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THE WITTEN COMPLEX AND THE
DEGENERATE MORSE INEQUALITIES

JEAN-MICHEL BISMUT

Abstract

In this paper, we use the complex introduced by Witten to prove the Morse
inequalities, in the case where the critical points of the Morse function are
isolated, and also the degenerate Morse inequalities of Bott. The method is
based on a natural extension of the heat equation method for the proof of the
index theorem. In the degenerate case, the de Rham complex is twisted using
a nontrivial transformation of the exterior algebra on the neighborhood of the
critical points. The cohomology of a manifold is compared to the L2

cohomology of certain fiber bundles over the critical submanifolds. A L2

version of the Thorn isomorphism is then proved, from which the degenerate
Morse inequalities follow.

0. Introduction

In a very interesting paper [19], Witten has shown how to prove analytically
the Morse inequalities for a Morse function h with isolated critical points. The
proof involves the construction of a family of complexes indexed by / > 0
associated with the operator dh/t defined by

(0.1) </*/' = e'h/tdeh^.

By studying the lower part of the spectrum of the corresponding Laplacian Πh/t

as ί |40, Witten proved the Morse inequalities. Also, Witten suggested a
method of proof of the degenerate Morse inequalities of Bott [9] when h has
critical submanifolds.

In [7], we gave a probabilistic proof of the Atiyah-Singer index theorem and
of the corresponding Lefschetz fixed point formulas, based on the heat
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equation method developed by Atiyah, Bott and Patodi [1] who identified the
index of an operator to the difference of traces of certain heat kernels.

After the completion of [7], we noted that when the critical points of h are
isolated, the heat equation method could be adapted to the proof of the Morse
inequalities, the main difference being that the equality in the proof of the
index theorem should be replaced by an inequality. This is briefly done in §1.

When checking routinely the possible extension of this method to the
degenerate case, we immediately noticed that several obstacles made this
extension difficult. Here we list some of these difficulties, and indicate how
they are solved in this paper.

(1) Replacing h by h/t would be insufficient to produce the localization of
the lowest eigenforms on the critical submanifolds, because this procedure
would precisely be insufficient on the critical submanifolds themselves.

(2) A natural idea is then to expand the metric by the factor \/t in
directions transversal to the critical submanifolds, while keeping invariant the
metric on the critical submanifolds. In the case of isolated critical points this is
equivalent to replacing Ώh/t by tUh/t. However we noticed that if there are
nontrivial critical submanifolds, if V dh is not parallel on the critical
submanifolds, the localization of the eigenfunctions (i.e. of the 0 forms which
are eigenvectors) does not take place.

We were then led to adapt the choice of the metric in M to the given
function Λ, this by using the Morse lemma in the degenerate case [13]. If Mx is
a critical submanifold, then (/, E) a tubular neighborhood of Mλ exists such
that E splits into

(0.2) E = E+Θ E-

where E+, E~ are Euclidean bundles, and moreover

(0.3) h \ 2 2

A natural metric then exists on the Riemannian manifold E which can be
extended to the whole manifold Λf. This is done in §2(a).

(3) With such a choice of the metric in M, we produced the localization of
the eigenfunctions when expanding the metric in the directions E by the factor
\/t. However, much to our dismay, we noticed that localization of the
eigenforms of degree: > 1 did not take place in general, because in general the
bundles £ + , E~ are not flat. This is of course a basic difference with the case
where the critical points are isolated. After studying carefully the simple case
where M is exactly the Riemannian manifold E, and where h is given by (0.3),
we noticed that in order to produce the localization of eigenforms, the
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transformation of the de Rham complex (0.1) was not adequate. Instead (0.1)
has to be replaced by

(0.4) e-h"τίtdeh"[^V\

where τft is a linear transformation of the forms which acts according to their
degree in the vertical directions.

The expansion of the metric in the vertical directions was then no longer
needed, but of course on 0 forms, the new Laplacian associated with (0.4) acts
in the same way as the Laplacian constructed by expanding the metric. The
transformation (0.4) has a natural interpretation in terms of the dilations
acting on E+, E~. It is introduced in §2(d).

(4) After obtaining the adequate localization of eigenforms on the critical
submanifolds, we prove inequalities comparing the Betti numbers of M to the
Betti numbers of the L2 cohomology of E for the operator da given by

(0.5) da = exp \-a \y+

dtxp \y-

These inequalities are proved in §2(g). This is an unpleasant feature of the
method. In fact we then have to study the Hodge theory for the operator da on
a fiber bundle. Clearly Hodge theory is not exactly the adequate tool to study
the cohomology of a fiber bundle!

We were then led to prove that for a large enough, the L2 cohomology in E
associated with da is exactly the ordinary cohomology on £ + combined with
the compactly supported cohomology in E~. This is done in §2(h) via a
functional version of the Thorn isomorphism on E~, and of the retraction of
E+ on Af, and also the Mayer-Vietoris argument.

We have not addressed the question of proving analytically that an explicit
model for the cohomology of the manifold can be constructed using the critical
points, as first shown by Smale [17] (see Witten [19]). This question has
recently received a complete analytical solution by Helffer and Sjόstrand [12],
when the critical points are isolated.

Our treatment of the localization on the critical submanifolds is probabilis-
tic, and uses our result in [4], as well as estimates on certain heat kernels which
are obtained using the Malliavin calculus [4], [6], [16], [18]. In the degenerate
case only the main steps are indicated. We have refrained from giving
motivation for the introduction of such and such objects like τ^ in the hope
that the presentation of the problem given here is explicit enough.

Although our method is certainly not the simplest for the proof of the
degenerate Morse inequalities, we hope it sheds some more light on the strange
interplay of algebraic and analytical considerations which appears in the article
of Witten [19].
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For the probabilistic terminology used in this paper, we refer to [5], [8], [6,
Chapter 2], [7, §2]. In particular if X is a continuous semimartingale, then dX
denotes its differential in the sense of Stratonovitch and δX its differential in
the sense of Itδ.

1. Morse inequalities and the Witten complex: the nondegenerate case

In this section, we prove the Morse inequalities for a Morse function h
whose critical points are isolated.

In (a), the main assumptions and notations are introduced, and the Witten
complex [19] associated with the operator e~hdeh is described.

In (b), the basic inequalities on the traces of certain heat kernels are proved.
These inequalities are the natural extension of the corresponding equalities for
the proof of the index theorem using heat equation methods [1].

In (c), the Morse inequalities are proved by studying the asymptotics (for
small time) of the traces of certain heat kernels.

In §2, we will adapt these techniques to the case where the critical points of
h are degenerate. However the analysis will be much more difficult.

(a) Assumptions and notations. M is a C°° compact connected Riemannian
manifold of dimension n.

V denotes the covariant differentiation operator with respect to the Levi-
Civita connection on M.

AP(M) denotes the set of ^-differential forms on Λf, and Λ(Af) is the
exterior algebra

(1.1) Λ ( M ) = φ Λ ' ( Λ f ) .
o

The operators d,8 acting on the C00 sections of Λ(M) are defined in the

usual way. The Laplacian D is defined by

(1.2) D = ( J + δ) 2 .

Bp (0 < / ? < « ) are the Betti numbers of M. h is a C00 function on M with
values in R.

Recall that if A is a («, n) tensor, A acts as a derivation on Λ(M), so that if
a G A\M) and X e TM, then

(1.3) (Aa)(X) = -a(AX).

