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THE GODBILLON MEASURE
OF AMENABLE FOLIATIONS

S. HURDER

To the memory of J. Vey

1. Introduction

This paper studies how the Godbillon-Vey classes of a foliation % depend
upon its transverse dynamics. The secondary classes are differential topological
invariants of C2-foliations; the Godbillon-Vey classes are the secondary classes
which contain a factor of the Reeb, or modular, class n corresponding to the
generator of H'( g¢,,0,). Sullivan [32], and also Moussu and Pelletier in [26],
posed the question: must a codimension-one foliation % of a compact
manifold M with nonzero Godbillon-Vey class have leaves of exponential
growth? This problem was the focus of much research [25], [23], [3], [9] which
led to G. Duminy’s elegant, unpublished solution [8]. He proved that a
codimension-one foliation % with nonzero Godbillon-Vey class must have a
resilient leaf, and thus there is an open subset of M consisting of leaves with
exponential growth. This result was extended to codimension-one foliations of
open manifolds by Cantwell and Conlon in [5], which is also an excellent
reference for Duminy’s proof.

In this paper, we combine techniques which originated in the study of the
codimension-one problem with recent methods of ergodic theory to prove a
general result relating the Godbillon-Vey classes to the growth of the leaves of
&, in all codimensions. Recall the definition of the growth type of leaf: Choose
a Riemannian metric, for M, and a base point x in a leaf L C M of &#. Give L
the induced Riemannian metric; then the growth function g(L, x,r) is the
volume of the ball in L with radius r centered at x. We say the growth type of
L is exponential if there are constants A, B, C >V so that g(L,x,r)> 4
exp Br + C for all r > 0, subexponential if for all B > 0 there exists 4, C > 0
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with g(L,x,r) < A expBr + C for all r > 0, and nonexponential otherwise.
For M compact, the growth type of L does not depend upon the choice of
Riemannian metric on M or the base point x [27]. Subexponential growth type
is sometimes called quasi-polynomial in the literature [12], [4].

Theorem 1. Let ¥ be a codimension-n, C>-foliation of a manifold M without
boundary. Suppose that for some Riemannian metric on M, almost every leaf of
F  has subexponential growth. Then all Godbillon-Vey classes A,(y:c;) €
H?"*Y(M) are zero. The generalized Godbillon-Vey classes Ay (y,yic;) of
degree greater than 2n + 1 must also vanish.

The proof of Theorem 1 for M compact will occupy §§2-4 of this paper.
The proof for M open is given in §5.

-Let X and Y be closed manifolds with dimension X equal n. Let
p: T'=m(Y)—> Diff ®X define a right action of T on X by C?
diffeomorphisms. The universal cover ¥ of Y has a right T-action by deck
transformations, so T acts on the right on ¥ X X to define a compact manifold
M = (Y X X)/T. The product foliation on ¥ X X with leaves (Y X {x}|x €
X} descends to a C*-foliation & on M. The growth rates of the leaves of %
are no greater than the growth rate of I', and a group must have either
exponential or subexponential growth type (cf. [22]). Thus, we conclude from
Theorem 1:

Corollary 2. Let X > M SYbea fibration with X and Y compact and

suppose m,(Y) has nonexponential, hence subexponential, growth type. Let %
be a codimension-n, C>-foliation of M everywhere transverse to the fibers of .
Then all Godbillon-Vey and generalized Godbillon-Vey classes of F are zero.

When X = S”, Hirsch and Thurston [16] prove that the rational Euler class
of the bundle M — Y is zero if m(Y) is amenable. For a linear action of
m,(Y) on S”, one knows from Heitsch [13] that the Godbillon-Vey classes of #
are proportional to the Euler class of M — Y, so Corollary 2 is a consequence
of these two results in this special case.

Note that given any closed orientable manifold X and any class y,c; €
H?"*Y(W0,), it is possible to find Y and some p as above for which
Au(y,c;) € H?"*(M) is nonzero [18].

Theorem 1 is a consequence of a general program begun in [17] and
continued in [14], [19] to relate the ergodic theory of a foliation with its
differential topological invariants. In the present paper, we begin by showing
the Godbillon measure of % is a special case of a construction which assigns
to each integrable R-cocycle a on the groupoid I' of % a measure g¢ on the
transverse space M /% . The main result of §3 is that g¢ depends only on the
cocycle a up to measurable coboundaries, so g¢ is an invariant of the
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measurable cohomology class [a] of a. This sets up a correspondence:

G: H,,(T, R) - measures on M /%,

[a] - g
The Godbillon measure g = g¢” is obtained from the Radon-Nikodym cocycle
dv: ' > R. The values of g determine all of the Godbillon-Vey classes of %#.
Conversely, if a class Ay (y;c;) # 0, then the cocycle dv is not cohomologous
to zero.

