) 0 ^ 2 ( 0 , - 1 ) ,

where W3 is a vector space of dimension n 4- 4k + 2/2 and φ3 is a nondegen-
erate hermitian form. It then follows from Corollary 2 that a compatible
self-dual structure on E is induced by a unique compatible self-dual structure
on M3, as desired.

The hypothesis that φ: E -> σ*£* is a positive unitary structure on £ has
not been used ostensibly (although it is in fact used to prove Hι(E( — 1, —1))
= 0). The hypothesis is manifested in the monad descriptions as the positivity
of the induced unitary structures on Ml9 Λ/2, Λf3. This is a corollary of the
following lemma, whose proof occupies the next section.

Lemma 5. The hermitian form χ2 on K2* in the monad Mx is definite and of
a sign independent of E.

Corollary 5. The unitary structures on Mλ, M2, M3 are positive.
Proof. It must be shown that the induced hermitian form on Kf, ΛΓ2*, JV1?

N2, W2 are all definite, being negative on K*> K2* and positive on Nv N2, Wv

(Recall that the unitary structure on A'2*( —1,1) in Mx is χ 2 ® hσ % h* and
hσ 0 h*: β?( — 1,1) -> σ*Θ( —1,1)* induces a negative definite form on sec-
tions over real lines.)
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Since M2(σ*E) - σ*Mλ(E), Lemma 5 implies that the form on K? is
definite and of the same sign as that on K2*. Since M2(E) = Mλ{E{-1,1)) φ
0(1, -1) and the positive unitary structure on E(-1,1) is - φ φ Λσ φ A* the
forms on Λ ,̂ Λf2 are definite and of the opposite sign to that on K2*. It follows
that when either of the monads Ml9 M2 is restricted to a real line L and the
middle term is trivialized, the result is a unitary monad of the form

(3.io) o -»κ(-i) A wa-^κ*(\) -> o,

where Λ\ W are vector spaces and φ is a definite form. The cohomology of this
monad is E\u and since the induced form on Γ(L, E\L) is positive, it follows
that φ on W is positive. Hence the induce forms on Kf9 K2* are negative
definite, and those on Nv N2 are positive definite, as claimed.

Now, if K2(09 -1) and K£(l,0) are deleted from the monad M3, a new
unitary monad M3: 0 -> JC^-1,0) -> W3 -> K*{0,\) -• 0 is obtained. The
cohomology 2?(M3) is itself the middle term in a unitary monad M3":
0 -> Λ:2(0, - l ) - > £(M3')-> £2*(l,0)->0, and if φ" denotes the unitary
structure on M3", then (£(M3"), *(*")) = ( ^ Φ). Thus ( M 3 " , φ " ) ^
(M 2 (£), φ2) and since M3 = M1(£(M3

/)), it follows from the conclusion of the
last paragraph that the unitary structure on W3 is positive, q.e.d.

Granted Lemma 5, the first half of the description of ί/(/ί)-instantons is
now complete: three unitary monads A/,, / = 1,2,3, of specific forms have
been constructed from E, each possessing a positive unitary structure φ, with
(£(M7), e(φy)) = (£,Φ), and each pair (M^φ^ is unique up to isomorphism
of unitary monads of this form. Moreover, it is clear from the canonical nature
of the construction that each of the assignments E -» M^E) is functorial. The
second half of the description is much easier: If M is a unitary monad of the
form Mi with positive unitary structure φ, then {E(M), e(φ)) corresponds to a
ί/(rt)-instanton of index (kj) on P(F). All that needs to be shown is that
E(M) is trivial on all real lines and that e(<f>) induces a positive definite
hermitian form on sections of E over such lines.

Let L ^ F be a real line, and consider M\L. If M is of the form Mλ or M2,
the middle term is first trivialized over L and equipped with its induced form,
as in the proof of Corollary 5. In all three cases therefore, M\L is of the form
(3.10), with φ a positive definite form on W. (Recall that σ: L -* L is the
antipodal map.)

If x G L, let Ux := ima(x). By definition of monads and their cohomology,
Ux is a (dim #)-dimensional subspace of W, Ux c Ua

L

x, and Ex = Ua

L

x/Ux.
Here E := E(M)\L and ± denotes orthogonal complement with respect to φ.
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A simple calculation shows that [// Π U£ is independent of x e L. Since

φ is definite, Ux Π I// = 0, so

t/σί = £/0ί n(ί/Λ + ί//) = ux + i/σί n t//= ί/x + £/.} n ι///σί
for some predetermined y e L. Thus £ x = t/σ^ Π ί/v

x for every Λ: e L,
implying that £ is trivial, and moreover the induced form on Γ(L, £ ) = ί/σ-J;
Π (7/ is positive definite since φ is. Thus (E(M), e(φ)) corresponds to a
ί/(rt)-instanton.

If M is of the form My, then since M and Mi{E(M)) have the same
cohomology and induce the same unitary structure on cohomology, it follows
from Corollary 2 that there is an isomorphism M — Mi(E{M)) preserving
unitary structure. Indeed, if M' is an arbitrary monad with positive unitary
structure of the form Mi such that E(M') - E(M), then by Lemma 1 there is
an isomorphism E(M') = E(M) which preserves unitary structures, and this
isomorphism lifts by Corollary 2 to an isomorphism M' — M preserving
unitary structures.

