FINITE VOLUME AND FUNDAMENTAL GROUP ON MANIFOLDS OF NEGATIVE CURVATURE

VIKTOR SCHROEDER

1. Introduction

Let V be a complete Riemannian manifold of dimension n and sectional curvature $K \leq 0$. Then V is a $K(\pi, 1)$ -manifold with $\pi = \pi_1(V)$ [8, p. 103] and hence determined up to homotopy by the fundamental group. In particular, the homology $H_*(V)$ of V is isomorphic to the group homology $H_*(\pi_1(V))$ (see [1]). Therefore V is compact if and only if $H_n(\pi_1(V), \mathbb{Z}_2) = \mathbb{Z}_2$. Hence the compactness of V can be read off from $\pi_1(V)$.

We give a similar characterization for the condition of finite volume:

Theorem. Let V be a complete Riemannian manifold of dimension $n \ge 3$ with curvature $-b^2 \le K \le -a^2 < 0$. Then the volume of V is finite if and only if:

(1) $\pi_1(V)$ contains only finitely many conjugation classes of maximal almost nilpotent subgroups of rank n - 1.

(2) If Δ is the amalgamated product of $\pi_1(V)$ with itself on these subgroups, then $H_n(\Delta, \mathbb{Z}_2) = \mathbb{Z}_2$.

For a full definition of Δ we refer to §4.

For n = 2, the statement is wrong: Let V be a noncompact surface with constant negative curvature and finite volume. It is known that V has an end E diffeomorphic to $S^1 \times (0, \infty)$ with a warped product metric $f^2 ds^2 + dt^2$. The curvature is given by -f''/f and the volume of E by $2\pi \int_0^\infty f dt$. Using a suitable function \overline{f} we can deform E to an expanding end, such that the new end has bounded negative curvature but infinite volume.

The first part of our proof (\$3) leads to a description of the ends of finite volume in terms of the fundamental group. This part is based on the investigations of Heintze [6], Gromov [5] and Eberlein [3]. A topological argument then finishes the proof (\$4).

This paper is a condensed version of parts of my thesis [10] written under the guidance of Professor Wolfgang Meyer at Münster. I am also deeply

Received February 10, 1984 and, in revised form, June 6, 1984.

VIKTOR SCHROEDER

grateful to Mikhael Gromov who proposed the result and pointed out essential ideas for the proof.

2. Notation and basic results

(Compare [3], [4].) Let X be a Hadamard manifold, i.e., a complete simply connected Riemannian manifold with curvature $K \le 0$, let d(,) be the distance function on X and let $\overline{X} = X \cup X(\infty)$ be the Eberlein-O'Neill compactification. For $x \in X$ and $z \in X(\infty)$ let HS(x, z) be the horosphere at z which contains x and HB(x, z) the corresponding (open) horoball. For an isometry γ of X we define the convex displacement function $d_{\gamma}: x \to d(x, \gamma x)$. γ is called elliptic (hyperbolic, parabolic), if d_{γ} has zero minimum (positive minimum, no minimum). An isometry γ can be extended to a homeomorphism of \overline{X} . If X has curvature $K \le -a^2 < 0$, a nonelliptic isometry γ can be characterized by the fixed points Fix(γ) on $X(\infty)$: a hyperbolic isometry fixes exactly two points of $X(\infty)$ and translates the unique geodesic joining these points. A parabolic isometry γ has exactly one fixed point $z \in X(\infty)$ and leaves the horospheres HS(x, z) invariant.

For a complete manifold V of negative curvature let X be the Riemannian universal covering, $\pi: X \to V$ the projection. Then $V = X/\Gamma$, where Γ is a freely acting, discrete group of isometries on X, $\Gamma \simeq \pi_1(V)$. We define the Γ -invariant function $d_{\Gamma}: X \to (0, \infty)$ by $d_{\Gamma}(x) := \min_{\gamma \in \Gamma - id} d_{\gamma}(x)$. Then $d_{\Gamma}(x) = 2$ Inj Rad $(\pi(x))$, where Inj Rad is the injectivity radius. Inj Rad $(p) \ge \varepsilon$ and $K \le 0$ imply that the volume of the distance ball $B_{\varepsilon}(p)$ is larger than the volume of the ε -ball in euclidean space. Therefore vol $(V) < \infty$ implies that the set {Inj Rad $\ge \varepsilon$ } is compact for all $\varepsilon > 0$.