One of the most effective, recently introduced tools for studying characteris-
tic classes is the e-tempering process (cf. [19], [21]), which transforms measura-
ble geometric data witk asymptotic estimates into bounded measurable data
that is analytically useful. The proof of Theorem 1 is obtained by estimating
the Radon-Nikodym cocycle dv of # when restricted to the set of leaves with
subexponential growth. Our main regult (Theorem 4.3 and Proposition 4.5) is
that dv has moderate positive growth on this set. The proof of Theorem 1
concludes by applying the e-tempering process (Lemmas 4.7 and 4.8) to the
cocycle dv in order to conclude # has transverse measures which are
arbitrarily close to being invariant, and are supported on the set of leaves with
subexponential growth. It follows from the methods of §§2 and 3 that the
Godbillon-Vey classes vanish on this set. At the end of §4 we prove Theorem
4.10, a more general result than Proposition 4.5, which applies to measurable
group actions and relates the orbit growth rate to the asymptotic growth rate
of dv. Theorem 4.10 generalizes both Theorem 4.1 of Schmidt [31] and the
main theorem of [28].

A foliation & on M is amenable if the equivalence relation £ on M X M
defined by the leaves of % has a left-invariant mean on a.e. orbit [7]. A
foliation with a.e. leaf of subexponential growth is amenable, as well as the
weak-stable foliations on the unit tangent bundles over surfaces with constant
negative curvature. The first types of foliations have zero Godbillon-Vey
classes by Theorem 1, and the latter types have nonzero classes by explicit
calculation. The measure theory of an amenable foliation is especially simple
by [7]. It is thus natural to ask how the interaction of the geometry of &# with
its measure theory determines the secondary classes, and for a description of
the most general class of amenable foliations which must have zero Godbillon-
Vey classes. For example, does Theorem 1 remain valid when subexponential
growth type is replaced by nonexponential? A related problem is to understand
how the characteristic classes of % are related to the flow of weights of # (cf.
[6], [24]). The only known result is a remarkable vanishing theorem for type
II1-foliations whose flow of weights has no invariant probability measure,
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which was proved by Connes [6] via index theory methods and techniques of
C *-algebra derivations.

The author owes a special debt and many thanks to Anatole Katok for
numerous discussions on tempering processes and on the ergodic theory of
group actions. This paper can be viewed as an application to problems in
foliation theory of Katokis’ general program to study the asymptotics and
special representations of cocycles. The fruitfulness of this new point of view is
evident in Theorem 1 and the results of [19]. Conversations with Jack Feldman
and Arlan Ramsay also contributed to this work in many ways.

The support of the Mathematical Sciences Research Institute is gratefully
acknowledged.

2. Preliminaries

This section begins with a brief description of the Godbillon measure and
Godbillon-Vey classes of a foliation. The holonomy groupoud and principal
groupoid associated to % are then constructed, and cocylces over these
groupoids are introduced. Our treatment of Godbillon-Vey classes follows Bott
[1], that of groupoids follows Haefliger [10] and Bott [2], and the theory of
cocycles is discussed in Ramsay [29], [30] and Moore [24].

Let M be a closed manifold of dimension m and % a C?-foliation of
codimension n on M. For this paper we assume that both TM and the normal
bundle Q - M of % are oriented. By passing to appropriate double covers
this assumption can always be realized. Let w be a nonvanishing n-form on M
which defines the orientation class for the dual bundle Q* — M, so w is a
defining n-form for %#. Let v € I'(M, A"Q) be an n-vector on M such that
w(v) = 1. Define a smooth 1-form on M

n=dgw=i(v)do.

The integrability of % implies dw = w A, and 7 can be viewed as the
infinitesimal modular form for the transverse smooth measure w.

The form 5 A (dn)”" is closed and its cohomology class is independent of
the choices made. The Godbillon-Vey class of % is

gv=[nA(dn)"] € H>"*'(M).
For codimension n > 1, there are additional secondary classes for % of
degree 2n + 1, also called Godbillon-Vey classes. Let ¢; denote the ith Chern

polynomial on g7, the n X n matrix algebra. Then c, is an Ad GL ,-invariant
homogeneous polynomial of weight i. Let

CJ=C{1 e C;’;"



THE GODBILLON MEASURE OF AMENABLE FOLIATIONS 351

be a polynomial of weight |J|=j, + 2j, + -+ +nj, = n. The Chern-Weil
construction using a basic connection yields a closed form, also denoted by c;,
on M of degree 2n with the property that there is an n-form ¢, on M so that
¢; =&, A w. Observe that 9 A ¢, is a closed 2n + 1 form on M. For each
polynomial ¢, of weight n, the cohomology class [n A ¢,] € H?>"*}{(M) is
independent of the choices made. For c; = cf we have [ A ¢]]1=[n A (d7)");
the Godbillon-Vey classes of % are the classes in the collection
{[n A c,]weight ¢, = n} c H>*Y(M).

