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1. Introduction
It is interesting to investigate the influence of total curvature of a complete,

noncompact, oriented and finitely connected Riemannian 2-manifold on the
Riemannian metric. The total curvature of such an M is defined to be an
improper integral of the Gaussian curvature G with respect to the area element
dM induced from the Riemannian metric, and expressed as

c(M)= ί GdM.
JM

The pioneering work on total curvature was done by Cohn-Vossen in [2], which
states that if M admits total curvature, then c(M) < 2ττχ(M), where χ(M) is
the Euler characteristic of M. He also proved in [3] that if a Riemannian plane
M (e.g., M is a complete Riemannian manifold homeomorphic to R2) admits
total curvature and if there exists a straight line (defined in the next paragraph)
on M, then c(M) < 0.

It is the nature of completeness and noncompactness of a Riemannian plane
M that through every point on M there passes at least a ray γ: [0, oo) -> M,
where it is a unit speed geodesic satisfying d(y(t1\y(t2)) = \tx — t2\ for all
tι,t2 > 0, and d is the distance function induced from the Riemannian metric.
A unit speed geodesic γ: R -> M is called a straight line if d(y(tι\y(t2)) =
V\ ~ h\ f°r aU *i> h G R- Re c aU that M is said to be finitely connected if it is
homeomorphic to a compact 2-manifold (without boundary) with finitely
many points removed.

As was shown by Maeda [7], [8] and by Shiga [10], the total curvature of a
Riemannian plane M imposes strong restrictions to the mass of rays emanating
from an arbitrary fixed point on M. For a point p on M let Sp be the unit
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circle centered at the origin of the tangent space Mp to M at p. Let A(p) c Sp

be the set of all unit vectors tangent to rays emanating from p. Sp is equipped
with the natural measure μ which is induced from the Riemannian metric of M
at p. A(p)'\s closed in Sp. If { Pj) is a sequence of points on M converging to
a point p, then limswpj_^^ A(pj) c A(p) holds in the unit circle bundle over
M. Therefore the function p •-> μ°A(p) is upper semicontinuous and takes
value in [0,277]. It follows that μ ° Λ is integrable in the sense of Lebesgue. It
was proved in [7] that if a Riemannian plane has nonnegative Gaussian
curvature, then for all p e M

μ°A(p) >2π - c(Af),

and moreover we have

inf μ o A = 2π - c(M).
M

Shiga proved in [10] that if a Riemannian plane M admits total curvature, then

2π - f G+ dM < inf μ ° A < 2π - c(M).

One of our results will be stated as follows.
Theorem 1. Assume that a Riemannian plane M admits positive total curva-

ture. If {Kj} is a monotone increasing sequence of compact sets such that

limy ^ ^ Kj = Λf, then

ίκ μ° A dM
lim J =2π-c(M).

We begin the proof of Theorem 1 by showing a general estimate for the
function μ° A around an end point. In fact it is proved that for any ε > 0
there exists a compact set K such that

2ττ - c(M) - ε ^ μoA(p) ^2ττ - c(M) + ε

holds for all p e M \ K. The above estimate is obtained by an essential use of
the fact that M contains no straight line, and this fact is guaranteed by the
assumption that the total curvature of M is positive.

Thus the proof of Theorem 1 is divided into two cases. In the first case,
where the total volume of M is unbounded, the proof is immediate from the
above estimate.

In the second case, where the total volume of M is bounded, Theorem 1 is a
direct consequence of the following Theorem 2.

Theorem 2. Assume that a Riemannian plane M has a bounded total volume

and that it admits total curvature. Then there exists a measure zero set Eo of M

such that through every point on M\E0 there passes a unique ray.
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The set Eo stated in Theorem 2 is defined as follows. Let γ: [0, oo) -> M be

an arbitrary fixed ray. The Buseman function Fy: M -> R with respect to γ

(for the definition see §1) has the property that it is Lipschitz continuous. Let

Eo be the set of all nondifferentiable points for Fy. The Lipschitz continuity

for Fy implies that Eo is of measure zero. Therefore μ ° A: M -* R is 0 on

M\E0, and the proof of Theorem 1 in this case is straightforward. It turns out

that Eo is independent of the choice of γ, as stated in the final paragraph of

§3.