To summarize,
Proposition 1. Let J(x, Λί2, Jt'3 respectively denote the subcategory of

monads on F of the form (3.7), (3.8), (3.9) and which possess a positive unitary

structure, and let $ denote the subcategory of holomorphic bundles of F

corresponding to U(nyinstantons of index (kj) on P(F) . Then each of the

functors Jίi ^ Mf •-> E{Mi) e £, i = 1,2,3, defines a bijective correspondence

on isomorphism classes of objects, compatible with unitary structures.

As an immediate corollary, the description of Sί/(rt)-instantons of index k
is the same as above with / = 0.

To deal with the symplectic and orthogonal cases, suppose now that / = 0
and E has a compatible self-dual structure α: E —> E* with a* = +a. (If
a* = — α, rk E = 2n and dim W3 = In 4- 4k instead of n and n + 4A: respec-
tively.) By Corollary 2, a lifts to a unique and compatible self-dual structure
on the monad M3(E). After unwinding the definitions, this self-dual structure
gives an isomorphism Kx ^ K2 =: K and M3(E) is canonically isomorphic to
a monad

(3.11) M:0-> Θ —>W > φ -> 0.

The unitary structure on M is (1, φ, 1) and the self-dual structure is (μ, α, ±μ*),
where μ = (? ±J) and a is a self-dual structure on W compatible with φ. The
map a in (3.11) is of the form a = (ax, ±a~l4>af), where ^ : #(-1,0) -> W.
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Conversely, a monad M of the form (3.11) has cohomology E(M) which

satisfies the requirements of Theorem 2 for it to correspond to an SO(n)- or

Sp(«)-instanton of index k on P(F) . If Mf is another monad of the same form

with £ ( M ' ) - E(M), then by Lemma 1 there is an isomorphism p: E(M) ->

E(M') such that pσ*φ'p = φ and p*a'p = α, and by Corollary 2 this lifts to

an isomorphism p: M -> M ' with the same properties.

To summarize:

Proposition 2. Lei ^ &e ί/ze subcategorγ of monads on F of the form (3.11)

which possess compatible self-dual and unitary structures, and let £ be the

subcategory of bundles on F corresponding to SO(n)- or Sp(n)-instantons of

index k on P ( F ) . Then the functor Jί'B M •-> E(M) e S defines a bijection on

equivalence classes of isomorphic objects, compatible with the self-dual and

unitary structures.

In the Sp(tt) case, the monad (3.11) can be rewritten in a purely quaternionic

way, as in the case of Sp(w)-instantons on S4. However, this reformulation

does not appear to yield the same benefits such as (CP2 analogues of) the

tΉooft instantons.

4. The Penrose transform and proof of Lemma 5

The object of this section is to prove that the form χ 2 on K£ in the monad

Mx of §3 is definite and of a sign independent of E. The proof involves

identifying χ 2 in terms of operations on the cohomology group H\E(-1,0)),

reinterpreting these via the Penrose transform in terms of operations on the

ins tan ton bundle F corresponding to £ , and showing that the latter gives a

definite form. The Penrose transform presented here uses the method of double

fibrations as in [7], [12], [13], in which further details can be found in the

references (particularly [13]).

In the derivation of (3.2), the following isomorphisms were obtained:

(a) Kϊ = Hl(E(-h0)) ^ Hι{Ώ\ Θ £(1, -1)) - H2(E(-2, -1)),

(4.1)

(b) //2(£(-2, -1)) - Hl{E*(09 -1))* - Hι{σ*E(-l,0))* = K2.

(4.1)(a) follows from (2.4) ® E(l, - 1 ) and the vanishing of H*(E(p,q)) for

p + q 4- 2 = 0, and (4.1)(b) from Serre Duality and the unitary structure on

E. If E is regarded as the cohomology of Mx: 0 -> AΊ(-1,O) -* Nx θ

K£( — 1,1) -> A^*(0,1) -» 0, then it is easy to check from the display that each

operation in (4.1) " is" the same operation applied to AΓ2*(-1,1) equipped with

the unitary structure χ 2 ® Aσ <S> A*. Thus χ 2 is identified with this sequence of
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operations on H\E(-1,O)% and these must be inteφreted in terms of
corresponding instanton (F, V); this requires considerable preparation.

Recall M = Fλ X F2 \ F is the space of complex lines in F, and there is the
double fibration

(4.2)

where G : = { ( m , x ) G M x F : Λ: e m). In more concrete terms, choose
a fixed orthonormal basis for V, and then with respect to this basis,
homogeneous coordinates on F are (za,wa), a = 1,2,3, with zawa = 0 and
homogeneous coordinates on M are (ua

9υa) with uaυa Φ 0. (The summation
convention is employed throughout; zawa and uaυa will usually be denoted by
z w and u υ, respectively.) The correspondence space G is then G =
{(w", υa, z", wa): u υ Φ 0, z w = u w = z υ = 0}, and the maps μ, v of
(4.2) are the restrictions to G of the projections on M_x F.

