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THE LOCAL EQUIVALENCE PROBLEM
FOR d2y/dx2 = F(x, y, dy/dx) AND THE

PAINLEVE TRANSCENDENTS

N. KAMRAN, K. G. LAMB & W. F. SHADWICK

Abstract

We solve the local equivalence problem for d2y/dx2 = F(x, y, dy/dx) under
the natural group of coordinate changes x = Φ(x), y = ψ(x, y). There are
three basic invariants which vanish iff the equation is equivalent to d2y/dx2

= 0. We show that two of the invariants vanish for the six Painleve transcen-
dents and that the third can be used to produce a complete set of invariants.
We give necessary and sufficient conditions for d2y/dx2 = F(x,y, dy/dx)
to be equivalent to either of the first two Painleve transcendents and give
simple algebraic formulas for the change of variable which puts an equivalent
equation into the standard form.

1. Introduction

In this paper we present the solution of the local equivalence problem for the
equation

<»>

under the group of coordinate transformations defined by

(1.2) * = </>(*), y = H*,y)

Equation (1.1) has, because of its connections with mechanics and geometry,
often been studied in the past. Tresse devoted a monograph [8] to the
determination of the invariants of (1.2) under point transformations

(1.3) x = φ(x,y), y = χp(xjy).

In [4] Cartan gave a geometric interpretation of Tresse's results in terms of a
torsion free projective connection in a "generalized space".
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From the geometric point of view (1.2) can be regarded as generalizing the
equation governing geodesies on a surface coordinatized by x and y. Thus
point transformations form the appropriate group in this context.

If we view (1.1) as a differential equation however, the transformations (1.3)
are too general, as they mix up the role of independent and dependent
variables. In this context (1.2) is the appropriate group.

Another classical study, one which motivated our initial calculations, is the
work of Painleve [6], [7]. He gave a partial classification, later completed by
Gambier, of the equations (1.1) whose solutions have no essential singularities
or branch points which are movable in the sense of depending on the initial
conditions y(x0) and y'(x0). This classification produced fifty equations of
which six determine new transcendental functions—the so-called Painleve
transcendents.

The fifty equations, which one may find in Ince [6], are of course just
representatives of equivalence classes. The group up to which the classification
was done is given by

Now, as this is only a subgroup of (1.2), some questions suggest themselves.
How can one tell if a given equation (1.1) is actually one of the six Painleve

transcendents in disguise? Are all fifty, and more importantly all six Painleve
transcendents, actually distinct under the larger group? It has been observed
that the Painleve transcendents arise when one looks for similarity solutions of
soliton equations [1] and it has been conjectured that this property is in-
timately related to complete integrability. Now as the work of Painleve has
found representatives for all equations (1.1) one can approach the problem of
deciding if a given equation has the Painleve property by asking if the equation
obtained for a similarity solution is equivalent to one of the Painleve equations.
The usual approach is to repeat Painleve analysis and in order to establish
sufficient conditions in this way one essentially has to solve the equation in
question.

It seems likely that the differential invariants provided by Cartan's equiva-
lence method will prove useful in the study of these questions. Indeed, Cartan's
method provides a solution in principle. One need only calculate a complete set
of invariants for the PainJeve transcendents and use them to give algebraic
necessary and sufficient conditions for equivalence. The real question of course
is how effective this solution is. As we indicate in §3 it is indeed effective.

In §2 we present our solution of the equivalence problem for (1.1) and (1.2).
This requires one prolongation, independent of the right-hand side of (1.1),
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and leads to an identity structure on /^RjR) X G, where G is a three-dimen-

sional subgroup of GL(3, R). There are three basic invariants Il9 I2 and /3.

We note that these invariants all vanish in the case F = 0 and hence the

condition /, = 0, / = 1,2,3, holds iff the equation (1.1) is transformable under

(1.2) into

(1.4) d2y/dx2 = 0.

In this case the structure equations are those of a six-dimensional subgroup

of SL(3,R) (isomorphic to the affine group on R2) acting as linear fractional

transformations on R2. This is the symmetry group of y" = 0 under (1.2).

Unless all of the invariants vanish one may use the remaining group freedom

to obtain a coframe on a lower dimensional space. We note that in the case

where I2 = I3 = 0 the structure equations are those of a connection for the

affine group on R2 with curvature given by Iv In this case we have a

generalized space in the sense of Cartan whose points are parametrized by the

solution of (1.1).

In §3 we consider the application of the Painleve transcendents. For these,

although not all fifty in the Painleve list, both Iλ and I2 vanish. Thus the

vanishing of Iλ and I2 gives necessary conditions for an equation to belong to

the six classes. It requires that F(x, y, dy/ax) have the form

for some functions M and N depending on x and y.