An end of V is a function E that assigns to each compact subset K of V a connected component E(K) of V - K with the condition that $E(K) \supset E(K')$ if $K \subset K'$. An open set $U \subset V$ is a neighborhood of an end E if $E(K) \subset U$ for some compact subset K. An end E has finite volume if there is a neighborhood U of E with vol $(U) < \infty$.

For the proof of our theorem, we can assume (by scaling the metric) that V satisfies the curvature condition $-1 \le K \le -a^2$, where a is positive. This enables us to use the Margulis lemma in the following form.

Margulis Lemma. There is a number $\mu = \mu(n) > 0$, depending only on n, with the following property: let X be an n-dimensional Hadamard manifold with curvature $-1 \leq K \leq 0$, let Γ be a discrete group of isometries on X, $x \in X$, and let $\Gamma_{\mu}(x)$ be the subgroup of Γ generated by the elements $\gamma \in \Gamma$ with $d_{\gamma}(x) \leq \mu$. Then $\Gamma_{\mu}(x)$ is almost nilpotent, that is, $\Gamma_{\mu}(x)$ contains a nilpotent subgroup of finite index. For a proof see [11, p. 5.51], [2, p. 27], [5], [10].

Lemma 1. Let X be a Hadamard manifold with curvature $K \leq -a^2$ and let Γ be a freely acting, discrete and almost nilpotent group of isometries on X. Then $Fix(\gamma_1) = Fix(\gamma_2)$ for all $\gamma_1, \gamma_2 \in \Gamma$ – id. Hence the elements of Γ – id are either all parabolic with a common fixed point $z \in X(\infty)$, or all hyperbolic with common axis c. In the second case Γ is infinite cyclic.

For a proof see [3, Lemma 3.1b].

3. Ends of finite volume

The main result of this section is the following description of the ends of finite volume.

Proposition. Let $V = X/\Gamma$ satisfy $-1 \le K \le -a^2$, $0 < r \le \mu$.

(1) If E is an end of finite volume, then there is a unique connected component $U_r(E)$ of {Inj Rad < r/2} such that $U_r(E)$ is a neighborhood of E. The volume of $U_r(E)$ is finite. For two different ends E and E* of finite volume, the neighborhoods $U_r(E)$ and $U_r(E^*)$ are disjoint.

(2) If $n = \dim V \ge 3$, then the ends of finite volume correspond one-to-one to the conjugation classes of the maximal almost nilpotent subgroups of rank n - 1 in Γ .

(3) The ends of finite volume have disjoint neighborhoods U diffeomorphic to $B \times (0, \infty)$, where B is a compact codimension 1 submanifold of V.

Before we will prove this result, we need some preparations. Our manifold V was represented as $V = X/\Gamma$. Now we look for a similar description for subsets $U \subset V$ as $U = W/\Gamma_W$, where $W \subset X$ is precisely invariant, i.e. for any $\gamma \in \Gamma$ either $\gamma W = W$ or $\gamma W \cap W = \emptyset$, and Γ_W is the subgroup { $\gamma \in \Gamma | \gamma W = W$ }.

Lemma 2. Let Γ be a discrete group of isometries acting on a Hadamard manifold X. Let r > 0 and let $W \subset X$ be a connected component of $\{d_{\Gamma} < r\}$. Then:

(1) W is precisely invariant.

(2) If $\gamma \in \Gamma$, $x \in W$ and $d_{\gamma}(x) < r$, then $\gamma \in \Gamma_W$.