The involution σ: F -» F is (z", wa) -> (8ahwh, δahz
h\ where δab, δah denotes

the Kronecker delta, i.e. the form φ0 in terms of the_chosen basis. The
corresponding involution σ on M is (ιΛ υa) •-> (8ahvh, δahu

h% and P(F) «-* M
is {(wα, ϋβ): ϋfl = δβΛί/*}; there is also an involution σ on G, defined in the
obvious way.

Denote by εahc a fixed volume form in Λ3F: it is totally skew-symmetric
with ε123 = 1. Similarly εabc e Λ3F* is totally skew with ε123 = 1.

Let Θ(a, b)(c, d)' denote the sheaf of germs of holomorphic functions on G
homogeneous of degrees a, b, c, d in z, w, u, v, respectively, so Θ(a> b){QyQ>)'
= μ*Θ(a, b) and u υ is a nowhere zero section of 0(O,O)(1,1/. By definition
of G, there are nowhere zero sections α e Γ ( G , f f ( l , - l ) ( 0 , - l ) ' ) , ] 8 G
Γ(G, O( -1,1)( - 1 , 0 ) 0 such that

(4.3) za = aeabcvbwc, wa = βεabcu
bzc

9

and it follows that <xβ = - 1/w ϋ. Note that β = ασ, and the fact that
aaσ = -l/| |w| | 2 over P(F) reflects the fact that hσ ® Λ*: C?( —1,1) ->
σ*0( —1,1)* induces a negative definite form on sections over real lines.

Let Q}μ denote the sheaf of holomorphic relative 1-forms on G: Ω* =
coker(</μ: ^Ω1,, ^ ΩX

G) = ^ ( l , 0 ) ( - l , 0 ) ' θ Φ(0,l)(0, -1) ' , and let dμ: ΘG -*
Ω̂  be the induced differential (differentiation along the fibers of μ). With
Va '= 3/3ua and va >= 3 / 3 ^ , dμ is expressed in homogeneous coordinates as

Note that dμa, dμβ, dμu ϋ are all zero, and dμu
a = (zα,0), rf^ = (0, wa).
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The relative de Rham complex along the fibers of μ is

( 4 4 )

0o > o i • $1 • 0
II (I \\

0(O,O)(O,O)' • 0(1,O)(-1,O)' Θ 0(O,1)(O, -1) ' • 0(1,1)(-1, -1) '
W W) W

/ > (z'vj* %v7)
(*,*) I > r β V β A - wav

ag

and since μ is a surjective holomoφhic mapping everywhere of maximal rank,

this complex is a resolution of the topological inverse image ofOv,μ~ιOv (i.e.

holomoφhic functions on G constant along the fibers of μ).

The direct image of (4.4) under v is the complex

(4.5)

where Q2_ is the sheaf of anti-self-dual holomoφhic 2-forms on M, and d_ is

exterior differentiation followed by projection (cf. (1.1)).

All of the preceding is the exact replia of the S*/CP3 case presented in detail

in [13]. The Penrose transform itself must also be replicated, and this involves

expressing the direct images v^Qp(a9 b) in terms of "known" bundles on M

and identifying the induced differential operators v£dμ\ v^ίl^a, b) ->

p^ίlp+ι(a, b\ as exemplified by (4.5). For current puφoses, it is necessary to

perform this procedure in only a few cases, namely (α, b) = (-1,0), ( - 1 , -1) ,

( - 2, - 1 ) and ( - 2, - 2). Even in these cases, precise identifications will not be

required.

Recall first that each fiber L of v: G -> M is a copy of CPx (embedded by μ

in F as the corresponding complex line), and that Θ(a, Z?)(c, d)'\L - ΘL(a + b).

It follows that V Ω * ( Λ , b) = 0 for all q if a + b + p = - 1 .

In the homogeneity (-1,0) case, VJ&P(-1,0) is nonzero only if q = 0 and

p = 1 or 2, with ^ ' ( - 1 , 0 ) = 0 ( - l , O ) ' θ 0(0, - 2 / = : S ' and ^ ( - 1 , 0 )

= ^ 0 ( 0 , i χ - 1 , - 1 ) ' ='S. The induced operator 5 ' -> S will be denoted by

Df. This notation is inspired by that [14]: locally, the restriction of D? to

P(V) is inteφreted as the formal adjoint of the anti-self-dual Dirac operator.

Since P(F) is not spin, this is purely a local inteφretation and it is better

simply to regard Df as the first-order differential operator induced by dμ.

The homogeneity ( - 1 , - 1 ) case requires some identification: the only

nonvanishing direct images * ί Ω £ ( - l , - l ) are ^ 0 ( ~ 1 , - 1 ) = 0 M and

y , Ω 2 ( - l , - 1 ) = 0 M ( ~ ! > " ϊ / ( T h e identification ^ 0 ( - l , - 1 ) = 0 M can
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be achieved by using the monad 0 -> 0 ( - l , -1) ^ V® 0(0, - 1 ) - ^ 0(0,0)
-> 0 pulled-back from F. It has cohomology 0(1,-2) and therefore can be
regarded as exact when taking direct images; i.e. there is an induced "connect-
ing homomorphism" 1**0(0,0) -> v\ΰ(-\, -1) which is an isomoφhism. This
isomorphism will be exploited subsequently to convert Hι cohomology on G
into H° cohomology.) The differential operator D: ΘM -> 0 M ( - 1 , - 1 ) ' in-
duced from (4.4) <8> 0 ( - l , -1) by taking direct images is of second order in
this case. Now D\P(V) must be a constant multiple of the operator (d*d +
R/6)/\\u\\2 identified by Hitchin in [14], R being the scalar curvature of the
Fubini-Study metric and * denoting formal adjoint. It is easy to check that if /
and s are holomorphic functions on an open subset of M, D(fs) =
— (VJ7af)s + fDs + 1st order derivatives of /, s. The symbol of D\P(V) is
therefore negative, so D | P ( | / ) = C(d*d + Λ/y)/||tt||2 for some positive con-
stant C. (A little more work gives Ds = - VαV

as + s/(u υ).)

