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INFIMA OF ENERGY FUNCTIONALS
IN HOMOTOPY CLASSES OF MAPPINGS

BRIAN WHITE

0. Introduction
Let M and N be compact connected Riemannian manifolds. The energy of

a lipschitz map /: M -> N is j M \Df\2 (where \Df(x)\2 = L\df/dxt\
2 if

xx,- , xm are normal coordinates for M a t x). Mappings for which the first
variation of energy vanishes are called harmonic. ([1], [5], and [7] are nice
introductions to harmonic maps.) The identity map from M to M is always
harmonic, but it may be homotopic to mappings of less energy. For instance
the identity map on S3 is homotopic to mappings of arbitrarily small energy
(namely, conformal maps that pull points from the North Pole toward the
South Pole). That suggests the question: For which manifolds M is the identity
map homotopic to maps of arbitrarily small energy? In this paper we give the
simple answer: Those M such that πχ(M) and π2(M) are both trivial. More
generally we consider energy functionals like Φ(/) = JM \Df\p and ask: When
is the infimum of Φ(/) in some homotopy class of mappings f:M^>N equal
toO?

To answer such questions, it is convenient to regard N as isometrically
embedded in a euclidean space R" and to work with the Sobolev norm

-*
(where /: M -> R" has distribution derivative Df) and with the associated
Sobolev space

W1'p(MyN) = the || \\ι,P completion of {lipschitz maps /: M -> N }

We say that two continuous maps f,g:M->N are Λ>homotopic (or have the
same ^-homotopy type) if their restrictions to the λ>dimensional skeleton of
some triangulation of M are homotopic. Then the gist of our main theorems
(Theorems 1 and 2) can be summarized as follows.
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Theorem 0. Two lipschitz maps are in the same connected component of

Wι*p(M, N) if and only if they are [p]-homotopic. Furthermore, the set of

lipschitz maps homotopic to a given map f is dense (with respect to || \\lp) in the

connected component containingf. (Consequently every map in Wι'p(M, N) has

a well-defined [p]-homotopy type.)

The theorems have the following consequences for energy functionals. Let Φ
be a function that assigns a number Φ(JC, y, L) > 0 to each I G M , y e N,
and linear map L: TMX -» TNy. Let Φ also denote the associated functional on
lipschitz maps:

Φ ( / ) = ( Φ{x,f(x),Df(x))dx.

Corollary 1 (§1). // Φ satisfies Φ(x, y, L) < c (1 + \L\P) (for some c),
then

inf{Φ(g): g is homotopic to/} = inf{Φ(g): g is [p]-homotopic to/} .

Corollary 2 (§1). Suppose Φ satisfies Φ(x, y, L) < c (1 4- \L\P) (for some

c) and that Φ( , y,0) = 0 for some y. If f is [p]-homotopic to a constant map,

then

inf{Φ(g): g is homotopic to f } = 0.

Corollary (§3). // Φ satisfies Φ(x, y, L) > C \L\P (for some C > 0), /:

M -> N is lipschitz, and if

inf{Φ(g): g homotopic to f } = 0,

then f is [ p]-homotopic to a constant map (so π^f) is trivial for i < [/?]).
Example. Φ(x, y, L) = \L\5/2 + (cosh|j>|) \L\ satisfies the hypotheses of

all three corollaries with p = 5/2.
Similar results hold if M is a compact manifold with boundary or if N is a

fiber bundle over M (§§4, 5).
A key ingredient of the proofs is the homotopy extension theorem, which

says that if A c B are nice subsets of euclidean space and if

H: ([0,1] XA) u({0} XB) -> N

is lipschitz, then H may be extended to a lispchitz homotopy H: [0,1] X B -> N
on all of B. Here "A is nice" means it is a lipschitz neighborhood retract, i.e.
there is a open set U containing A and a lipschitz retraction of U onto A (see
[4, p. 13] for a proof).

We also use a construction reminiscent of the Federer-Fleming deformation
theorem [2, 4.2.9]. Oddly enough, however, the deformation is applied in the
domain rather than in the range (or ambient space).
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In another paper we will use similar techniques to give criteria for the
infimum to be attained. Results analogous to (but very different from) those of
this paper hold for the area functional (see [8]). A special case (p = 2, M a
simply-connected Lie group) of Theorem 1 is treated (by very different
methods) in [6].