Fundamental properties of Buseman functions will be needed for the proof

of Theorem 2, and they are summarized in §1 (for details see [1]). Roughly

speaking, Eo is contained in the cut locus E to the end point. More precisely,

a portion E n Fy~
ι((-oo, t]) of E for a fixed t e Fγ(M) may be viewed as the

cut locus to the fixed level set F~\{ t}) of Fγ. The difficulty in dealing with the

cut locus of F~ι({t}) occurs because Fγ is not differentiable of class C2 but

differentiable almost everywhere. Note that E is not closed in general (see

Nasu [9, plόl]) and that it is not certain if E is of measure zero in M.

One problem is left open. We do not know if Theorem 1 remains valid

without the positivity assumption for the total curvature. Clearly it does not

hold when c(M) < 0. Thus the problem is if it is valid under the assumption

that c(M) = 0.

I would like to express my thanks to T. Hasagawa and M. Maeda for their

stimulating discussions through which this work resulted.

1. Review of known results

From now on let M be a Riemannian plane. The basic tools used for the

proofs of our results are summarized as Lemmas 1.1-1.3, and the proofs are

omitted here.

Lemma 1.1 (compare [8, Lemma C]). Assume that γ contains no straight

line. Then, for every compact set K c M, there exists a number R(K)> 0 such

that if p e M satisfies d(p,K)> R(K), then all rays emanating from p do not

pass through any point on K.

Lemma 1.2 (compare [11, Theorem A, (4)]). Assume that M admits total

curvature. Let p e M have the property that M\ {expptu: u e A(p\ t > 0} Φ

0 and let D be a component of this set. If u,v e A(p) are tangent to the rays

consisting of the boundary of D and if <(u,v) is the angle measured with respect

to Z), then

c(D)\= ί GdM = <(u9v).
JD



200 KATSUHIRO SHIOHAMA

It should be noted that if there is a unique ray emanating from p, then

u = v and the angle in Lemma 1.2 is understood as <(w, υ) = 2π.

Let p e M be an arbitrary fixed point. For each t ^ 0 set S(0 := {x e M:

ί/(x, p) = t} and B(t):= {x e M: d(x, />)<*}• It was proved by Hartman

(see [4, Proposition 6.1]) that S(t) for almost all t > 0 becomes a finite union

of piecewise smooth closed curves. Moreover, it was proved by the author (see

[11, Theorem B]) that if M admits total curvature, then there exists a To > 0

such that 5 ( 0 is homeomorphic to a circle for all t > Go. In other words, the

distance function to p has no critical point on M\B(T0).

Lemma 1.3 (see [11, Theorem D]). Assume that M admits total curvature.

If L(t) and A(t) are the length of S(t) and the area of B(t) respectively, then

we have

r L(t) v 2A(t) „ , .
hm — L J - = lim y1- = 2ττ - c(M).

ί->oo t t-+oo t

Let γ: [0, oo) -> M be an arbitrary fixed ray. The Busemann function Fy:

M -* R with respect to γ is defined by

Fy(x):= lim [t - d(x,y(t))].
r-»oo

The right side of the above equation converges uniformly on every compact

set. The Lipschitz continuity of Fy follows from \Fy(x) - Fy(y)\ < d(x, y) for

all x, y G M. Thus Fy is differentiable except at a set Eo of measure zero on

M. A ray σ: [0, oo) -> M is by definition asymptotic to γ if there exists a

sequence {σ7: [0,/•] -> M ) of minimizing geodesies such that the sequence

{σ•(())} of initial unit vectors converges to σ(0) and that the sequence {σ7 (/7 )}