The ( - 2, -1) case is similar to the (-1,0) case: v*qQ,P( - 2 , - 1 ) is nonzero
only if q = 1 and p = 0 or 1, with v\0(-2, -1) = S and v\£t\(-2, -1) =
J ^ Ω ^ - 1 , 0 ) = S". The induced operator S -• S' will be denoted by Dx\ as in
the case of Z)f, its precise identification is not required.

The ( - 2 , - 2 ) case is similar to the (0,0) case: *>*[(4.4) <8> 0 ( - 2 , -2)] = 0,
and *>i[(4 4) 8 0 ( - 2 , -2)] is the complex:

The analogue of the Penrose transform as described in [13] can now be
given: If U c M is an open subset, let £/':= v~\U) and {/":= μ(U'). The
set U will be assumed Stein and to possess the property that v(μ~ι(x)) Π U is
contractible for every x e F. The latter condition ensures that the canonical
homomorphism Hr(U'\ S?) -> Hr(U\μ~ιy) is an isomoφhism for every r
and locally free analytic sheaf Sf on t/" [6].

The Penrose transform for 0(a, b) is comprised of the following operations:
first the pull-back isomorphism Hr(U", 0(a, b)) -> Hr(U\μ~ι0(a, b)) is ap-
plied. Then the latter cohomology group is expressed in terms of analytic
cohomology on (/' using the resolution 0 -» μ~ι0(a, b) -» Ω'μ(a, b). This gives
the spectral sequence E{« = Hq(U\ Q£(a, b)) converging to E^q =
HP+\υ\μ-χΘ(a,b)\ Finally, each term H*(U'9QP(a9b)) is expressed in
terms of analytic cohomology on U using the Leray spectral sequence, and
since U is Stein (and v is proper), H«(U'M(a, b)) - i/°(ί/, vltoHa, b)).
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Thus the complete transform is a spectral sequence

E{'< = H°{U, p"ΏP(a, b)) => HP+"(U", Θ(a, b)),

where the differentials are those induced by dμ. For the homogeneities consid-
ered earlier, one obtains in particular the following:

Hι(U",O(-l,0)) = kerZ)1*: Γ(tf,0(-l,O)' θ 0(0, -2)') -» T(U,S),

H2(U",Θ(-\,ϋ)) = cokerD*,

H\U",0{-\, -1)) = kerD: T{U,O) -* Γ(ί/,0(- l , -1)'),

H2(U",Θ(-1, -1)) = cokerZ),

H1(U",Θ(-2, -1)) =* kerZV Γ(ί/,S) -» T(u,Φ(-l,0)' Θ C(0, -2)'),

//2(C/",ίP(-2, -1)) = cokerl*!,

H3(U",O(-2, -2)) = Γ(ί/,Ω4)/ί/Γ(ί/,Ω3).

Suppose now that £ is a bundle on U" which is trivial on every complex
line in U". Then μ*E is trivial on each fiber of v, and therefore μ*E = μ*f for
some bundle F on ί/, namely F = v^*E. The bundle F has a holomorphic
connection v induced by dμ via

^ μ £ _ ! Z L . v0Q
ι

μ(μ*E)
μ

and this connection is self-dual since the composition v*μ*E -* pJ[ίι

μ(μ*E) -•

v*Ω2(μ*£) « Ω2_(F) is zero. This is the "Ward transform" of the bundle E.

For example, if E = 0 ( - l , l ) , then μ*E = ^(-1,1X0,0)' A 0(0,0X0, - l ) r ,

where α is as in (4.3). The induced connection is given by

0(0, - 1 ) ' B s * (v β J,V β J + uas/u υ) e 0 ^ ( 0 , - I ) ' ,

as is easily checked. The unitary structure on 0M(O, - 1 ) ' determined by
— hσ ® Λ* is given by (5, s) = u - vsσs.

Returning to the general case, the Penrose transform as described earlier can
be repeated but with Θ(a,b) replaced by E(a,b). Each operator
-* viQ£+1(a, b) is then replaced by

b) ® μ*E] ̂  vi[Q£+ι(a,b) ® μ*E]
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and the lower map is simply the original operator coupled to the connection on

F.