I would like to thank Rick Schoen for bringing the problems considered here
to my attention, and for many helpful and stimulating conversations. I am also
grateful to J. Eells for various suggestions.

Note added in proof: A. T. Fomenko has informed me that in the case of the
ordinary energy (p = 2) some results of this paper (in particular Theorem 3
when M = N) were proved by A. I. Pluzhnikov [9].

1. The main theorem
Theorem 1. Let M and N be Riemannian manifolds with M compact. Let f

and g be lipschitz maps from M to N that are \p\-homotopic. Then for every
η > 0 there is a lipschitz mapf homotopic to f such that

(i) KΓ-g | | i , ,<τ/.
Indeed, we can choose ff so that

(2) /
Jf'(x)Φg(x)

where [p] is the greatest integer < p.
Remarks. (1) The proof may be easier to follow if the reader keeps in mind

the special case p = 2, dim M = 3 (or even p = 1, dim M = 2).
(2) N need not be a manifold: any local lipschitz neighborhood retract will

do.
Proof. It will be convenient for us to work not with a triangulation of M, but

rather with a "cubeulation". That is, we will regard M as the union of
m-dimensional cubes, each of which is isometric to the standard cube [-1, l ] m

in Rm, and any two which are either disjoint or else intersect along a common
lower dimensional face.

(To see that such cubeulation is possible, suppose M has already been
triangulated. Now connect the centroid of each triangle to the midpoints of its
sides: this divides the triangle into three "squares". Next connect the centroid
of each 3-simplex to the centroids of each of its four faces: this divides the
3-simplex into four 3-dimensional cubes, and so on. Equivalently, consider the
standard m-dimensional simplex Δ = {(xv- ',xm+ι)- Σx7 = 1, x, > 0} in

Rm+i τ h e m a p χ _> x / m a x | | x . | } projects Δ out onto those faces of [0, l ] w + 1

that contain (1, , 1), thus dividing it into (m + 1) cubes.)
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Note that we may choose the metric on M in this way, since changing the
metric (in a bilipschitz way) alters the || \\λ p norm by a bounded factor.

Let k = [/?]. We begin by defining a function || ||: [-1, l ] m -> R as follows:

| |x | | = minlmaxye^lxj: S is a (k + l)-element subset of {l,2, ,m}},

where x = (xvx2, , * m , ) Thus, for example, if /c = 0 then ||JC|| is the
minimum |JC,|, and if k = m - 1 then ||x|| is the maximum |;c,! To understand
|| || geometrically, observe that {x: \\x\\ < ε} is the set of points x such that
(k + 1) or more of the coordinates of x lie in [-ε, ε]. Hence

(3) 3>?m{x: \\x\\^ε}^Cλε
k+\

(4) J T " - ^ : W I = ε } < C i ε *

for some constant Cx = Cx{m). (Here Jf'(S) is the /-dimensional measure of
S.)

Since M consists of isometric copies of [-1, l ] m , we can also regard || || as a
function defined on M. Note that || ||: M -> R is lipschitz. Note also that
{x e M: ||JC|| = 1} is the ^-skeleton Mk of M, and that (JC: ||JC|| ^ ε} is a
" tubular" neighborhood of Mk.

For 0 < δ < ε < l we will also need a lipschitz map Fεδ: M -> M such
that:

(5) Fε8 leaves fixed the points in {x: \\x\\> ε},

(6) Fεδ retracts {x: 8 < | | x | | < ε} onto {x: \\x\\ = ε]

and such that Fεδ expands [x: \\x\\ < δ) to fill the gap. We define FεS by
specifying it on each of the m-cubes of M:

j , = x,-max{l,ε/max{||x| |, |x,|,δ}}.

Observe in addition to (5) and (6) that:

(7) | D F ε i ί | < C 2 ε/||jc|| f o r δ < | | x | | < ε ,

(8) l ^ . . β | < C 2 (e/β) f o r | | Λ | | < « .

