
J. DIFFERENTIAL GEOMETRY
21 (1985) 163-194

CHAINS IN CR GEOMETRY

HOWARD JACOBOWITZ

Abstract

There is a well-defined system of curves on any nondegenerate CR manifold

of hypersurface type. It is shown that any two sufficiently close points on a

strictly pseudo-convex abstract CR hypersurface can be connected by a

smooth curve from this family. Such a general result does not hold for other

signatures.

This paper shows that any two sufficiently close points on a strictly

pseudo-convex CR hypersurface can be connected by a smooth chain. For

purposes of exposition we first present the complete proof for a three-dimen-

sional submanifold of C 2 . Then in §4 we indicate the changes necessary to

cover the general case of an abstract CR structure of hypersurface type. We

work with C°° structures but it will be obvious that one only needs Ck, k

large. The results are new even for real analytic structures and it is not clear if

a shorter proof would be possible in this case.

A CR structure on a three-dimensional manifold M is a 2-plane distribution

H c TM together with a fibre preserving map / : H -> H with J2 = —I.

Given such a structure, we may choose a real 1-form ω which annihilates H

and a complex 1-form ωx which annihilates all vectors of the form X + UX,

X e H. These choices can be done in such a way that ω A ωλ A ωx is different

from zero in a neighborhood of a given point. We are interested in results of a

local nature on M so we may shrink M and assume ω Λ cox Λ cϋj is every-

where different from zero. Conversely, given ω and ωx with ω Λ ω A ω1 Φ 0

we may easily construct H and /.

Any three-dimensional submanifold M of C 2 has an induced CR structure.

Let / : Γ C 2 -> Γ C 2 give the complex structure. Then H = TM Π JTM and

J = J\H. Note that if Φ: U -> V is a biholomorphism of open sets in C 2 , then

M Π U and Φ(M) Π V have the same CR structure. The forms ω and ωλ can
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also be directly determined for M c C 2 . To do this let M be given by

r(Z, Z) = 0 with Z = (zvz2) and dr Φ 0 at points of M. For definiteness

assume that at a given point p e M we have Jz1 Λ 8r Φ 0. Now let ω = idr

and ωx = dzv Thus ω Λ ωx Λ ωλ Φ 0. As a form on M, dr = 0 and so

8r = — dr. Thus /9r is a real form. It is easy to show that this gives the same

CR structure as the previously defined H and /.

We will be interested only in CR structures generic in the following sense.

Definition. The CR structure on M 3 is strictly pseudo-convex if dω =

igωι A ωι (mod ω) with g Φ 0.

It is easily seen that if this condition holds for one choice of ω and ωλ for

the given CR structure it holds for all choices. Given such an M 3 in C 2 we can

find a local biholomorphism which puts M into a nice form.

For a function g(x), x e R", defined near the origin let us use g e Θ(N) to

mean g <^ C™ and Dkg(0) = O f o r O < | i f c | < i V r - l . Here A: is a multi-index

and Dk stands for all partial derivatives of order less than or equal to N — 1.

(Thus we do not use Θ(l) to denote a bounded function.) Note that if

g e Θ(N), then g' e Θ(N - 1) for any first derivative of g.

Lemma. Let M 3 c C 2 with M strictly pseudo-convex at the point p. There

exists a biholomorphism Φ of a neighborhood of p onto a neighborhood of the

origin such that Φ(p) = 0 and Φ(M) is given by

(0.1) { (z x , z2): lmz2 = \zλ | 2 + G ^ , zl9 R e z 2 ) , G

Proof. Find some real analytic hypersurface M' which is tangent to M at

/? to order N. This means that as graphs over the common tangent plane, M

and M' are given by functions / and / ' with f - f ^ Θ(N + I) where p is

considered as the origin. As shown in [3] there is a local biholomorphism Φ

such that

Φ(Af') = Uzl9z2): Imz2 =|

Thus

g, g

This proves the Lemma, as long as N was chosen greater than two.

Φ(Af) = ( z 1 ? z 2 ) : I m z 2 = |z

I
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Let us set zx = z and z2 = u + iυ. Then (z, w) provide local coordinates on

any hypersurface of the form (0.1). The simplest such hypersurface is given by

v = \z\2. This submanifold is called the hyperquadric and is denoted by Q. As

a defining function we take r = (z 2 — z2)/2i — zλzv As before let ωλ = dz

and ω = idr. Expanding the latter we see

ω = \dz2 — z1dzι = \dyu + i\z\ ) — ^ ύ ί z !

and so

(0.2) ω = \{du + /zί/z - /zJz).

Note that

(0.3) dω = iωι A ω1.

In particular, Q is strictly pseudo-convex.

Now let us find ω for the induced CR structure on a submanifold of the

form given previously:

(0.4) ί ; = | z | 2 + G , G = Θ(4).

Take for the defining function

r = — ( z 2 - z 2 ) - zxzλ - G,

where G is extended off of the (z, w)-plane to be independent of v. Then

ω = fir = i((i + A)du +(iz + B) dz -(iz - B) dz)

with A = Gl = C?(6) and 5 = 0(3).

We replace ω by a real multiple to achieve

with C =

Note that

dω = idz Λ dz + \dC Λ dz + ^dC Λ dz.

Write

(0.5) dC = Coω + Qέfe + C-Xdz.

Thus

^ω = (/ + \CX - \ Cλ) dz A dz (modω)

so

) = i d z
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Let (1 - \CX + iCλy
ιω be our new ω and again let dz = ωv Thus we have

achieved

(0.6) dω = iωλ A ω1 (modco)

by using ω of the form

(0.7) ω = \{du + izdz - izdz + adu + βdz + βdz)

with a and β both Θ(2). (In fact, β = 0(3). However, we will not need to use

this extra control on β so we just take β = 0(2).) Note that (0.6) can be

written as

(0.8) dω — iωγ A ωλ + bω A ωx + bω A ωλ

with b = 0(1) and all first and second order derivatives bounded.

We have just seen that on a strictly pseudo-convex hypersurface in C 2 it is

always possible to choose ω and ωx such that dω = iωx A ωλ (modω). This

choice is not unique. Cartan [2] has shown how to use any one choice to

calculate quantities which are in fact independent of the choice. Consider, for

instance, a set of equations

(0.9) ω1 = juω, dμ = F(x,μ)ω,

where F is smooth on M X C. Along any curve in M which is transverse to H

there is uniquely defined a function μ such that the first equation is valid when

evaluated on any tangent vector to the curve. The second equation then either

is or is not valid when evaluated at tangents to the curve and for that unique

function μ. When equations (0.9) are written in terms of local coordinates, we

have a second order equation for the curve. Through each point x and in each

direction transverse to H there is a unique (unparametrized) curve which

satisfies (0.9). From the work of Cartan [2] we know that the curves so defined

from the following system are independent of our choice of ω and ωλ and so

define a CR invariant system of curves:

(0.10) ωλ = - μ ω , dμ = (/μ|μ|2 + \icμ - \l-~b\μ\2)ω.