The stage is now set for the Penrose transform of (4.1). Let E be the bundle

on F corresponding to the ί/(w)-instanton (F, V) of index (£, /) on P(V) as in

§3. Since E is trivial on every real line, there is a neighborhood U of P(F) in

M such that E is trivial on μ(v~ι(x)) for every x e ί/, giving an extension of

(F,V) to a holomorphic bundle with holomorphic connection on U, also

denoted (F,V). By restricting U if necessary, it can be assumed Stein, to

satisfy σU = I/, and be such that v(μ~\x))CλU is contractible for each

x e F = ί/". A fixed Stein cover { ϋ j } / e / of F is chosen, and with respect to

this cover all cohomology on F will be computed. The covering is chosen to be

σ-invariant; i.e. there is a map σ: I -» / such that σ(t^) = Uσi. An isomor-

phism such as H\F, Θ(a, b)) = Hι(F9Θ(b,a)) is then given by

Hι(¥,Φ(b,a))9

where /,°(z,w):= /σ / < v(w,z). A compatible σ-invariant Stein cover of U' is

then {n~ι(Ui)Γ\ U'}ier, and with respect to this covering all (analytic)

cohomology on U' will be computed.

In what follows, the majority of the calculations are performed on U' rather

than ί/, and only at the very end will they be pushed down. To simplify the

notation slightly, the symbol E will also be used to denote μ*E\υ>. All

reference to the indexing set / will be dropped, and the cohomology homo-

morphism taking p-cochains into (p + l)-cochains will be denoted by 8. A

/7-cocycle will be referred to as an element of Hp in the obvious abuse of

terminology. When the space on which cohomology is computed is not

specified, it is taken to be F, as before.

Let f2 6 i / 2 ( £ ( - 2 , -1)). Since z% e H2{V <8> £ ( - 1 , -1) ) and

/ / * ( £ ( - l , -1 ) ) = 0, there is a unique 1-cochain ft such that 8ft = zaf2.

Then fx := waft e Hι(E(-1,0)) is the class corresponding to f2 under the

isomorphism of (4.1)(a).

The first isomorphism of (4.1)(b) is the isomorphism of Serre duality: it is

determined by the cup product pairing

Z / 2 ( £ ( - 2 , - 1 ) ) « c JSί1(£ (O, - 1 ) ) ^ i / 3 ( F , 0 ( - 2 , - 2 ) ) .

The transpose of the isomorphism of (4.1)(b) is H\E(-l,0))a fx •-> (ΦΛ)σ

e Hl(E*(09 -1)), φ being the unitary structure on E. Thus the hermitian

form χ 2 on K2* which is the object of interest is now interpreted as
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Consider first the transform of fx e //*(£(-1,0)): μ*fλ = δ/0 for some
unique 0-cochain on U\ giving / := dμf0 e H°(U',Qι

μ Θ £(-1,0)) for the
transform of fx (essentially, / should be pushed down to U to complete the
procedure, but will be left as is for the moment).

Next consider the pull-back of the cochain /f: since δμ*/" = zaμ*f2,

9ι : = ( ^ μ V ί ) A v e Hι(u\£(-i, - i ) ( - i , o ) ' ) .

The class qx is converted into an element of H°(U\ £(-1,0)') as described
earlier: zaqx = δq$ for some unique 0-cochain qξ, giving

as the corresponding section.
Since wa and υa are independent, there exists a 0-cochain with coefficients in

F® £ ( - 1 , -1) on I/', /o

α say, such that wβ/o

fl = / 0 and υj$ = 0. Then

/**/ί = (fjt*/ί' ~ w ^ i ~ δ/oα) + w ^ i + */o> a n d s i n c e t h e contraction of both
wtf and ϋβ with the term in brackets is zero, it is necessarily of the form zagλ for
some 1-cochain gx with coefficients in £( - 2, -1). That is

(4.6) μ /ί = z% + ii'fc + δ/o

α.

Applying δ to (4.6) gives μ*zaf2 = zaδgx, so the cochain gx can be used to
give a representative for the transform of /2. Explicitly, dμgx G Hι(U',Ωι

μ ®
£ ( - 2 , - 1 ) ) , zadμgι = δgo for some unique 0-cochain gg, and finally
g:= w ^ e i/0(ί/',ί2jι <δ> £(-1,0)) is the section which, when pushed down
to ί/, will represent the transform of /2. The aim now is to express g in terms
of /, thus giving the transform of the isomorphisms of (4.1)(a).

Applying dμ to (4.6) gives 0 = ̂ ( μ /ί) = *%gi + (^0)qι + uadμqx +
δ^μ/o

α, using here rfμκ
β = (zα,0). Since qτ = ϋβ/ιVί/« ^,

and therefore

*%gχ = "(β?δ.O) -(0,ιιββ/o/n v) -

It follows that g = -(?,0) - / .
Now the class $ e //°(ί/', £(-1,0)') is related to / in the following

way: since dμqx = (0,δ/o/w υ) and dμ(0Jo/u ϋ) = /Λ (0,1/w v)9 q is
the (unique) section such that Dq = ho/u ϋ, where / = (Λo, hλ) G
Γ(£Λ f ^ O X - l ^ y θ £(- l , l )(0, - I ) ' ) . Hence the transform of (4.1)(a) is
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interpreted as

Λ ~ Λ
(4.7) I I

ί*o>*i) « -(?»0)-(Ao.Ai)
m ΠΊ

kerDf coker/^

where Zty = ho/u ϋ.
The transform of (4.1)(b) is far more straightforward: the isomorphism of

Serre duality, regarded as a pairing, corresponds to the cup-wedge product

H1(U\QI 0 £ ( - 2 , -1)) 0 Λr°(ί//,OJI 0 £ (0, -1))