Following Witten [19], we now define the operators

(1.4) dh = e-hdeh, 8h = e"8e-h, Dh = (</* + 8h)\
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Clearly, (dh)2 = (δh)2 = 0. As observed by Witten [19], the complex associ-
ated with the operator dh has the same Betti numbers as the original de Rham
complex associated with d.

An easy computation shows that

(1.5) DΛ = D+|d/z|2-Δ/ί-2v -dh.

Remark 1. If α, β are C 0 0 /?-forms, set

(1.6) <«./»>*-/ (a,β)(x)e-2hMdx.

The adjoint operator of d
by

(1.7)

which also writes as

(1.8)

Set

(1.9)

Clearly,

(1.10)

Moreover,

(1.11)

for the scalar product ( , ) h is the operator δ'h

δ'h = e2hδe-2h

o fh __ o i 'Λ

• = ̂ α + 0 ) .

Ό'h = D + 2Ldh.

D / Λ = ehΏhe~h

As in Witten [19], we will now scale adequately the function h.

Definition 1.1. For t > 0, D, and Dj are the operators

(1.12) D, = / D Λ / ' , D; = / D / Λ / / .

For α > 0 and ί > 0, Pt

a(x, y) denotes the C°° kernel associated with the
operator e~an'/2

9 and Pt'"(x, y) denotes the C00 kernel associated with the
operator e~an''/2.

Using (1.11), we see that

(1.13) P/«(x,x) = P/α(x,x).

In what follows we can then use indifferently Pt

a or P/α.
Definition 1.2. Jp(a, t, x) denotes the trace of the linear operator Pt

a(x, x)
acting on KP

X(M). Kp(a, t) is defined by

(1.14) Kp(a,t)= f Jp(a9t9x)dx.
M
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(b) The basic inequalities. We now have the following result, which is the

adequate substitute for the well-known trace equality in the heat equation

method for the proof of the index theorem in Atiyah, Bott and Patodi [1].

Theorem 1.3. For any a > 0, t > 0 andp such that 0 < p < nywe have

(1.15)
Kp(a, t) - Kp_γ(a,t) + •••+ (-l)PK0(a, t)

>Bp-Bp_ι + •••+(-l)pB0,

where equality holds for p = n.

Proof. Note that the Witten complex has the same Betti numbers as the

original de Rham complex. Moreover let λ be a positive eigenvalue of D,, Fλ

the corresponding eigenspace in the set of C 0 0 differential forms, which breaks

into Fλ°, , Fχ (where F£ is the set of /?-forms which are eigenvectors for the

eigenvalue λ). Since λ is nonzero, the sequence

(1.16) 0 - » Fλ°-> Jtf-» • -> Fλ"-» 0
jh/t jh/t jh/t

is exact so that for any p, if R{ is defined by

R£ = dimF£ -dimFΓ1 + ••• + ( - l ) / 7 d i m F λ ° ,

then R{>0 and Rn

λ = 0. Now the left-hand side of (1.15) is given by

(1.17) ^ - ^ _ 1 + . . . + ( _ i ) ' * 0 + Σe-λtRl

The theorem is proved.

(c) The Morse inequalities: the nondegenerate case. We now assume that h

is a Morse function, i.e. h has a finite number of critical points jcl5 , xt on

which V dh is nondegenerate (recall that we use the convention (1.3)).

expαV dh(X ) acts on Λ^ ( M ) Tr^expαV dh{xt) denotes the corre-

sponding trace.

We will now make t U 0 and later a TT + oo in (1.15). We first have:

Theorem 1.4. As t ϋ θ , Kp(a, t) has a limit Kp(a) given by

i

(1.18) *_(«)« Σ
Tr,[expα(y dh)(x,)\

|det(/-exp-α(v Λ)(*/))l

Proof. We give a proof based on the results in [4]. Weitzenbόck's formula

shows that:

(1.19) D = - Δ " + L,

where Δ" is the horizontal Laplacian, and L is a bounded matrix valued

operator of order 0.
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We now proceed as in [7, Theorem 2.15]. We also use the notations of
[6]-[7]. Let N be the bundle of orthonormal frames on M, Yv- , Yn be the
standard horizontal vector fields on N [6, Chapter 2] and π be the canonical
projection N -> M.

If (W, P) is the probability space of the standard Brownian notion wt —
(w,1, , w") in Rn, consider the Stratonovitch differential equation on N,

(1.20) du = Σ YM l/ϊάΛv1", w(0) = uθ9

ι = l

and the associated flow of diffeomoφhisms of N, ψs(yfta dw, •), which de-
pends smoothly on yfΰx (see [3, Chapter I], [6, Chapter II]).

Take x0 e M and w0 Ξ N such that πw0 = JC0. Set

(1.21) < = ψ,(i/m Λv, u0), x? = πu's
a,

TQ denotes the parallel transportation operator along xίa from fibers over x's
a

to fibers over x0 [3, Chapter VIII], [6, Chapter II]. Let UJ*a be the process of
linear operators acting on AXQ(M) defined by the differential equation

(1 22) d U r = U %a\aτiV ' dh(<X^ ~ "taToL(x'sa)} *>

If E'x
a

 x is the expectation operator for the (time scaled) Brownian motion x[a

conditional on x[a = x0 (see [4, Chapter II]), we find using (1.5) that if
pt(X, y)is the heat kernel for the Laplace Beltrami operator on M, then

PHx x)-v (x x )E'° ίexp

(1.23) L

/ « Γ
\ ~aJ
l °

Take ε > 0. Set

(1.24) Ht= {jcoeΛ/;inf</(Λ,jc,)<ε}, 1 < i < /.

By [6, Theorem 3.12], we know that as 1140, for any k e N

(1.25) Px

a:J sup d(xo,x't ) > ε/2J = o(tk)

uniformly on M. Moreover by the estimate of Azencott [2, VIII, Proposition
4.4] we know that for N large enough, for any x0 G M

(1.26) Pat(xo>Xo)<C/(at)N.

Since \dh\ > η > 0 on ci/ ε / 2, we see from (1.25), (1.26) that as /

(1.27) ί Jp(a,t,x)ds~ ί Jp(a,t9x)dx.
JM P JH,
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We can then use the asymptotic representation of the conditional Brownian
bridge measure given in [6, Theorem 4.16]. Using the notations of [6], we know
that if Px is the law of the standard Brownian bridge wι in Rn, with
wo = wl= ° » t h e n f o r a n y k G N > a s t aQ

(1.28)
I ^ )

dP^ + oi
w , JC 0 )

where o(tk) is uniform on M.
Using (1.27) and (1.28), we are essentially back to the situation we had

considered in [7, Theorem 4.9] for the proof of the Lefschetz fixed point
formulas of Atiyah-Singer. In fact we evaluate fd(xi,x)<ε^p(a^^x)^x using
geodesic coordinates centered at xi9 so that

(1.29) ί Jp(a,t9x)dx= ί Jp(a,t,X)k(X)dX
;</(ii,i)<ί J\X\<e

with k(0) = 1. By doing the change of variables X = ]ftX\ using (1.28) and
proceeding as in [7, Theorem 4.9], we find that if ul9 , w7 are orthogonal
frames at xγ, , xh then

KP(«) = Σ ί exp/f ΔA(jcf ) - ̂

(1-30) ' dc

.Ίrpexp{av - dh(Xi)} dP^w1)—^-.
(v2ττ)

Now c, 4- u w) is a Brownian bridge in Tx M starting and ending at cf . Recall
that by a well-known formula [15, p. 206], if b is a one-dimensional Brownian
bridge starting and ending at x, then

(1.31) £exp- £

By putting v dh(xi) in diagonal form and using (1.31), (1.18) immediately
follows.