Notice also that FεS is homotopic to the identity map on M. (Consider Fεt

with 8 < t < ε.)
Now let 0 < ε < 1. Note that Mk is a deformation retract of {JC: ||x|| ^ ε)

(by (6), Flε is a retraction). It follows that the restrictions of / and g to {x:
\\x\\ > ε} are homotopic. Indeed (by the homotopy extension theorem, for
example) / is homotopic to a lipschitz map / * such that

(9) f*(x) = g(x) for | |x | |>e.



INFIMA OF ENERGY FUNCTIONALS 131

Let 0 < 8 < ε and write f'(x) = f*(FeS(x)). Then / ' is homotopic to /. Note
that if ||;c|| > ε, then

/ '(x)=/*(F ε i ί (x)) =/*(*) = g(x).

Thus

{x:f'(x)Φg(x)}Q{x:\\x\\<e}.

Hence we can estimate the first two terms of (2):

/ ( | g f ) < ( 3 ( p g r ) / dx
(10) f'*g

< C 4 ( l + ( l i p g ) V + 1 (by (3)).

Likewise the third term of (2) is

(11) / \Df'f-f \Df'\P = f
Jf'Φg J\\*\\<e J8<\\x\\

We estimate these two terms as follows:

\P

F..β I"

ί
Jβ<||.v||<e

= / |Z)(goF ε, s)Γ<(lipgW |DF..

(12) =(lipg)"Γ

< (Upg)'jΓ [C2 •(e/r))"-Jf'"-1{\\x\\ = r}dr (by (7))

<Cs(]ipg)pΓ(ε/r)prkdr (by (4))
J8

To estimate the second term of (11):

f \Df'\=f\D(f*OF*,»)\ '

(13) <C2(lip/*)"(ε/δ)"jf"'{| |x| |<δ} (by (8))

^C1C2(lψf*)PεPδk+ι-" (by (3)).
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Combine (10), (11), (12) and (13) to get

(14)

By choosing ε small, we can make the first term of the right side of (14)

arbitrarily small. Now / * depends on ε but not on δ, so once ε is chosen, / *

is fixed and we can make the second term of (14) arbitrarily small by choosing

δ sufficiently small, this proves (2): (1) follows immediately.

Applications. Recall that if Φ is a function that assigns a number Φ(x, y, L)

> 0 to each x e M, y e N, and linear map L: TMX -> TNV and if /: M -» N

is lipschitz, we write

Φ ( / ) = / Φ(x,f(x)9Df(x))dx.

Corollary 1. // Φ satisfies Φ(x, y, L) < c (1 + \L\P) for some c, then

inf{Φ(g): g is homotopic to f } = inf{Φ(g): g is [p]-homotopic to f}.

Corollary 2. Suppose Φ satisfies Φ(JC, y, L) < c (1 + ILI77) /or ôme c

Φ( , 7,0) = 0 for somey. If f is \p\-homotopic to a constant map, then

inf{ φ(g): g is homotopic tof } = 0.

2. The Poincare inequality

In this section we prove that the usual Poincare inequality holds in regular

polyhedral complexes. It follows that it also holds (with a worse constant) in

regular curvilinear polyhedral complexes (i.e. spaces that are bilipschitz equiva-

lent to regular polyhedral complexes). In the next section we will apply it to

the /^-dimensional skeleton of a Riemannian manifold: such skeletons are

always regular.

Definition. A /?-dimensional polyhedral complex X is regular if for every

connected open subset U c X, the set U\ X(p~2) is also connected (where X1

is the /-skeleton of X).

(For example several triangles meeting along a common edge form a regular

complex, but two triangles with only a vertex in common do not.)

Proposition 1 (global Poincare inequality). Let X be a regular connected

p-dimensional polyhedral complex and let f: X -> R" be lipschitz. Then there is a

v e R" such that

f \f(x)-v\P<cf \Df(X)f
Jx Jx

(where C = C(X, v, p) does not depend on f).
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Proof. Let Dv , Dn be a list of all the /?-cells of X so that each pair Di9

£>/+1 have a common (p - l)-dimensional face. Of course it may be necessary

to include a given /?-cell several times in the list but such a listing is possible

since X is regular. Now make a new complex Xr as follows. Let D[, D'2, , D'n
be n distinct /?-cells such that D[ is isometric to Dt (for each i < n). Construct

X' by joining each pair D/, D'i+ι in the same way that Dt and Di+ι are joined.