These are invariants of the concordance class of %. In the notation of [20],
[n A ¢;]= Bu(ric))

The Godbillon measure of % isolates from the above construction the role
played by the form n. Note the restriction of 1 to a leaf LC M of % is a
closed 1-form, and its cohomology class [7|L] € H'(L) is called the Reeb class
of L, or the first flat class of the normal bundle to % along L. The Godbillon
measure uses the Reeb class as an operator on a Hilbert bundle over M to
define new invariants of %#. This was first introduced by Duminy to prove the
Sullivan conjecture in codimension one [8], and further analyzed in Heitsch
and Hurder [14].

Let A(M, %) denote the differential ideal of forms on M which are
multiples of w. Let H*(M, ¥ ) denote the cohomology of this ideal. Note that
for any closed k-form ¢ on M and c; of degree 2n we obtain a class
[c, A ¥] € H?"*k(M, #). The Godbillon operator is the map

g HP(M, %) > HP*Y(M),
[¢] = [n A 9].
For each c, of degree 2n, define the Vey homomorphism (cf. [8])
V(c,): H*(M) > H*"**(M, %),
[¥] - [e; A ¥]

The Godbillon-Vey class [ A ¢;] = g o V{(c;)(1). For the special case p = m
— 1, we make the alternate but equivalent definition

g: H" (M, %) > R,

[¢] - an/\¢-

Given any [{] € H™ 2"~!(M) we obtain a real number g[c, A ] depending
only on g[c,] and [¢]. Poincaré duality for H*(M) implies the class [n A c;]
= g[c,] is completely determined by the values of g on the classes [c; A §] as
[¢] runs through a basis of H™ 2""}(M). Thus, the Godbillon operator
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completely determines the Godbillon-Vey classes of % . In particular, if g = 0,
then all the Godbillon-Vey classes of # are zero. Note this includes the
generalized Godbillon-Vey classes A,(y,y;¢,), as discussed further in [14].

A set B C M is saturated if for each x € B the leaf L, through x is
contained in B. Let # = #(% ) denote the Z-algebra of measurable saturated
subsets of M.

Theorem 2.1[14]. For each B € %, there is a well-defined functional

gs: H" (M, F) - R,
g N O.
[¢] an )

The correspondence B — gz € Hom . (H™ (M, #),R) is called the
Godbillon measure on %. It is a countably additive measure on the quotient
space M /% which is continuous with respect to Lebesgue measure.

The foliation # is ergodic if whenever M = M, U M,, where M,, M, € %,
then one of M, or M, has measure 0. If & is not ergodic, then let
M = U{ | B, be a countable decomposition into disjoint sets with each B; € &.
For any [¢] € H™ }(M, %), then

gle]l = i 8s,[¢].

In particular, for the Godbillon-Vey classes we can decompose [9 A ¢;] =
gle, 1 =232, 8¢, in H*"*Y(M) via this device and Poincaré duality. We
write [ A ¢,]|B for the contribution to [n A c;] from the set B € %. The
localized class [y A ¢;]|B is determined by the operator gg.

Let I, = (—c, ¢) be the open interval and 77 the p-fold product of I.. Given
z € M, a foliation chart about z is a pair (U,®), where U is an open
neighborhood of z and ®: U — I"~" X I is a diffeomorphism onto such that
®(z) = (0,0), and for each x € I”, ®~'(I™"" X {x}) is a leaf of Z#|U. The
chart (U, ®) is regular if there is a foliation chart (W, ¥) with U ¢ W and ¥:
W — I/, d> c, extends ®.

Choose and fix a finite open covering of M by regular foliation charts
((Up@)|a=1,---,d}.Set w =2 I~ " X I — I, the projection onto the
second factor. A pair 1 < a, B < d is said to be admissible if U,p = U, N Up
is nonempty. Let T, = 7o ® (U,) =1/, and for a, B admissible let T,z =
7o @, (U,p). Define

Yag' Toup = Tga>
Vga(X) = ToBgo ®71({0} X {x}), x €T,
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We also insist that for each a the orientation of Q|U, agrees with the
orientation dx = dx; A --- Adx, of I under the map « o ®,. This implies
each y,, is orientation preserving.

The collection {U,, U,g, Ygoll < @, B < d} determines a pseudo-group de-
noted by ¥ = J(%). A typical element y € ¥ is a local diffeomorphism from
some T, into some Tp. The domain of y is denoted V,, an open subset of T,.

The topological groupoid associated to % is constructed from ¥. The object
space of T is the topological measure space I'® = T = U4_ T, the latter
being a disjoint union. The measure p on T is Lebesgue measure, associated to
the smooth volume form dx on T,, which is the restriction to 7, of dx,
A -+ Adx,on R". Given a local diffeomorphism y € ¢ defined in a neigh-
borhood of x, let Germ, denote the germ of y at x. Given x,y € T the
morphisms in I' from x to y are the elements of the set

T2 = {Germ,y|y € ¢ with x € ¥, and y = y(x))}.