Proof. (1) Because d_{Γ} is Γ -invariant, γW is also a connected component of $\{d_{\Gamma} < r\}$ for all $\gamma \in \Gamma$. Thus $\gamma W \cap W \neq \emptyset$ implies $\gamma W = W$.

(2) $d_{\gamma}(x) = d_{\gamma}(\gamma x) < r$. The convexity of d_{γ} now implies $d_{\gamma} < r$ hence $d_{\Gamma} < r$ on the geodesic from x to γx . Thus both x and γx are in W. By (1), $\gamma \in \Gamma_{W}$. q.e.d.

Let U be a component (i.e., a connected component) of $\{\text{Inj Rad} < r/2\}$ and W be a component of $\pi^{-1}(U) \subset X$. Then W is a component of $\{d_{\Gamma} < r\}$

VIKTOR SCHROEDER

and, by Lemma 2, $U = W/\Gamma_W$. With regard to the Margulis Lemma we will study components U of {Inj Rad < r/2} and the corresponding components W of $\{d_{\Gamma} < r\}$, where r is smaller than the constant μ of the Margulis Lemma.

Lemma 3. Let V be complete, $-1 \leq K \leq -a^2$, $0 < r \leq \mu$. Let $U \subset V$ be a component of {Inj Rad < r/2} in V, W a component of $\pi^{-1}(U)$ in X and $\Gamma_W = \{\gamma \in \Gamma | \gamma W = W\}$.

(1) Either there is a unique geodesic c in X, such that Γ_W is the infinite cyclic group $\Gamma_W = \Gamma_c := \{\gamma \in \Gamma | \gamma \text{ has axis } c\}$ or Γ_W is a group of parabolic isometries and there is a unique $z \in X(\infty)$ with $\Gamma_W = \Gamma_z := \{\gamma \in \Gamma | \gamma(z) = z\}$. W is bounded in the first and unbounded in the second case.

(2) $W = \{ d_{\Gamma_W} < r \}.$

(3) If W_1 and W_2 are distinct components of $\{d_{\Gamma} < r\}$, then Γ_{W_1} and Γ_{W_2} intersect only in the identity.

Proof. (1) Using Lemma 1 it is easy to prove (see [3, Lemma 3.1c]): if $x, y \in W$, $d_{\alpha}(x), d_{\beta}(y) < r$ for nontrivial $\alpha, \beta \in \Gamma$, then $\operatorname{Fix}(\alpha) = \operatorname{Fix}(\beta)$. Thus for $A := \{\gamma \in \Gamma - \operatorname{id} | \text{ there exists } x \in W \text{ with } d_{\gamma}(x) < r\}$, the classification of isometries yields: either all $\alpha \in A$ are hyperbolic with a unique common axis c, or all $\alpha \in A$ are parabolic with a unique common fixed point z. If $\gamma \in \Gamma_W - \operatorname{id}, x \in W$, then $\gamma x \in W$ and there is an $\alpha \in A$ with $r > d_{\alpha}(\gamma x) = d_{\gamma^{-1}\alpha\gamma}(x)$. Hence $\gamma^{-1}\alpha\gamma \in A$.

If $\alpha \in A$ is hyperbolic with axis c, then $\gamma^{-1}c$ is the axis of $\gamma^{-1}\alpha\gamma \in A$ and hence $\gamma^{-1}c = c$. Therefore γ leaves c invariant and γ is hyperbolic with axis c.

If $\alpha \in A$ is parabolic with fixed point $z \in X(\infty)$, the same argument shows that $\gamma z = z$. γ is also parabolic by [4, Proposition 6.8].

Hence we have proved that the elements of Γ_W are either all hyperbolic with axis c ($\Gamma_W \subset \Gamma_c$) or all parabolic with fixed point z ($\Gamma_W \subset \Gamma_z$). In the first case c is contained in W and hence $\Gamma_c \subset \Gamma_W$. The discreteness of Γ then implies that Γ_c is infinite cyclic. In the second case let $g: [0, \infty) \to X$ be a geodesic ray with $g(0) \in W$ and $g(\infty) = z$. Because $K \leq -a^2 < 0$, $d_{\gamma}(g(t)) \to 0$ for all $\gamma \in \Gamma_z$ as t goes to ∞ . Hence g is contained in W and, by Lemma 2(2), $\Gamma_z \subset \Gamma_W$.