It is not difficult to see directly from the form of (1.2) that the condition of

being quadratic in dy/dx (which is one of Painleve necessary conditions) is

invariant. It requires somewhat more work to show that the form (1.5) is also

invariant. How one would guess that it should be, aside from carrying out the

equivalence problem calculations, is not at all apparent.

We give necessary and sufficient conditions for an equation to be equivalent

to the first two Painleve transcendents

(1.6) y" = 6y2 + ax,

(1.7) y" = 2y2 + xy + b.

In what follows we will refer to these normal forms as P(I) and P(II)

respectively. In both cases we give a simple algebraic formula in terms of two

fundamental invariants for the change of variable which puts an equivalent

equation into the normal form (1.6) or (1.7).

Finally, we wish to point out that, while some of the calculations involved in

solving this equivalence problem are long, they need only be done once. The
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basic invariants discovered then provide algebraic criteria necessary and suffi-

cient for equivalence. It is worth noting that all that is involved in the

calculation is exterior differentiation and exterior multiplication. Thus the

laborious work can be done by a computer. Indeed, we used a program

developed on the University of Waterloo MAPLE symbolic manipulation

system [2] to check our calculation of the invariants 71? I2 and 73. While this

calculation is very tedious to do by hand, it required only 80 seconds of CPU

time on a VAX 780.

Acknowledgement. This work was supported by NSERC grant U0172 by an

NSERC Postdoctoral Fellowship to the first author and by an NSERC

summer research scholarship to the second author. The third author is in-

debted to the Mathematics Department at the University of North Carolina
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2. The equivalence problem

We use the method given by Cartan [3] as described by Gardner [5]. Thus we

take as our starting point an exterior differential system on Jι(R, R) whose

solutions are in one-to-one correspondence with the solutions of (1.1). With

coordinates x, y, p on Jι(R, R), we take the coframe given by

dx, dy — pdx and dp — F(x, y, p) dx.

The solutions of (1.1) are the curves in Jι(R, R) on which

(2.1) dx Φ 0, dy-pdx = 0, dp - F(x, y, p) dx = 0.

The coframe we have chosen is not uniquely defined however and the

solutions of (2.1) are the same as the solutions of

Adx Φ 0, B(dy - pdx) = 0,

BC(dy - pdx) + D(dp - Fdx) = 0,

where A, B and D are nowhere vanishing functions and C is an arbitrary

function on Jι(R, R). Now it is easy to verify that the prolongation of (1.2) to

give coordinate transformations on Jι(R, R) is given by

Ψv + PΨv
(2.3) χ = φ(x), y = ψ{x,y), p = — -^

so that D = B/A under such changes of coordinates. Thus we are led to the

problem of adapting the coframe,

dx

(2.2)

(2.4)

V

0
B

BC

0
0

B/A

dy - pdx

dp- \dx
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That is, we consider the group G of matrices of the form

A
0
0

0
B

BC

0
0

B/A

Then we try to use the natural G-action to provide a coframe of the form w
which is adapted to our problem. The first step is to compute dSS~ι, which
gives the Oth order principal components. It is easy to verify that dSS'1 has
the form

dSS~ι =
a 0 0
0 b 0
0 c b - a

Thus we have

w

a
0
0

0
b
c b

0
0
—

-i

a.

V
w2

V.
+

Jk

JwkwJw

T3

Jkw
Jwk

where

dSS -1 _

0
modw',

0

β 0
γ β-a

and all products of forms are wedge products.
From a direct calculation using (2.4) we find that after absorbtion of torsion

by redefining a, β and γ, we have

a 0 0
0 β 0
0 γ β-a

(2.5)

w

ϊw1

w2

w3

+
0

0

Thus there are not torsion terms to normalize and we must prolong the
problem. Consider the coframe on /1(R, R) X G given by '(w>, α, β, γ).

The remaining freedom in modifying the 1-forms α, β, γ so as to leave (2.5)
invariant determines a group G(1) which acts on R6. It is easy to verify that the
indeterminacy in our new coframe is given by

GL(6,R)0
0

0

13

0

/

g

0
0

/

0

1 3
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By calculating d2wι, i = 1,2,3, we find that

da = 2w1γ 4- awιw2 + bw2w3,

(2.6) dβ = w2y + pw,

dy = γα 4- pw3 4- δw2 — απ^w3,

where a and & are unabsorbable torsion terms and p, δ give a basis for the

right invariant 1-forms of G(1).

The G{1) action on 0 and b is calculated by computing d2a and d2γ. It is

given by

(2.7) da 4- 2δ s 0, db + 2p = 0 modw'',α,γ,

so we can always translate a and b to 0.