Remark 2. There is eventually a much simpler argument using (1.10) and
(1.13) which would make the proof strictly identical to the proof of the
Lefschetz fixed point formulas.
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Let Mp be the number of critical points of h whose index is equal to p (i.e.,
the matrix v dh has exactly p negative eigenvalues).

We now have
Theorem 1.5. As a t +00, Kp(a) converges to Mp.
Proof. The argument is closely related to Witten [19]. If λ\ λ7

w are the
eigenvalues of V dh(xi), the eigenvalues of V dh(xi) on Ap

x ( Λ / ) are all the
possible sums -Σ£ = 1 λ

1 ,̂ where the j k are distinct. Each term in the right-hand
side of (1.18) has a limit, which is 1 if the index of xt is /?, and 0 if not. q.e.d.

By collecting the results of Theorems 1.3,1.4 and 1.5 we get
Theorem 1.6. For any p (0 < / ? < « )

(1.32) Mp-Mp_ι+ ••• +(-l)pM0>Bp-Bp_1+ ••• + ( - l ) * 2 » 0 .

For p = n, there is equality in (1.32).

2. The Morse inequalities: the degenerate case

In this section, we prove the Morse inequalities of Bott [9] in the case where
the critical points of h are degenerate.

In (a), we construct a special metric on the manifold M. In fact, contrary to
the case where the critical points are nondegenerate, we need to adapt the
metric to the particular function h. Using the Morse lemma in the degenerate
case, we embed each critical submanifold M, in a tubular neighborhood
(/, £ + Θ £-)sothat

(2.1)

We extend the natural metric on the bundle E = E+Θ E to a metric on M.
In (b), a natural connection V on TE is constructed which has in general a

nontrivial torsion.
In (c), the operators d,8 on the Riemannian manifold E are briefly

described using the connection V.

In (d), the de Rham complex of M is transformed as in Witten [19].
However contrary to what is done in Witten [19] and in §1, the new complex is
obtained by means of a nonscalar operator which acts on forms on a neighbor-
hood of the critical submanifolds according to their degree in the vertical
directions.

In (e), we give a probabilistic construction of the heat kernel in the vector
bundle E associated with the twisted Laplacian.
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In (f), the Witten complex in the fiber bundle E associated with the operator

(2.2) J«

is briefly described.

In (g), by computing the asymptotics of traces of certain heat kernels, the

cohomology of M is compared with the L2 cohomology of the fiber bundles E

for the operator da. The proof is in principle very long, since there are many

terms whose behavior must be exactly estimated. We only verify the main

points of the proof.

In (h), we prove the essential result that the L2 cohomology for da on E is

the ordinary cohomology of £ + and the compactly supported cohomology in

E". This is proved via a L2 version of the Thorn isomorphism, which is of a

more functional nature here. The proof of this fact necessitates a Mayer-

Vietoris argument.

Finally the degenerate Morse inequalities are proved in (i).

(a) The choice of a metric, h is a C°° function defined on M with values in

R, whose critical points form a union of disjoint connected submanifolds

M l 5 , Mr of dimension nV" 9nr

We also assume that h is nondegenerate, i.e. if x e M, , then d2h(x) is

nondegenerate on any subspace of TXM which intersects TxMi transversally.

Let n~ be the index of d2h on Mt. Set n* = n — ni — nj.

To simplify the exposition, we will talk about one specific Mz, say Mv but

everything will have to be done on all the M, simultaneously.

By the generalized Morse lemma [13, Chapter 6], we know that Mλ possesses

a tubular neighborhood (/, E) such that:

• £ is a Euclidean bundle over Mv which is endowed with the scalar product

gE. Moreover Ey which has dimensions n - nv splits into two orthogonal

subbundles

(2.3) E = E+Θ £ " ,

where the dimension of E+ is rtγ , and the dimension of E~ is AZ j \

•/ embeds E into M. Moreover there is an open neighborhood if of Mx in

E such that if y = (j>+, y~) e iΓ, then

(2.4) Λ ί ^ £ ^ £
In the sequel, we will identify E and / ( £ ) .

Let p be the projection E -> Mv We first construct a metric on E.

Since E+

9 E~ are Euclidean bundles, they can be endowed with Euclidean

connections. E is then naturally endowed with a Euclidean connection, for

which the splitting (2.3) is parallel. Let V be the corresponding covariant
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differentiation operator. L is the curvature tensor of E, which splits into the
curvature tensors L+, L~ of E+, E~, i.e.,

(2.5) L = L+® L~.

Then TE splits naturally into

(2.6) TE= THE Θ TVE,

where TVE are the vectors of TE which lie in the fibers E (i.e. the vertical
vectors), and THE are the horizontal vectors in TE.

If y e 7, then p* identifies 7^£ with Tp(v)Mv Moreover Ty

vE and E can
be naturally identified.

In the sequel, if Y e 7̂ ,2?, then (y", 7 v ) will denote its components with
respect to the splitting (2.6).

Let gx be any Riemannian metric on Mv Then Ty

HE and Ty

vE are both
naturally endowed with a scalar product. We can assume as well that they are
orthogonal for the scalar product g in TE which splits into g = gλ Θ g£.

Take ε > 0 such that if y e £ and |j>| < 2ε, then .y e 1T.
Let /(/•) be a C00 function defined on R+ with values in [0,1] which is

decreasing, such that if r < ε2/32 then f(r) = 1, and if r > ε2/16 then
/(/-) = 0. We also assume that on a left neighborhood of ε2/16, f(r) is given
by

(2.7) f(r) = exp(-
( β 2 / 1 6 - / • ) / •

Let φ be the C°° function E,

(2.8) ψ(y)=f(\y\2).

Let g' be any Riemannian structure on M which coincides with g on

We define a new metric g on M by setting
//> Q\ _ _ — ι_ /"I _ _ \ /

\ ) o TO V τ/O '

In particular on { >> G £; |j; | < ε/4\/ί}, g and g coincide.
Remark 1. Mx is totally geodesic in £ for the metric g, and in M for the

metric g.
(b) A connection in TE. We now briefly construct a natural connection on

TE.
First note that TMX is naturally endowed with the Levi-Civita connection

associated with the metric gv We still note V. as the corresponding covariant
differentiation operator and R is the curvature tensor of TMV TMλ Θ E is
then endowed with a Euclidean connection.
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By identifying TV

HE with Tpiy)Ml9 and TV

VE with E, it is clear that TE is
also naturally endowed with a connection.

In particular if yt is a C1 curve with values in £ and if 70 = (YQ1, YQ) e Γ îs,
then the parallel transportation of 70 along y is obtained by taking the
parallel transportation along p(y.) of Yo which is identified to an element of

Let V be the covariant differentiation operator on TE and let T and L

denote the torsion and the curvature of V. We now have
Theorem 2.1. The metric g is parallel for V Moreover if X,Y,Z e TVE,

then

T{X,Y)=[HX»,Y'')y]V,

L(X9Y)Z = [R(XH

9Y
H)ZH]H + [L(XH,YH)Zy]v.

Proof. The first part of the theorem is obvious. The second part is very
easy, and is left to the reader (for more details see Yano-Ishihara [20]).

(c) The operators d, 8 on E.

We now briefly construct the operator d and its formal adjoint 8 on the
Riemannian manifold E.

