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THE GODBILLON MEASURE
OF AMENABLE FOLIAΉONS

S. HURDER

To the memory o/J. Vey

1. Introduction

This paper studies how the Godbillon-Vey classes of a foliation IF depend
upon its transverse dynamics. The secondary classes are differential topological
invariants of C2-foliations; the Godbillon-Vey classes are the secondary classes
which contain a factor of the Reeb, or modular, class η corresponding to the
generator of Hι{pέn,On). Sullivan [32], and also Moussu and Pelletier in [26],
posed the question: must a codimension-one foliation J of a compact
manifold M with nonzero Godbillon-Vey class have leaves of exponential
growth? This problem was the focus of much research [25], [23], [3], [9] which
led to G. Duminy's elegant, unpublished solution [8]. He proved that a
codimension-one foliation !F with nonzero Godbillon-Vey class must have a
resilient leaf, and thus there is an open subset of M consisting of leaves with
exponential growth. This result was extended to codimension-one foliations of
open manifolds by Cantwell and Conlon in [5], which is also an excellent
reference for Duminy's proof.

In this paper, we combine techniques which originated in the study of the
codimension-one problem with recent methods of ergodic theory to prove a
general result relating the Godbillon-Vey classes to the growth of the leaves of
J*\ in all codimensions. Recall the definition of the growth type of leaf: Choose
a Riemannian metric, for M, and a base point x in a leaf L c M o f ^ " . Give L
the induced Riemannian metric; then the growth function g(L,x,r) is the
volume of the ball in L with radius r centered at x. We say the growth type of
L is exponential if there are constants A, B, C > ΰ so that g(L, jc,r) ̂  A
expBr + C for all r > 0, subexponential if for all B > 0 there exists A, C > 0
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with g(L, x, r) < A expBr + C for all r > 0, and nonexponential otherwise.

For M compact, the growth type of L does not depend upon the choice of

Riemannian metric on M or the base point x [27]. Subexponential growth type

is sometimes called quasi-polynomial in the literature [12], [4].

Theorem 1. Let IF be a codimension-n, C:)-foliation of a manifold M without

boundary. Suppose that for some Riemannian metric on M, almost every leaf of

IF has subexponential growth. Then all Godbillon-Vey classes Δ*(yχCj) e

H2n + ι(M) are zero. The generalized Godbillon-Vey classes Δ^(y1yIcJ) of

degree greater than 2n + 1 must also vanish.

The proof of Theorem 1 for M compact will occupy §§2-4 of this paper.

The proof for M open is given in §5.

• Let X and Y be closed manifolds with dimension X equal n. Let

p: Γ = TTX(Y) -> Diff(2)Jf define a right action of Γ on X by C2-

diffeomorphisms. The universal cover Ϋ of Y has a right Γ-action by deck

transformations, so Γ acts on the right on Ϋ X X to define a compact manifold

M = (Ϋ X X)/T. The product foliation o n f x l with leaves {Ϋ X {x}\x e

X) descends to a C2-foliation & on M. The growth rates of the leaves of &

are no greater than the growth rate of Γ, and a group must have either

exponential or subexponential growth type (cf. [22]). Thus, we conclude from

Theorem 1:

Corollary 2. Let X -> M -> Y be a fibration with X and Y compact and

suppose iTι(Y) has nonexponential, hence subexponential, growth type. Let IF

be a codimension-n, C1-foliation of M everywhere transverse to the fibers of TΓ.

Then all Godbillon-Vey and generalized Godbillon-Vey classes of IF are zero.

When X = Sn, Hirsch and Thurston [16] prove that the rational Euler class

of the bundle M -> Y is zero if πx(Y) is amenable. For a linear action of

irx(Y) on S", one knows from Heitsch [13] that the Godbillon-Vey classes of &

are proportional to the Euler class of M -» Y, so Corollary 2 is a consequence

of these two results in this special case.

Note that given any closed orientable manifold X and any class yλcj e

H2n + ι(WOn), it is possible to find Y and some p as above for which

Δ+iy^j) €Ξ H2n+\M) is nonzero [18].

Theorem 1 is a consequence of a general program begun in [17] and

continued in [14], [19] to relate the ergodic theory of a foliation with its

differential topological invariants. In the present paper, we begin by showing

the Godbillon measure of IF is a special case of a construction which assigns

to each integrable Λ-cocycle a on the groupoid Γ of & a measure ga on the

transverse space M/!F. The main result of §3 is that ga depends only on the

cocycle a up to measurable coboundaries, so ga is an invariant of the
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measurable cohomology class [a] of a. This sets up a correspondence:

G: H(l)(T,R) -• measures on

The Godbillon measure g = gdv is obtained from the Radon-Nikodym cocycle

dv: Γ -* R. The values of g determine all of the Godbillon-Vey classes of J*\

Conversely, if a class Δ*{yλCj) Φ 0, then the cocycle dv is not cohomologous

to zero.