Let I'' =U, Iy and Y = U, I}. The composition in T is given by
composition of germs. There are natural maps s,7: T' » T where s(I'}) = x
and r(I{) = y.

The equivalence relation on T given by % defines a principal groupoid
denoted #£. The object space of # is the topological measure space T. For
x, y € T the morphisms from x to y are

Ry — {(x, y) if x and y are on the same leaf,
X & if not.
The composition in £ is given by (x, y)o(y,z) = (x,z). For x, y € T, we
write x ~ y to mean (x, y) € %. The orbit of x € T is the set Z(x)= {y €
T|x ~y)}. Aset XCT is saturated if x € X implies #(x) C X. For a set
B € %, let B N T denote the saturated subset of T whose points correspond
to the leaves of B in M.
Given a saturated set X C T, the restricted groupoid I'| X is the subgroupoid
of ' with object space X and morphisms
X, yeEX
Similarly, the restricted groupoid £|X has object space X and morphisms
2x= U 2.
x,yeX
There is a natural map (s,r): I' = £ of groupoids which is the identity on
objects, and (s, r)}(I}) = (x, y) if x ~ y. The fiber over the pair (x, x) € Z is
precisely the holonomy group I'; of the leaf L, through x. This is the reason
that I' is sometimes called the holonomy groupoid of % (cf. [11]).
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The morphisms vg,: T,z = T, of ¥ are C 2 and thus preserve the smooth
measure class of p on T, so I, # and all of their restrictions are measured
groupoids in the sense of Ramsay [29] or Moore [24].

The groupoids I' and £ inherit orbit-norms from the word metric on 9.
Specifically, given Germ,y € I'}, we say |Germ,y| < N if there are admissible
pairs {(e;, B)|i =1,--+, N} such that Germ,y = Germ (vg,4,° " ° ¥g,00 )5
where the right-hand composition is assumed to be well defined. Similarly, for
(x,y) € 2 wesay |x, y| = |(x, y)| < N if there are admissible pairs {(a;, 8;)|i
=1,---,N} such that y = vg ., © - °¥g4(x). The norm |x, y| is just the
minimum number of flow boxes needed to form a connected chain between x
and y on the leaf containing both points.

Definition 2.2. A measurable R-cocycle on I' is a map a: I' — R satisfying

(a) a(Germ,y,°vy,) = a(Germy,) + a(Germ,y,) for Germ,y, € I},
Germ,y, € I}, ae. x,y € T. ‘

(b) For all y € ¢ with domain V,, the map V, - R, x — a(Germ,y), is
measurable.

Given y € ¢, for each x € V, let Jy(x) € GL,R denote the Jacobian
matrix for dy, with respect to the standard basis of T C TR". Our construc-
tions yield det(Jy(x)) > O for all x € V,.

Definition 2.3. The Radon-Nikodym cocycle of I is the additive measura-
ble cocycle dv: T' —» R,

dv(Germ,y) = logdet Jy(x).

Two measurable cocycles a,b: ' — R are cohomologous if there is a
measurable map f: T — R, that is a collection of maps {f,: T, = Rla =
1,---,d},such thatforally € 4, V, C U,, range y C T,

b(Germ,y) = fzoy(x) + a(Germ y) — f,(x) ae.x€V,.

We denote this by a ~ ; b, or simply a ~ b.

If a ~ ;dv, then a is the Radon-Nikodym cocycle of the maps y € ¥ with
respect to a new measure ji on T, where on T, we have dji, = e/~ - dx. Thus,
the study of the cohomology class of dv is precisely the study of the
divergences of the y € ¥ with respect to all possible absolutely continuous
measures of the forme/- dx on T .

Definition 2.4. Let a: I' > R be a measurable cocycle. Then we say a is:

(a) smooth if for all y € ¢ the map x — a(Germ,y) is smooth (ie. C?) at
alx eV,

(b) tempered, or more precisely c-tempered for a constant c, if forall y € ¥,

|a(Germ,y)| < ¢ -|Germ,y| forae. x€V,
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(c) c-temperedonaset X C T if forall y € 9,
|a(Germ,y)| < ¢|Germ,y| forae. x€ XNV,

(d) integrable if for all yg,, the integral

/ |a(Germ,yg,) | d% < oo.
Tap

For example, the cocycle dv is obviously smooth, and it is bounded and
hence integrable because the foliation charts covering M were assumed regu-
lar.

The above definitions and remarks all have corresponding versions for the
groupoid Z.

A cocycle a: # — R determines a cocycle a: I' = R such that a|I') depends
only on (x, y). Conversely, given a: I' = R so that a|I'} = 0 for almost all
x € T, it is easy to see a descends to a cocycle on Z.