Let TΓ: X' -> X be the obvious covering. Note that TΓ is surjective, locally an

isometry, and that each point x G l has at most n preimages.

Since X' is bilipschitz homeomorphic to the unit /?-dirnensional ball Bp, we

have by the ordinary Poincare inequality [3, 7.45] for Bp:

ί \f*fr-vf*ίcof \D(foV)
Jχ, Jχ,

\ f f o \D(foV)f
Jχ, Jχ,

for some v e R". But since TΓ is surjective and locally an isometry

\f-of<( \foπ-v\",
χ Jχ,

and since cardinality (π~ι(x)) ^ n

j \D{f:)f<n( \Dff.
Jχ, Jχ

Hence,

\f-vf<conf \Dff.
JxJx Jx

Proposition 2 (local Poincare inequality). Let X be a regular p-dimensional

complex. Write

a(x,r) = {y e X: dist(y,x) < r } ,

where dist(y,x) is the geodesic distance from y to x in X. Then there is a

c = c(X, v, p) such that for any x e X, r > 0, and lips chit z function f:

@(x, 3r) -+ W there exists aυ e f f so that

r~p'L{xr)

y~υ)[P^c'L{x^
Dί)[P-

Proof. First observe that for each x e X there is an R(x) > 0 such that if

0 < r < R(x), then 3$(x, r) is similar to 3#(x, R(x)). (I.e. there is a bijection

from 3d(x, r) to J*(;t, R(x)) which multiplies all distances by R(x)/r.)

If follows that there is an R > 0 with the following property. If 0 < r < R

and x e X, then J*(x, 3r) is similar to Ά\y, 3R) for some y G X To see this,

let 3Λ be the Lebesgue number corresponding to the open cover

{int 38(z, R(z)/2): z G X}. Then r < R implies that S8(x, 3r) is contained in

some 38(z, R(z)/2) and hence is similar to some larger neighborhood.
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Now let ^(Xy, r, ) (1 < i < n) be a finite collection of neighborhoods such
that if r > R and x e M, then for some /,

^ ( x , r) c &(xi9 r,.), where rz < (3/2)r,

and hence

Now let r > 0.
Cfl̂ ^ 1: r > R. Then (1) holds for some /. By the global Poincare inequal-

ity we have

Lr)

]f~vf<CiLr)

lDff

for some υ e R". But

\f-vf, f \Dff<f \Dff

SO

(2) / \f-vf<cj \Dff,

and since r > R,

(3) r-pf \f-υf<R-PcJ \Df\".

Case 2: r < R. Then there is a y e X and a similarity φ: 38(y,3R)
@(x, 3r). Now apply Case 1 to / ° φ to get a i; e Rv such that (by (2))

\D(foφ)f.
3R

But since φ is a similarity,

\f-vf,

f \D(f°φ)( = j \Df\".
J38{y2>R) J&(x,3r)

Hence

\Df\P.
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Thus if we let c = / ^ m a x l ^ } we get the desired conclusion in Case 1 (see

(3)) and in Case 2.

3. A converse to the main theorem

Lemma. Let M be a compact Riemannian manifold. X a k-dimensional Borel

subset of M, and F: M -> [0, oo] a Borel function. Then there is a diffeomor-

phism φ: M -> M homotopic (indeed isotopic) to the identity such that

ί FoφdJfk < cJtfk(X) f F,
M

where c = c(M) depends only on M.

Proof. By the Nash embedding theorem we may regard M as a submani-

fold of a euclidean space R". Let U = {x e W: dist(x, M) < ε}, where ε > 0 is

such that the nearest point retraction π: U -* M is well defined and smooth on

U. Note that

c c

for some cx = cλ(M, U). Now

f f F(π(x + v))dxdv= f f F(π{x + υ)) dυdx
J\v\<e Jx^X Jx^X J\υ\<ε

F,
JM

so for some υ e R", \v\ < ε,

ί F(π(x 4- υ)) d^kx < cJfTk(X) f F.
JxeX JM

Thus φ(x) = π(x + t;) defines the desired diffeomorphism.