This yields the structure equations

dwι = awι

y dw2 — βw2 4- wιw3,

dw3 = yw2 +(β - a)w3, da = 2wιy,

dβ = wλy + Ixw
2w3 4- ^w1^2,

dy = γα 4- ̂ w 1^3 4- ^w 1^ 2

with the three basic invariants Il9 I2 and I3 given by

2B2

h = ~CI2

where J/rfx = 3/3JC 4- pd/dy 4- Fd/dp is the total derivative. In terms of our

original variables A, B, and C,

j» - f - c»

2AB 2B '") 2B

Now it is clear from (2.9) that in the case F = 0, 7X = I2 = I3 = 0 so the

vanishing of all three invariants occurs iff (1.1) is transformable under (1.2) to

d2y/dx2 = 0.



LOCAL EQUIVALENCE PROBLEM 145

In the case where all three invariants vanish the structure equations are the

Maurer-Cartan equations for the symmetry group of y" = 0. This is the

six-dimensional subgroup of SL(3, R) of matrices of the form

0 a2

b2 b3

0 c2

which acts as fractional linear transformation in the plane by

axx + a2 _ bxx + b2y + b2

S = detS = 1,

(2.11)

If we let w =

(2.11) gives

where

y
cλx + c2

), w = Sw and take x = wx/w3, y = w2/w3, then

dx = ε2 + x(2eι + ε4) + x2ε6,

dy = ε5 + xε3 + j?(ε! + 2ε 4) +

-1

ε i

ε3

- « 6

0

0 -(<

ε 2

h +

The equations d2x = d2y = 0 are just the structure equations (2.8) with

/, = 0, where

w i = ε w2 = ε w3 = -ε

a = 2εx + ε4, β = ελ + 2ε4, γ = ε6.

These are also the structure equations for the affine group in the plane if we

make the identification.

Then (2.8) became

dθι = θιθ\ + Θ2Θ\, dθ2 = Θ1Q\

dθ\ = -θ^θx

2, dθ\ = -θ\θ\ + θ\θl

dβ2 = - θ ^ - θlθj2, dθi = -θjθl.

When I2 and 73 both vanish the equations (2.8) can therefore be interpreted

as the structure equations for a connection for the affine group on R2. The

curvature 2-form is

0 =
'-Iγθ

ιθ2 0

0 -Ixθ
ιθ2
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We consider applications of these cases elsewhere. In what follows we

consider the case Ix = 72 = 0, 73 Φ 0 as this case contains the Painleve

transcendents.

3. The Painleve transcendents

It is apparent from (2.9) that when Iλ = 0, F is quadratic in p. If we use

12 = 0 for quadratic F we find that the quadratic and linear terms are related:

(3.1) F=jp2My+phtx + N

for some functions M(x, y) and N(x, y). The relation between the quadratic

and linear terms is actually invariant under (1.2) as it follows from Iλ = 72 = 0;

however, it is not immediately obvious that this condition is preserved under

transformations of the form (1.2). It is not difficult to check that the vanishing

of Iγ and 72 is necessary and sufficient for equation (1.1) to be the Euler-

Lagrange equation for a "particle-type" Langrangian L = \g{x, y)(dy/dx)2

~ V(x9y).

Now the structure equations with Ix = 72 = 0 become

dwι = αw1, dw2 = βw2 + w^w3, dw3 = yw2 +(β — α)w3,

da = 2wιy, dβ = wιy, dy = γα 4- I2w
ιw2.

From J 2 γ = 0 we find that

dl3 + 73(2γ + iS) s 0 m o d w ^ 2

and thus when 73 ̂  0 we can scale it to 1 to obtain

(3.3) 2a + β = 0 modw1^2.

In the case where F has the form (3.1) it follows from (2.9) that

Thus the normalization of 73 to 1 gives

2A2B = A [ M ^ + iVM^ - 2Ny - | Λ

and we define G(x, y) by

(3.4) G(*,.y) = ^ [ j l / x x + NMy - 2Ny - \

It follows from (3.3) that β - -2a + aw1 + Mv2, and it is easy to verify
from 0 = d2w2 and 0 = d2w3 that

(3.5) da + aa + 5γ s 0, db - 2ba = 0 moάwιw2w3.
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Thus we can always translate a to 0 and, if b is nonzero, scale it to ± 1

depending on its sign.

One may check from (2.10) that

1 dG 2 I d

If b Φ 0 we have reduced the group to the identity, as equations (3.4)

become, with a = 0, b = ± 1 ,

γ ΞΞ 0, α = 0

If b — 0 we have only γ = 0 so we must perform another group reduction.

