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ASYMPTOTIC BEHAVIOR OF CONVEX SETS
IN THE HYPERBOLIC PLANE

E. GALLEGO & A. REVENTOS

1. Introduction
In this note we study the following problem posed by L. A. Santald and I.

Yanez in [5]:
"Let C(t) be a family of bounded closed convex sets in the hyperbolic plane,

depending on the parameter t (0 < /) and such that C{tλ) c C(t2) for tx < t2.
Assume that for any point P of the plane there is a value tP of t such that, for all
t > tp, we have P ^ C(t). We then say that C(t) expands over the whole plane
as t —> oo. If F(t) and L(t) denote respectively the area and length of C(t),
prove that:

where K < 0 is the curvature of the hyperbolic plane".
The quotient area length appears in a natural way in problems of classical

geometric probability. For instance, given a compact convex set in the Euclidean
plane we can consider the length of the intersection of a random straight line
(in the sense of the integral geometry) with this convex set. In this way we
obtain a random variable σ whose expected value E(σ) is

E(σ) = πF/L.

If we expand now this convex over the whole Euclidean plane we have (cf.

[6])

and so the expected value of σ tends to infinity.
L. A. Santalό and I. Yanez remark in [5] that the situation in the hyperbolic

plane is quite different. In fact they prove, using the hyperbolic isoperimetric
inequality and the Gauss-Bonnet formula, that for a family of sets convex
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respect to horocycles (Λ-convex) expanding over the whole plane we have

where K= -I/A:2.
In this note we prove that this is not true for arbitrary convex sets. In fact

we construct, for each λ e [I/A:, oo) a sequence of polygonal convex sets Kn

expanding over the whole hyperbolic plane with

The convex sets in the above sequence can be modified to obtain counterex-
amples with smooth boundary. For this we use Bonnesen's approximation
theorem (cf. [1]) and the continuity, with respect to the Hausdorff metric, of
the hyperbolic length and area functions. We end this paper giving sufficient
conditions for the conjecture to be true.

We wish to thank Professor L. A. Santalό for many helpful comments
during the development of this work.

2. Preliminaries
We shall consider the Beltrami's model for the hyperbolic geometry, i.e., the

manifold

D = {(x,y) e R2: x2 + y2 < 1},

with the Riemannian metric

ds2 = —^-—A——,dr2 + r2dθ2

where r, θ are the ordinary polar coordinates. (See for instance [2].)
This Riemannian manifold is complete, simply connected, and of constant

curvature K = -I/A:2.
The advantage of this model is that the geodesies are Euclidean straight

lines, and so we have a convenient characterization of the convex hyperbolic
sets. They are in fact the Euclidean convex sets contained in D.

In this model the length between two points A, B is given by

where M, N are the extremities of the chord AB, and (A,B,M,N) is the
anharmonic ratio.

The angle between two lines α, b is given by

<{a,b) = —
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where m, n are the imaginary tangents to the circle from the point of
intersection of a and b, and (a,b,m,n) is the anharmonic ratio of this four
lines.

We shall assume throughout that the convex sets are bounded, closed and
with nonempty interior.

Consider now a convex set C in the Euclidean plane E2. We say that the
line

H= ( j c e R 2 : (x,a) = b),

with a e R2 and b e R is a support line of C if

(ϊ)C Π H Φ 0 ,
(ii) C c {x e R2: (x,a) > b) or C (z {x ^ R2: (x, a) < b).
The function p(x) = supsGC(s,x) for each x e S 1 is called the support

function of C. As it is the restriction to Sλ of a convex function it is continuous
(see [3]).

The parallel convex body Cs is defined to be

Q= U B(a,δ),

where B(a, S) is the Euclidean closed ball with center a and radius 8.
From this we define the following distance (see [3])

d(A9B) = inf{δ: A <z Bs and B <z As}.

Let £ denote the set of all compact convex sets with nonempty interior.
Then (£, d) is a metric space, and this enables us to consider the convergence
of sequences of convex sets. This metric is called Hausdorff metric. The
restriction to $ of the convex sets contained in H(K) (Hyperbolic space of
curvature K) will be denoted by δκ.

We shall use the following theorem due to Bonnesen and Fenchel [1].
Theorem. Let C e δ, and assume the origin of coordinates belongs to C.

Then there exists a sequence Cn in S such that the following hold'.

(i) l i m n _ x ς = C with Cn^C.
(ii) Cn = {(x, y) G E2, Fn(x, y) < 1} where Fn is a real analytic function.

(in) For each point in the boundary of Cn there is a unique tangent line.