If U is bounded, then Inj Rad assumes a minimum in $p \in U$. Let $x \in W$ with $\pi(x) = p$ and $d_{\Gamma}(x) = d_{\gamma}(x)$ for some $\gamma \in \Gamma_{W}$. If γ is parabolic, then there is a nearby y with $d_{\gamma}(y) < d_{\Gamma}(x)$, hence Inj Rad $(\pi(y)) <$ Inj Rad $(\pi(x))$, a contradiction.

On the other hand let Γ_W be an infinite cyclic group of isometries with common axis c. Then the curvature assumption implies that $d_{\Gamma_W}(y) > r$ for all $y \in X$ with d(y, c) > R for a suitable R. Therefore $d(q, \pi(c)) < R$ for all $q \in U$ and U is bounded.

(2) By Lemma 2(2), $W \subset \{d_{\Gamma_{W}} < r\}$. Now it is easy to see that for

178

a geodesic c or a point $z \in X(\infty)$, the sets $\{d_{\Gamma_c} < r\}$ and $\{d_{\Gamma_z} < r\}$ are connected. Therefore $W = \{d_{\Gamma_W} < r\}$.

(3) Let $\gamma \in \Gamma_{W_1} \cap \Gamma_{W_2}$ be a nontrivial element. If γ is hyperbolic with axis c, then $\Gamma_{W_1} = \Gamma_c = \Gamma_{W_2}$ and if γ is parabolic with fixed point z, then $\Gamma_{W_1} = \Gamma_z = \Gamma_{W_2}$. By (2), $\Gamma_{W_1} = \Gamma_{W_2}$ implies $W_1 = W_2$.

Lemma 4. Let $V = X/\Gamma$ satisfy $-1 \le K \le -a^2$, $0 < r \le \mu$. Let $U \subset V$ be an unbounded component of {Inj Rad < r/2}, and let W be a component of $\pi^{-1}(U)$ with Γ_W as above. Then the volume of U is finite if and only if Γ_W is an almost nilpotent group of rank n - 1.

Remark. The rank of an almost nilpotent group is the rank of a nilpotent subgroup of finite index. For the definition of rank and other facts about nilpotent groups compare Chapter II of [9].

Proof. We divide the proof into three steps:

(a) If $vol(U) < \infty$, then Γ_z is almost nilpotent and operates with compact quotient on the horospheres HS(x, z):

The proof of Lemma 3.1g of [3] shows that Γ_z operates with compact quotient on the horospheres and therefore Γ_z is finitely generated. Let $\gamma_1, \dots, \gamma_m$ be a system of generators. $K \leq -a^2$ implies that there is a point $g(t_0)$ with $d_{\gamma_i}(g(t_0)) \leq r$. By the Margulis Lemma, Γ_z is almost nilpotent with nilpotent subgroup N of finite index. Then N also operates with compact quotient on the horospheres.

(b) rank N = n - 1: N is nilpotent, finitely generated and without torsion. By a theorem of Malcev N is isomorphic to a lattice in a simply connected nilpotent Lie group A with dim $A = \operatorname{rank} N =: m$ [9, Theorem II.2.18]. Because every lattice in a nilpotent Lie group has a compact quotient and A is homeomorphic to \mathbb{R}^m , N operates with compact quotient on \mathbb{R}^m . Because N operates also on a horosphere, hence on \mathbb{R}^{n-1} with compact quotient, we conclude m = n - 1 by comparing the homology groups of these $K(\pi, 1)$ manifolds.