of terminal points is a monotone divergent sequence on γ([0, oo)). It follows

from the definition that through every point on M there passes at least a ray

which is asymptotic to γ. It follows that if σ is an asymptotic ray to γ, then

Fy o σ(s) = Fy o σ(0) + s for all s > 0, and that Fy is differentiable at points

on σ((0, oo)). An asymptotic ray to γ is said to be maximal if it is not

contained as a proper subarc of any other ray which is asymptotic to γ. Let

E c M be the set of all initial points of maximal asymptotic rays to γ. If M

contains no straight line, then every asymptotic ray meets E. It follows that if

c ( M ) > 0 , then EΦ 0 . Every point on Λf\£ is an interior of some

asymptotic ray to γ, and hence Fy is differentiable on M\E. The gradient

vector vFy to Fy at a point on M\E is the unit vector tangent to the

asymptotic ray to γ. Thus the set Eo of all nondifferentiable points of Fy is

contained entirely in E (for details, see [5, Theorem 2]).
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A point I G M Ϊ S said to be noncritical for Fγ if there exists an open half
space of Mp which contains A{x). A point x G M i s said to be a critical point
for Fy if for any unit vector v ^ Sx there exists an asymptotic ray σ to γ such
that σ(0) = x and <σ(0), υ) > 0.

2. The proof of Theorem 1 in the case where M has unbounded volume

Let M satisfy the assumptions in Theorem 1. As is stated in the introduc-
tion, the assumption c{M) > 0 implies that M contains no straight line. It
follows from the Cohn-Vossen theorem that c(M) < 2ττ, and hence fM\G\dM
< oo. For any ε > 0 there exists a compact set K c M such that

f G+dM> ί G+dM-ε/3 and f GdM - c(M) <£/3.

It follows from Lemma 1.1 that there exists for this K an R(K) > 0 such
that if p e M satisfies d(p,K)> R(K% then every ray emanating from p
does not pass through any point on K. Let D be a component of
M \ {exp^ tu: t > 0, u e A(p)} such that K c D and let u, υ e A(p) be as in
Lemma 1.2 for D. We have

c(M) - ε < c(D) < c(M) + 2e/3,

and hence

μ°Λ(/?) < 2τr - <(w,tf) < 2ττ - c(M) 4- ε.

A lower bound for μ ° A(p) is obtained as follows. The set

is expressed as a disjoint union Uλ e Λ I>λ of countable open sets {Dλ: λ e Λ },
and each Dλ is bounded by two rays emanating from /?, where Λ is a
countable index set. It follows that

2π-μoA(p)= £ c(Dλ) < c(D) + f
λeΛ JM

Therefore we have
μ° A(p) ^ 2π — c(M) — ε.

If the total volume of M is unbounded, then the proof of Theorem 1 is
straightforward from the above estimates for μ ° A(p) with d(p, K) > R(K).
Thus the proof of Theorem 1 in this case is complete.

3. The proof of Theorem 2

Let M be a Riemannian plane and γ: [0, oo) -> M an arbitrary fixed ray,

and set p = γ(0). It follows from Lemma 1.3 that c(M) = 2ττ holds under the

assumptions of Theorem 2.
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Lemma 3.1. Assume that M admits total curvature and that the total volume

of M is bounded. Then, every point q e M\E has the property that there is a

unique ray emanating from q.

Proof. Since M admits total curvature, we have A(t) = /JL(u) du <

vol(M) < oc for all / > 0. Therefore there exists a monotone divergent se-

quence {tj} of positive numbers such that {L(tj)} is strictly monotone

decreasing and l i m ^ ^ L(tj) = 0.

Since q is an interior of some maximal asymptotic ray σ: [0, oo) -> M to γ

such that σ(0) e E, there is a positive number K with σ(/c) = q. Suppose that

there exists a ray T: [0, oo) -> M with τ(0) = q, τ(0) Φ ό(κ). For a small

number h with 0 < h < min{/c, the convexity radius at q) there is an ε > 0

such that

d(a(κ - Λ),τ(Λ)) + ε < </(σ(ιc - h),q) + </(τ(Λ), 9).