Now among the six Painleve transcendents this occurs only for Painleve (I):

d2y/dx2 = 6y2 4- ax.
In any case we can translate a to 0 which gives

(3.6) C --L£(lnG-2M).

To test whether an equation is P(I) we can proceed as follows. We have as

necessary conditions Ix — I2 = 0, /3 Φ 0 and we normalize 73 to 1 to get

A2B= \G{x,y).

This gives β = -2a 4- aw1 + bw2 and b = 0 is a necessary condition for

equivalence. By normalizing a to 0 we get C as given by (3.6) and it follows

from (3.5) and (2.10) that γ can now be expressed in terms of w1, w2 and w3.

As a further necessary condition we find from (3.2) that

γ = cwι modw2

and, as γ appears only in the equation for dw3 = γw 2 — 3aw3, we need only

know γ mod w2. The coefficient c is easily calculated from (2.10) and (3.5) as

where

(3.8) H= £

It follows from (3.2) that c Φ 0 and that we can scale c to ± 1 depending on

its sign. This determines A, and makes a = O m o d w W . From (2.10) we

have
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so we can calculate

a = Iw1 + Jow
2 + ^ Q W 3 -

By making use of (3.2) we find that Jo = -1/2 and Ko = 0. The invariant / is

given for P(I) by

If all of the necessary conditions are satisfied we calculate covariant deriva-

tives of / to obtain further necessary conditions and, after two differentiations,

sufficient ones. Thus we calculate dl and obtain

(3.11) < / / = ( ! _ 3 / 2 +

which defines J. For P(I), / = ax/24y2 and we see that we have dl A dJ Φ 0

iff a Φ 0. In the case a = 0 the equation has only one independent invariant

and hence has a 2-parameter symmetry group given in these coordinates by

x = sx + /, y = s~2y. If a Φ 0 we can use / and / as coordinates. We

calculate dJ which determines a third invariant K by

(3.12) dJ=(K- 4IJ)wι 4- 2Jw2.

In the case of P(I), K = α/48γ/3>>5/2. The final necessary conditions are given

by

(3.13) dK = -5/^w1 +• | # w 2 .

The test for equivalence is thus to calculate / / and K and check that dl, dJ

and dK are given in terms of 7, / and K by the same formulas as we have

obtained for dl, dJ and dK. These conditions are also sufficient [3] and the

change of variable which gives the equivalence is given by

I = ϊ, J = J, K= K.

Now we can make this explicit for P(I). If we define / and K by J = 24/ and

K = 4 8 ^ A", we have

(3.14) x = JK-Wa-1'5, y = £~2/V/5.

In particular it is obvious that all of the equations with parameter a Φ 0 are

equivalent by scaling x and y.

For the second Painleve transcendent,

y" = 2y3 + xy + a,

one proceeds in exactly the same way. In this case the invariant b is nonzero so

by (3.5) we can normalize b to reduce the group G to the identity. The

normalizations give

(3.15) A2β=\G> £ = - 9 ( l G +
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where

H= -£(\nG-2M)

and G is given by (3.4). In the case of P(II) we have

(3.16) A2 = l2y\ B = -1/y, C = j^

The basic invariants are now the wι components of a and γ respectively, which

we can calculate by substituting from (3.15) in (2.10). These invariants are

given by

, , 2A dx

J - λ \ l d H l H> l HF

For P(Π)

(a) / = -T7Γ
(3.18) 10

o

where / = (6xy + a)/y3. For convenience we use / and / which is defined

(invariantly) by (3.18)(b).

In order to obtain further necessary conditions we take covariant derivatives

of / and /. We find

which defines a third invariant K. Now for P(II), K = (xy + α ) / y 3 so we

have dJ A dK = 0 iff a = 0. Thus the case # = 0 is in a different equivalence

class from the case a Φ 0. It is easy to verify, however, that there are three

independent invariants even when a = 0 and thus that there is no Lie group of

symmetries for the equation y" = 2y2 + xy. We continue with the case a Φ 0

in which we have dl A dJ V K Φ 0 and can use /, / and K as coordinates.

The remaining necessary conditions for equivalence are that dJ and dK have

the same form in terms of 7, /, K, vv1, w2 and w 3 as they do in the case of

P(II) where we find

dJ = ( 6 * - / ) y - - l ( 3 y + 2K)\wι + | ( 3 / + 2A:)w2,

JΛ: = (6* - / ) — — - τ (16* - /) w1 + τ (16* - J)w2.
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These conditions are also sufficient and we have the following formula for the
change of coordinates, obtained from ϊ = I, J = J, K = K:

(3.19) „-!(/- *

In particular all of the equations with parameter a Φ 0 are equivalent by
scaling x and y:
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