Under the isomoφhisms H\U'9Q
ι

μ 0 £ ( - 2 , -1)) « ^ ( t / ' . O j 0 £(-1,0))
and H\U\ Ω2( - 2, - 2)) = ^°(ί/ r, Ω (̂ - 1 , -1)), this is simply the symplectic
pairing

- l ,0) ) 0 i/°(Ωi(0, -1)) — ^ i / ° ( Ω μ

2 ( - l , -1))

(a,b) ®(c, rf) i • ad - be

(£, £ * and £/' suppressed).
The effect of the isomorphism ^ ( £ ( - 1 , 0 ) ) ^ ^ 1 ( £ * ( 0 , -1)) is equally

simple to determine: it is just

(4.9) H°(Qι

μ 0 £ ( - 1 , 0 ) ) 3 (Ao, Ax) - ((φAj", (φΛ0)
σ)

e i / ° (Ω^Θ£*(0,-1)) .

Combining (4.7), (4.8), and (4.9) it follows that a representative section in
//°(t/',Ω 2(-l, -1)) for the transform of /x

σ* U φ/2 is s:= hσ

0*φh0 + Λ^φ?
- AJ*φA1, where D̂ r = A0/w ϋ.

Now h0 is an element of H°(U', £(0,0)(-1,0) r) and therefore is simply the
pull-back of a section Ao e J/°(ί/,F(-1,0)0 (after applying μ*£ = y*F).
However, h1 e H°(U\ E(-l,l)(0,-I)') and it is the section ahx e
//°(ί/r, £(0,0)(0, -2)0 which is a pull-back from tΛ Since αασ = -1/w ι;,
this gives

s = A5*φA0 + u υ(Dq)a*φq +.w ϋiahj^φiahj e # ° ( l / , 0 ( - l , - I ) ' ) .
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Multiplying s by u υ to obtain a function and restricting to P(F) gives

using the earlier identification of /)|p ( K ). Since C and # are positive, it follows
that / P ( l / ) sdV ^ 0, with equality iff s | P ( n = 0. Since s is holomorphic, it can
vanish on P(F) iff it vanishes on a neighbourhood of P(F) in M, which would
imply that /, and hence fv are also zero.

The hermitian form on AΓ2* is thus definite. Its sign is independent of the
bundle E since all choices in the transform procedure were independent of E.
This completes the proof of Lemma 5.

5. Moduli spaces of instantons

The monad description of instantons given in the previous sections facili-
tates the explicit calculation of connection forms for the bundles on P(F)
using the Penrose transform or methods similar to those in [2]. Of more
concern to this paper, the description also gives a way to construct concrete
topological spaces parametrizing the instantons of fixed index up to isomor-
phism (gauge equivalence); that is, the moduli spaces of instantons. This is the
main objective of the section. The presentation is based on the construction of
the moduli spaces of stable 2-bundles on CP2 in [18].

The construction of a moduli space relies on the existence of at least one
instanton of the correct index, and unfortunately, the monad description is not
well suited to answering questions of existence except in simple cases where
dimensions are not large: the linear algebra rapidly gets out of hand. However,
by a variety of different techniques, existence or nonexistence can be estab-
lished in all cases and thereafter the results concerning moduli spaces become
more meaningful. The relevant conclusions are listed in (5.4) below.

The section concludes with the construction of the moduli space of SU(2)-
instantons of iiidex 1.

To construct the moduli space of t/(π)-instantons of index (k, I) on P(F),
any one of the monads (3.7), (3.8), (3.9) can be used, but for simplicity, only
the first will be used here; i.e. those of the form

(5.1) M: 0 ^ ^ ( - 1 , 0 ) A Nx Θ # 2 * ( - l , l ) ^ # * ( 0 , l ) -+ 0,

where Kλ, K2, and Nλ are complex vector spaces of dimensions k + \l(l + 1),
k + {1(1 - 1), and n + k 4- \l(l + 3) respectively, and φ = ψ Θ - χ ® Λσ <8>
h* for some positive definite hermitian forms ψ on N and χ on K£.

Since all (hermitian) vector spaces of a given dimension are isomorphic, the
spaces Kv (K2, χ), (Nv ψ) can be fixed once and for all, so each monad of the
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form (5.1) is determined up to unitary isomorphism by

a = {a^a^ e H o m ^ β F, Nx) Θ H o m ( ^ <8> F*, Z2*) = :/?.

For α G Λ, let M(a) denote the sequence (5.1) and let P c /* be the subset for

which M(α) is a monad. For a e P, let E(a):= E(M(a)).

To describe P in more concrete terms, let S be the real vector space

Herm(A\ ® F, Λ^ ® Fί|t)/Herm(A'1, ^ * ) Θ φ0 (where Herm denotes hermi-

tian homomorphisms), and let /: R -> 5 be given by f(a):= a^ax - 1 ®

φ o α£χα 2 l Θ φ0. Then M(α) is a complex iff /(α) = 0. Explicitly, this condi-

tion means that there is a hermitian form λ on Kx (which can be degenerate)

such that

(5.2) (tfi&Q ® ϋ 0 , aιkι ® UX) — (a2k0 ® ΦQVX , fl2A^i €

= (Ίcζλki) <ϋ0, ϋj) for all /:0, fci e Ku υ0, υx e F.

