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THE LINEARITY OF PROPER HOLOMORPHIC
MAPS BETWEEN BALLS
IN THE LOW CODIMENSION CASE

JAMES J. FARAN

Let B"= {z € C" ||z|| <1} and let f: B" — B* be a proper holomorphic
map. We shall always take » > 2. Cima and Suffridge [1] have conjectured that
if f extends to a twice continuously differentiable function on the closure of B”
and k < 2n — 2, then f is linear fractional. The purpose of this note is to
show

Theorem. If f: B" — B* is a proper holomorphic map which extends holo-
morphically to a neighborhood of B” and k < 2n — 2, then f is linear fractional.

(It should be remarked that the map (z;,---,z,) = (2,° +, 2,_1,
2,2,,"* "5 Z,_1Z,, 22) shows that the theorem is false if k > 2n — 1; see[1].)

So, let f: B" = B* be a proper map, holomorphic in a neighborhood of B”,
k <2n— 2. Let (z,w) = L?_, z;w, be the hermitian inner product in C?. Let
z’ = f(z). Applying the Hopf lemma to the function r’ = (z’,z’y — 1 on B",
we see that

(1) (2/,2) =1 =u(z,2)(1 - (z,2))

for some real analytic function u(z, Z), nonzero in a neighborhood of dB".
Complexifying, (1) becomes

) (2w = 1= u(z,®)(1 = (z,w)),

where w’ = f(w).

Let z, € 0B". (2) is valid for (z,w) € U X U for some open neighborhood
U of z,. Thus if z is a point on the hyperplane 0, = {{: 1 — ({,w) = 0},
(z,w) € U X U, then z’ = f(z) is on the hyperplane Q;, = {{": 1 — ({',w’)
= 0}, w’ = f(w). Thus f maps points lying in a complex hyperplane to points
lying in a complex hyperplane. Let ¢,: P" — P" be the antiholomorphic map
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sending a point w to its reflection Q. (P™ = the projective space of hyper-
planes in P".) ¢, is an antiholomorphic isomorphism, so we may define a map
f* by the commutative diagram

U Pk
I X
$,(U) P

ie, f*(Q,)= Q.. The point of the remarks above is that if Q, N U # &,
then f(Q,NU)C Q, =f*Q,). (Note that z,€ Q, so{we U: 0, NU
# &} is open and nonempty.)

In the sequel we shall let P" stand for an r-dimensional linear subspace of
projective space, constant, variable, arbitrary, etc., depending on context. For
convenience we write f(P") for f(P" N U).

Let GA,U)=(P'c P P'!NU# @ and P' c Q,, some w € U}. For
P! € G(1,U) define d(P') = the dimension of the smallest linear subspace
containing f(P') and define d = max i gq ){d(P")}. Note that d(P') is
the rank of the k X co matrix whose columns are derivatives of f along P’.
Thus { P': d(P') <d} is given by the vanishing of a collection of d X d
determinants, hence is a proper subvariety of G(1, U). We now have a number
of cases to look at.

Case 0: d = 0. Then f is constant, hence improper.

Case 1: d = 1. Then the image of f is contained in the P” spanned by the
image of Df, and since f takes lines to lines, f is linear fractional.

Case 2: d > 2. Let P"~%" be the (n — 2)-dimensional space of hyperplanes
in P" containing P! € G(1 — U) and P* 94~ !" the (k — d — 1)-dimensional
space of hyperplanes in P* containing P¢ (= span of f(P!)). If P""! D> P,
then the span of f(P""!)D P9 so if also P""! € ¢,(U), then f*(P" ') e
Pk=4-1"je., f* maps P" %"s (the set of hyperplanes containing a line) into
Pk=d4=1"5 Since f and f* are conjugate isomorphic, f maps P"~%’s into
P*~4=1>5 (The exceptions would be those P”"~2"’s corresponding to P!’s with
d(P') < d. This is an analytic subvariety. Since the dimension of the smallest
linear subspace containing f(P"~2) drops on subvarieties, every f(P""?) is
contained in some P¥~471)

Lemma. fmaps P" Vs into P*¥~’s.

Proof. Pick a P""! near Q, and an x € P""! such that Df(x) has
maximal rank. (There exist such (P""! x) since f is proper. Indeed, the
P"~1’s for which we cannot do this form a subvariety. If f(P"~!) ¢ P*¥~4 for
all P"~ s off that subvariety, f(P"~!) € P¥~4 since dimension can only drop
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along subvarieties). Suppose f(P" 1) spans at least a P*~¢*!, Then there exist
multi-indices «a;,- -+, a,_,_4,, and directions v,,---,v,_,_4,, tangent to
P"~1 50 that the P¥~9*1 js spanned by f(x), the image of Df(x) (restricted to
P""') and { D%f(x)(v/*)}. Note k —n—d+2<n-d<n-2. So con-
sider the P"~2 through x spanned by x, v, **,0,_,_4., (and enough other
tangent directions w), to make up a P"~2). Then Df(x)(v;), Df(x)(w,) and
D’f(x)(v/) are contained in the span of f(P”"~?). Thus f(P"~?) spans at
least an n — 2 + k — n — d + 2 = k — d dimensional space, but f(P""?) C
Pk=4=1 This contradiction proves f(P"~ ') c P*¥~“ for P"~1 in an open set
about @, . The lemma for all P"~! follows by analytic continuation.

Let f, = f|pr-1. fi: P""1 > Pk=4 Suppose P""! N B" + @&. Then P"~!
N B" will then be a B"~!, Pk~4 N B* willbe a B¥"“ and f;: B"" ! - BK~¢
will be proper. Note that the codimension has dropped by d — 1 > 1. We can
now proceed by induction.

Codimension 0. k = n, f: P" — P" taking hyperplanes into hyperplanes.
The fundamental theorem of projective geometry then yields that f is linear
fractional. (Or, f: B" — B" is proper, hence must be an automorphism.)

Codimension > 0. Assume the theorem is true for codimension less than
k — n. Then if d = 1 we are done. If d > 2, the maps f, constructed above are
linear by the induction hypothesis, hence f is linear fractional along every
hyperplane intersecting B". It follows that f must be linear fractional.
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