One of the most effective, recently introduced tools for studying characteris-

tic classes is the ε-tempering process (cf. [19], [21]), which transforms measura-

ble geometric data with asymptotic estimates into bounded measurable data

that is analytically useful. The proof of Theorem 1 is obtained by estimating

the Radon-Nikodym cocycle dv of IF when restricted to the set of leaves with

subexponential growth. Our main result (Theorem 4.3 and Proposition 4.5) is

that dv has moderate positive growth on this set. The proof of Theorem 1

concludes by applying the ε-tempering process (Lemmas 4.7 and 4.8) to the

cocycle dv in order to conclude !F has transverse measures which are

arbitrarily close to being invariant, and are supported on the set of leaves with

subexponential growth. It follows from the methods of §§2 and 3 that the

Godbillon-Vey classes vanish on this set. At the end of §4 we prove Theorem

4.10, a more general result than Proposition 4.5, which applies to measurable

group actions and relates the orbit growth rate to the asymptotic growth rate

of dv. Theorem 4.10 generalizes both Theorem 4.1 of Schmidt [31] and the

main theorem of [28].

A foliation 3F on M is amenable if the equivalence relation f on M X M

defined by the leaves of J^ has a left-invariant mean on a.e. orbit [7]. A

foliation with a.e. leaf of subexponential growth is amenable, as well as the

weak-stable foliations on the unit tangent bundles over surfaces with constant

negative curvature. The first types of foliations have zero Godbillon-Vey

classes by Theorem 1, and the latter types have nonzero classes by explicit

calculation. The measure theory of an amenable foliation is especially simple

by [7]. It is thus natural to ask how the interaction of the geometry of J^ with

its measure theory determines the secondary classes, and for a description of

the most general class of amenable foliations which must have zero Godbillon-

Vey classes. For example, does Theorem 1 remain valid when subexponential

growth type is replaced by nonexponential? A related problem is to understand

how the characteristic classes of !F are related to the flow of weights of IF (cf.

[6], [24]). The only known result is a remarkable vanishing theorem for type

III0-foliations whose flow of weights has no invariant probability measure,
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which was proved by Connes [6] via index theory methods and techniques of
C*-algebra derivations.

The author owes a special debt and many thanks to Anatole Katok for
numerous discussions on tempering processes and on the ergodic theory of
group actions. This paper can be viewed as an application to problems in
foliation theory of Katokis' general program to study the asymptotics and
special representations of cocycles. The fruitfulness of this new point of view is
evident in Theorem 1 and the results of [19]. Conversations with Jack Feldman
and Arlan Ramsay also contributed to this work in many ways.

The support of the Mathematical Sciences Research Institute is gratefully
acknowledged.

2. Preliminaries

This section begins with a brief description of the Godbillon measure and
Godbillon-Vey classes of a foliation. The holonomy groupoud and principal
groupoid associated to & are then constructed, and cocylces over these
groupoids are introduced. Our treatment of Godbillon-Vey classes follows Bott
[1], that of groupoids follows Haefliger [10] and Bott [2], and the theory of
cocycles is discussed in Ramsay [29], [30] and Moore [24].

Let M be a closed manifold of dimension m and J^ a C2-foliation of
codimension n on M. For this paper we assume that both TM and the normal
bundle Q -> M of 3F are oriented. By passing to appropriate double covers
this assumption can always be realized. Let ω be a nonvanishing H-form on M
which defines the orientation class for the dual bundle Q* -> M, so ω is a
defining w-form for &'. Let D G Γ(M, AnQ) be an w-vector on M such that
ω(v) = 1. Define a smooth 1-form on M

η = d#rO) = i(υ) dω.

The integrability of & implies dω = ω Λ η, and η can be viewed as the
infinitesimal modular form for the transverse smooth measure ω.

The form η A (dη)n is closed and its cohomology class is independent of
the choices made. The Godbillon-Vey class of & is

For codimension n > 1, there are additional secondary classes for & of
degree In 4- 1, also called Godbillon-Vey classes. Let c, denote the /th Chern
polynomial on #{n, the n X n matrix algebra. Then ci is an Ad GLw-invariant
homogeneous polynomial of weight /. Let

Cj =
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be a polynomial of weight | / | =j\ + 2j2 + +njn = n. The Chern-Weil

construction using a basic connection yields a closed form, also denoted by cy,

on M of degree 2n with the property that there is an w-form cs on M so that
CJ = O Λ ω Observe that η Λ c ; is a closed 2« + 1 form on M. For each

polynomial c y of weight n, the cohomology class [η A Cj] e H2n+1(M) is

independent of the choices made. For c3 = c\ we have [η Λ cf] = [η Λ (rfη)"];

the Godbillon- Vey classes of !F are the classes in the collection

{[η A cy]|weight Cj = n) c # 2 w + 1 ( M ) .

These are invariants of the concordance class of &. In the notation of [20],

[η A Cj] = Δφ(yxcj).