Here b is given by (0.8). Then c and / are given by c = Ί>x and / = cx — be —

2ib0, where the subscripts come from the convention (0.5). Thus the second

equation in (0.10) may be rewritten for |μ| Φ 0 as

(0.11) ί / μ 2 2

where B is bounded for |μ| > ε > 0 as is any derivative with respect to z, z or

M. Further \Bμ\ and | ^ | are both less than C|μ|" 2 for |μ| large. (We will later

only need assume that they are less than
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The curves satisfying (0.10) are called chains. These equations are suffi-
ciently complicated that not many properties of the chains are known. Before
stating our results along these lines, we would like to mention two previous
results. In [1] it is shown that there exists a compact M 3 c C 2 which is strictly
pseudo-convex everywhere with two particular points p and q in M such that
there is no chain which connects p to q. In [4] it is shown that chains can
misbehave even in the neighborhood of a point. For in this paper Fefferman
showed that the hypersurface υ = \z\2 + 2u\z\s has chains which spiral in to
the origin. Along such a chain necessarily |μ| -> oo. In [4] the chains were
represented as the light rays of a metric on a circle bundle over M. Thus they
are defined by a second order system of equations on a four-dimensional fibre
bundle over M with compact fibre. In §1 we include a discussion, based
directly on (0.10), that shows that chains can be defined by a first order system
of equations on a five-dimensional fibre bundle over M with compact fibres.
Further in each fibre we find a closed orbit. Any orbit which approaches this
closed orbit corresponds to a chain on M which spirals in to a point. This
provides a qualitative "explanation" for Fefferman's spirals. Because of the
difficulty in studying any particular example, it is, however, not clear that this
"explanation" in fact contributes real information.

The results of [1] and [4] show that chains behave quite differently than that
prototype of geometrically defined curves, the geodesies of Riemannian geome-
try. Our purpose in this paper is to show that the chains do behave like
geodesies in at least one basic regard.

Theorem. Let M3 c C 2 be strictly pseudo-convex at p. There is an open

neighborhood U of p in M such that for each q e U there is a smooth chain which

passes through both p and q.

The basic idea of our proof is simple. We work in coordinates as in (0.7).
Consider the two sets

T(R) =

Here R can be any large number and 8{R) monotonically decreases to zero.
Near the origin, S(R) is a neighborhood of the z-plane less the origin, T(R) is
the complement of such a neighborhood, and S U T contains an open neigh-
borhood of the origin. It is to be expected that a chain which connects the
origin to a point p in S would start in a direction very close to H. Thus \μ\
would initially be large and the equations (0.10) would be close to those of the
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hyperquadric. Any two points on the hyperquadric can be connected by a

chain, so we may expect that we can find a chain from 0 to p by asymptoti-

cally comparing solutions to (0.10) and the corresponding equations for Q as

|μ| -> oo. This is carried out in §2.

On the other hand, we may expect that a chain which connects the origin to

a point q in T would start in a direction far from H. But away from H the

equations have no singularities and we just need investigate when an equation

of the form

z" = F(z,z',t)9 z(0) = 0, z ( l ) = zl9

has a solution for a given zv This is done in §3.

Finally in §4 the theorem is shown to hold in higher dimension and also for

CR structures which do not come from real hypersurfaces in some C^. Thus §4

starts with the definition of an abstract CR structure and then discusses how

the proofs in §§2 and 3 must be modified to yield the more general result.

Incidentally, chains are defined for all nondegenerate CR hypersurfaces rather

than just for strictly pseudo-convex hypersurfaces. However it can be seen that

without strict pseudo-convexity there may exist nearby points which do not lie

on a common chain. (See the discussion following the Theorem in §4.)

1. Let us start with a discussion of the chains on the hyperquadric Q. The

equations of the chains are obtained from (0.10) by setting b = 0. Thus we

have

(1.1) ωι = - μ ω , dμ = i\μ\ μω

with ωλ = dz and ω = \{du + izdz — izdz). Since

d\μ\2 = μdμ + μdμ = -i\μ\4 + i\μ\4 = 0

we see that |JU| is a constant along each chain. It is convenient to choose a time

parameter such that, along a given chain,

(1.2) ω = ω 1 = - l / j H , dμ = iμ.

\μ\

That is, we consider the system

(1.3) u = - izz + izz, z = -1/μ, μ = iμ.

|μ |

In doing this we lose the solution given by the w-axis since here μ = 0. We add

the initial conditions

(1.4) t/(0) = 0, z(0) = 0,
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The unique solution to the initial value problems (1.3), (1.4) is

(1.5) z ( / ) = | ( e " - l ) , u ( t ) = ^ , μ(t) = ve».
\p\

From this it is easy to see that the chains through the origin cover all of Q.

Since the w-axis is a chain we need to show that every point off the w-axis also

lies on a chain through the origin.

Lemma 1.1. For any (z*, w*) with z* Φ 0 there is some v* and some t*

such that the solution to (1.3), (1.4) evaluated at v = v* and t = t* gives

(z*, «*). We may take \t*\ < ir. Further if (z*, u*) satisfies

(1.6) \u*\*j\z*\9 \**\<j,

then \v*\ > ]/2R.

We omit the simple proof.

It follows that if \v\ = R, then the solution to (1.3), (1.4) can never satisfy

both inequalities (1.6). We will need a quantitative version of this. We claim

there is a positive constant ε0 such that for no / with 0 < |ί| < 3π/2 and no

R > 0 does the solution to (1.3), (1.4) satisfy

(1.7) 1^,01 < l | z | + f ^ i , | z ( , , O | l ± ί1 ^ , 0 1 < | z | + ^ , |z(,,O|^

when \v\ = R.

Now let

be part of the solution (1.3), (1.4). Let D = det(Λ;, Xv, Xt). Thus D is the

Jacobian determinant of the transformation (i>, t) -* (z(v, t), u(v, t)) given by

the solution to (1.3), (1.4). A simple computation yields

(1.8) D = 4(1 - cost)/\v\\

There is a very nice geometric interpretation of chains on the hyperquadric

which among other things provides another proof that any two points on the

hyperquadric can be connected by a unique chain. Namely, the chains on the

hyperquadric Q are the intersections of Q with complex lines. We may

simplify this further by using a projective biholomorphism on C 2 to take Q to

the unit sphere S. Then the chains on S are again the intersections with

complex lines and so are circles. As a complex line through p e S approaches

the complex tangent line, the circles become smaller and so their curvatures

approach infinity.
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To see that the chains on Q are the intersections with complex lines, we

return to the defining function r = (z 2 - z2)/2i — \zλ\
2. Then

dz2 = 2/3r + 2izιdzι = 2ω 4- 2izιdzι

on Q. Now on the complex line azλ + βz2 = γ we have

ocdzλ = -βdz2,

so on the intersection of this line and Q we have

adzγ = -β(2idr + 2 / z ^ ) = -β(2ω + 2ιz1<fc1).

Setting μ = 2β/(α + 2iβzι) we have dzj = — μω. A simple computation
shows that dμ = iμ\μ\2ω and so we are done.

If one could show that the chains on M were the intersections of M with a
natural family of surfaces, then, perhaps, one could dispense with the methods
of this paper and simply construct the chain connecting two given points.
However on the one hand simple examples show that a chain on a C00

hypersurface need not lie even on the boundary of a Riemann surface while on
the other it does not seem useful to know that every chain on a real analytic
hypersurface is real analytic and therefore lies on its own complexification.

The equations for chains (0.10) have a singularity as μ goes to infinity. This
is seen clearly on S 3 since as the circles shrink their curvatures go to infinity.
However, there is a simple way to "compactify" these equations for a general
CR structure in order to end up with a flow without singularities. This
observation will be used in §2 but not in an essential way. However, it is
important for motivation and is of some interest in itself, so we present it here.