Take x e Mv Let ey (1 < j < nλ), f^ (1 < k < nf) be orthogonal bases of
TXMX, E±. Let dxJ, dx±Λ be the corresponding dual bases. Take y e Ex.
Using the decomposition (2.6) and the identifications which follow, we can lift
ej (1 <7 < >*i)> fk1 (1 < 'k < Hi1) to TE. Since there is no risk of confusion,
we can assume as well that ej (1 <7 < «i) is a base of Ty

HE and / ^
(1 < k < w^) is a base of Γ/£. Similarly, we lift dxj, dx^k in T*E so that
they form an orthogonal base in Ty*E.

Let d be the exterior differentiation operator acting on the C00 sections of
the exterior algebra A(E) of the manifold E. Let δ be its (formal) adjoint for
the metric g.

We will now briefly describe the operators d, 8 by means of the connection
V on E.

Proposition 2.2. If x e Mx and if y = (y+, y~) e Eχ9 we have

d = dxJ Λ Ve + ώ c ^ " Λ V/ ± + x ίίxΛ Λ dxιi[L±(ek eι)y±γ,

(2.11) _ ^ _ !
δ = -ieγej-if±Vfj± - -^[^{e^e^y^ Meiβι.

Proof. The first line in (2.11) is an obvious consequence of the expression
for T given in Theorem 2.1.

Clearly the adjoint of the operator \dxk A dxιi[L±(ek e
k e/)y

± λ v IS
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So we must only consider the adjoint of the first two terms in the expression
ofd. _

Let V ' be the Levi-Civita connection on E. Let S be the tensor defined by

(2.12) S = V' - V.

It is essentially trivial to prove that the adjoint of the operator

(2.13) dxj A V€j + dx ±J A vfj±

is given by

(2.14) -ieγej - ifj±vf± + iSiej)eJ+s(f/>//

Now using the expression of the torsion T given in Theorem 2.1, it follows
from some obvious computations that for any j

(2.15) S(ej)ej = 0, $ ( / / ) / / « 0.

The theorem is proved.
(d) The modified de Rham complex. We will now produce a family of

complexes depending on t > 0, which extends what has been done by Witten
in [19].

a is a positive number, which will later be chosen to be large enough.
Λ(M) is the exterior algebra of M, which decomposes into

(2.16) Λ ( M ) = φΛ '(Λf ) ,
o

where AP(M) is the set of p-foτms on M.
For s > 0, let σs be the mapping from Λ(M) into itself, which sends

ω e A^(Af)into j^ω.
The exterior algebra A(E) also has a more complex grading. Namely for

J ; G £ and p,q EL N with p + q < n, we define Ap'q(E) to be the subspace of
Ap+q(E) spanned by

(2.17) dχ'"i Λ Adx[p A dx±J* A Λdx±J<.

Note that Ap*q(E) depends on the connection V.
For s > 0, let τ5 be the mapping from A(E) into itself which sends

ω e Ap^(E) into j*ω.
Recall that φ has been defined in §2(a). Of course if φ(y) Φ 0, we can

identify ΛV(M) and Ay(E).
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Definition 2.3. For t > 0, a > 0 the operators dUa, δ'Λ Ώua are defined by

( + ( 1 - φ ) ( ) l

(2.18) ,,,. = ^ Λ ( φ τ ^ +(1 - φ)σV 7)- 1δ(φ^ +(1 -

To better understand (2.18) we now analyse the two extreme cases where

φ = 0 and φ = 1.

First on (φ = 0) (i.e. out of a neighborhood containing Mλ\ it is obvious

that (using the notations of §1)

(2.19) D'<α = tUah/t.

When φ = 0, we are back to the situation considered in §1.

We now calculate the operators dt%a, δ ' α , D / α on (φ = 1). More generally,

by setting φ = 1 in (2.18), we will calculate dUa, δ ' α acting on the C°° sections

of Λ ( £ ) .

Theorem 2.4. The action ofdua, δ ' β on the C 0 0 sections of A(E) is given by

dUa = dxj A v,' + ]ft dx±J Λ V/ +

+ d l < A d ' Λ '
(2.20) + ^ [ j + Λ - r Λ ] ,

δ' α = -/eVej - T/FI^V^ - ^ [L{ek,e,)y\ V Λ ίet/e;

Proof. Note that since V is a Euclidean connection on E+, E~9 then

V e \y+\2 = V^ |^~| 2 = 0. (2.20) is then an obvious extension of Proposition

2.2. q.e.d.

We will now give some indications on the structure of D / α .

We briefly show how to compute D / α on (φ = 1), and more generally, we

compute Πt%a on E.

Definition 2.5. Δ", Δκ denote the second order differential operator on E

(2.21) Δ»-Σv», Δ"-Σ7£,

where Δ" is the horizontal Laplacian. If ex(x) enχ(x) is an orthogonal

frame at x G Mλ depending smoothly on x which varies in a small ball, then
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by definition
"ι

Δy is the standard vertical Laplacian along the fibers of E+Θ E_.
Recall that the curvature tensor L has been computed in Theorem 2.1. We

also recall the convention (1.3).
Finally, let H be the operator acting on A(E) which sends

ω = dx'1 A " Λdx'p A dx+'Jι Λ Λdx+J« A dx~Λι A Adx~'k«'
into (q — q')ω.

D^α denotes the operator D ί α calculated with φ = 1 and extended to the
whole bundle E.

To obtain the adequate estimates, we are forced to compute explicitly D^α.
We have

Proposition 2.6. For t > 0, D^α is given by

O'έa = -V* - tvfc + dxJ A iek{l{ek,ej) - V[L(et,ej

Λ [v*Mei"e')y]v Λ 'V«
+ iedχk A dx' A / ( v X ( e A , , ) v ] > '

r \ k , e j ) y ) V A iey + dxk A i[L(e

(2.22) v ' L

- 47 [dxk Λ Λc' Λ ι[£(ίt.e|)J.,κ[L(ek,,e,,)y] v A itjtr

+ [L{ek.,e,.)y] v A iejeι.dxk A dx' A J(ί.(ί,A,e,)v)^

Proof. The proof of (2.22) follows from lengthy calculations which are left
to the reader.

Remark 2. On £, the transformation (2.18) has another very simple
interpretation. Namely, for s > 0 let rs be the transformation acting on the
sections of Λ(£)by

k ( x y y ) d x i l A ••• A d x [ p A d x ± J ι A ••• A d x ± J <

(2.23) -+k(x,sy)dxiι A ••• Λ ώ 1 ' Λ ^ ± J l Λ ••
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Then it is trivial to verify that on E

d' " =

(2.24) δ'° =

V
Formulas (2.24) show that Uψ has the same spectrum as D^α. Moreover if k is
an eigenform for u\a with L2 norm equal to 1, the corresponding eigenform

for D'/is

This shows that since, as we shall see in (2.69), for a large enough, k decays
faster than e~δ | v | 2 (for δ > 0), as 11|0, the eigenforms of Π'g* localize on Mv

On E, (2.24) is more explicit than (2.18). However it is difficult to piece
(2.24) with an adequate transformation of J l α , δ l α on the whole manifold Mv

This is why we chose the description (2.18), which is given in purely local
terms.

We now give a few trivial but useful facts on dUa, dUa, D / α calculated in the
region (0 < φ < 1). Recall that (0 < φ < 1) c y , so that we are working on
the fiber bundle E.