The Godbillon measure of & isolates from the above construction the role

played by the form η. Note the restriction of η to a leaf L c M of 3F is a

closed 1-form, and its cohomology class [η\L] e H\L) is called the iteeft cώ&s

of L, or the first flat class of the normal bundle to J^ along L. The Godbillon

measure uses the Reeb class as an operator on a Hubert bundle over M to

define new invariants of &. This was first introduced by Duminy to prove the

Sullivan conjecture in codimension one [8], and further analyzed in Heitsch

and Hurder [14].

Let A(M, J^) denote the differential ideal of forms on M which are

multiples of ω. Let i/*(M, &) denote the cohomology of this ideal. Note that

for any closed A:-form ψ on M and c3 of degree 2n we obtain a class

[cj Λψ]G H2n+k(M, &). The Godbillon operator is the map

For each Cj of degree 2«, define the Vey homomorphism (cf. [8])

The Godbillon-Vey class [ η Λ c ; ] = goK(c y)(l). For the special case p = m

— 1, we make the alternate but equivalent definition

[Φ] -» / η A φ .

Given any [ψ] e Hm~2n~ι(M) we obtain a real number g[cj A ψ] depending

only on g[cj] and [ψ]. Poincare duality for H*(M) implies the class [η A Cj]

= g[cj] is completely determined by the values of g on the classes [cj A ψ] as

[ψ] runs through a basis of Hm~2n~\M). Thus, the Godbillon operator
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completely determines the Godbillon-Vey classes of J*\ In particular, if g = 0,
then all the Godbillon-Vey classes of & are zero. Note this includes the
generalized Godbillon-Vey classes Δ*( j ^ c , ) , as discussed further in [14].

A set B c M is saturated if for each JC e 2? the leaf Lx through x is
contained in B. Let 38 = 3S{^) denote the Σ-algebra of measurable saturated
subsets of M.

Theorem 2.1 [14]. For each B e 36, there is a well-defined functional

[φ] -• ( η Λφ.

The correspondence 5 -> g 5 e Homcont(/ί/f l"1(Aί, ^") , R) is called the
Godbillon measure on ^ . It is a countably additive measure on the quotient
space M/& which is continuous with respect to Lebesgue measure.

The foliation J^ is ergodic if whenever M = Mx U Λf2, where Mx, M2 e ^?,
then one of Mx or M2 has measure 0. If J^ is not ergodic, then let
M = UJΊJ J5y be a countable decomposition into disjoint sets with each Bt e ^ .
For any [φ] e Hm~\M, &\ then

00

g [ φ ] = Σ gB,[φ]
1 = 1

In particular, for the Godbillon-Vey classes we can decompose [η A Cj] =
g[cj] = Σ^gfl.fcy] in H2n+ι(M) via this device and Poincare duality. We
write [η Λ Cj]\B for the contribution to [η A cs\ from the set B ^ 3$. The
localized class [η A Cj]\B is determined by the operator gfl.

Let Ic = (-c, c) be the open interval and /f the /?-fold product of /c. Given
z e M, a foliation chart about z is a pair (t/, Φ), where ί/ is an open
neighborhood of z and Φ: U -> /d

m"w X /" is a diffeomorphism onto such that
φ ( z ) = (0,0), and for each x e /;, φ-\I?-n X {x}) is a leaf of JH*7. The
chart (£/, Φ) is regular if there is a foliation chart (W, Ψ) with £/ c W and Ψ:
PF -> Ij\ d > c, extends Φ.

Choose and fix a finite open covering of M by regular foliation charts
{(Uai

 φ«)l« = V , </}. Set 9r = τrc: /c

m"w X /c

w -* Ic", the projection onto the
second factor. A pair 1 < α, β < J is said to be admissible if ί/α)B = UaΓ\ Uβ

is nonempty. Let Γα = τroφα(f/α) = /c", and for α, Ŝ admissible let Taβ =
ίr°Φβ(ί/β/,). Define
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We also insist that for each α the orientation of Q\Ua agrees with the
orientation dx = dxx Λ Λ dxn of I" under the map τ o Φα. This implies
each yβa is orientation preserving.

The collection (t/α, Uaβ,yβa\l < α, β < d} determines a pseudo-group de-
noted by ^ = &{&). A typical element γ e ^ is a local diffeomorphism from
some Ta into some Tβ. The domain of γ is denoted Vγ9 an open subset of Ta.

The topological groupoid associated to 3F is constructed from <&. The object
space of Γ is the topological measure space Γ(0) = T = Uf= 1Γα, the latter
being a disjoint union. The measure μ on T is Lebesgue measure, associated to
the smooth volume form dx on Ta, which is the restriction to Ta of dxλ

Λ Λdxn on ΛΛ. Given a local diffeomorphism γ e ? defined in a neigh-
borhood of x, let Germx denote the germ of γ at x. Given x j e Γ the
morphisms in Γ from * to >> are the elements of the set

Γ/ = {Germxγ|γ e ^ with x e Fγ and y = y(x)}.