We start with a CR manifold M3. Let P be the projectivized tangent bundle
of M. The fibre of P above any point p in M is the set of unoriented
directions at p. In the presence of a metric, P can also be thought of as the
unit sphere bundle over M with antipodal points identified. Let PH c P
consist of those directions which belong to the distinguished 2-plane distribu-
tion H. Thus the fibre of PH is some projective line P1 in the projective plane
P 2 which is the fibre of P. We consider PH as giving the line at infinity in each
fibre. Note that an equation ω1 + α(x)ω = 0 determines a section of P which
never lies in PH. In particular the equation for chains (0.10) can be thought of
as defining a direction field on P — PH. After any normalization this may be
thought of as a vector field on P — PH. Now, when M has a metric, the
equation for geodesies gives a tangent vector field on the unit sphere bundle.
Thus geodesies on M come from a flow on a bundle with compact fibres while
chains on M come from a flow on a bundle with noncompact fibres. We will
now see how to compactify the latter by defining a flow on all of P which
extends the flow for chains.
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We cover P by three patches of homogeneous coordinates in the following

manner. First fix some coordinates x = (xl9 x2, x3) for M3. Let μλ = £ + iη

with ξ and η unrestricted, μ2 = u + iυ with \υ\ < 1, and μ3 = r + is with

| j | < 1. Define X} e ΓΛfx
3 by

<o(^) = l, W l ( ^ ) = - μ ,

ω(X2) = ϋ, ω 1(Λ r

2)= - ( 1 + iu)9

ω(X3) = s, ωx(X3)= - ( r + ί ) .

Finally let ^ G ? b e the line in TM3 generated by Xj. Our coordinate patches

are

{ ) - |Imμ2| <1},

P,= { ( x , p 3 ( μ 3 ) ) : \ l m μ 3 \ < 1 } .

It is clear that

(1.9) P = Pλ U P2U P3.

We will need the transition functions between our coordinate patches. So

again let p e P represent the line generated by X e ΓMX. Let ωίΛ") = β and

ω^Jf) = b + /c. Then /? e Px n P2 if a Φ 0, Z? Φ 0. So

μ = —(b + ic)/a, u + iv = c/b — ia/b

and thus

(1.10) μ = (1 + iu)/υ

gives the transition function from P2 to Pv Similarly, the transition function

from P3 to Pλ is

(1.11) μ = ( r + i ) A

and the transition function from P3 to P2 i s

(1.12) w + 11; = (1 + is)/r.

Note for later use that points in Px with |μ| < 1 do not belong to P2U P3.

We now show that the curves which satisfy (0.10) are orbits of a nonsingular

vector field on P. We in fact prove a more general result which clearly contains

this.

We consider equations of the form

(1.13) ωλ + μω = 0, dμ + F(x,μ)ω = 0,

where we assume that y3F(x9 ay ~ι) is the restriction of some smooth function

H(x, α, y) for a e C, y e R and that this H satisfies

(Imα)(Re#(jc,α,0)) -(Reα)(Im//(jc,α,0)) # 0

when a Φ 0.
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Proposition. There is a smooth nowhere zero vector field on P whose orbits in

Pλ satisfy (1.13).

Proof. We will essentially eliminate the singularity at infinity by our choice

of a time variable. The natural choice which we have already used in (1.2) will

introduce a singularity at μ = 0. This is avoided by use of a cut-off function.

So let φ(r) be a C 0 0 function supported in (r : \r\ < 1} with 0 ^ φ < 1 and

φ = 1 near r = 0. Set \p(r) = 1 - φ 4- r2φ. In each coordinate patch Pt we

define a vector field Vf as follows. In Pλ let Fx satisfy

(1.14)

In P2 let V2 satisfy

(1.15) ω ( F 2 ) " Γ

In P3 let V3 satisfy

v2

 / τ , x —υ

( - ( / + r) ds

Vx is uniquely determined, smooth, and nowhere zero in Pv Let us show

that the same is true for V2 in P2 and that Vλ = V2 on P1 Π P 2 ^ w e write

Σ + i β + i 8

then α, is determined by the first two equations in (1.15). Rewrite the last

equation in (1.15) as the two equations

β2 = v(l + u2)~lReH(x,l + iu,υ),

υβι = uβ2- υ(l + u2)~ιlmH(x,l + iu,υ).

V2 is clearly smooth and nonzero where v Φ 0 while at υ = 0 we have β2 = 0

and

ft = (1 4- M2)"1{MRefl r(jc,i 4- /M,0) - I m ^ ( j c , l + /w,0)}.

So Ŝx ¥= 0. Hence V2 is uniquely determined, smooth, and nowhere zero in P2.

The analogous result holds for V3 in P3.
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On Pλ Π P2 we have, from (1.10),

dμ = iυ~ι du - ( 1 4- iu)v~2dv,

\μ\2=(l + u2)v-2.

Thus, since ψ = 1 on Pλ Π P 2,

( l + u2

Hence Fx = V2 on P x Π P 2 The same type of reasoning also shows Vλ = V3 on
Px Π Pv Finally in showing that V2 = V3 on P2 Π P3 one makes use of the fact
that

This fact follows immediately from the definition of H.

2. In this section we study chains which have an initial direction close to H.
We show that any such chain remains sufficiently close to the chain in Q with
the same initial direction. Let us start by writing down the two initial value
problems. We will use X = (z,u) and μ for the solution on Q and Y = (ξ, η)
and σ for the solution in the given CR structure. We introduce a parameter t
into the equations for the chains (0.10) by taking ω(9/3ί) = l/ |μ | 2 in the first
case and ω(d/dί) = l/ |σ| 2 in the second. We obtain for Q

U = - izz + ϊzz, z = - -, μ = iμ,
(2.i) M2 **

X(0) = 0, μ(0) = v.

And for our general CR structure we have

ή ift + itt +

| I

y(o) = o, σ(o) = v.



174 HOWARD JACOBOWITZ

Let us use as an abbreviation

when / is a complex valued function. Note that if / is real valued, then

IIΛII = IΛI Then using the estimates after (0.7) and (0.11) we see that we can

assume the coefficients in (2.2) satisfy: There exist constants ε* and C* such

that if \Y\ < ε* and |σ| > C*, then

(2.3) | α ( f , n ) | 2 2 )

(2.4)
|α)|

(2.5)

(2.6) \\Bζ(ξ,V,σ)\\+\Bv(ξ,V,a)\<C*,

Temporarily, let

Λ-kΓlfl + IH"ΊlU +IH"+1hl + IH"Ίkll
We will be able to concisely state our estimates by using the following two

function spaces. (The variable t always satisfies |ί | < 3π/2.)

s/H={γ=(j;(v,t)9η(v,t)): l i m s u p / w < C ,

where C depends on Y but not o n / ,

Our basic result in this section is the next lemma which compares the

solutions to (2.1) and (2.2).

Lemma 2.1. Ϋ - X <= ts/2.

The proof is broken down into several steps.

Lemma 2.2. // \v\ is large enough, then the solution to (2.2) exists on the

interval \t\ < 3ττ/2 and there satisfies

(2.8) \Y(t)\ < ε * , | σ ( / ) | >\v\/2.

The proof is based on the observation that if \Y(v, t)\ < ε* and |σ(ί) | > M/2

on \t\ < /* with t* < 3^/2 and if |*>| is large enough, then indeed one has

\Y(v91*)\ < ε*/2 and \σ(v, t*)\ > 2\v\/\ Thus (2.8) must hold on |/| < 3ττ/2

(The details of a similar proof are given for the next lemma.)
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Henceforth we only consider solutions (Y(v, t), σ(v, t)) with \v\ sufficiently
large and we restrict t by \t\ < 37r/2. The estimates (2.3)-(2.7) are valid for
such solutions.