One can similarly define cocycles over I' with range any group G. In
particular, the linear holonomy cocycle dh: I' = GL R is defined by the rule
dh(Germ ,y) = Jy(x). Clearly, dv = logodetodh. The following elementary
result is proved in Proposition 7.2 of [19].

Proposition 2.5 [19]. For almost every x € T, the restriction dh: I'Y - GL,R
is the identity, and dv: T} — R is zero.

Proposition 2.5 implies the cocycle dv: I' — R descends to a cocycle on £,
again denoted dv: # — R. Observe that if a: # — R satisfies a ~ dv, then a
lifts to a cocycle: a: I' = R with a ~ dv because the cocycle and coboundary
conditions are only assumed to hold a.e. x € T.

The space of measurable R-cocycles on I is denoted Z(T', R), and the space
of equivalence classes is denoted by H(I', R) = Z(I', R)/ ~ .

We single out the subspace of integrable classes:

H,,(T, R) = {[a] € H(T, R)| there exists a € [a] with a integrable} .

Similarly, set H(Z%, R) = Z(%, R)/~ with the integrable subspace
Hy,(#, R) C H(®,R).

3. The measure associated to a cocycle

In this section we construct a measure on % corresponding to each integra-
ble cohomology class in H;,(T, R).

Choose a partition of unity {A,,---,A,} subordinate to the open cover
{U,,---,U,} of M by foliation charts.
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Let a: ' = R be an additive cocycle. For each admissible a, B define on

Uyp the function

fﬁa(z) = a(Germﬂoq)a(z)Yﬂa)

and on U, define the 1-form
d

(3.1) e = Y dNg- G
B=1

Lemma 3.2. For a, 8 admissible, 1% = 7§ on U,.
Proof.

e = | X dhg- §ho | = | L dAg(8a + £85)) = ms.
(Zan i) - (2 )

where we use that XgdAg - {o5 = d(XpAp) - {5 = 0.
Proposition 3.3. Let a: ' = R be an integrable cocycle. Then there is a
well-defined measure g on & associated to a, given by

gilel = an“/\4>

for B € B and [¢) € H™ {(M, F).

Proof. On U, set n* A ¢|U, = 1% A ¢. By 3.2 this gives a well-defined
m-form m“ A ¢ on M. The hypotheses a is integrable implies 7% A ¢ is
integrable on U,, so the integral in 3.3 exists. For 7 € A" *(M, %) the
integral [zm“ A dt = 0 by the leafwise Stokes’ theorem [14], so the integral
[zm“ A ¢ depends only on the cohomology class of ¢ in H™ (M, #). q.ed.

For a = dv by the Radon-Nikodym cocycle and {g,(x) = dv(Germ,yz,),
(3.1) becomes the expression for the 1-form n of §2, calculated using the
n-form w on M whose restriction to U, is exp(XgAg{g,) A 75 (dX), and thus
g = g is the Godbillon measure of %.

Lemma 2 of [8] introduced the critically important technique of calculating
g via an unbounded sequence of transverse measures. Our next result is based
upon this technique, and extends Proposition 3.4 of [5].

Theorem 3.4. Let a,b: T — R be integrable cocycles and suppose a ~ b.
Then the corresponding measures g* and g° are equal.

Proof. Foreacha, let f,: T, = R be a measurable function so that for a, 8
admissible

b(Germeﬁa) =fB OYBa(x) + a(Germeﬁa) —fa(x)a X € Uaﬁ‘
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For each positive integer N define

0 - {fa<x) i1, < ¥,
* N-sign{ f(x)} if |f(x)| > N.
Define a cocycle bV: T — R by the rule
bY(Germ yg,) = f§ o vpu(x) + a(Germ,yg,) = fN(x),  x € Upg.
The cocycle b" is integrable, since a is integrable and | f V| is bounded by N.
For ¢ € A"~ (M, %) on U, we have

(0" = n) A= %dkﬂ-(f”l _ %) A
=Y dhg-(ffomody—flomod,) A
B

=d{ZAﬂ'fﬂN°W°q)BA¢} =dT,
B

where 7 is a bounded measurable (m — 1)-form on M having w as a factor.
By the leafwise Stokes’ theorem we obtain [y (" =9 Ap= [gd7 = 0. This
shows that gﬁ”[«p] = g§[¢] for all N. It remains to show:

Proposition3.5. limy_  [zn"" A ¢ = [z1° A ¢.