Let ΓΛ. = U v e 7 ' Γ / and r v = U x e r r / . The composition in Γ is given by
composition of germs. There are natural maps s, r: Γ -> T where J ( Γ / ) = x
and r ( Γ / ) = ^ .

The equivalence relation on T given by !F defines a principal groupoid
denoted St. The object space of St is the topological measure space T. For
x, y G Γ the moφhisms from x to ^ are

&v — I (x> y) if x a n ( l ^ a r e o n Λe same leaf,
λ I 0 if not.

The composition in St is given by (x, y)°(y, z) = (x, z). For x j e ϊ 1 , we
write x - y to mean (x, y) e ^ . The orto of c G Γ is the set &(x) = { J E
Γ|x - y). A set I c Γ i s saturated if x e X implies # ( * ) c X For a set
5 G ̂ , let 5 Π Γ denote the saturated subset of Γ whose points correspond
to the leaves of B in M.

Given a saturated set X c Γ, the restricted groupoid Γ|X is the subgroupoid
of Γ with object space X and morphisms

Γ|x= U vy.

Similarly, the restricted groupoid St\X has object space X and morphisms

9i\x= U siy.

There is a natural map (s, r): Γ -> 9t of groupoids which is the identity on
objects, and (s, r)(IY) = (x, .y) if x - j . The fiber over the pair (x, x) e ^ is
precisely the holonomy group Γ^ of the leaf Lx through x. This is the reason
that Γ is sometimes called the holonomy groupoid of & (cf. [11]).
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The morphisms yβa: Taβ -+ Tβaof & are C 2 and thus preserve the smooth

measure class of μ on Γ, so Γ, & and all of their restrictions are measured

groupoids in the sense of Ramsay [29] or Moore [24].

The groupoids Γ and 9t inherit orbit-norms from the word metric on ^ .

Specifically, given Germ^γ e Γ/, we say IGerm^γl < N if there are admissible

pairs {(αh /J,.)|ι = 1, , N} such that Germ^γ = G e r m ^ γ ^ o . . . o γ ^ α ) ,

where the right-hand composition is assumed to be well defined. Similarly, for

(x, y) e & we say |x, >>| = |(x, y)\ < N if there are admissible pairs {(α,, /?,)|z

= 1, , N } such that y = γ^ α / v o . . . o yβιCtι(x). The norm |x, j>| is just the

minimum number of flow boxes needed to form a connected chain between x

and y on the leaf containing both points.

Definition 2.2. A measurable Λ-cocycle on Γ is a map a: Γ -» R satisfying

(a) ^ ( G e r m ^ o γ J = α(Germ vγ 2) + ^ ( G e r m ^ ) for G e r m ^ e Γ/,

Germ vγ 2 e Γ;, a.e. x, ^ e Γ.

(b) For all γ e ^ with domain Vγ, the map Vγ -> R, x ^ ^(Germ^γ), is

measurable.

Given γ G ? , for each x e Vy let /y(x) e GLMΛ denote the Jacobian

matrix for dyx with respect to the standard basis of 77" c TRn. Our construc-

tions yield det(/γ(x)) > 0 for all x e Vy.

Definition 2.3. The Radon-Nikodym cocycle of Γ is the additive measura-

ble cocycle dv\ Γ -> R,

dv(Germxy) = logdet Jy(x).

Two measurable cocycles a, b: T -+ R are cohomologous if there is a

measurable map /: T -> Λ, that is a collection of maps {/α: Γα -> Λ|α =

1, , d}, such that for all γ G ? , F y c I/α, range γ c Tβ,

b(Gεrmxy)=fβoy(χ) + ^ ( G e r m ^ ) -/ β ( jc) a.e. JC e F γ .

We denote this by a - f b, or simply a - b.

If 0 ~ fdv, then α is the Radon-Nikodym cocycle of the maps γ G ^ with

respect to a new measure μ on Γ, where on Ta we have dμa = efa - dx. Thus,

the study of the cohomology class of dv is precisely the study of the

divergences of the γ e ^ with respect to all possible absolutely continuous

measures of the form ef dx on T.

Definition 2.4. Let α: Γ -* Λ be a measurable cocycle. Then we say a is:

(a) smooth if for all γ e ^ the map x •-> ̂ (Germ^γ) is smooth (i.e. C 2 ) at

all x e F γ,

(b) tempered, or more precisely c-tempered for a constant c, if for all γ G ^ ,

l for a.e. x e F γ ,
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(c) c-tempered on a set X c T if for all y G ^ ,

^(Germ^γ) | < clGerm^γl for a.e. x e X n Fγ,

(d) integrable if for all yβa, the integral

j \a(Germxyβa)\dx < oo.

For example, the cocycle dv is obviously smooth, and it is bounded and
hence integrable because the foliation charts covering M were assumed regu-
lar.

The above definitions and remarks all have corresponding versions for the
groupoid ^ .