Lemma 2.3. (a) ||(3σ/3*>)(0|| < 2

(b) 37/9/ e s/λ.
(c) Y e tstv

Proof. It follows from the previous lemma, equations (2.2), and inequality
(2.3) that in the interval [0,3ττ/2]

(2.9) | f | < 2 | H ~ \ \ζ\^2t\v\~\ | ή | < c | H " 2 , h l < c / M ~ 2 .
Let t* e [0,3π/2] be the first time if it exists that one of the inequalities

(2.10) I!ί
is violated. Otherwise set /* = 3ττ/2. We show that for 0 < / < /* and |^|
large ||(3σ/3*>)(OI|, 11̂ (011 a n d 11̂ (011 are bounded away from 2, 1 and 1
respectively. This would show that the inequalities (2.10) are valid in the
interval 0 < / < 3?7/2. Essentially the same argument of course works for t
negative.

We have

onO < t < /*; and we have the same estimate for |fP(O|.Thus
and, since ξv(0) = 0,

Similarly

W*ιΛ < c/\v\\
Finally, if we start with the equation (d/dίXe'^σ) = B(ζ,η,σ) and use the
above estimates for \\ξv\\ and \\ηv\\ together with the conditions (2.6) and (2.7)
and impose a further largeness condition on \p\, we obtain

Thus for |p| large

| |^(0 II < 1/2, ||η,(0||
when 0 < t < ί*. The definition of /* then shows that /* = 3τ7/2. But we had

already seen that
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and now that

Thus Y e ts/λ. Further we have \ζ\ < 2 H " 1 , |ή| < C\v\~2 and \\ζv\\ < \6\v\~2,

llή.ll < C|iΊ" 3 . So 3y/9ί e J/ X . This completes the proof of Lemma 2.3.

Next we need to compare the μ and σ components of the solutions to (2.1)

and (2.2).

Lemma 2.4. There is some constant C such that

\a(t) - μ(t)\ ^ C\t\ and \\σ,(t) - μ,(t) || < C | f | | H

Proof. From Lemma 2.2 we know that the estimates (2.5) and (2.6) are

valid at (Y(v, t\ σ(v, t)) everywhere in our interval \t\ < 3ττ/2. Write σ = μ +

g. Then g is the solution to

& = ig + B(Y(v9t),σ(v,t))9 g(0) = 0

and by considering (d/dt)e~ιtg we easily derive the estimates

| g ( O I < C | ί | and ||g,||

thus proving the lemma.

Note the following consequences of this lemma:

(2.12)

Γ 2 | Γ 2
"3(2.13) | | σ Γ 2 - | μ Γ 2 | < α | H " 3 ,

(2.14)

We are now able to prove Lemma 2.1. Comparing the solutions to (2.1) and

(2.2), we have

(2.15) |£-i|H-l/σ 2

and

(2.16) ||t - ij| =||(-l/σ

Of course, we then also have

\ζ-z\*a2/\p\2, | | f , - z , | | < α 2 / I H 3 .

Next we need estimates for \η - u\. Comparing the equations (2.1) and (2.2),

we see that

{\ή-ΰ\<\l/\a\2-l/\μ\2\+\ζ\\z-ξ\+\z\\ξ-z\+\a\\ή\+\β\\ξ\.
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We now use the inequality (2.13), Lemma 2.3, (2.15) and (2.3) to obtain

(2.17) |f7 - «| < Cί/ |^ l 3 .

Finally we want estimates for \(ή - U)v\. One term will involve av. So note

and in the same way we establish

IM<ayi" l 3 and
We have

Now we use (2.14), Lemma 2.3, (2.15), (2.16) and the above estimates on \\av\\

and 11 βJI to obtain

(2.18) \\(η-ύ)v\\^Ct/\v\\

Now (2.15), (2.16), (2.17) and (2.18) are precisely the assertion that Ϋ - X e

ts/2 This concludes the proof of Lemma 2.1.

We now show that this lemma provides us with a transversality result.

Let D denote the determinant

f, U :
F F F
Op Op O t

It follows easily from Lemma 2.1 and (1.8) that

(2.19) D ^ 4(1 - c o s O / M 6 " Ct3/\v\7

for some C. Thus there is some large R such that D > 0 provided \v\^R and

0 < |ί | < 3ττ/2. Note that the estimates of Lemma 2.1 are precisely of the right

form in v to yield this positivity result. (It is not clear whether the determinant

is in fact positive for all v. The corresponding question for Riemannian

geometry depends on the presence of conjugate points.)

It is convenient to divide the set of points near the origin into two

(nondisjoint) subsets: Let (z(p, t), u(v,t)) be the solution to (2.1). This

solution is given explicitly by (1.5). Then each point (z*, w*) belongs to at least

one of the sets {(z(v,t), u(v,t))\ v e C, 0 < t < 77} and {(z(v,t), u{v,t))\
* > e C , — τ r < ί < 0 } . We shall consider only the first set and show that each of

its points can be connected to the origin by a chain. The same argument,

mutatis mutandis, works for the second set.
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Thus for each point (z*, u*) we consider, there are unique values of v* and

/*, with 0 < t* < 7Γ, for which z(*>*, **) = 2* and M(*>*, /*) = u*. Let Γ = ί*

+ π/4.

Let F = {(z*, w*,σ): σ e C} be the fibre above the given point (z*, w*).

For some R define

N = {(y(i>,/), σ(y,/)): (y,σ) solves (2.2), M ^ R and 0 < ί < T).

Thus N is the orbit of the piece near infinity of the fibre over the origin. Note

that if R is so large that D > 0, then the tangent plane to F at a point of

F Π N, if there is such a point, and the tangent plane to TV at that point

together span the whole tangent space. We say that any intersection of F and

N is transverse.

Recall the projectivized tangent bundle P described in §1. The variable σ

should be thought of as parametrizing each fibre except for the line at infinity.

Now adjoin this line at infinity to N and F. Then N and F are compact. We

will show that if

(2.20) \u*\<j\z*\, \zm\<j,

then N intersects F provided only that R is large enough. This would establish

that all points satisfying (2.20) can be connected to the origin by means of a

chain.

We start with two results which show that the boundary of N does not

intersect F. Notice that the pieces of the boundary given by \p\ = 00 and by

t = 0 both lie in the fibre over the origin and so do not intersect F (except in

the trivial case where (z*, u*) is the origin). Thus we need to show that neither

{Y(v9t): \v\ = R,0 < t < T) nor {Y(v,T): \v\> R} can contain (z*,«*).

Lemma 2.5. Let (z*,u*) satisfy (2.20) with R sufficiently large and let

\p\ > R. If for some tx with \tλ\ < 3τr/2 one has Y(v,tλ) = (z*, w*), then

\v\ > R.

Proof. If z* = ξ(v, tγ) and u* = η(v, tx) for such a given v and tl9 then we

see by comparing the solutions of (2.1) and (2.2) that

z(p9 tλ) = z* + Θ(tl/\p\2) = z* + Θ(tl/R2),

u(v, tx) = u* 4- θ[tl/\p\2) = w* + Θ(tϊ/R3).

Thus

Hence when R is large (1.7) is valid and we cannot have \v\ = R. But we have

already assumed \P\> R and so we conclude \P\ > R.
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Lemma 2.6. Let (z*, w*) satisfy (2.20) with R sufficiently large. Then

\Y(v9 T) - (z*, u*)\ > 0 for all P, \V\ > R.