Theorem 2. Let M be a compact Riemann manifold, N a compact submani-

fold of R", and g: M -> R" a Whp map such that g(x) G N for every

(sic)x e M. There is an ε > 0 such that if fvf2' M -> N are lipschitz and

11// ~ g\\i,P < ε (/ = 1,2), ίAβ/i/j andf2 are \p\-homotopic.
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Remark. Actually N need not be compact, or even a manifold. The proof

requires only that N have a neighborhood ί/, with dis(N, dU) > 0, such that U

retracts onto N.

Proof. We may assume that p is an integer since the || \\ι[p] norm is

dominated by the || \\x p norm. Let f{: M -> N be a sequence of lipschitz

maps such that

(1) IU-g|li,,<2-'.

It suffices to show that there is an / such that if i, j > /, then ft and fj are

[/?]-homotopic.

Define a function F: M -> [0, oo] by

(2) ^HΛWI

By (1) (and the Minkowski inequality), jMFp < oo. Note also that for all /,

Let X be the /^-skeleton of some triangulation of M. By the lemma there is a

diffeomorphism φ: M -> M such that

(4) f (Foφ)pdJίTp < oo.
Jx

For simplicity, let us assume that φ is the identity (otherwise replace F, / ;, and

g by F ° φ, /)• ° Φ, and g ° φ in the following argument).

Let ε > 0. Then there is an R > 0 such that for every I G I

where ^ ( c, r) is the geodesic ball of radius r in X. Hence by (3)

(5)

where here and in the following, integration is with respect to dJίfp.

For r > 0 and x e X, let Ht{r,x) be the vector u e Ry that minimizes

L?(jc,r) I / / " ̂ K (If Z7 > 1» ̂ s v is unique since the Lp norm is strictly

convex. For p = 1, let i/,(r, x) be the average of /, over ^ ( J C , r).) Note that

lim //,(r, JC) = f.(χ) as r -^ 0, so let ^ ( 0 , c) = /).(*).

By (5) and the local Poincare inequality,

(6) r-pf \fi{y)-Hi{r,x)\Pd^"y^ct
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whenever r < R. Consequently

(7) dist( # , . (/- ,* ) ,#)< (c'ε)1/p iίr^R,

where c' = c m a x f r V ^ W . ^ r))\ y ^ X,r ^ R}. Also

Hence by (6)

/ \ι/p

(8) |///.(Λ,x)-7/y(Λ,x)|<2Λ(cε)1/^[^|/7.-/yf) .

By (2) and (4) we see that {/y | * } is a Cauchy sequence in LP(X,RV). Thus

(8) implies that there is an / = /(ε) such that

(9) \Hi(R9x)ΉJ{R9x)\^3R(cε)ι/p iίi9j>I.

Now let U be a neighborhood of N in W that retracts onto N, let the

distance from N to 3ί/ be 3δ, and choose ε > 0 so that the right-hand sides of

(7) and (9) are less than δ. Consider the homotopy i/,: [0 , i?]Xl-> R" from

fi\ X to g,( ) = ///(Λ, ). By (7), the image of //, is contained in [/, so /, | X is

homotopic to g, in U. By (7) and (9),

for /, 7 > /. Hence the line segment joining g, (jc) to g7-(x) lies in £/. Thus g,

and gj (and therefore also /, | X and ^ | X) are homotopic in £Λ But U retracts

onto N, so /) I X and ^ | X are actually homotopic in N.

Corollary. Suppose Φ(x, y, L) > C ILI77 /(9r ^^ry JC G M, y ^ N, and L:

TMX -> ΓΛ̂ V. 7//0: M-*Nis lipschitz, and

inf( f Φ(X,/(JC),Z)/(Λ:)) Jx: f homotopic to fλ = 0,

/Λ^«/0 w [p]-homotopic to a constant map.
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Proof. Apply the theorem with g = a constant map. (Use the Poincare

inequality [3, 7.45] on M to obtain the g.)