A cocycle a: 0t -> R determines a cocycle a: Γ -> R such that a\T? depends
only on (x, y). Conversely, given a: Γ -> R so that <z|Γf = 0 for almost all
x G Γ, it is easy to see a descends to a cocycle on &.

One can similarly define cocycles over Γ with range any group G. In
particular, the linear holonomy cocycle dh\ Γ -> GLnR is defined by the rule
dh(Germxy) = Jy{x). Clearly, dv = log°det°dh. The following elementary
result is proved in Proposition 7.2 of [19].

Proposition 2.5 [19]. For almost every x e Γ, the restriction dh: T* -> GLrtΛ

w //ze identity, and dv: Γ/ -> i? w Ẑ AΌ.
Proposition 2.5 implies the cocycle d?: Γ -^ Λ descends to a cocycle on ^ ,

again denoted dv: <%-* R. Observe that if a: 01 -> R satisfies a - dv, then a
lifts to a cocycle: a: Γ -> Λ with a - dv because the cocycle and coboundary
conditions are only assumed to hold a.e. x e T.

The space of measurable Λ-cocycles on Γ is denoted Z(Γ, R), and the space
of equivalence classes is denoted by i/(Γ, R) = Z(Γ, R)/ - .

We single out the subspace of integrable classes:

H{l)(T,R) = {[a]<Ξ H(T,R)\ there exists a e [α] withα integrable}.

Similarly, set H(3t, R) = Z(3ί, R)/~ with the integrable subspace

3. The measure associated to a cocycle

In this section we construct a measure on ^ corresponding to each integra-
ble cohomology class in # ( 1 )(Γ, R).

Choose a partition of unity {λv-',λd} subordinate to the open cover
{ί/j, , Uj} of M by foliation charts.
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Let a: Γ -> R be an additive cocycle. For each admissible α, β define on

Uaβ the function

Sβa(z) = ^{GtτmvoΦai2)yβa)

and on Ua define the 1-form

d

(3.1) iβ = Σ dλβ-ζβa.

Lemma 3.2. For α, δ admissible, ηa

a = ηj on Uaδ.

Proof.

\ β

where we use that Σ^ dλβ ξ%8 = ^(Σ^ λ^) ζ%8 = 0.

Proposition 3.3. Let a: T -^ R be an integrable cocycle. Then there is a

well-defined measure ga on 38 associated to a, given by

= ί i " Λ φ

forB <Ξ@ and [φ] e Hm~\M,

Proof. On Ua set ηa A φ\Ua = ηa

a A φ. By 3.2 this gives a well-defined

m-form ηa A φ on M. The hypotheses a is integrable implies ηa

a A φ is

integrable on t/α, so the integral in 3.3 exists. For τ G ^ m " 2 ( M , ^ ) the

integral jBκf A dτ = 0 by the leafwise Stokes' theorem [14], so the integral

fBη
a A φ depends only on the cohomology class of φ in Hm~ι(M, &). q.e.d.

For a = dv by the Radon-Nikodym cocycle and ζβa(x) = dv(Germxyβa),

(3.1) becomes the expression for the 1-form η of §2, calculated using the

fl-form co on M whose restriction to Ua is exp(Σβλβζβ(X) A π*(dx), and thus

gdv = g is the Godbillon measure of J*".

Lemma 2 of [8] introduced the critically important technique of calculating

g via an unbounded sequence of transverse measures. Our next result is based

upon this technique, and extends Proposition 3.4 of [5].

Theorem 3.4. Let a,b: Γ -* R be integrable cocycles and suppose a - b.

Then the corresponding measures ga and gh are equal.

Proof. For each α, let fa: Ta -> R be a measurable function so that for α, /?

admissible

=fβ°yβa(x) + ̂ (Germ^J -fa(x), x e U

aβ.
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For each positive integer N define

ffa(x) if |/.(*)l<tf,
Λr sign{/„(*)} if\fa(x)\>N.

Define a cocycle bN: Γ -> R by the rule

bN(GeτmχΎβa) = fβ

N"yβa(x) + a(Gcτmxyβa) -fa

N(x), x e Uaβ.

The cocycle fe^ is integrable, since a is integrable and \fN\ is bounded by N.
For φ G Am~ι(M, IF) on ί/α we have

where τ is a bounded measurable (m - l)-form on M having ω as a factor.
By the leafwise Stokes' theorem we obtain / β ( / - η f l ) Λ φ = /βί/τ = 0. This
shows that g£"[φ] = g%[<}>] for all N. It remains to show:

Proposition 3.5. l i m ^ ^ JBη
bN A φ = fBη

h A φ.
Proof. We know ηh" -> ηh pointwise, so it will suffice to dominate the

collection {1^*1} by an integrable function and apply the dominated conver-
gence theorem. For each JC G Ta recall that

\a\x= max I a (Germ xyβa) I

admissible

and by assumption fτja\xdx < oo and fTa\b\xdx < oo. For z G Ua with
JC = 7r o Φα(z), consider

max | ^ ( G e r m x γ ^ ) I
(«ip)

admissible

c max |a(Germ^ a) +fβ

N°yβa{x) -/«%*)|

Lemma 3.6. For all x e Taβ,



358 S. HURDER

Proof. We have

\fβN°yβa(x)-f:(x)\<\fβ°yβa(x)-fa(x)\^\b\x + \ax\. q.e.d.