(c) If Γ_z contains a nilpotent subgroup N of finite index and rank n-1, then N and hence Γ_z operate with compact quotient on the horospheres HS(x, z) by inversion of the arguments of b. Because $d_{\Gamma_z}(g(t)) \to \infty$ as $t \to -\infty$, we conclude easily that there is a horoball $HB(x_0, z)$ with $W \subset HB(x_0, z)$, and thus $vol(U) \leq vol(HB(x_0, z)/\Gamma_z)$. We prove that the latter is finite: $HB(x_0, z)/\Gamma_z$ is diffeomorphic to $B \times (0, \infty)$, where the projection on $(0, \infty)$ is a riemannian submersion and $B_t = B \times \{t\}$ is the quotient of a horosphere. Because of the curvature condition, we control the stable Jacobifields (see [7]). This implies $vol(B_t) \leq ke^{-at}$ with a constant k. Hence

$$\operatorname{vol}(HB(x_0, z)/\Gamma_z) \leq \int_0^\infty k e^{-at} dt < \infty.$$

Lemma 5. Let $V = X/\Gamma$ satisfy $-1 \le K \le -a^2$, $0 < r_1 \le r_2 \le \mu$. Let U_i be components of {Inj Rad $< r_i/2$ } with $U_1 \subset U_2$ and let W_i be components of $\pi^{-1}(U_i)$ with $W_1 \subset W_2$. Then:

(1) $\Gamma_{W_1} = \Gamma_{W_2}$.

(2) U_1 is the only component of {Inj Rad $< r_1/2$ } which is contained in U_2 .

Proof. (1) $W_1 \subset W_2$ immediately implies $\Gamma_{W_1} \subset \Gamma_{W_2}$. Using Lemma 3(1) we conclude that either $\Gamma_{W_1} = \Gamma_c = \Gamma_{W_2}$ or $\Gamma_{W_1} = \Gamma_z = \Gamma_{W_2}$ for a geodesic c or a point $z \in X(\infty)$.

(2) is a consequence of (1) and Lemma 3(3).

Now we are able to prove our proposition.

Proof. (1) Because E has finite volume, there is a compact set $K \subset V$ with $vol(E(K)) < \infty$ and Inj $\operatorname{Rad}_{|E(K)|} < r/2$. Let $U_r(E)$ be the component of $\{\operatorname{Inj} \operatorname{Rad} < r/2\}$ which contains E(K). If U' is another component of $\{\operatorname{Inj} \operatorname{Rad} < r/2\}$ which is a neighborhood of E, then $U' \cap U_r(E) \neq \emptyset$ and hence $U' = U_r(E)$.

We now prove that $\operatorname{vol}(U_r(E)) < \infty$. Let K be as above. Then there is an r' with 0 < r' < r and Inj $\operatorname{Rad}_{|K} > r'/2$. By construction $U_{r'}(E) \subset E(K) \subset U_r(E)$ and hence $\operatorname{vol}(U_{r'}(E)) < \infty$. Let $W_{r'} \subset W_r$ be components of $\pi^{-1}(U_{r'}(E))$ and $\pi^{-1}(U_r(E))$. By Lemma 5, $\Gamma_{W_{r'}} = \Gamma_{W_r}$ and, by Lemma 4, the finiteness of the volume of $U_{r'}(E)$ implies $\operatorname{vol}(U_r(E)) < \infty$.

If E, E^* are different ends of finite volume, there is a compact set $K \subset V$ with $E(K) \neq E^*(K)$ and hence E(K) and $E^*(K)$ are disjoint. As above there is an r', 0 < r' < r, with $U_{r'}(E) \subset E(K)$ and $U_{r'}(E^*) \subset E^*(K)$. By Lemma 5(2), $U_r(E)$ and $U_r(E^*)$ are distinct, hence disjoint.

(2) For an end *E* of finite volume let $U_r(E)$, W_r be as in (1). By Lemma 4, Γ_{W_r} is almost nilpotent of rank n-1 and $\Gamma_{W_r} = \Gamma_z$ for some $z \in X(\infty)$. Γ_z is maximal almost nilpotent: if $\Gamma' \supset \Gamma_z$ is almost nilpotent, then, by Lemma 1, all $\gamma \in \Gamma'$ have a common fixed point in $X(\infty)$ and hence $\Gamma' \subset \Gamma_z$.