(iv) The support function of Cn is real analytic.

3. A counterexample

As the conjecture is true for sequences of A-convex sets, to obtain a

counterexample we must consider convex sets which are not /z-convex. For

instance, regular polygons centered at the origin of coordinates of the Beltrami's

model.
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Let { Kn} be a sequence of centered regular polygons. We can triangulate
each Kn in such a way that each triangle has one vertex in the origin and the
opposite side is a side of the polygon.

Then, the length and area of Kn are given by Ln = m ln and Fn = m fn

where m is the number of sides of Kn, ln is the length of each one of this sides,
and fn is the area of each triangle in the above triangulation. Thus, we have

lim (Ln/Fn) = lim (/„//„).

To construct a counterexample we take concretely the sequence {Kn} of
centered regular polygons in such a way that Kn has 3 2n~ι sides and is
inscribed in the circle of Euclidean radius rn = 1 — an, being {an} a sequence
of real numbers converging to zero.

As a rotation is an hyperbolic isometry, each triangle in the above triangula-
tion is isosceles with hyperbolic angle at the origin an = 2ττ/3 2n~ι.

Then we have (cf. Figure 1)

ln = -
BN

log

, , a + b , . a2 + b2 + lab
= Hog ^ =/clog a l _ b 2 ..

where

1/2

a = MQ = (1 - rπ

2cos2(«n/2)) 7 , = rnsm(an/2).

H{K)

FIGURE 1
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That is

(1) /„ = *log[l

Now we compute the angles βn (cf. Figure 1):

where mvm2 are the angular coefficients of the imaginary tangents to the
circle of radius one from B. Computing this anharmonic ratio we obtain

where ωn = (1 - r n

2 )" 1 / 2 and 0 < & < ir/2.

Therefore the area of each triangle is

In the particular case where an = σ • 2'2n with σ e (0, oo) we obtain from (1)
and (2):

n-* oo

Thus we have

Urn /„ = k • logfl +(2τr/9σ)(2π +(18σ + 4w 2 ) 1 / 2 ) l ,

lim /„ = k2ίπ - arctan[6π(2σ) 1 / 2 /(2τr 2 - 9

Lπ log[l +(2τ7/9σ)(2τ7+(l8σ4-477 2 ) 1 / 2 )]
lim -=r = —: p — 7—.

n -oo /*„ ^(TΓ - arctan[6τr(2σ) 7 / ( 2 π 2 - 9σ)J)

The two functions in this ratio are continuous, and the denominator vanishes
only when σ goes to infinity.

If we study this quotient when σ -> oo and σ -> 0, we see that this value
goes to \/k and infinity respectively.

Thus we have shown that depending on the choice of σ,

lim ^ = λ
«-*oo rn

for all values of λ between \/k and infinity.
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Remark. If we want to obtain lim^ _ ^ (Ln/Fn) = oo, we need only to take

an = a~2n with α > 2.

4. Continuity of length and area functions
of convex sets in the hyperbolic plane

Let C e ^ . W e define the length of the boundary of C by

L(C) = sup L(P) ,
P<zC

where L(P) is the hyperbolic length of a convex polygon P contained in C.
Note that if C is a piecewise differentiate curve (with finite number of points
without continuous derivative) this definition coincides with the standard one

where γ is a parametrization of dC.
That the above supremum exists is an easy consequence of the Cauchy-

Crofton formula

ί dG = L(S)9
JGns=0

where dG is the density for geodesies, and the integral is extended over the
geodesies which cut a piecewise differentiable convex curve S (cf. [6]). In fact,
if R is a circle such that C c R, we have

L(P)= f dG^ [ dG = L(R),

and so the supremum exists.
We define area in a similar way

F(C) = sup F(P),

where F(P) is the hyperbolic area of a convex polygon P contained in C. Note
that for all convex set C

F(C) = ί dυ,
Jc

where dυ is the volume element.
When the convex set C is defined by a # 2 support function p we have

^
-P2-P'
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Length and area are real functions defined on $k, and we want to prove that
they are continuous in the following sense. If {£,} is a sequence which
converges to a convex set S, then

lim L(S,) = L(S), Urn F(S,) = F(S).
i i

To prove that the real functions length and area defined on Sk are
continuous we shall use the following lemmas [4].

Lemma 1. // { S,} is a sequence in $ convergent to a compact set S, then S is
convex.

Lemma 2. Let C be a convex set in H(K) with support function p. Then for
each pair of real numbers ε and 8 such that

0 < ε < 1 - max/?, 0 < δ < I/maxp,

there exist convex polygons P and Q such that

C c ? c C £ c H(K), Q c C c 8Q c H(K),

where 8Q means the 8-homothetic polygon of Q, and dQ Π dC = d8Q Π 3C =
0 .