By Lemma 3.6, for z e Ua with x = π ° φ α ( z ) , |τjf \z < c {2\a\x + \b\x\

which is integrable on Ua. The {Ua} form a finite cover of M, so the proof of

3.4 is complete.

Corollary 3.7. For each class [a] e i/ ( 1 )(Γ, Λ), there is a well-defined mea-

sure ga on 38 taking values in the continuous dual Hml(M, &)*.

Corollary 3.8. Suppose !F admits an absolutely continuous invariant trans-

verse measure μ on T, whose Radon-Nikodym derivative dμ/dx is almost

everywhere positive on T. Then the Godbillon measure g = 0.

Proof. The hypothesis implies the Radon-Nikodym cocycle dv - 0 on Γ,

so g = gdv = g° = 0.

4. Subexponential growth

A basic problem is to characterize the classes [a] e H{l)(Γ,R) for which

ga = 0. Certainly if a - 0 this is true, but we seek more general criteria which

imply ga = 0.

Theorem 4.1. Let a: Γ -> R be an integrable cocycle, and B e St a mea-

surable saturated set. Suppose that for each ε > 0, there is a cocycle bε ~ a such

that bF is ε-tempered on B. Then g% = 0.

Proof. Given [φ] e Hm~\M,

ί ηa Λ φ = [ ηh< Λ φ ^ ε [ Σ \dλβ\ ' \Φ\
JB JB JB R

and this tends to zero with ε. q.e.d.

We next consider a growth condition on & which will allow us to apply 4.1

to the Radon-Nikodym cocycle dv: Si -> R. For each TV > 0 set

£N(χ) = {y\(*>y)e * and μc, ji < N).

Definition 4.2. Let K i The restricted groupoid #|2? has a.e. subex-

ponential growth if

limsup — log # ^ ( x ) = 0 a.e. x <Ξ B Γλ T.

Equivalently, for each ε > 0 there is a measurable function c(ε, x): T (Ί B -* R

such that

#&N(x) < c(ε, x) exp(7V ε) a.e. x <Ξ B Π T.
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Theorem 4.3. Let B e 38. Suppose 3ί\B has a.e. subexponential growth.

Then for every ε > 0 there is a measurable cocycle aε: 3% -> R with aE ~ dv and

ae: 3t\B -> R is ε-tempered.

Corollary 4.4. Let B e 3$. Suppose almost every leaf of & in B has

subexponential growth. Then gB = 0.

Proof. By Plante [27], 3t\B has a.e. subexponential growth and we apply

Theorems 4.1 and 4.3. q.e.d.

Theorem 1 of §1 follows from 4.4 by taking B = M.

Proof of 4.3. Let X c B Π T be the conull saturated set on which the

cocycle dv depends only on the principal groupoid 3%\X. Let μ denote

Lebesgue measure on T = UΓα, where each Γα = /" c iί" has the Euclidean

volume form dx = dxx Λ Λ dxn. Fix ε > 0. We will construct a coboundary

ge: T -» R for which aε(x, y) = gε(y) + dv(x, y) - gε(x) is ε-tempered on X.

For each δ > 0, define the exceptional set

Xδ= [x e X\VN > 0, there exists (x, y) e 3t\X

with \x,y\ > Wand dv(x, y) > 8 \x,y\).

Observe that Xs c Xε for ε < δ, so Xo = U^Lx Λr

1/π is an increasing union. XQ

is the subset of X on which dv has nonzero asymptotic positive growth. The

key to the proof of 4.3 is then:

Proposition 4.5. The set Xo has zero Lebesgue measure.

Proof. It will suffice to show μ(X8) = 0 for all 8 > 0. Let c(δ/4, x) be the

function on X given in 4.2. Set X(k) = {x e X such that c(δ/4,x) < fc}.

Since Λ' = U ^ = 1 X(k) a.e., it suffices to show μ(Xδ Π X(k)) = 0 ϊoτ all Λ.

For each integer N > 0, set

, N)= {XΪΞX\ 3 ( X , J ) e Λ, |x, j | < iV, dif(JC, y) > 8N},

Given x e * ( δ , iV), let .y - x have |JC, y| < N and J^(JC, J ) > 8N. By the

definition of the norm on 3t(x% there is a γ e ^ with |γ | = \x, y\, x e t/γ,

^ = γ( c) and rf^(x, j ) = ^^(Germ^γ). It follows that there is an open neigh-

borhood Ux of x such that for z e t/x, J^(Germ 2γ) > 8N, and |z ,γ(z) | < N.