If $W'_r = \gamma W_r$ is another component of $\pi^{-1}(U_r(E))$, then $\Gamma_{W'_r} = \gamma \Gamma_{W_r} \gamma^{-1}$. Thus we assign to every end of finite volume a conjugation class of the maximal almost nilpotent subgroups of rank n - 1. We prove that this map is bijective:

(a) Different ends E and E^* have disjoint $U_r(E)$ and $U_r(E^*)$. If W_r and W_r^* are components of $\pi^{-1}(U_r(E))$ and $\pi^{-1}(U_r(E^*))$, then there is no $\gamma \in \Gamma$ with $\gamma W_r = W_r^*$. Therefore Γ_{W_r} and $\Gamma_{W_r^*}$ define different conjugation classes by Lemma 3(3).

(b) On the other hand let $\Delta \subset \Gamma$ be a maximal almost nilpotent subgroup of rank $n - 1 \ge 2$. Then Δ is not infinite cyclic and hence, by Lemma 1, Δ is a group of parabolic isometries with a common fixed point $z \in X(\infty)$. Thus

180

 $\Delta \subset \Gamma_z$. By the arguments of Lemma 4, Δ operates with compact quotient on the horospheres HS(x, z) and $vol(HB(x, z)) < \infty$. Then Γ_z also operates with compact quotient on the horospheres and the argument of Lemma 4(a) proves that Γ_z is almost nilpotent. Hence $\Delta = \Gamma_z$ by maximality. Part (c) of that lemma shows that for suitable $x \in X$ the volume of $HB(x, z)/\Gamma_z$ is arbitrarily small, and hence also the injectivity radius on $\pi(HB(x, z))$ is small. For $0 < r \leq \mu$ let U_r be the component of {Inj Rad < r/2} which contains $\pi(HB(x, z))$ for suitable x. Let W_r be the component of $\pi^{-1}(U_r)$ containing HB(x, r). Then $\Gamma_{W_r} = \Gamma_z$ and, by Lemma 4, $vol(U_r) < \infty$. By definition $U_{r'} \subset U_r$ for $0 < r' \leq r$ $\leq \mu$, and therefore one checks that the following function E defines an end of finite volume:

For compact $K \subset V$ let E(K) be the component of V - K which contains U_r , where r is chosen such that Inj Rad_{|K} > r/2. By construction the conjugation class assigned by E is the class of Δ .</sub>

(3) The proof of (2) shows that an end E of finite volume has a neighborhood of the form $E(B) = HB(x, z)/\Gamma_z$ which is diffeomorphic to $B \times (0, \infty)$ with $B = HS(x, z)/\Gamma_z$. These neighborhoods are contained in $U_r(E)$, hence different ends have disjoint neighborhoods.

Remark. Part (1) implies the theorem, due to Heintze [6, p. 33], that a complete manifold V with $vol(V) < \infty$ and $-1 \le K \le -a^2$ has only finitely many ends: the ends have disjoint neighborhoods $U_r(E)$. In $U_r(E)$ we will find an injectively imbedded r/4-ball, thus $vol(U_r(E))$ is larger than a constant depending on r and n.

4. Finite volume and fundamental group

Let V be a complete Riemannian manifold of dimension $n \ge 3$, which satisfies $-1 \le K \le -a^2$. Using the result of Heintze remarked above, we see that the volume of V is finite if and only if V has only finitely many ends and every end has finite volume. This is equivalent to the conditions:

(1) V has only finitely many ends of finite volume, and

(2) V has no further ends.

According to the proposition, condition (1) is equivalent to the finiteness of the conjugation classes of the maximal almost nilpotent subgroups of rank n - 1 in $\pi_1(V)$.