On (0 < φ < 1), the action of dUa on C00 sections of Ap>q(E) is given by

t a Λ A

(2.25)
Aq

^ - 7
-l)/2

2(φt q/1 [

essentially because by (2.8), dφ is a vertical form. As t U 0, the first terms have
the same or milder singularities than in (2.20). We now claim that as t U 0

(ί ( < 7 + 1 ) / 2 - t(p+q+l)/2)dφ yftil - tp/2)dφ
(2.26) =

ψtq/2 + (1 - φ)t(p+(l)/2 φ + (1 - ψ)tp/1

converges to 0 uniformly. For η > 0, this is clear in the region (φ > η).
Because of the assumption we have on / and φ in (2.7), (2.8) we can
concentrate on what happens in a neighborhood of the region \y\ = ε/4.
Because of (2.7), (2.8), in such a neighborhood which is small enough, we have

(2.27) dφ =
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and so

(2.28) | < / φ | « e x p -
2(ε 2 /16- |>Ί)

Take A > 0, and assume that

(2.29) ι2 ε

16
A

|Logr|

Using (2.28) and (2.29), we find that (2.26) is dominated by

(2.30) 2ta-p)/2 + l/2A^

If A is small enough, (2.30) tends to 0 as t U0. Moreover if -\y\2 + ε2/\6
i4/|Logί|, using (2.27) we find that (2.26) is dominated by

which also converges to 0 as t U 0.
We have then proved that (2.26) converges to 0 uniformly as t ϋ 0.
Of course what really interests us is the operator D r α . The analysis which we

have done in (2.25)-(2.30) incorporates the typical features of the region
(0 < φ < 1).

(e) A probabilistic construction of the heat kernel in E. We now briefly give
a probabilistic construction of the heat kernel e~sa'^/2 acting of A(E). Recall
that here D'/ is defined on the whole E by (2.22).

We first describe the Brownian motion in the Riemannian manifold E, and
the heat kernel e~s°'^/2 acting on functions.

We use the notations and the results in [6, Chapters 2 and 3].
Let Δ be the Laplace-Beltrami operator on Mv Take x0 e Mx and y0 e Ex.

Let xs be the Brownian motion on the Riemannian manifold Mλ with
JC(O) = JC0 (for a construction see [6, Chapter II] and the proof of Theorem
1.4). Let Ty0 be the continuous process of parallel transportation operators
along xu (0 < u < s) from fibers over JC0 into fibers over xs. Set

(2.31) ib - h 0 ] - 1 .

For the precise definitions of τ5

0 and τo

f, see [6, Chapter 2].
zs = (z5

+, z~) denotes a Brownian motion with values in the Euclidean space
(E+® E~)x independent of JC, and such that z0 = 0.
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We now have

Theorem 2.7. Set

(2.32) Λ = τ,°U + i M

Then (xs, ys) is exactly the Brownian motion on E starting at (JC0, y0) when E is

endowed with the metric gλ Θ gE/t. Moreover iff e C™(E), set

(2.33)

Then

(2.34)

Proof. Observe that the restriction of D'^a to the C 0 0 sections of Λ°(£) is

given by

(2.35) -Vj; - tvj, + y \y\2 - a(nϊ - #ι[).

— D^° is exactly the Laplace-Beltrami operator of E endowed with the metric

g\ Θ gε/t>

Using the Feynman-Kac formula, the theorem follows.

We now briefly show how to construct the semigroup esθtέ<x/2 on the C°°

sections of A(E). To do this we need a more explicit construction of x.

By a well-known construction of Malliavin, Eells-Elworthy, we know that

the development β. of x. in TX(Mλ is a Euclidean Brownian motion in TXQMX

(see [6, Chapter 2]).

Let u0 = (ev- - -,en ) be an orthogonal base of Tx Mλ and υ^ =

( Λ 1 ' " ' »Λ^) a n orthogonal base of Ex±. By identifying w0, v^ with linear

isometries from the Euclidean spaces Rn\ Rn* into Tx Mv EJ1, set

(2.36) ws = u~0%, w± = [ ί ^ Γ V

Then w., w.1 are independent standard Brownian motions.

Let P be the probability law of w on V(R+; R"1) and Pf± the probability

law of w ± on # ( Λ + ; jRWl±). £ denotes the expectation operator with respect to

ei,s > fjί denote the parallel transports of ei9 f^ along xυ (0 < υ < Λ ). For

simplicity, the subscript s is omitted in what follows. Similarly dx\dx±J

denote the corresponding dual bases.
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Definition 2.8. Us denotes the process of linear mappings from Ayo(E) into
itself defined by the stochastic differential equation

s = ̂ τt\dχJ AieL{ej,ek)ds

iedxk A dx' A i(VejL(ek,eι)y)^\ ds

(2.37) + ifj±ilL±(tk,eιVj±Ϋ dxk A dx'\ ds

+ ~4t[dχk Λ dx' A 'iU

+ {L(ek,,e,,)y)V A iek,ieι,dxk A ώ ' i ( 1 ( , ( i , ( W

+ j=- dxJ A ie

+ -7j[{L(ek,rs°u^w)y)y A i.k + dxk A ί [ L ( τoH o S κ,, e t ) v r]J - laHds,

ί/(0) = /.

We now have
T h e o r e m 2.9. There are constants C , C " > 0 such that for any a,t,s>0

(2.38) |ί/J<expjc(l + a)s + Cf ^γ-

If a2 > 2C and if k is a C00 bounded section of Λ(£), set

(2.39) (P,k)(y0) =

Then

(2.40) Ps = e"

Proof. First note that the operators

y) A ieί + dxk A il

are antisymmetric on Λ(£).
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Consider first the stochastic differential equation

dV = ̂ { j Γ ro

h[dxJ Λ ^(riLHe^y^Bz

(2.41) +(L(ek,τ£uoδw))V Λ i<k + dχk A i[

where fζ ..•(••• )δzΛ

±> is an I to integral, and d denotes the Stratonovitch
differential of the process which follows.

For any s > 0 Vs is an isometry on AVo(E).
We now rewrite the part of equation (2.37) which contains δz, δw as an

equation in the sense of Stratonovitch. We get [8]

— dxk A

(2.42) + f [
Mek(L±{ek,,ej,)y±,L±{ek,ej)y±)dS

^t Aiekds ••

In (2.42) we only wrote the first terms of the Stratonovitch corrections, which
are however easily controllable.

Set

(2.43) V = UV'\

Then U' is itself the solution of a standard differential equation, where all the
terms containing δz, Sw have disappeared, which is of the type

(2.44) dU' = T M * ' Λ i'MeJ''k))Vίι+ •••)}

Since V is an isometry, the introduction of the operator ndVs in the
right-hand side of (2.44) does not change the size of the various terms.

It immediately follows that

(2.45) \u; I < exp|c(l + α)s + C'f ^ - dυ\.
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From (2.43), (2.45), we find that (2.38) holds.

We now prove (2.40). Using [3, IX, Theorem 1.1], we know that

(2.46)

By using Itό's formula, and (2.37), we find that if Us is given by

(2.47) Us = e x p j - ^ "

then

(*o. Λ) + Γ T ^ " + <

f* rf(χ?ekδwi + Vf±kft8w±Λ.

where Ms is a local martingale with respect to the filtration of (w, w±). Using

(2.38), we find that if a2 > 2C", Λf is a martingale, and that it is feasible to

take expectations in (2.47), so that

(2.48)

From (2.48), (2.40) follows immediately.