Proof. We know n”" — 5° pointwise, so it will suffice to dominate the
collection {|n”N[} by an integrable function and apply the dominated conver-
gence theorem. For each x € T, recall that

lalx = max \a(Germxyﬂa)l
(a,B)
admissible
and by assumption [ |a|,dx < oo and [ |b|,dx < oco. For z € U, with
x = mo®_(z), consider

Y dAg - Sha
B

N
$pe |,

). =

<X Id}‘ﬂlz
2 B

< (Z |d)\B|z) - max |bN(GermxyB,,)’
B (a,B)

admissible

< ¢+ max |a(Germ 5,) + f3¥o au(x) = ()|

<cfals+ e max | ¥ o vgalx) — £¥(x)].
Lemma3.6. Forallx € T,

| 780 vpal %) = f¥(x)| <lalx +]b]x.
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Proof. We have

|1 ¥palx) = L) | <[ fp o ¥pa(x) = L) | < 1Bl + ] qed,

By Lemma 3.6, for z € U, with x = 7o ®.(z), |75, < ¢ - (2lal, + |b],),
which is integrable on U,. The {U,} form a finite cover of M, so the proof of
3.4 is complete.

Corollary 3.7.  For each class [a] € H (T, R), there is a well-defined mea-
sure g on & taking values in the continuous dual H™ (M, F )*.

Corollary 3.8. Suppose % admits an absolutely continuous invariant trans-
verse measure | on T, whose Radon-Nikodym derivative dp/dx is almost
everywhere positive on T. Then the Godbillon measure g = 0.

Proof. The hypothesis implies the Radon-Nikodym cocycle dv ~ 0 on T,
sog=g"=g"=0.

4. Subexponential growth

A basic problem is to characterize the classes [a] € H; (T, R) for which
g“ = 0. Certainly if a ~ 0 this is true, but we seek more general criteria which
imply g¢ = 0.

Theorem 4.1. Let a: I' — R be an integrable cocycle, and B € # a mea-
surable saturated set. Suppose that for each € > 0, there is a cocycle b, ~ a such
that b, is e-tempered on B. Then gg = 0.

Proof. Given[¢]€ H" (M, F),

=‘/;.,-’bs/\¢

and this tends to zero with e. g.e.d.
We next consider a growth condition on % which will allow us to apply 4.1
to the Radon-Nikodym cocycle dv: # — R. For each N > 0 set

An(x) = {yl(x,y) € Zand |x,y| < N}.

Definition 4.2. Let B € #. The restricted groupoid #|B has a.e. subex-
ponential growth if

|g§[¢]|=‘f3n“/\¢ <e-f8%|d>\ﬂ|-l¢|

lim sup %log #Ry(x)=0 ae.xeBNT.

N— o0

Equivalently, for each ¢ > 0 there is a measurable function ¢(¢, x): TN B = R
such that

#R\y(x)<c(e,x)-exp(N-¢e) ae.xeBNT.
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Theorem 4.3. Let B € #. Suppose R|B has a.e. subexponential growth.
Then for every € > 0 there is a measurable cocycle a,: # — R with a, ~ dv and
a.: Z|B > R is e-tempered.

Corollary 4.4. Let B € #. Suppose almost every leaf of ¥ in B has
subexponential growth. Then gg = 0.

Proof. By Plante [27], #|B has a.e. subexponential growth and we apply
Theorems 4.1 and 4.3. q.e.d.

Theorem 1 of §1 follows from 4.4 by taking B = M.

Proof of 43. Let XC BN T be the conull saturated set on which the
cocycle dv depends only on the principal groupoid £|X. Let p denote
Lebesgue measure on T = UT,, where each T, = I¢ C R" has the Euclidean
volume form dx = dx; A - -+ Adx,. Fix ¢ > 0. We will construct a coboundary
g.. T — R for which a (x, y) = g.(y) + dv(x, y) — g.(x) is e-tempered on X.

For each § > 0, define the exceptional set

Xs = {x € X|VN > 0, there exists (x, y) € Z|X
with |x, y| > N and dv(x, y) > 8 - |x, y|}.

Observe that X5 C X, for e < §, so X, = U_; X ,, is an increasing union. X,
is the subset of X on which dv has nonzero asymptotic positive growth. The
key to the proof of 4.3 is then:

Proposition 4.5. The set X, has zero Lebesgue measure.

Proof. It will suffice to show u( X;) = 0 for all § > 0. Let ¢(8/4, x) be the
function on X given in 4.2. Set X(k)= {x € X such that ¢(§/4,x) < k}.
Since X = U%_; X(k) a.e., it suffices to show u(X; N X(k)) = 0 for all .

For each integer N > 0, set

X(8,N)={xe X|3x,y) €R, |x,y| <N, dv(x,y)> 8N},
X(8,N,k)=X(8,N)n X(k).

Given x € X(8, N), let y ~ x have |x, y| < N and dv(x, y) > 6N. By the
definition of the norm on %(x), thereis a y € ¢ with |y| = |x, y, x € U,,
y = y(x) and dv(x, y) = dv(Germ,y). It follows that there is an open neigh-
borhood U, of x such that for z € U,, dv(Germ,y) > 8N, and |z,y(z)| < N.
Thus, X N U, € X(8, N) which shows the set X(8, N) is openin X.