Now we shall prove the following:
Proposition 1. If P is a convex polygon and 8P is 8-homothetic, then

where M = maxHδjt,!! < 1, P = conv(jc1? JC2, , xk) the convex hull of the set
of points (xl9 x2," -, xk)>

Proof. P is the union of the triangles Vt of vertices Oxtxi+l, i = 1, , k — 1
and Vk of vertices Oxkxv and 8P is the union of the triangles V{ of vertices

*iδxi+l9 i = 1, , k - 1 and Vk of vertices O8xk8xv

An easy computation shows that

F(y.) = k2fθl (1 - r2y1/2dθ - k2ΔΘ,

Λ = k2fθ2 (l -(8r)2)~1/2dθ -

where Δθ is the Euclidean angle between Oxt and Oxi+ι, and r == r(θ) the
polar parametrization of X/X/+1.



70 E. GALLEGO & A. REVENTOS

As f(x) = ((1 - x2)/(l - δ2x2)f/2 for χ e ( 0 , M / δ ) is an increasing
function, it attains his maximum at x = M/δ and then

2 _ 1,2X1/2

Thus,

2 " (1 - r2Y1/2dθ - k2ΔΘf
and hence (i) follows.

We also have

fθl (r
L(y) = k fθl (r2 - r4 + r 2) 1 / 2/(l - r2) dθ,

L(y.') = k fθl (δ2r2 - δV4 + 82r2)1/2/(l - 82r2) dθ.

Where L(V) and L(F') denotes the length of a side of P and 8P
respectively.

As before

max(l - r2)/(l - δV) = (l/δ2)(δ2 - M2)/(l - M2)

and then

(r2 - 82r4 + r2)1 / 2 ^ / f i Λ δ2 - M2 (r2 + r2 - rψ2

ΓΓ7 < ( 1 / δ ) T Γ ^ ΓΓ7̂
and the second inequality follows.

Now we have
Theorem. The functions length and area defined on £κ are continuous.

Proof. Let S = lim,^. From Lemma 2 for each 1 < δ < I/max/? there
exists a convex polygon P such that P c S c 8P c i / (#) .

On the other hand, from Proposition 1, we have

0 < F(8P) - F(P) < (/(M/δ) - ί)(F(P) + 2πk2)

Then for each ε > 0, there exist δ and P such that 0 < F(δP) - F(P) < ε
(because/(M/δ) -* 1 when δ -+ 1).

Since lim, S, = S there exists i 0 such that P c St c δP for / > /0. Then

|F(S) - F(S,) I < F(δP) - F(P) < ε, / > /0,

and the Theorem is proved, q.e.d.
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This theorem proves, using Bonnesen approximation theorem, that the

counterexample of the above paragraph can be modified to obtain counterex-

amples with smooth boundary (in fact defined by analytic support functions).

5. Remarks

We give some sufficient conditions for the conjecture to be true.

First we recall that the conjecture is true for sequences of Λ-convex sets (cf.

[5]), so we shall deal with arbitrary convex sets.

Note that in Beltrami's projective model a sequence {Kn} of convex sets

defined by support functions Pn expands over the whole plane if and only if

pn(θ) converges to 1. With this notation we have

Proposition 2. Let 1 - bn < pn < 1 - an with \imnan = X\mnbn = 0. //

Mmn(an/bn) = 1, the conjecture is true.

Proof. We have C(l - bn) c Kn c C(l - an\ where C(r) denotes the circle

of Euclidean radius r centered at the origin.

From the expressions of length and area in §4 we have

Substituting this expressions in the inequality

L{C{\-bn)) L(Kn) L{C{\-an))

F(C(1 - „„)) ^ F(Kn) ^ F(C(1 - bm))

we obtain

1 \-bn

L(Kn) ^ l \-an j(2-bn)bn'
1/2

(2 - an)anι

that is, limn(Ln(Kn))/(Fn(Kn)) = \/k.

Proposition 3. Let the notation be as above. Ifp'n'(θ) converges uniformly to

zero, the conjecture is also true.

Proof. This is a consequence of the expression for the length and area. A

more explicit proof is given in [3]. q.e.d.
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If we omit the condition p'ή -> 0 uniformly, the conjecture is not necessarily

true, as can be shown by computing the quotient length area for the convex

sequence

pn(β) = 1 -(l/n2) -(l/4n2)cos2nθ

in i/(-l).
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