(ϊ) The Witten complex on the fiber bundle E. For a given a > 0, we

consider the operators da, δa defined by

da = exp

(2.49)

-a Jexp a
I + I 2 I - ' 2

\y \ \y

δ« = e x p | α l ^ - 2 / ί β φ M 2
\y~

da, 8a are exactly the operators dha and 8ha calculated in Theorem 2.4.

Similarly set

(2.50) D£ = da8a + 8ada\

Ua

E is the operator D^α calculated in Proposition 2.6.

Let Γ be the Hubert space of the square integrable sections of A(E) which

splits into

(2.51) Γ =

where Γ ' is the subspace of square integrable /7-forms.
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Now using a general result on global pseudo-differentials in Hόrmander [14,
Theorem 3.4] (also see Helffer [11] for the general theory), we know that for
a > 0 large enough, D£ has a discrete spectrum, and that the corresponding
eigenspaces in Γ have finite dimension. Note that such a result also follows
from a careful study of the heat equation semigroup e~s(=^/2 which we
constructed in Theorem 2.9, in particular by studying its behavior as \y\ -> + oo
(see in particular equation (2.69)).

Finally since clearly

(2.52) (d a f = ( δ α ) 2 = 0

for a > 0 large enough, we can develop on Γ the usual Hodge theory on
(da,δa).

a > 0 is now chosen large enough so that the conditions in Theorem 2.9 are
verified, and that Dg has a discrete spectrum.

For 0 < / ? < « , set

(2.53) ί ί = { ί e P ; Π«k = 0}, Bf = dim K;.

Using Hodge's theory, we see that Bp

ι is exactly the pth Betti number for the
operator da acting on Γ. More generally, for each Λf,, we can define Bp

J.
As we will later see in §2(h), Bp

Λ can be very easily computed by studying
the cohomology of Mx twisted by the orientation of E~ and so does not
depend on α.

(g) A basic inequality. We now prove basic inequalities which will allow us
to compare the Betti numbers Bp of M to the Bp

J.
We have the key result.
Theorem 2.10. For a large enough, for any p (1 < / ? < « ) ,

(2.54) Σ [*;•'- B; \ + •••+ (-ι)'BS''\ >BP-BP_1+ ••• + (~I)PB0.
/ = 1

For p = n, there is equality in (2.54).
Proof. Let Q's(x,x') be the C°° kernel of the operator e-

s°''a/2. Let
/,'($, x) be the trace of Q[{x, x) acting on AP

X(M). The proof of Theorem 1.3
shows that

(2 55) L
>Bp-Bp_ι+

with equality when p = n.
Let P}(y,y') be the kernel of e~

s^/2 on the fiber bundle of E. More
generally let Pj(y, y') be the corresponding kernel on the fiber bundle Ei

constructed over Λ/f.. For y e E let Lι

p(s, y) be the trace of P}(y, y) acting on
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AP

V(E). Similarly Up(s, y) denotes the corresponding function calculated over

The proof will consist in proving that for a > 0 large enough, e~s°°E/2 is
trace class, and moreover that

(2.56) lim/^/;(*,*)= t fELi

p(s,y)dy.

Before proving (2.56), we now show how to derive (2.54) from (2.55)-(2.56). In
fact by (2.55), (2.56), we have that for any s > 0

if (Li

p(s,y)-Li

p_1(s,y)+--.+(-iyv0(s,y))dy
(2.57) / = i £,

>Bp-Bp_1+ - +(-l)pB0,

with equality when p = n.
Now standard spectral theory shows that

(2.58) lim

so that (2.54) will follow.
Proof of (2.56). We now briefly indicate the principle of the proof, which is

closely related to the proof of Theorem 1.4. To simplify the exposition, we will
use the notation Mx for any critical submanifold.

We first claim that for any neighborhood if' of Ml9 as t HO

(2.59) ί j;(s,x)dx~ f j;{s,x)dx.

We briefly indicate the principle of the proof of (2.59), which, if entirely
written, is very long.

A. The region (φ = 0). We can first prove that as t U0

(2.60) j j;(s,x)dx-^0.

The situation on (φ = 0) is essentially the same as in (1.24), (1.25) except
that a path starting at x with (ψ(x) = 0) may well escape to a region close to
Mv where D''α has a singularity like 1/ ]ft or \/t. First note that for a large
enough, as shown in (2.30), the singularity of D''α is killed by

-i;f\dh\\xv)dλ-
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Moreover it can easily be proven that the contribution of these paths which go

close to Mx are dominated by exp {-χ/t}9 with χ > 0: the argument being

clearly related to what is done in (2.61)-(2.66), we refer to (2.61)-(2.66) for

more details. Note that in (2.61)-(2.66) we use estimates on the heat kernel

e-sπ
a '/2 a c t j n g o n functions, which are easy consequences of the Malliavin

calculus ([4], [5], [16], [18]).

B. The region (φ > 0). In the region (φ > 0), the projection p(y) of y on

Mx is essentially free to move as a Brownian motion on the Riemannian

manifold Mv

Recall that ε > 0 has been defined in §2(a).

Take y ^ E such that φ(y) > 0. Then |>>| < ε/4. Let #5'( , •) be the heat

kernel of the operator e~s°'' /2 acting on functions. Note that because of

(2.25), when acting as functions D''° contains also a 0 order term, which tends

to 0 uniformly as t U0 by the arguments given in (2.26)-(2.30). Let R'v be the

law of the associated Markov diffusion starting at y at time 0; note that since

D Λ θ contains a 0 order term, we also incorporate a multiplicative functional

term in the definition of R[. Let Rsj* be the probability law of the correspond-

ing Brownian bridge with y0 = ys = y (for the precise definition, see [6,

Chapter II]). Set

(2.61) Tε = mf{t>0;\yt\>ε}.

We claim that χ > 0 exists such that for any y e E with |_y| < ε/4

(2.62) ql(y,y)Rs/[TB<s]<e-x".

We first calculate

(2.63) q's(y,y)Rs/[Te < s/2] = E«'[q>s/2(ys,y)lτ^s/2}.

We claim that for N large enough, we have the uniform bound

(2-64) q./2(y>ty)<£ίiί.

This estimate is an easy consequence of the Malliavin calculus as used by

Stroock in [18, Part II]. Note that here, the localization techniques of [18] are

not necessary since a global calculus of variations can be done on M (see [6,

Chapter 2] for details).

Moreover using Theorem 2.7, and bounding uniformly the contributions of

the term where φ appears as in (2.25)-(2.30), it is easy to see that

(2.65) K(Tε<

By (2.64), (2.65) it follows that for one χ > 0

(2.66) q's(y9y)R>/(Tβ<s/2)<e-x".

(2.62) then follows from (2.66) by using time reversal as in [6, Chapter 3].
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Using Theorem 2.9 and (2.62), we have then proved that if φ(y) > 0, the
contribution to J^(s, y) of those paths which reach the region |j; | > ε is
asymptotically zero.

Using (2.62), we now replace D / α everywhere by D^α (i.e. do φ = 1) and
prove the corresponding estimates as if M was the manifold E itself.

Let Pj(y,y') be the kernel of e~
s^a/1. Let Jp'(s,y) be the trace of

Ps'(y, y) acting on KP

V(E). We now prove that for 8 > 0.

(2.67) lim/

Using Theorem 2.7, the probabilistic description of the law Rs

y'' of the
Brownian bridge in E (associated to the operator Djf) starting at y time 0 and
ending at y at time s is easy. Set x = ρ(y).