If /(α) = 0, the remaining condition that a e P is that (α^z), α2(M ;)) h a v e

maximal rank at each (z,w>) e F, and it follows that P is an open subset of
ΓHO).

If £ corresponds to a t/(fl)-instanton, then from the display (3.6) it follows

that H2(E) = 0, and since End£ also corresponds to such, H2(EndE) = 0.

Monads of the form (5.1) satisfy the hypotheses of Lemma 4.1.7 of [18], and

the arguments following that lemma can be modified in an obvious way to

show that / has surjective differential at each point of P. (The lemma

effectively identifies H2(EndE(a)) with the complexified cokernel of df(a).)

Hence P c / " x ( 0 ) is a real submanifold of dimension dimR — dimS =

(2k + I2 4- l)(3n + 2k + I2 4- /).

To complete the construction, it remains only to factor out by the equiva-

lence relation of isomorphism. By Lemma 1, M(a) — M(a') iff they are

isomorphic as unitary monads. An isomorphism p: M(a) -> M(a') is of the

form p = (μ,v,p,μ*~ι) for some μ e G L ( ^ ) , v e t/(ψ), p e C/(χ) with

(W!,pfl2) = (a[μ,a'2μ). With //:= G L ( ^ ) X £/(ψ) X t/(χ), the group #

acts on Λ by (/i, f, p) (al9 a2) = (yβj/i"1, pα2jit~
1), and P is an ^-invariant

subset. The dimension of H is (2A: + / + / 2 ) 2 + Λ2(ΛI + 2A: + / 4- I2) +

21(1 + Λ ).

By Lemma 2, End£(α) = EndM(α), and by definition of morphisms of

monads, End M(a) = {(μ, v, p, σ) G End Kx θ End ^ θ End K£ Φ

End A"*: (aλμ, a2μ) = (vav pa2) and (ψtfiσ*, χfl2σ*) = (P^fl!, P*χα2)}. In

particular, it is the kernel of a linear map depending linearly on a e R. Thus

the subset Po c P of elements α such that £ ( α ) is simple is an open subset of

P since it is determined by a rank condition on a. Po is an //-invariant subset,

and the isotropy subgroup at a e PQ is just U(l) ( 1 ^ , 1^, 1^*) = U(\). Thus
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if P o is not empty, the dimension of the manifold Po/H is dim Po — dim H +

1 = 4nk + 2/2(« - 1) - n2 + 1.

The moduli space of f/(«)-instantons of fixed index is thus described as the

quotient of a real submanifold of C^ by a matrix group. (To describe P/H as

the moduli space is a slight abuse of terminology: to be in keeping with

common usage, it would be necessary to show that the bijection P/H -> [£]

has certain nice functorial properties. This is described in detail in [18] in the

context of moduli of stable bundles over CP2: the arguments there are easily

modified to show that P/H is a coarse moduli space for [<f0] (:= isomorphism

classes of simple bundles) if g.c.d. («, /, k + \l{l + 1)) = 1.)

Using either (3.8) or (3.9) in place of (3.7) results in a similar description,

but if the latter is used, the description can be refined so that the moduli space

is expressed as a quotient of a subspace of U(n + 4k + 2/2) by a closed

subgroup.

The moduli spaces of SO(n)- and Sp(Az)-instantons are constructed in the

same manner using (3.11), the main difference being in the dimension counts

(see (5.4) below).

The boundary of the moduli space is contained in the set a e / - 1 ( 0 ) for

which (aι(z),a2(w)) fails to have maximal rank at some (but not all) (z, w) e F.

From (5.2) it can be shown that if aι(z0)k0 = 0 = a2(w0)k0, then a1(z)k0 =

0 = a2(w)k0 for every (z,w) on the real line through (zo,wo). Moreover

~k$\kx = 0 for all kλ e Kx and there are vectors μ e K*, nx e Nx such that

α,(z): Kx/(k0) -> iV<«i>. a2(w): Kx/(kϋ) -> K?/(μ)

are well defined and satisfy (5.2) (with Kx replaced by Kλ/(k0) etc.). If the

new complex is nonsingular, it thus defines a monad corresponding to a

£/(fl)-instanton of index (k — 1,1). This is the manifestation of the "bubbling-

off' phenomenon occurring in the work of Uhlenbeck [20], [21] and Taubes

and which plays a vital role in the work of Donaldson.

The above construction of moduli spaces has less relevance in lacking a

knowledge of the existence of instantons of given topological type. In [4], this

problem is resolved in the case of instantons on S4. For the classical groups G

the results are summarized in the following table, in which Jί k denotes the

moduli space of irreducible G-instantons of index k on X = S4.

(5.3)

G

SU(n)
Sp(n)
Spin(fl)

Ank-

4(« +
4(/i -

dιmJΐk

n2 +
l)k-

Ί)k-

1

- n(2n

- 2«(«

+ 1)
- i )

A

n ί

n ί

n ί

S 2k

ίk

ί 4k,

0

n

iff

Φ 4
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(The index here is as defined at the end of §2; a Spin(«)-instanton of index k
was defined there to be an 5Ό(w)-instanton of index 2k. For Spin(3) it is
required that k be even in order that there exist a bundle let alone a
connection.)