For a large number y with L(tj) < ε/2 let _y and JC be points on the

intersections of σ([/c, oo)) Π S(tj) and τ([0, oo)) Π S(tj) respectively. It follows

from the triangle inequality that

d(σ(κ - A), y) < d(a(κ - A), τ(A)) + </(τ(Λ),x) + d(x, y)

< {d(σ(κ - A),?) + </(?,τ(A)) - ε) + d(τ(h)9x) + d(x,^)

< J(σ(/c - h)9q) +(d{q,y) + J ( ^ , ^ ) ) - ε + d(x, y)

= d(σ(κ - h),y) + 2d(x,y) - ε < d(σ(κ - h),y) - ε/2.

This is a contradiction, and the proof is complete.

The following Lemma 3.2 is not used for the proof of Theorem 2, but it is

stated here because it contains an independent interest.

Lemma 3.2. Assume that M admits total curvature and that the volume of M

is bounded. Then there exists 7\ > 0 such that F~\{t}) is homeomorphic to a

circle and freely homotopic to S(T0) for all t > Tv Moreover, Fy has no critical

point on M\Fγ-\(-ao, TJ).

Proof. First of all we shall prove that there exists a T{ > 0 such that

Fγ~
ι({t})is arcwise connected for all t > T[. If otherwise supposed, then there

is a monotone divergent sequence {s'j} such that Fγ~\{sj}) is not arcwise

connected for each j . Note that ^ ^ ( ( - o o , c]) for every c ^ R is compact and

hence Fy~
ι({t}) is compact for all t e R. For each j let W- be a component

of Fγ-\(-ao, *;]] such that γ([0, sfi) Π W/ = 0 . If Wf has an empty interior,

then we replace Sj by an Sj < Sj sufficiently close to sj such that Fy~
ι({sj}) is

not arcwise connected and such that there is a component Wj of F~ι{(-oo, Sj]]

which contains Wj in its interior and is homeomorphic to a closed 2-disk.
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We may consider that Fy~\{sj}) is contained in M\B(T0) for all j and
that M\B(T0) is homeomorphic to Sι X [0, oo). It is elementary that if
dBr(x) denotes the boundary of the metric r-ball centered at x, then Fy~

ι({t})
= lims^oodBs_t(y(s)) holds for all t e Fy(M). In view of l i m ^ ^ L{tj) = 0,
we find for each k = 1,2, a number j k such that if x is any point on
S(t/k), then the distance function to x has the following properties: (1) d(x, •)
takes a local maximum at an interior of Wk9 (2) M\Bt -Sk(x) has at least two
compact components, and if Wk(x) is a compact component of M\Bt -s(x)
with W^(JC) Π γ([0, oo)) = 0 and W^(JC) D W ,̂ then H^(JC) is homeomorphic
to a closed 2-disk, (3) dWk(x) lies in a small neighborhood of dWk and
dWk(x) is freely homotopic to ΘŴ. in M\B(T0) Then there exists a point x
on S(tj ) and two distinct minimizing geodesies <xv a2 joining x to a point on
9W^(JC) such that the geodesic biangle aλ U a2 is freely homotopic to 3PFA:(JC)

in M \ B(T0). The standard length-decreasing deformation proceeds to aλ U α2

in M\(B(T0) U W^(JC)) to obtain a geodesic loop α^ at x which has the
minimum length among all closed curves with base point JC in M\(B(TQ) U
Wk{x)) and they are freely homotopic to dWk(x). If Dk is the disk bounded by
ctk, then Dk D W^(JC) and 2)̂  c B(tjk)\B(sk). Thus there exists a disjoint
infinite sequence {^} of disks in M\B(T0), and Σkc(Dk) = + oo leads to a
contradiction that M admits total curvature. This proves the existence of T{.