Proof. We have

\ζ(v9T)-z*\>\z(v9T)-z(v*9t*)\ - \ ξ ( v 9 T ) - z ( v 9 T ) \

eiT-\

>\u(v9T)-u(v*9t*)\ - \ η . ( r 9 T ) - u ( v 9 T ) \

>2
sin T sin t C_

M 3

Thus it is enough to show that at least one of the following estimates holds:

(2.21)
eiT - e" - 1 C

> — or

Irl

sin T sin t * C

with C positive and independent of v and v*.

Let λ = v/v*. It is enough to find C > 0 such that for each λ one has

2 ior |sinΓ - |λf2sinί* | > C.(2.22) \eiT - 1 - λ(eu* -1)\> | |

Note that \eiT - 1| = (2(1 - cos7)) 1 / 2 ^ (2(1 - 1/ v ^ ) ) I / 2 = α 0 , that eu - 1

and sint vanish to first order at the origin, and that eiι — 1 Φ 0 for 0 < / <

3-77/2. We use the following result which can be proved by dividing it into

several cases depending on the values of t and λ.

Lemma 2.7. Let a, by /, g, be bounded functions of t on some interval

| ί | < M satisfying

f(t)Φθ forO<\t\^M9

\a(t)\>ao>O9

C > 0 5wc/z that

6 ( 0 "
a(t)

fit)
> 0.

(2.23) \a •

for all t in \t\ < M and all λ e C.

- | λ | g > c
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We apply Lemma 2.7 to prove Lemma 2.6 by setting a = eiT, b = sinΓ,

/ = eiι — 1, and g = sin / with T = /* + 77/4. In checking that the hypotheses

of Lemma 2.7 all hold we make use of the inequality

(2.24)
. / τr\ / I - cos(t + π/4)

sin / 4- - - — ^ - ^ I sin
V 4 / \ 1 - cos /

> c> 0

valid for 0 < / < 5 77/4.

Thus the alternative in (2.22) is satisfied and so Lemma 2.6 is established.

Lemmas 2.5 and 2.6 yield that F does not intersect the boundary of N. We

can now use a simple deformation argument to show that N Π F is nonempty.

First pick a smooth family of CR structures ( ω \ ωx) with ω° given by (0.2) and

ω1 given by (0.7). This latter defines the given CR structure. For all λ we let

ωx = dz. We assume the normalization dωλ = iωιωι (mod ω λ) and further that

the estimates (2.3)-(2.7) hold uniformly for 0 < λ < 1. Let Nλ be TV for the

λ-CR structure. The results of this section apply to each Nλ. Again fix some

(2*, u*) satisfying

l« | < £ l * Ί . \**\<j
Then N° Π F is nonempty. Further {bdyiVλ} Π F is empty for all λ. Finally,

if for some λ, Nλ Π F is nonempty, then 7Vλ and F intersect transversally at

each point. It follows that Nλ Γ\ F is nonempty for all λ. In particular N1 Γ\ F

is nonempty. Then Y(vl9 tλ) = (z*, w*) for some vλ and some tx\ so Y(v, t) is a

chain through the origin which also contains the point (z*, w*). Thus we have

proved the following result.

Proposition. There is some large number Ro such that, for each R ^ Ro,

each point in the set

S ( R ) = { ( z * , w * ) : \u*\ < | z *

can be connected to the origin by some chain.

3. In this section we study chains whose initial directions are bounded away
from H. We start with the chain equations which we now write as

(3.1) ωλ = -/xω, dμ = A(z,u,μ)ω,

where as before

, v ω = \{du + izdz - izdz + a(z,u)du + β(z,u) dz + β(z,u) dz),

ωλ = dz.
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Now we only need much weaker information on the coefficients and so we

assume that a and β are smooth on {(z, u): \z\ + \u\ < ε} and vanish at the

origin and that A is smooth on {(z, M, μ): \z\ + \u\ < ε, μ e C}.

In §2 we chose a parametrization so as to introduce a l / |μ | 2 factor.

Certainly we do not want to do that now. Rather, note that if a curve satisfies

(3.1), then ω restricted to the curve is nonzero and so, at least near the origin,

du is also nonzero. So we may use u as a time variable. Set / = u and consider

the equations

(3 3) f

μ = \A(z9 u, μ)(l + /zί - izi + a(z, t) + )8(z, /) i + £(z, /)z).

These equations are defined for (z, ί) near the origin and all / I E C . Thus we

always require, for some εl5 that \z\ + |/| < εv

We will again impose the initial conditions

(3.4) z M ) = 0, u(v,0) = 09 μ(v,0) = v.

Lemma 3.1. There exist some positive function ε(r) and smooth functions

F = F(z, z, w, iv, t) and G = G(z, z, w, w, ί) defined on

S={(z,w,t):\z\+\t\<ε(\W\)}

and a smooth function h(v) defined on C such that whenever z(t) solves

(3.5) z = F(z,z,t),

(3.6) z(0) = 0, i(0) = * ( * ) ,

ίΛ̂ w z(r) together with μ{t) = G(z, z,/) 5θfoe5 ί/ẑ  z>i/ϋα/ value problem (3.3),

(3.4).

Note that we may assume that ε(r) is monotone decreasing and that ε(0) is

small.

Proof. Solve the first equation in (3.3) for z. Use the conjugate of the result

to eliminate z from this equation. The result is

(3.7) z = - i μ ( l + α ) + / ( z , μ , 0

with

(3.8) \f\<CM\\A+\A) and II/JI < CjμKlzl +U|)
on the set where |μ|(|z| + |/|) < ε2 for some small ε2 and some constant Cv

Note that ε2 may be replaced by any smaller quantity.

We now solve (3.7) for μ.

Lemma 3.2. Let ε(r) = Iε 2/(1 + r). There is a smooth function G(z,w, t)

defined on

S= {(z,w,t):\z\+\t\ <e(\w\)}
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such that μ = G(z, w, t) solves

(3.9) w= - ± μ ( l + α ) + / ( z , / ι ) .

Proof. We consider z, w, and / as fixed and we seek μ which satisfies (3.9).
Let us start with μ0 = 0. Now, if \μn\(\z\ + |/|) < ε2 and \z\ + |;| < ε1? then
fn = /(z, μw) is defined and we may set

(3.10) M π + 1 = 2(/ ) 1 -w)( l + α ) - 1 .

One can easily show that this iteration is well defined and that {μn} has a limit
μ = G(z, w) which satisfies (3.9). This completes the proof of Lemma 3.2. We
now continue with the proof of Lemma 3.1.

We have from (3.3) and Lemma 3.2 that μ = g(z, z,t) with g(z,w,t)
smooth on S. We differentiate equation (3.7) and then substitute μ = G(z, z, t)
and μ = g(z, z, ί). The result is of the form

z = F(z,z,z,z, ί)

with F(z, w, 0 smooth on S. Finally we define h(v) by v = G(0, Λ). (For this
we need 1^(0)1 Φ |G^(0)| and this is obvious from (3.9) after we replace μ by
G(z, w, t).) The converse, which is the conclusion of Lemma 3.1, then follows
from the fundamental existence and uniqueness theorem of ordinary differen-
tial equations.

We now consider the boundary value problem

(3.11) z = F(z, z, t)9 z(0) = 0, z(/ ) = z*,

when F(z,w, t) is smooth on S = {(z, w, /): |z| + |f| < ε(|w|)}. Because of this
smoothness we have

(3.12) \F(z,w,t)\ +11^(2,^011+11^(^^,011 < C(\w\)
for some monotone increasing function C(r).