Thus, X Π Uχo X(8,N) which shows the set X(δ, ΛΓ) is open in X.

Next choose a finite number of disjoint measurable sets {Vl9 --,VS} and

maps {y v , ys} c ^ where ^. is in the domain of γ,, and such that

μlχ(δ,N)~ U

dv(x,yi(x)) = ^ ( G e π n ^ . ) > 8N all Λ: G ί̂  Π
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This is possible because the number of maximal elements in ̂  of length < N is
finite.

Now, observe that for x G Ut and y G Up if γ, (jc) = YyO) and / ̂ y, then
x Φ y and (x, j>) G &1N(x). This implies that the number of _y G X(δ9 N) for
which γ.(x) = Ύj(y), i ~ j9 is bounded by the number #&2N(x). For x G
X(δ, N, k)we have the estimate

Thus, there is a measurable function

4 : *(δ,tf,ifc)-> {l,2, ,)t exp(iVδ/2)}

so that if x G Iζ Π ̂ (δ, iV, fc) and j G ί ^ . n ΛΓ(δ, ΛΓ, fc) with / Φj, and ^.(JC)

= Ίj{y\ then ^4(x) # A(y).
Use 4̂ and the collection {γl5 ,y s] to define an embedding of Λ^δ, N, k)

into the disjoint union of (k exp δiV/2)-copies of X by the rule

ΊA'

v,(*) = γ,(-

Lemma4.6. μ(X(8,N,
Proof.

k • exp(δJV/2) μ(X)>

>

N o w observe that for al

so for all No > 0,

μ(χsnx(

X(8,N,k

* ) e x«x)

Λ)) < Λ ί

JyA(X(S,N.

1 No > 0,

n X(k) c

00

A:exp(δΛ^/2)

) - U *ι*

ίoτx ^UtC\ X(δ,

L(X) Qxp(-δN/2).

dx> ί γ
k)) JX(δ,NΛ)

exp δΛf dx = exp δΛf

00

U X(8,N,k)

| μ(jf(δ,ΛU))

*dx

•μ(X(8,N,k)).

q.s.d.

< Σ k μ(X)>Gxp(-8N/2)

which tends to zero as No goes to infinity, q.e.d.
Let Xo be the saturation of Xo. Since 31 is discrete, Proposition 4.5 implies

μ(Xo) = 0.
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We have now proven that on the saturated conull subset X — Xo of X, the
cocycle dv has zero asymptotic positive growth. By Theorem 3.1 of [19], for all
ε > 0 there is an ε-tempered cocycle aε ~ dv. Therefore, by Theorem 4.1,
SB = 8BV = 0' proving 4.3. For the sake of completeness, we include the
elementary construction of the cocycle aε.

Given ε > 0, define a measurable function fε on T by the rule:

I Σ e-£\χ^expdv(x,y), x e X - Xθ9

fe(χ) = yfΞΛ(x)

\ 1 otherwise.

Lemma 4.7. For x e X — Xθ9 fε(x) < oo.

Proof. Set k = c(ε/4, x). The assumption j ί ί l o implies there exists No

so that for |x, y\> No, dv{x, y) < |JC, y\t/2. Thus

fM = Σ e-ε^xv^xpdv(x,y) + Σ e-*x^expdv(x, y)
\χ*y\<N0 \χ,y\>N0

^ ^ e-4χ<y\expdv(x,y) + k Σ exp(-εΛ^/4) < oo.

Lemma 4.8. Let x e X - Xo, (x, y)^0t and |JC, .y| = 1. Then

log/e(x) - ε < log/e(^) + dv(x9 y) < log/β(jc) + ε.

Proof.

= Σ e-4y>*aφdp(y,z)
)

(x, z) expdv(y,x).

Now 1̂ , z\ - 1 < |JC, z\ < \y, z\ + 1 implies fXx)e~ε < /ε(^) exp ̂ ( x , ^) <
fF(x)eε. Apply log to this to get the result, q.e.d.

Now set gε = log/ε: X -> JR, and set ̂ (x, ^) = gε(^) + rf^(x, .y) - gε(x).
Lemma 4.9. aε is ε-ίempered on X — Xo.

Proof. Let x e X - Xo and (JC, J ) e @ with |JC, ̂ | = 1. Then

\aε(x, y) I = |log/e(y) + rfy(jc, j>) - log/e(x) | < ε. q.e.d.

This completes the proof of Theorem 4.3.
The main idea in the proof of 4.3 is to show that cocycle dv has zero

positive exponents, and then to apply the smoothing technique of Hurder-Katok
[19] to construct fε. The delicate part of Proposition 4.5 is that we must
squeeze the sets Xδ into unions of sets with exponentially decreasing size. If
the number of these sets grows exponentially fast, then we are in trouble. The
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natural indexing set for the image is the pseudo-group ^ however, ^ may
have exponential growth even though each orbit of ^ has subexponential
growth. (There are simple examples to show this can happen.) By taking the
summation process in 4.5 over the individual orbits, which have subexponen-
ti£l growth, we circumvent the difficulties that arise from trying to work with
^. This is perhaps the main difference between our approach and the previous
works in codimension one.