Next choose a finite number of disjoint measurable sets {¥},---,V;} and
maps {v;,- -, ¥, } € ¢ where V; is in the domain of y,, and such that

u(X(S,N)— U V,-)=0, lv:| < N,

i=1

dv(x,v,(x)) = dv(Germ,y,) > 8N allxe€ U N X.
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This is possible because the number of maximal elements in ¢ of length < N is
finite.

Now, observe that for x € U, and y € U, if v,(x) = v;(y) and i # j, then
x # y and (x, y) € #,5(x). This implies that the number of y € X(§, N) for
which v;(x) = y;(y), i ~j, is bounded by the number #%,y(x). For x €
X(6, N, k) we have the estimate

#R,y(x) < k - exp(N8/2).
Thus, there is a measurable function
A: X(8, N, k) - {1,2,---,k - exp(N8/2)}
so that if x € U;N X(§, N, k) and y € U, N X(§, N, k) with i # j, and v,(x)

= 7;(y), then A(x) # A(y).
Use A and the collection {y;,- -, v,} to define an embedding of X(3, N, k)
into the disjoint union of (k - exp 8 N /2)-copies of X by the rule
k exp(8N/2)
Ya: X(S’N»k)_) U Xl’
=1

Y4(x) = v,(x) € X, forxe Un X(8,N,k).
Lemma4.6. p(X(8,N,k))< k- p(X)-exp(-6N/2).

Proof.
k-exp(8N/2)-y(X)>/ d)_czf v} dx
Y4 (X(8,N. k) X(8,N.k)
> expdNdx = exp8N - u( X(8, N, k)).
X(8,N. k)
q.2.d.
Now observe that for all N > 0,
(o]
XsnX(k)c U X(8,N,k)
N=N,

so for all Ny > 0,

GOXK) < T a(X(8,N,K)

< ¥ k-p(X)-exp(-6N/2)
N=N,

which tends to zero as N, goes to infinity. g.e.d.
Let X, be the saturation of X,. Since # is discrete, Proposition 4.5 implies

p(Xy) = 0.
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We have now proven that on the saturated conull subset X — )—(0 of X, the
cocycle dv has zero asymptotic positive growth. By Theorem 3.1 of [19], for all
e > 0 there is an e-tempered cocycle a, ~ dv. Therefore, by Theorem 4.1,
gp = 84" = 0, proving 4.3. For the sake of completeness, we include the
elementary construction of the cocycle a..

Given ¢ > 0, define a measurable function f, on T by the rule:

Y, e *™Vexpdv(x,y), x€X-X,,
fu(x) = { ve®x)
1 otherwise.
Lemmad4.7. Forx € X — X,, f.(x) < 0.
Proof. Set k = c(e/4, x). The assumption x & X, implies there exists N,
so that for |x, y| > N,, dv(x, y) < |x, y|le/2. Thus

f(x)= Y e Vexpdv(x,y)+ Y, e *Yexpdr(x,y)

|x.vI< Ny [x, v[> Ny

< )Y e ™Vexpdv(x,y)+k- ), exp(-eN/4) < 0.

X, vI< Ny N>N,
Lemmad4.8. Letx € X — X,,(x,y) € ® and |x, y| = 1. Then
log f,(x) —e < log f,(») + dv(x, y) <logf(x) +e.

Proof.
)= L elepdn(y,)
ZER(y) '
_ Z e—ely.llexpdy(x,z)'CXPd”(yax)'
z€R(y)

Now |y,z| — 1 <|x,z| < |y, z| + 1 implies f(x)e * < f,(y)-expdv(x,y) <
f.(x)e*. Apply log to this to get the result. q.e.d.
Now set g, = log f,: X = R, and set a(x, y) = g.(y) + dv(x, y) — g.x).
Lemma 4.9. a, is e-tempered on X — X,,.
Proof. Let x € X — X, and (x, y) € # with |x, y| = 1. Then

la.(x, y)] =|logf.(y) + dv(x,y) —logf,(x)| <e qed.

This completes the proof of Theorem 4.3.

The main idea in the proof of 4.3 is to show that cocycle dv has zero
positive exponents, and then to apply the smoothing technique of Hurder-Katok
[19] to conmstruct f,. The delicate part of Proposition 4.5 is that we must
squeeze the sets X; into unions of sets with exponentially decreasing size. If
the number of these sets grows exponentially fast, then we are in trouble. The
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natural indexing set for the image is the pseudo-group ¥; however, ¢ may
have exponential growth even though each orbit of # has subexponential
growth. (There are simple examples to show this can happen.) By taking the
summation process in 4.5 over the individual orbits, which have subexponen-
ti#l growth, we circumvent the difficulties that arise from trying to work with
¢. This is perhaps the main difference between our approach and the previous
works in codimension one.