Lemma 3.3. For each R there exist some 8{R) such that (3.11) can be solved
whenever |z*| < R\t*\ provided |z*| + |ί*| < 8(R).

Proof. We use a simple iteration. Let z0 = tz*/t* for \t\ < |/*| and, as
long as it makes sense, set

zn= f f F(zn_ι(s),zn_ι{s),s)dsdτ

+ - U * - / / F(zn_1(s),zn_1(s),s)dsdτ).
t* \ Jo Jo I

It is clear that if zn(t) can always be defined and converges in C1 to z(t), then
z(t) is actually twice differentiable and satisfies (3.11). Let us assume 8(R) <
ε(2R).Then

\zo(t)\ + M <|z | + | ί | < δ(R) < e(2R)
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while |zo | = |z*|/|ί*| < R and so

for |;| < |/*|.

We write Fn(t) = F(zn(t\ zn(t), t). Thus Fo is defined and hence so is zv

Next assume zn is defined and satisfies

(3.14) | z , , (0 |<e(2Λ), \zn(t)\^2R.

Then \zn(t)\ + |/| < e(|iπ(/)|); hence Fn is defined and satisfies \Fn(t)\ < C(#)
It is then easy to show that (3.14) also holds for n + 1 provided \z*\ + |r*| <
ε^Λ) and |z*| < #|ί*|. Thus (3.13) can be used to define a sequence (zA:(ί)}.

Next we use (3.12) to write

\Fk(t)-Fk_1(t)\<C(2R)\\\zk-zk_1\l

where we use

= m a x {\z(t) | + \ z ( t ) | } .

Then, as is easily seen, \\\zk + ι - zk\\\ < \\\\zk - zk_λ\\\ provided |r*| is small.
Thus {zk{t)} converges in C1 on \t\ < |ί*|. This proves Lemma 3.3.

We inteφret this lemma in terms of chains. We seek a chain from the origin
to some nearby point (z*, w*). We identify u with t. Thus we seek to choose
some v for which the solution to (3.3), (3.4) satisfies z(t*) = z*. Now we have
just seen that the boundary problem (3.11) can be solved under certain
restrictions on (z*, t*). The solution to this boundary problem determines v by
(3.6) and, with the appropriate μ, solves (3.3). This provides the desired chain.
Thus the lemmas in this section establish the following result.

Proposition. There is some positive function δ(R) such that each point in the
set

T(R)= {(Z*,M*): I u I >|z*|//t, |z | +|ii | < 8(R)}

can be connected to the origin by some chain.

4. We now outline the proof of our theorem for higher dimensional CR
structures. Since not every CR structure is realizable (see [5] and [6]) we shall
also drop the assumption that we are dealing with a submanifold of a complex
manifold. So we start with the definition of an abstract CR manifold. (To be
precise, we define an integrable CR manifold of hypersurface type.)
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Definition. Let V be a subbundle of the complexified tangent bundle of

M2n + ι. Then (M, V) is called a CR structure if

( l ) d i m c F = Λ,

( 2 ) F Π F = {0},

(3)[K,K]c V.

This last condition means that the Lie bracket of any two sections of V is

itself a section of V. (This does not imply that V arises from a submanifold of

M. There is a great difference between the real and complex Frobenius

theorems.) With V understood we say that M is a CR manifold.

Let 0, θ1, ,θn be a set of one-forms satisfying

(a) θ is real and 0 Λ θ1 A Λ θn A θι A Λ ψ Φ 0,

(b) Θ(L) = Θ(L) = 0 and θa(L) = 0 for every I G Fand α = 1, , n.

Then is it clear that dθ = 0 and dθa = 0, both m o d { M V '^ w } In

particular, since θ is real

where g is a hermitian matrix.

The choice of such one-forms is not unique. But the signature of g does not

depend on the choice and so the following definition is meaningful.

Definition. (M,V) is said to be strictly pseudo-convex if g is positive

definite.

In this case we may choose our forms θ and θa such that

(4.1) dθ = iθa A Ψ + θ A φ.

Cartan's construction for three-dimensional CR structures has been extended

to higher dimensions by Chern and by Tanaka. See the survey article [1] for

these and other references. In particular there are unique forms φβ and φa on

M such that { 0,0α, φ, φβ, φa} satisfy certain equations. A chain (together with

a choice of parametrization) is a curve y(t) a M satisfying

θ(y(t)) = h θ«(y(t))=-μ"(t),

( 4 ' 2 ) 4 £ = ,y|μ|2 + \φ(y(t))μa + μβΦa

β(Ht)) + Φβ(γ(/))

See [1] for details; we have changed their equations on p. 105 by setting

μa = —2aa, reversing the signs of θ and t, and using +/ in (4.1). This was

done to obtain the same signs as in (0.10). It is a consequence of the

Cartan-Chern-Tanaka construction that these curves do not depend on the

original choice of 0, θa, φ.

The hyperquadric Q in Cn is given by
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Local coordinates on this surface are given by (z l 5 —,zn9 u) with u = Rezw + 1.

We may take

θ = \(du + izadza- izadza), θa = dza, α = 1,•••,*.

Then the equations for chains are

0(γ) = l, e«(y)--μ , ^£ = iμ"\μ\2.

It follows as in §1 that the chains are the intersections of Q with complex lines.

In particular any two points may be joined by a chain. A local version holds

for any strictly pseudo-convex CR structure; in this section we will sketch the

proof.

Theorem. On a strictly pseudo-convex CR manifold any two sufficiently close

points can be connected by a chain.

In fact chains can be defined on any CR manifold provided g is nonsingu-

lar. However, it is no longer true that nearby points must lie on a common

chain. Consider the hyperquadric

The chains are again the intersections of Qλl with complex lines. Thus a chain

connecting (0,0,0) and (1,1,0) would have to be given by Q1X n {(z, z,0):

z G C}. But {(z, z,0)} c Qlλ and the intersection is thus not a real curve. Of

course it is still possible that the theorem holds for a generic nonsingular CR

manifold. It is easy to see why our proof breaks down without strict pseudo-

convexity. For example, for the chains on Qxι one has dμj = iμj\\μ\\2a, with

IIMII2 = l/hl2 ~~ liM2 a n d s o llμll 2 cannot be used to define a new time

parameter.

To start the proof of the Theorem we will write (4.2) in a form similar to

(2.2) and obtain estimates like (2.3)-(2.7). To do this we again introduce

special local coordinates and choose particular one-forms. Let p be a given

point of M2n + \

Lemma 4.1. We can choose local coordinates zl,---,zn, u and forms

θ,θ\- ,θn such that

(a) p becomes the origin,

(b) θ and each θa annihilate V, _ _

(c) θ is real and θ Λ θι Λ Λθ" Λ θι Λ Λ ψ* Φ 0,

(d) dθ = iθa A <r(mod0),

(e) θ = \{du + (iza - ba)dza + (-iza - ba)dza) with ba = 0(3),

(f) θa = dza 4- bj}dzβ + aa

βdzβ with b$ = 0(2) anda% = 0(2).

In (f) we can actually achieve a^ = Θ(N) for all N, but N = 2 suffices for

our purposes.
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The proof uses the formal solution to the CR embedding problem and a

weak version of the normal form from [3].

We use 0,0\ , θn in (4.2) to write down the equations for chains. We do

this in our local coordinates. We also want to change our time parameter. So

write (4.2) as θ(ys(s)) = 1, etc., and along each chain set s = jo\μ(τ)\~2 dτ.