The proof of 4.5 can be adapted to yield a general result of independent
interest in ergodic theory. Let (X, μ) be a standard measure space with μ a
σ-finite measure. Let G be a finitely generated group acting on X by
measure-class preserving maps. Define a groupoid G X X and equivalence
relation * c l x l from the action, and define orbit norms on ^ using a
work metric on G (cf. [19]). Let dv: G X X -> R be the additive Radon-
Nikodym cocycle^The orbit growth rate of x e X is defined as

g(x) = limsup — l o g # ^ ( x ) .

Theorem 4.10. Let G X X -> X be a measure-class preserving action of G on
X such that dv is tempered. Suppose there exists A > 0 such that a.e. x e Xhas
orbit growth rate g(x) < A. Then for all ε > 0, there exists a (3A + ε)-tempered
cocycle ae: G X X —> R with aε — dv.

Proof. This is a variation on the proof of 4.5, so only the main points are
given. First, the sets Xδ for δ > 2A have measure 0, which follows by the same
argument given for the A = 0 case. Then define X2A = U™=ιX2A + ι/n> a n c *
note the saturation X2A has measure zero. For ε > 0, define fe on the conull
set X - X2A by

Λ ( * ) = Σ ^-(3/ί + ε ) l ^ v | exp^(jc,>;)
y - x

which converges o n l - X2A by estimates identical to those used in 4.7. Then
ae(x, y) = fe(y) + dv(x, y) - fE(x) is (3A + ε)-tempered. q.e.d.

We draw one more corollary from the proof of Theorem 4.3.
Corollary 4.11. Let & be a C1-foliation of a compact manifold M. Suppose

that no closed transversal to !F is null-homotopic, and dv is not moderately
growing', i.e.,

Then mλM has exponential growth.
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Proof. From the proof of 4.3, we conclude that <F must have a leaf L

which is not of subexponential growth. Thus, there is a sequence {r} with

rj -> oo for which the balls B(x, η) in L centered a t j c G L have exponentially

growing volume. Then for some foliation chart U with transversal T and some

subsequence of {r7}, the number of points in T Π B(x, η) increases exponen-

tially in {η}. It is then a standard construction to define, for each point

y G T Π B(x, ry), a closed transversal γ to !F based at x with length

γΓ < 2η: + constant (cf. [28]). The paths {γ^} are all pairwise nonhomotopic,

for otherwise we can construct a null-homotopic closed transversal to &'. Thus,

π{(M, x) does not have subexponential growth, hence it must be of exponen-

tial type, q.e.d.

A codimension-one Anosov foliation of M satisfies both conditions of

Corollary 4.11, so this yields the main result of [28]. Of course, in this case the

only new aspect of the above proof is the method by which we conclude that

not all leaves of & have subexponential growth. The point of Corollary 4.11 is

that it applies to any J*" with the "no null-homotopic closed transversals"

condition and for which dv is not moderately growing; it is not necessary to

have the much stronger condition

liminf JM
|Λ-,V|—OO I*>

which is associated to Anosov foliations.

5. The open manifold case

The proof of Theorem 1 given in §§2-4 for M compact also works for M

open with slight modifications:

Theorem 5.1. Let & be a C2-foliation of an open manifold M, and suppose

that for some metric on M almost every leaf has subexponential growth. Then all

Godbillon-Vey classes are zero.

Proof. It suffices to show the cohomology class Δ*(y^jCj) e HP(M)

evaluates to zero on every cycle in Hp(M). Passing to an appropriate double

cover of M, we can assume M and Q -» M are orientable. The homology

Hp(M) is dual to the compactly supported cohomology H™~P{M\ so it

suffices to show fMη A Δ(yfCj) A φ = 0 for every compactly supported closed

(m - p)-ΐorm φ on M. The support of φ can be covered by a finite number of

regular foliation charts; we let U denote the union of their domains and K be

the closure of U. Then K is compact, so the transversal T to ϊF in U, defined

by the finite covering by flow boxes, has finite volume.



364 S. HURDER

Let A be a Riemannian metric on M for which a.e. leaf of ^ has
subexponential growth. Let ^\U denote the restriction of & to U, L a leaf of
1F\U and U c M the leaf of & containing L. The restriction of h to L defines
a distance function on L, and it is easy to see the inclusion L -> L' is distance
decreasing. Thus, if U has subexponential growth, so must L. We can
therefore assume a.e. leaf of ^\U has subexponential growth. This implies a.e.
orbit of the equivalence relation 9t\T c T X Γ induced by ^\U has subex-
ponential growth, with respect to the given finite cover of U by regular
foliation charts. Since U has finite transverse volume, the proof of Theorem
4.3 shows Ju TJ Λ Δ(yrCj) Λ φ = 0 exactly as in the case M is compact.
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