Let P*x be the law of the Brownian bridge x0 on Ml9 with x0 = xs = x (for
the precise definition, see [6, Chapter II]). Let ms(x, y) be the heat kernel on
Mv which acts on functions.

For one trajectory of JC., let r® (0 ^ v < s) be the parallel transportation
operator along x from fibers over x0 to fibers over xυ. Set TQ = [T^0]"1.

Let r be a Brownian bridge in EXQ (with r0 = rs = 0) independent of JC
whose law is ζλ Set

(2.68) ^Λ = i φ + ̂ (r^ - 7)^ + i/FrΛ), 0

Then it is trivial to check that under P* x Θ g, the law of y. is exactly Λ5/
(note that yo=ys=y\).

By using the majoratiori (2.38), we find that for one η > 0 (which depends
on α)

exp{-i|(/ -

Now by a well-known formula in [15, p. 206], for one given x^ we know that

τΓ[chηs - 1]
shηs1 ' J

From (2.69), (2.70), we find that (2.67) holds.
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We are now essentially back to the situation considered in §1.

Namely, we find that for t | j θ , if UJ is the solution of (2.37) for y e Ex,

then

f JHs, x)dx ~ f ms(x, x) dx f dy

\y\<8

(2.71) ΊτpUMdPϊt

(where TrpUJτJ is the trace of UJTJ acting on AP

V(E)).

We now do the change of variables y = ψty' in (2.71). The process y. is then

given by

We then note that all the singularities in the equation of UJ disappear.

Moreover using (2.38) it easily follows that as /UO, the right-hand side of

(2.70) converges to

Mι

ms(x,x)dx[ dy

f/ { ^ ^ £ + f K - ni)s
(2.72)

τrp

where now y9 Uι are calculated with t = 1. Using (2.38) and (2.69), we see that

(2.72) is < 4- oo. Now it is clear that (2.72) is also equal to fELι

p{s, y) dy. The

theorem is proved.

(h) Cohomological interpretation of the Witten complex on E. We will now

show the relationship of the Witten complex on E with the cohomology of M.

What follows is essentially a L2 version of the Thorn isomorphism on E~

(see Bott and Tu [10, Chapter 1]).

a > 0 is chosen large enough so that the properties listed in §2(f) hold.

To simplify the discussion, we will assume in this section that E~ is

orientable. If E~ is not orientable, we will have to twist all the considered

objects by the orientation bundle of E~.
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Definition 2.11. For 0 < p < n, HP(E) denotes the pth cohomology group
associated with the operator da acting on Γ.

Recall that if

BP(E) = {k^Tp\lkf eTp-\k = dak'},

(where dak, dak' are taken in the sense of distributions), then

(2.74) HP{E) = ZP(E)/BP{E).

The Hodge theory for the operator da shows that HP(E) is finite dimen-
sional and that

(2.75) Bι

p<« = dim HP(E).

Let Δ be the set of measurable sections of Λ(M) which are square-
integrable, Δp the set of /?-forms in Δ. Set

ZP(MX) = { ί o G A ^ ω = 0},

Bp{Mλ) = {ω e Δp;3ω'e Δp~\ω = dω'}9

( 2 ' 7 6 ) H'iMj-Z'iMj/B'iMj,

B) = dimHp(M1).

Then ordinary Hodge theory for the compact manifold Mx shows that
HP(MX) is the de Rham pth cohomology of Mv

By Bott and Tu [10, §6] we know that a C°° closed nl form Φ" on the
manifold E~ exists, which has compact support and represents the Thorn class
of the oriented fiber bundle E~ over Mv

Definition 2.12. g denotes the linear mapping from Δ into Γ

(2.77) ω -> g(ω) = e - ^ f - l ' Ί 2 ) / ^ Λ φ-.

Note that since Φ" has compact support, if ω G Δ, g(ω) is indeed in Γ.
We now have
Theorem 2.13. For any ω e Δ such thai dω G Δ,we have

(2.78) Jαgω = gdω.

g induces an isomorphism from Hp(Mι) into Hp+n^(E) so that for any p

(2.79) * , l β * # . r

/V00/. (2.78) is a consequence of dΦ~= 0. It is then clear that g induces a
homomorphism from Hp(Mι) into Hp+"'ι(E). We now prove it is an isomor-
phism.

The proof is closely related with what is done in [10, Chapter 1]. However
the treatment of E+ is very different.
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For any open set O in Mv Δ o (resp. Γ o) denotes the set of square-

integrable sections of Λ(O) (resp. T(EO)).

A. The case of an open set. Let O be an open set in Mλ which is

diffeomorphic to the open ball 5(0,1) in R"1 of center 0 and radius 1. The

restrictions of the fibers bundles £ + , E~ to O are then trivial. If EQ, EQ

denote these restrictions, then if Rn\ R"~ι are endowed with their canonical

Euclidean structure and R"1 has its canonical orientation.

(2.80) 4 ~ O X Rnΐ, Eo~ OX R"l, Eo ~ O x{Rnΐ θ Λ1*),

g induces a natural homomorphism

We will prove it is one-to-one.

Let b(r) be a compactly supported C°° function on R whose integral is

equal to 1. Set

( 2 . 8 1 ) b * = b ( y - < ι ) b ( y - > 2 ) ••• b ( y ~ ^ ) d y ~ λ Λ ••• Λ φ ^ ;

b* is a representative of the Thorn class of EQ. Moreover [10, Proposition 4.6]

shows that a bounded C 0 0 n\ form ψ on EQ exists such that

• ψ is compactly supported in the directions of Rn~\ i.e. the projection of the

support of ψ on Rnχ is bounded.

• On EQ, we have Φ - b* = dψ. ψ is then in Γo. For ω e Δ o , set

(2.82) go(ω) = e-<*/2)<»'+l2-l-n2>ω Λ b*.

Clearly, for ω G Δ^ such that dω e Δ o

(2.83) g(ω) -go(ω) = {-\)p[d\e-^y+^^ω A ψ)

-e-(«/2)(\yΊ2-\y-\2)dω A b *

If ω G Δ o , e-(«/2κi^+l2-I^Ί2)ω A ψ <Ξ Γo. It is then clear from (2.83) that g

and go induce the same homomorphism from HP(O) into H%+nι(Eo).

We will then prove that go is an isomorphism in cohomology.

A. The case where n{ = I, /ij = 0. We temporarily assume that n{ = 1,

A2j+ = 0 . Let F be the linear mapping from Yo into Δ o which is defined as

follows:

• if k = /(JC, >>') dx1'1 Λ Λ Jx'^, then F{k) = 0,

• if k = A:r Λ dyι--9 then

(2.84) F(ik)(jc) = ί e-«W2/2k'(x,z)dz.
JR
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If τr*~ is the operator of integration of forms along E~ (see Bott and Tu [10,

§6]), then clearly

Since π*~d = dτr^~ by [10, Proposition 6.14.1], it is trivial to check that if k

is C°° with a support whose projection on E~ is bounded:

(2.85) Fdak = dFk.

(2.85) immediately extends to any k e Γo such that dak e Γo. F induces a

homomorphism from HP(EO) into HP

In this case g# is given by

Since the integral of b is 1, obviously

(2.86) Fg'o(ω) = ω

so that g'o is injective in cohomology.

We now prove it is onto.

The proof is a L2 version of the Poincare Lemma for compactly supported

cohomology [10, Proposition 4.6]. For t ε Γ o , define: Kk(x, y~)—which

depends linearly on k—as follows:

• if k is horizontal (i.e. does not contain dy~Λ), then Kk = 0.