Denote t derivatives by γ, etc. Then from (4.2) and the above lemma we obtain

(4.3) U = 2/|ju|2 - izaza + izaza + baza + baza,

(4.4) z° + tfz* + ap* = ~μa/\μ\\

(4.5) μ« = iμ« + \μ«ή>{z, ώ) + / x ^ ( i , u) + φ

Using (4.4) and its conjugate we see that

(4.6) i« = -μ"/\μ\2 + Cy/\μ\2

with C£ = Θ(2) and e$ = 0(2). Thus we may write

(4.7) Z«= -μV\μ\2 + Pa(z,U

where, as long as \z\ + \u\ < Cγ and |μ| > C2,

\\Pz\\+\Pu\<C(\z\+\u\)/\μl

\\P^\\<c{\z\2

+\u\2)/\μ\2.

We use the same norm notation as previously but now for vectors.

Using (4.7) in (4.3) we see that

(4.8) iι = 2/\μ\2 + Θ{l/\μ\).

It follows that (4.5) can be rewritten as

(4.9) μa = iμa + Ba(z,u,μ).

As long as \z\ + \u\ < Cλ and \μ\ > C2 we have \B\ + \\BZ\\ + \BU\ < C and

\\Bμ\\ < C/\μ\.

We want to compare a solution to (4.7), (4.8), (4.9) to the corresponding

solution for the hyperquadric. The initial value problem on the hyperquadric is

given by

(4 10) "
z(0) = iι(O) = 0, μ(0) = v

and on our general CR manifold by

η = 2 / | σ | 2 - / Γ Γ + iξ"ξ° + β

(4.11) ξa= - σ V | σ | 2 + P « ( z M μ )

A* =
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In (4.11) we have the following estimates valid on some set \ξ\ + \η\ < ε*
and |σ| > C*:

\P\<c{\z\2+\u\2)/\o\,

\\P^\+\Pη\^C(\z\+\u\)/\a\,

\B\+\\Bs\\+\Bη\<C,

\\BJ < C/\o\.

We now indicate how the estimates in §2 can also be established for these
equations. Again let X(t) = (z(t),u(t)) be a chain on the hyperquadric and
Y(t) = (ζiOiViO) ^ e corresponding chain on M2n+ι. It is easily seen that
Lemmas 2.2, 2.3 and 2.4 remain true. In place of (2.11) and (2.12) we derive

. c\t\

w 2

μa C\t\

\o\ \μ\

while (2.13) and (2.14) remain valid. The rest of the proof of Lemma 2.1 then
proceeds as before.

Next we need to compute the Jacobian of the transformation (/, v) -> (ζ(ι>, t),
η(v,t)). Let us use the following notation. Consider the column vectors in
Cn X R whose transposes are given by

Then D = det(£\ Eι, -,En

y E
n, F) is the Jacobian determinant we seek to

evaluate. Let DQ be the determinant for the hyperquadric. That is, DQ results
when in place of ζa and η we use za and u. As is easily verified

(4.12) Γ3< "-»> u{v,t) = — - sinΛ

Thus za(v, t) = vah{t)u(v, t) with h(t) = \{eiι - lXsin/)"1- This observation
will simplify our calculation.
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Lemma 4.2. DQ = 2W + 1(1 - cosOVM 4 # I + 2.
Proof. For DQ we have

Ek - vkhF= Vl9 Ek -vkhF = V2,

where Vx is a column vector each component of which is zero except for
vk = h(t)u(vyt) and v2n + ι = vkht(t)u(v,t). Similarly, V2 is zero except for

υ-k = h(t)u(t, v) and υ2n+ι = vkht(t)u{v, t). Thus

D = d e t ί ^ 1 - vιhF9 Eι -vιhF,- , E* -vnhF, F)

' M N)

where M is the diagonal matrix with entries (uh,uh,- ,uh,uh), P =

(vιhtu, vι7ιtu, - , vn~htύ) and (Nτ,q) = Fτ = (w1? wχ, , wrt, w ,̂ wr). It is easy

to see that

mχ ' " mi"q " Σ w i Ά - w 2 ^ / « y

w2iΛ|2n

W/ - u2n\h\2n~2 Σ {hvJhtu. + A^Af

The proof of the lemma is completed by a simple computation which makes

use of the homogeneity of u with respect to v.

Now we turn to the Jacobian for our general CR structure.

Lemma 4.3. For |/| < 3ττ/2 and \v\ > C1 we have

\D-DQ\<C\tΓl/\vΓ\
Proof. We know from our basic estimates that

(4-13) " Z" < % " ' ' Z ' ' '
| η , - « r | < C | ί | / | H , h , - « ( l < C | / | / | i Ί .

Further, as is easily seen from (4.12),

( 4 1 4 ) \zv\<C\t\/\v\\ \z,\<C/\v\,

| « , | < c | / | / | H 3 , \u,\<c/\v\\
So

Ά U\ ,[a u
D-**"B V! Λb v
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with

\Au\<c\t\/\v\\ |B,| < c / H \υ,\

\au\<C\t\2/\v\\ | 6 , | < C | ί | / | H 2 , |«, |

Thus

\D-DQ\ = °-< v)\

C\t\/\v\\

C\t\/\v

C\tΓl/\v\

C/\v\\

:C\t\/\v\

and we are done.

We can now show that the Proposition at the end of §2 also holds in higher

dimension. It is clear that the flow associated to the chains can be compactified

by embedding in a flow on a RP2" — bundle over M2n + 1 in the same way that

we compactified the flow on M 3. However, let us not do this but rather sketch

the alternate approach alluded to in §1.

So let (z*, w*) be a given point with \u*\ < \z*\/R and |z*| < 1/R. We

claim that if R is large enough, then there is a chain starting at the origin and

going through (z*, u*). The result is true for Q, so let z(v*9 /*) = z* and

u(v*, /*) = w* for z and u given by (4.12). We shall again assume 0 < ί* < π.

The modifications necessary for /* < 0 will be obvious.

Now define F= {(z*,w*,σ): σ e C} and TV = {(Y(v,t), σ(v,φ (7,σ)

solves (4.11), 0 < t < t* + π/4> ^ < M < (l^*|2 + I"*!2)" 1} for the given

(z*, M*). Note that |/| < 3τr/2 so all our previous estimates apply to those

orbits in N. Note also that once we exclude the trivial case of (z*, u*) = (0,0)

we have that N is compact. The boundary of N is contained in

{(Y(v,t)9 σ(v9t)):0 = R)

\j{{Y(v,t* + m/A),a(v,ι

The following results show that F does not intersect the boundary of N.

Lemma 4.4. There exists some Ro such that if for some (R,t,v, z*,u*) one

has Y(v, t) = (z*, M*) with

(4.15) \u*

(4.16) | / | <

then one also has

(4.17) Γ ' ' '" " 2 ' ~'2"~l<(k ιa+ι« ιT
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Lemma 4.5. There exists some Ro such that if (z*, w*) satisfies (4.15) for

some R > Ro, then

\Y(p,t* + flτ/4)-(z*,κ*)| > 0

for all P, \v\ > R.

Proof of Lemma 4.4. For any solution Y(P, t) = (ζ, η) we have \ξ\ < C\v\~ι

for |/| < 3ττ/2. Thus when ξ(v91) = z* we have \z*\ < C\v\~ι. But if we had

\v\ > ( |z*| 2 + Iw*!2)"1 we would have \v\ > C\P\2 which contradicts \v\ > Ro,

Ro large. This establishes the right inequality in (4.17).