The dimensions listed in (5.3) are also valid in the case X = CP2. Moreover,
the existence theorem of Taubes [19] implies that for each of the groups G
above, irreducible G-instantons of a given index exist on CP2 when they exist
on S4. Finally, from the display (3.6) it follows that for a bundle E corre-
sponding to a G-instanton of index k, H°(E) Φ 0 if the inequality in (5.3) is
violated, implying that E is not simple. Thus (5.3) is true for CP2 also.

Taubes' existence results do not consider the case of ί/(«)-instantons with
nonzero first Chern class or 5O(«)-instantons of odd index. To deal with these
cases, there are two viable methods. The first is to emulate the deformation
argument of [4] proving existence on S4, an approach which gives existence for
U(n) if n > 2 and SO(n) if n > 5 (with the appropriate restrictions on the
index). The second is to modify Taubes' method [19] so that instead of grafting
a sequence of S£/(2)-instantons onto a flat background, it is grafted onto a
self-dual background. With a careful check of estimates of curvatures in
various Lp norms, it is found that Taubes' principal existence theorems remain
applicable in the new setting, and this method deals with those cases not
covered by the deformation argument.

The final conclusions are summarized in the following table in which Jί*
denotes the moduli space of irreducible G-instantons of index k and of index
(kJ)ΐoτG = U(n).

G dimJP* Jί* Φ 0 iff

SU(n) 4nk - n2 + 1 n < 2k

Sp(«) 4{n + 1)A: - Λ(2Λ 4- 1) Λ < A:

(5.4) Spin(n) 4(n - 2)k - \n(n - 1) AZ < 4k

SO(n) 2(n - 2)k - \n{n - 1) n < 2k

U(n) 4nk + 2l2(n - 1) - /ι2 + 1 Λ < 2A: + I2 - a(l 4- b)

Here I = an + b, \b\ < y/i. For 50(3) it is required that k = 0 or 1 (mod 4), A:
must be even for Spin(3) k ^ 4 for 5O(4) and A: > 2 for Spin(4); otherwise
^ # + = 0 .

The fact that ^ * = 0 if the inequalities in (5.4) are violated follows easily
from the monad descriptions, as was earlier indicated.

To conclude, the moduli space of 5'ί/(2)-instantons of index 1 will be
considered in more detail. As predicted by Donaldson [9], it is a cone over CP2.
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From (5.1), the relevant monads are of the form

(5.5) M: 0 -> 0(- l ,O) ^ F θ 0 ( - l , l ) ^ - ? 0 ( O , l ) -> 0,

where φ = φ0 θ - hσ 0 A*. The map α of (5.5) is given by a pair (/?, r) e
End F θ F , and the condition ασ*φα = 0 is equivalent to

(5.6) (pυ0, pvλ) - (v0, r)(r, υλ) = λ(ϋ0, υj, υQ9 υx e F,

for some constant λ.
Since φ0 is positive definite, λ is necessarily real and nonnegative. The

nondegeneracy condition ensuring that im(a) be a subbundle is simply that pz
and wr never be simultaneously zero for (z, w) e F, from which it follows that
λ > 0. The group of unitary automorphisms of M is H = C* X U(φo)X U(l),
and the action of Hon (/?, r)is given by (t,u,eιθ) (/>, r) = {upt~ι,eiθrt~ι).

Multiplying /? by a suitable element of £/(φ0), it can be assumed that r is an
eigenvector of /?, and from (5.6), the corresponding eigenvalue can be taken to
be (λ + Hrll2)1/2. Replacing p, r by (λ + H 2 ) - 1 / 2 / ; , (λ + \\r\\)~ι/2r, one
then has pr = r and λ = 1 - | |r| |2.

From (5.6) again, it follows that p can be multiplied by an element u of
ί/(Φo) with ur = r and up = yj\\ on r-1, so when /? is replaced by up it
follows that

The only remaining freedom is the multiplicative action of ί/(l) on r, so the
moduli space of 5t/(2)-instantons of index 1 on P(F) is canonically identified
with the open unit ball in V modulo the action of U{\). The center, r = 0,
corresponds to the bundle 0(1, -1) θ 0 ( - l , l ) and (5.7) then gives the
canonical monad (5.5) for this bundle. If ||r|| = 1, (5.7) implies that pz = 0 =
HT on {(z, w) G. F: r -1 z = 0 = wr}; i.e. the bundle is singular precisely on the
real line corresponding to[r]GP(F). Using the Penrose transform, an explicit
calculation of the corresponding curvatures shows that as ||r|| -> 1, the curva-
tures become increasingly concentrated at [r] and increasingly flat away from

An equally easy calculation is that of the moduli space of ί/(2)-instantons of
index (1,1). This turns out to be the set of pairs (υv υ2) of linearly independent
vectors in V modulo the action of U(2) on the pair together with an overall
scale factor. If coordinates are chosen so that the line joining [vλ] and [v2] is
not the line at infinity, then the instanton is "located" at a finite point
[UX] G P(F) when [v2] is on the line at infinity, there being one remaining real
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parameter. This interpretation is consistent with the picture of such instantons
arising by way of grafting Sί/(2)-instantons onto a nontrivial background
field.
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