• if k = k' A dy~λ, then

Kk{x,y-) = ea^/2 / e-"W2k'{x,z)dz / b{z)dz
I \ - 00 IV

(2.87) L

b(z)dz\.
J

We now prove that Kk e Γo. When y~-* +oo, since b has compact

support, the first term in the right-hand side of (2.87) is 0. Moreover for y~^ 1

Oil V \ Ie L

(2.88)

= J _ [ + ™ \k'(x,z)\2dz
2a Jv- z

and moreover

(2.89)
Ό OXR
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The situation is identical for y~-* — oo. It is then not difficult to deduce
that Kk e Γo.

We now claim that if k e Tζ is such that dak e Γo, then

(2.90) k - g'oF{k) = (-l)p~l[daKk - Kdak].

If k is C°° and is compactly supported in E~, this is exactly [10, Proposition
4.6]. The general case is obtained by an easy approximation agreement.

In particular if k e Γo is such that dak = 0, by (2.90), JαAfc e Γo. From
(2.90), it is clear that g# is onto in cohomology.

B. The case where n± = 1, n\ = 0. We now assume Πγ = 1, w{ = 0. We
define the linear mapping i 7 ' from Γo into Δ o as follows:

• if k = f(x, y+)dxiι Λ Λώ^, then

(2.91) (^)f

• if A: = k' A dy+, then /"(ifc) = 0.
Obviously if k e Γo, F'(A:) e Δ o .

For / G i ? , let 5v + be the mapping J C G O - ^ ( X J + ) E ^ . Clearly

(2.92) F'{k)(x) = ( f ) 1 / 2 / e - β | Γ | 2 / 2 ( j z ) * * ^

Since (sz)*d = <i(5z)*, it is trivial to check that if k e Γo is such that
JαA: e Γo, then

(2.93) F'dak = dF%

and so F' defines a homomorphism from Hζ(Eo) into HP{O).
In this case g^ is given by

(2.94) ω e Δ o -> g^(ω) = e - e / ^ l 2 * , e Γo.

Clearly if ω e Δ o

(2.95) Fg^ω = ω

so that g^ is injective in cohomology.

We now prove that g'o is onto. For k e Γo, we define A''/: (which depends
linearly on A:) as follows:

• if k = /(JC, y+)dx^ A Λdx1"', then ίΓ'Λ: = 0.
• if k = k' A dy+, then

K\x,y+) = (^)l/\-«^2A(y+ k'{x,z)e^2/Af e~^du\dz
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We first prove that K'k e Γo. Obviously for z > 0

(2.97) f
+oo

It is then trivial to control the second term of the right-hand side of (2.96) as
+ -> +00. We now study the first term. We have

(2.98) < f + X e-"^\y+- l)\fy+ \k'(x, z) f ea^ dz\ dy+

By (2.98) and a similar analysis as )> + -> -oo, we find that K'k e Γo.
We now claim that if k e Γ£ is such that dak e ΓO, then

(2.99) k - g'oF'(k) = (-l)p~ι[daK'k - K'dak\.

When k is C°° with compact support, the proof of (2.99) is routine and left to
the reader. (2.99) immediately extends under the given conditions on k.

If k e Γo is such that dak = 0, then by (2.99), daK'k e To. By (2.99), it is
now obvious that g'o is onto in cohomology.

C. The general case. The general case does not directly follow from cases A
andB.

Namely if n\ > 1, we consider O X Rnί X Rn~ι as a fiber bundle of fiber R
over O X Rn* X Rn*~ι, where the fiber carries the coordinate y~-n~l. Now these
two spaces both carry operators da. If M = O X Λ"1+, an argument strictly
identical to what has been done in A shows that the mapping

(2.100) k e Γ ^ ^ - i - η = eW^η Λ fc(^-.

induces an isomoφhism from i/£(M X Λ^" 1 ) into Hξ+ι(M X Λ"1")-
A similar argument applies to Rn*. By recursion on /if, «^, it is then clear

that g'o is an isomoφhism in cohomology.
The corresponding result on g is proved.
D. The Mayer-Vietoris argument
We will now use the Mayer-Vietoris argument as in [10, §§5, 6]. By [10,

Theorem 5.1], Mx can be covered by a finite family of open sets Ol9 —,Oq

such that all the intersections Oiγ Π Π Oi are either empty, or diffeomor-
phic to 5(0,1).

For any open set O in Mv let Δ'o be defined by
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Similarly Γ^ is defined by

Γ;={HΓo;ΛeΓo).

For two open sets 0, 0 ' , as in [10, §2] we have the Mayer-Vietoris exact

sequence

0 - Δ ' o u o , -» Δ'o Θ Δ'o, - Δ ' o n o , -» 0 ,

Note that in [10], C 0 0 forms are used, but the proof of the exactness of (3.1) is

strictly identical to [10, §2].

From (c), we find that if 0 , 0 ' are taken among 0 1 ? , Oq, we have the long

exact sequences with commutative diagrams:

*-> /F(OU O') > ///'(O)θ///)(O/) *HP(OΠ O') .r'(OU O')->

±S 4g ig Ig

Using the results obtained in part 1 of the proof, and the Five lemma [10, §5]

and proceeding as in [10, lemma 5.6], the theorem is now obvious.

Remark 3. If E+= 0, we could also prove by the same sort of argument

that F (defined in (2.84)) is an isomorphism from Hp+n'ι(E~) into Hp(Mι).

This would make the proof very similar to [10, §6], since F is a L2 version of

integration along the fiber (and is intrinsically defined). When E+ is nonzero,

the situation is different, essentially because we cannot use the usual restriction

mapping s* as in [10, §4] since we work with a L 2 cohomology. Moreover F'

(defined in (2.92)) is not intrinsic. However by using a priori the fact that Φ~

exists, we have overcome these difficulties. Also note that K and K' (given in

(2.87) and (2.96)) have been calculated from Green's functions of the harmonic

oscillator.

Finally note that what we have done is essentially to prove that by piecing

together various harmonic oscillators in the fiber bundles £ + , E~ over M1 ? we

have produced an adequate model for the cohomology of E+Θ E~.

(i) The degenerate Morse inequalities. For 0 </? < nl9 let J3£~ be the

dimension of the pth cohomology of Mλ twisted by the orientation of E~.

More generally, let Bj;~ be the corresponding number calculated for the

manifold A/,-. We have

Theorem 2.14. For any p with 1 < p < «, the following inequality holds:

(2.10.) έ
>Bp-Bp_ι+---+(-l)pB0.

For p = n, equality holds in (2.101).
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Proof. In the case where the negative bundles over Mλ Mr are orienta-

ble, this is a consequence of Theorems 2.10 and 2.13. In the nonorientable case,

any easy modification of the proof of Theorem 2.13 shows that B"J = Bi;Zn-

so that (2.101) still holds, q.e.d.

Let P(t) be the Poincare polynomial of M for the standard cohomology of

Λf, P{(t) the Poincare polynomial of Mx for the cohomology of Mλ twisted by

the orientation bundle of E~ and P~{t) the corresponding polynomial for Mt.

The generalized Morse inequalities of Bott [9] assert that a polynomial Q(t)

given by Q(t) = Qo + Qλt + with Qo>09-- Qk>0,-- exists, such

that

(2.102) ΣtnJPΓ(t) ~ P(t) = β(0(l + 0-
1

The reader will check that (2.101) and (2.102) are equivalent.
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