Next note that

\z(v,t)\-\z(v,t)-ζ(r,t) + z*\<C/\p\2+\z\*

and so

(4.18) I*(M)I < ι/R + C/\v\2.
Similarly

(4.19) \u(pj)\ ^\z(v9t)\/R + Ct2/\p\3 + Ct2/R\p\2.

Let us consider separately the cases |ί| < τr/2 and 77/2 < \t\ < 3ττ/2. Note

that in the first case, for example

(4.20) 2|sinί| - Ct2/\p\ - Ct2/R > y/2\sint\

provided Ro is large compared to C. Substituting the explicit formulas (4.12)

into (4.19) we obtain

? 1 1/1/ 1 \ Γt2 Ct2

- ^ I sin r I < -£(2(1 - cosO) 7 [γ-λ + ̂  + - ^

which implies, because of (4.20),

\v\ . IsinH
Λ (1 - c o s O 7

So |ϊΊ > R in the case when |/| < ττ/2.

In the other case, τr/2 < |r| < 377/2, we note that

(4.21) */2 (1 - c o s 0 1 / 2 - C/\p\ > 1

provided |i>| > JR0, RO large compared to C. We now substitute (4.12) into

(4.18) to obtain

and so (4.21) implies \p\ > R in the case where ττ/2 < |/| < 3ττ/2. Thus the left

inequality of (4.17) is also valid.
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Proof of Lemma 4.5. Set z(v*, t*) = z* and u(v*, t*) = u*. Let T = /* +
/4. So

| f ( y , Γ ) - z | =\S(v,T)-z(v9T)\+\z(v,T)-z*\

hence

\S(v9T) - z*\>\z(v9T) - z(v*9t*)\ ~C/\p\\

and similarly

\η(v9T)-u*\ >\u(v9T)-u(r*9t*)\- C/\P\\

Thus it suffices to show that either

> 0(4.22) (pi

or

(4.23)

Let

r
1)

sinΓ

p
2

V

V

-h

P*

p*\2

sinί*

p * 1

sin JΓ
I

1

e"
•

) -

v1

v*
2

- i )

c
3 '

"Ί

sinί*

> Q^

v*

Note that if £(?, *>*, /*) > C* for some C* > 0 and all v, p*, /*, then either
(4.22) or (4.23) must also hold provided only that |*>| ̂  JR0 where Ro depends
only on C*.

For any unit vector w e C" we have E > \a — rf\ + \b — r2g\ with

a =

We want to apply Lemma 2.7 and we need to obtain that the lower bound C
which it provides does not depend on p or v*. So let us first choose the unit
vector w such that

1V

. w

IH
v* * w ft
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Then \a\ is bounded from below independently of v and \f(t*)\ is bounded
from below on any interval δ < \t*\ < 5τr/4 independently of v*. Further

!*(**)//( '*) | 2 = (1 - cosT)/(l - cos/*)

and so

\b(t*)-\a(t*)/f(t*)\2g(t*)\>Cl>0.

Thus for each value of v and v* we may apply Lemma 2.7 to obtain that
E(p,p*,t*)> C, where C does not in fact depend on v or p*. So we are done.

Now we again use the deformation argument to show that N and F do
intersect. So let (ω,ωα) be the standard CR structure on Q and (0,0α) the
given CR structure on M as in Lemma 4.1. We cannot use the simple linear
deformation

ψ = (1 - s)ω + sθ, ψα = (1 - s)ωa + s0α

because (ψ, ψα) is in general not integrable and so the Cartan-Chern-Tanaka
construction does not apply. Instead we consider for each s > 0 the map
Φ(Z, £/) given by z = sZ, u = s2U and define the forms

0, = Φ*(0)Λ 2, 0; = Φ*(0α)/*.

For 5 = 0 we set

0O = \{dU + /Zα JZ α - iZadZa), 0o

α = JZα .

Lemma 4.6. The forms θs, θ}, , θ"9 and all their derivatives with respect to

Z and U, are continuous functions on s > 0. These forms define a strictly

pseudo-convex {integrable) CR structure.

We omit the simple proof.
Now let Ns = [Ys(p, t\ os{v, t): (Ys, σ5) solve (4.11) for the CR structure

θs9 θs

a, 0 < t < t* + ir/4, R < 1̂1 < (|z*|2 + Iw*!2)"1}. Since we have uni-
form bounds on all coefficients and their derivatives, the largeness condition
on R can be taken independent of s. Then we know that

(a) N° Π F is nonempty,
(b) (bdyNs) Π F is empty, 0 < 5 < 1,
(c) iϊ p & Ns Π F for some s and some /?, then Ns and i 7 are transverse

at p.
It follows that Nι2 Π F is also nonempty. Thus there is some chain which

connects the origin and (z*, w*). Hence the Proposition at the end of §2 also
holds in higher dimensions and for abstract CR manifolds.
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Now we turn to the results in §3 which fortunately can be easily generalized.

(The estimates we will obtain are somewhat different from those used in §3

mainly because of the absence of bβ in the lowest dimensional case.) First we

introduce t = u as a new time variable. Equations (4.2) then become in our

special coordinates and after some simplification

(4.24) z=-\μ+A?z + @, μ=U(z,t,μ).

We have

M < c(\μ\ + i)(M + M ) , | * | < c(\μ\ + i) 2(kl + | z | ) ,

Wμ\<C(\t\+\z\), | # M | < C ( | μ | + l ) ( M + | z | )

and

U is smooth on {(z,ί,/ι): \t\ + \z\ < ε, μ e Cn}

provided (|μ| 4- l)( | ί | + \z\) < 1. Hence we have

(4.25) z=-\μ+f{z,z,μ,μ,t)

with

I/I < c(\μ\ + i ) 2 ( k | + | z | ) , i / j < c(\μ\ + i ) ( M + | z | )

provided (\μ\ 4- 1)(|/| + \z\) < ελ for some εv

From this equation we derive

(4.26) μ = G ( z , i , r )

provided ει is small enough and |i|(|f| + |z|) < ε2 for some ε2.

Then the second equation in (4.24) can be rewritten

(4.27) μ = g{z,zj).

This when substituted into the differentiated form of (4.25) yields i =

F(z, i, t). In this way we can obtain the following result.

Lemma 4.7. There exist constants ε and ε2 and smooth functions

,w,w,t) e CnandG(z, z,w,w, t) G C" on

S = { ( z , w , t ) : \t\ + | z | < ε , | w | ( | / | + | z | ) < ε 2 }

// z ( 0 e C 7 w&ω z = F(z, z, i, z, /), z(0) = 0, rλe/i z ( 0 together

with μ(t) = G(z(t\ z(t\ z(t), z(t), t) solves (4.24).
Recall we want to show that for each R there is some δ such that there is a

chain from the origin to (z*, «*) whenever |z* | < R\u*\ and |w*| + \z*\ < δ.

We now know this is equivalent to the following result.
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Lemma 4.8. Let F(z,z,w,w,t)^Cn be smooth on

S = { ( z 9 w , t ) : \t\ + | z | < e , | w | ( | ί | + | z | ) < ε λ )

where ε and εx are given constants. For each R there is some δ such that

z = F(z, z, z, z, 0 , z(0) = 0, z(t*) = z ,

has a solution provided

|z | </ψ*|, |z*| +|ί | <δ.
The proof is exactly the same as the proof of Lemma 3.3 with vector

notation now understood.
Thus the proposition at the end of §3 also is valid in higher dimensions and

for abstract CR manifolds. This concludes our proof that any two sufficiently
close points on a strictly pseudo-convex CR manifold lie on a common smooth
chain.
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