It follows from c(M) = 2π that fM \G\ dM < oo, and hence for every ε > 0
there exists a t(ε) > 0 such that

f \G\dM> f \G\dM- ε
JB(t) JM

holds for all t > t(ε). We shall prove that if 7\ = max{Γ/, t{π)}, then every
Fy~

ι({t}) with t > Tλ is homeomorphic to a circle. Suppose that there is a
t' > Tλ such that Fy~

ι({t'}) is not homeomorphic to Sι. There is a simply
closed curve T(t') in Fγ"1^'}) such that Γ(/') bounds the open unbounded set
M\ Fγ""x((-oo, ίr]). Since Fy~

ι({t'}) is arcwise connected, there exists a nontriv-
ial curve b: [0,1] -> Fy\{t'})\T(t') such that at every point on the curve Fy

takes a local minimum. It turns out that for each point q on Z>((0,1)), there
exists two distinct rays τv τ2: [0, oo) -> M each of which is asymptotic to γ and
τi(θ) = τ2(0) = q and ^(0) + τ2(0) = 0. Let Vq c M\B(T0) be the domain
bounded by ^([0, oo)) U τ2([0, oo)) such that Vq does not contain γ([0, oo)). It
follows from l i m ^ ^ L(/y) = 0 and the Gauss-Bonnet theorem that c(Vq) =
^f^O)),^^)) = 7r. However since t' > Γ1? M\B{tf) D Vq and tf > t(π)
imply that

c(Va)< ί \G\dM <τr.
H JM\B(t')

This is a contradiction.
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Finally, if q e M\B(T0) with Fγ(q) > Tx is a critical point of Fy, then the
same arguments as developed above lead to a contradiction. This completes the
proof of Lemma 3.2.

Proof of Theorem 2. Let q e M \ £ 0 . Then the gradient vector VFy(q) to
Fγ at <7 is a unit vector tangent to a ray σ: [0, oo) -> M which is asymptotic to
γ and σ(0) = q. Suppose that there exists another ray T: [0, oo) -» M with
τ(0) = q. Let {εy} be a monotone decreasing sequence of positive numbers
such that lim εy = 0 and set q} = τ(εy). It follows from the argument developed
in the proof of Lemma 3.1 that emanating from each q} there exists a unique
ray which is asymptotic to γ. This fact shows that τ|[ε7 , oo) is asymptotic to γ,
and hence letting 7 -> oo we observe that r is asymptotic to γ. Since Fy is
differentiable at q, we have τ(0) = vFy(q). This proves the desired unique-
ness.

Notice that under the assumptions in Theorem 2 all rays are asymptotic to
each other. A maximal asymptotic ray to γ is in general contained as a proper
subarc of some ray (see [6]). But in our case every maximal asymptotic ray to γ
is not contained as a proper subarc of any ray, and hence Eo, and E as well,
are independent of the choice of γ.

4. Extensions of Theorems 1 and 2

As is seen in the proofs of our Theorems 1 and 2, the nonexistence of
straight lines on a Riemannian plane plays an essential role. The nonexistence
property for a general complete open surface requires that it has exactly one
end. Indeed there exists at least one straight line on every complete noncom-
pact Riemannian manifold having more than one end.

In this section let M be a connected, complete, noncompact, oriented and
finitely connected Riemannian 2-manifold having one end. It is not difficult to
verify that if such an M admits total curvature and if M contains a straight
line, then

Lemma 1.1 remains valid for such an M. Lemma 1.2 can be extended to M as
follows: If M admits total curvature and if D c M is a domain bounded by
two rays emanating from a point p e 3D such that any ray starting from p
does not interest D and if M \ D is homeomorphic to a closed half-plane, then

where M, υ e A(p) are tangent to the rays lying in the boundary of D.
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The following results are slight extensions of Theorems 1 and 2. The proofs

are omitted here since they are obtained by the same method as stated in the

previous §§2 and 3.

Theorem 3. // the total curvature of M satisfies c(M) > 2ττ(χ(M) - 1) and

if { Kj} is a monotone increasing sequence of compact sets with lim Kj = M,

then we have

fκ μo
li Λ

Theorem 4. Let M have a bounded total volume and admit total curvature.

Then there exists a measure zero set Eo of M such that through every point on

M\E0 there passes a unique ray.
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