4. Manifolds with boundary: the Dirichlet problem

Now suppose M is a compact Riemannian manifold with boundary. In this
section we show that Theorems 1 and 2 and their corollaries remain true
provided we replace "homotopic" and "[/?]-homotopic" by "homotopic
(relθM)" and "[/?]-homotopic (relθM)". First we recall the definition of
relative homotopy.

Definition. The maps /, g: M -+ N are homotopic (relθM) if there is a
homotopy H: [0,1] X M -> N from / to g such that

H(t,x) =f(x) = g{x) ίoτx e ΘM.

We say that / and g are A>homotopic (rel ΘM) provided there is a homotopy

H: [0,1] x(ΘMU Mk) -> N

such that H(0, •)=/(•), H(l, •) = g( ), and H(t, x) = f(x) = g(x) for x e
3M, where Mk is the A:-skeleton of M. By the homotopy extension theorem
this is equivalent to the existence of a homotopy H: [0,1] X M -> iV such that

H(0,x)=f(x) forxEM,

//(l,x) = g(x) for c e M*,

i/( ί ? x ) = /(JC) = g ( x ) for JC G dM.

In the proof of Theorem 1, only the definition of the function || || needs to
be modified. First note that M can be cubeulated so that each m-dimensional
cube of M is either disjoint from 9M or else intersects dM in one of its
(m — l)-dimensional faces. (To see this, first cubeulate M in any way. Then
([0,1] X dM) U({ l }XM)is homeomorphic to M and clearly has a cubeula-
tion with the desired property.)

On each m-cube of M disjoint from ΘM, define || || exactly as before. If on
the other hand a cube [-l,l]m intersects dM along the face {1} X [-l,l]m~1,
then we define ||x|| to be the maximum of xλ and the previously defined value
of ||JC||. Note that {x e M: ||x|| = 1} is now Mk U ΘM.

The modification in the proof of Theorem 2 is slightly more complicated.
Let M' be M with a collar attached:

M r = ([0,1] XΘM)U({1} XM),

and let M" be the double of M':

M " = ([-1,1] X ΘM) U({-1,1} X M).
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Extend /„ g, and F to M " in the obvious way, e.g. g((t,x)) = g(x). Apply
the lemma of §3 to M" to get a diffeomorphism φ of M " so that

oo,

where X" is the /^-skeleton of M". As before, we may assume that φ is the
identity (otherwise replace /„ g, F, and Mf by / z°φ, g°φ, i ^ φ , and
φ-^ΛO). Now let Λ" = φ(X") Π M' and let Y = JT U 3M'. Define #,:
[0, #] X Y -> R* as follows. For r < dist(jc,3M'), let JJf.(r, JC) be the 0 e Ry

which minimizes

where ^ r (x , r) is the geodesic ball in X'. If r > dist(x,3AΓ), let H^r.x) be

Essentially the same argument as before shows that for /, j > some /, /)
and /y are /?-homotopic (rel3M') as maps from M' to N. It follows that they
are /7-homotopic (rel3Λf) as maps from M to N.

5. Sections of nontrivial bundles

A map from M to N may be regarded as a section of the trivial N-bundle
over M. One can also consider energy functional on sections of more general
bundles. Specifically, suppose for each x e M there is assigned a compact
smooth submanifold Nx of R" in such a way that Nx depends smoothly on x. A
map /: M -> R" is said to be a section (of the bundle) if f(x) e ΛΓX for every
x G M.

Two sections / and g are said to be homotopic through sections if there is a
homotopy H: [0,1] X M -> Rv such that i/(ί, JC) e Λ̂  for all JC and / (i.e. such
that each H(t, •) is a section).

We claim that Theorems 1 and 2 remain true provided we replace "map" by
"section", "homotopic" by "homotopic through sections", and "[A:]-homo-
topic" by "[A:]-homotopic through sections". We now indicate the necessary
modifications of the proofs.