The proof of 4.5 can be adapted to yield a general result of independent
interest in ergodic theory. Let (X, p) be a standard measure space with p a
o-finite measure. Let G be a finitely generated group acting on X by
measure-class preserving maps. Define a groupoid G X X and equivalence
relation £ C X X X from the action, and define orbit norms on % using a
work metric on G (cf. [19]). Let dv: G X X — R be the additive Radon-
Nikodym cocycle, The orbit growth rate of x € X is defined as

g(x) = limsup 71\,—log #Ry(x).
N—- oo

Theorem 4.10. Let G X X — X be a measure-class preserving action of G on
X such that dv is tempered. Suppose there exists A > 0 such that a.e. x € X has
orbit growth rate g(x) < A. Then for all € > 0, there exists a (34 + €)-tempered
cocyclea,: G X X > Rwitha, ~ dv.

Proof. This is a variation on the proof of 4.5, so only the main points are
given. First, the sets X for 8§ > 24 have measure 0, which follows by the same
argument given for the 4 = 0 case. Then define X,, =Uy_; X, 4./, and
note the saturation X,, has measure zero. For ¢ > 0, define f, on the conull
set X — X,, by

fx) = X e CA*OR1 expdy(x, y)

y~x

which converges on X — X, , by estimates identical to those used in 4.7. Then
a(x,y)=f(y)+dv(x,y)—f(x)is (34 + ¢)-tempered. q.e.d.

We draw one more corollary from the proof of Theorem 4.3.

Corollary 4.11. Let F be a C?-foliation of a compact manifold M. Suppose
that no closed transversal to & is null-homotopic, and dv is not moderately
growing; i.e.,

dv(x,y) 0.

lim sup x, 9|

|x, y|— 0

Then 7 M has exponential growth.
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Proof. From the proof of 4.3, we conclude that % must have a leaf L
which is not of subexponential growth. Thus, there is a sequence {r,} with
r; = oo for which the balls B(x, r;) in L centered at x € L have exponentially
growing volume. Then for some foliation chart U with transversal T and some
subsequence of {r,}, the number of points in T N B(x, r;) increases exponen-
tially in {r;}. It is then a standard construction to define, for each point
y € TN B(x,r;), a closed transversal y, to & based at x with length
Y, < 2r; + constant (cf. [28]). The paths {'yy} are all pairwise nonhomotopic,
for otherwise we can construct a null-homotopic closed transversal to %#. Thus,
7,(M, x) does not have subexponential growth, hence it must be of exponen-
tial type. q.e.d.

A codimension-one Anosov foliation of M satisfies both conditions of
Corollary 4.11, so this yields the main result of [28]. Of course, in this case the
only new aspect of the above proof is the method by which we conclude that
not all leaves of &# have subexponential growth. The point of Corollary 4.11 is
that it applies to any % with the “no null-homotopic closed transversals”
condition and for which dv» is not moderately growing; it is not necessary to
have the much stronger condition

lim inf M >0
|x, y|— 0 |x, y|

which is associated to Anosov foliations.

5. The open manifold case

The proof of Theorem 1 given in §§2-4 for M compact also works for M
open with slight modifications:

Theorem 5.1. Let & be a C?-foliation of an open manifold M, and suppose
that for some metric on M almost every leaf has subexponential growth. Then all
Godbillon-Vey classes are zero.

Proof. It suffices to show the cohomology class A.(y,y;c;) € H (M)
evaluates to zero on every cycle in H,(M). Passing to an appropriate double
cover of M, we can assume M and Q — M are orientable. The homology
H,(M) is dual to the compactly supported cohomology H["?(M), so it
suffices to show [, n A A(y;c;) A ¢ = 0 for every compactly supported closed
(m — p)-form ¢ on M. The support of ¢ can be covered by a finite number of
regular foliation charts; we let U denote the union of their domains and K be
the closure of U. Then K is compact, so the transversal T to % in U, defined
by the finite covering by flow boxes, has finite volume.
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Let & be a Riemannian metric on M for which a.e. leaf of # has
subexponential growth. Let % |U denote the restriction of # to U, L a leaf of
F|U and L’ C M the leaf of # containing L. The restriction of /4 to L defines
a distance function on L, and it is easy to see the inclusion L — L' is distance
decreasing. Thus, if L’ has subexponential growth, so must L. We can
therefore assume a.e. leaf of #|U has subexponential growth. This implies a.e.
orbit of the equivalence relation #Z|T C T X T induced by #|U has subex-
ponential growth, with respect to the given finite cover of U by regular
foliation charts. Since U has finite transverse volume, the proof of Theorem
4.3 shows [, A A(y;c;) A ¢ = 0 exactly as in the case M is compact.
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