For each J C E M , let ^(JC, •) be a retraction of a neighborhood of Nx onto
Nx, and let δ0 > 0 be such that ^(JC, y) is defined and lipschitz in both
arguments whenever dist(>>, Nx) < 3δ0. (Actually we do not need to assume Nx

is smooth; we only need the existence of 0t and δ0.) Without loss of generality
assume that

dist(z, Ny) < I JC - y \ if z e Nx and x9 y e M.



140 BRIAN WHITE

To begin with, we need a homotopy extension theorem for sections: that is,

if A c B and H: ({0} X B) U ([0,1] X A) -> N is a lipschitz map that satisfies

(*) H(t,x)eNχ9

then H may be extended to a lipschitz map defined on all of [0,1] X B and

still satisfying (*). Note we only use this theorem when B is a polyhedral

complex and A is a union of closed cells (of various dimensions) of B. By

subdivision we may assume each cell of B has diameter < δ 0 . By induction, it

suffices to prove the result when B is a &-cell and A is its boundary. But in

that case if

is any extension of i/, then (JC, /) •-> ^ ( J C , H(t, x)) will be an extension

satisfying (*).

Now the proof of Theorem 1 is essentially as before, except that we replace

/ ' by the map x -> df(JC, / ' ( JC)) . (If ε < δ 0 this is well defined.)

As for Theorem 2, the proof is the same up to line (7). Note that

dist(/,(>>), Nx) < dist(.y, x) < R if y e a(x, R),

and therefore that

dist( f,(y),Nx)
p^cR*> (r < Λ).

c,r)

Consequently by (6) (in the proof of Theorem 2),

r-P f dist(i/,(jc, 0 , Nx)
p < {cRP + cε),

(7) ^(Jc,r)

d i s t i ^ j c r ) , ^ ) < c"(R*> + ε) 1 / / ? < δ 0 ,

provided Λ and ε are sufficiently small (independent of /). Then the proof as

before (with δ 0 replacing δ) gives a homotopy L from ft\X to fj\X such that

dist(L(ί,jc), ΛfΛ)< 2δ. Now (f, JC)-> #(jc,L(f, JC)) is the desired homotopy

through sections.

6. An example

The author is grateful to J. Eells for pointing out the following consequence

of the preceding theorems.

Theorem 3. Let M and N be compact connected Riemannian manifolds. If

( 1 ) T Γ 1 ( M ) = 7 Γ 2 ( M ) = 0, or

(2) ττx(M) = iτ2(N) = 0, or
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then every lipschitz map f:M-*N is homotopy to maps g with fM\Dg\2

arbitrarily small.

Lemma. If g: M - * N is (k — l)-homotopic to a constant map, and πk(N) =

0, then g is k-homotopic to a constant map.

Proof of Lemma. By hypothesis, we may assume that g maps the (k — 1)-
skeleton Mk~ι to a point * 0 e N. Thus we can find a map g: Mk/Mk~~ι -» TV
so that the following diagram commutes:

Mk >Mk/Mk~ι

Now Mk/Mk~ι is a collection of /c-spheres joined at a point so, since
πk(N) = 0, g is homotopic to a constant map. Therefore g | Mk is also.

Proof of Theorem 3. We must show that / is homotopic to a map / ' such
that f\Mk) is a point. (See Corollary 2 (§1).)

Case (1). By the Lemma, there is a map φ: M -> M homotopic to the
identity map such that φ | M 2 is constant. Then / ° φ is homotopic to / and
/ ° φ | M 2 is constant.

Case (2). By the Lemma, there is a map φ: M -* M homotopic to the
identity map such that φ\Mι is constant. Now apply the Lemma to / © φ to
get the desired map g.

Cαse (3). Apply the Lemma twice to /. q.e.d.
Note that the conclusion does not follow from assuming π2(M) = π^N) =

0. For example, let M and N be the two-dimensional torus and sphere,
respectively, and let / be any degree 1 map. Then ττ2(M) = π^N) = 0, but /
is not 2-homotoρic to a constant map.

The proof easily generalizes to give:
Theorem 3'. Suppose that Φ(x, y, L) < c (1 4- \L\P) for some c and that

Φ( , y, 0) = 0 for somey. If for some]

= 0 (j </

then every map f:M-^>N is homotopic to maps g with Φ(g) arbitrarily small.
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