We will prove that (2) also is equivalent to a condition on the fundamental group. Therefore let us assume that V has finitely many ends E_0, \dots, E_k of finite volume. By our proposition the ends E_i have disjoint neighborhoods diffeomorphic to $B_i \times (0, \infty)$. We identify $B_i \times (0, \infty)$ with subsets of V. Then

VIKTOR SCHROEDER

 $M := V - \bigcup_{i=0}^{k} (B_i \times (0, \infty))$ is a manifold with k + 1 boundary components B_0, \dots, B_k . It is easily checked that V has no further ends if and only if M is compact. Now we define a manifold W without boundary by glueing two copies M^1 , M^2 of M canonically along their common boundary. Clearly M is compact if and only if W is compact. Therefore condition (2) is equivalent to:

 (2^*) W is compact.

To prove that (2^{*}) is a condition on $\pi_1(V)$, we show:

(a) The fundamental group of W can be computed purely algebraically from $\pi_1(V)$.

(b) W is a $K(\pi, 1)$ -manifold, hence W is compact if and only if $H_n(\pi_1(W), \mathbb{Z}_2) = \mathbb{Z}_2$.

Proof of (a). By the theorem of Zaidenman ([12], compare Steenrod's reviews, Part I, Amer. Math. Soc., 1968, p. 52) we can compute the fundamental group of W in the following way: we choose points $p_i \in B_i$, and by arcs from p_i to p_0 we define imbeddings $\phi_i^j: \pi_1(B_i, p_i) \to \pi_1(M^j, p_0)$. Let F_k be the free group with k generators $\gamma_1, \dots, \gamma_k$. Then $\pi_1(W)$ is isomorphic to the quotient of the free product $\pi_1(M^1, p_0)^* \pi_1(M^2, p_0)^* F_k$ divided by the normal subgroup generated by the elements $\phi_0^1(\alpha_0)\phi_0^2(\alpha_0)^{-1}$, $\phi_i^1(\alpha_i)\gamma_i\phi_i^2(\alpha_i)^{-1}\gamma_i^{-1}$, $1 \le i \le k$, where $\alpha_i \in \pi_1(B_i, p_i)$. This computation is purely algebraic, because by the construction of our proposition $\phi_i^j(\pi_1(B_i, p_i))$ is a maximal system of pairwise nonconjugate maximal almost nilpotent subgroups of rank n - 1: $\pi_1(W)$ is an amalgamated product with itself on the maximal almost nilpotent subgroups of rank n - 1.

Proof of (b). To prove that W is a $K(\pi, 1)$ -manifold, we note:

(i) $B_i \subset M$ is, as a quotient of a horosphere, a $K(\pi, 1)$ -manifold.

(ii) By construction, the inclusion $B_i \subset M$ induces an injection $\pi_1(B_i) \rightarrow \pi_1(M)$.

(iii) It is easy to see that the inclusions $M^1, M^2 \subset W$ induce injections $\pi_1(M^j) \to \pi_1(W)$.

Now W is a $K(\pi, 1)$ -manifold by the following lemma, which is an easy consequence of Whitehead's theorem [1, p. 49].

Lemma 6. Let W be a CW-complex which is the union of two connected subcomplexes M^1 and M^2 whose intersection consists of k + 1 components B_0, \dots, B_k . Let $M^1, M^2, B_0, \dots, B_k$ be $K(\pi, 1)$ -spaces and the maps $\pi_1(B_i) \rightarrow \pi_1(W), \pi_1(M^j) \rightarrow \pi_1(W)$, induced by the inclusions, be injective. Then W is a $K(\pi, 1)$ -manifold.

References

- [1] K. S. Brown, Cohomology of groups, Graduate Texts in Math., No. 87, Springer, Berlin, 1982.
- [2] P. Buser & H. Karcher, Gromov's almost flat manifolds, Astérisque 81, Paris, 1981.
- [3] P. Eberlein, Lattices in spaces of nonpositive curvature, Ann. of Math. 111 (1980) 435-476.
- [4] P. Eberlein & B. O'Neill, Visibility manifolds, Pacific J. Math. 46 (1973) 45-109.
- [5] M. Gromov, Manifolds of negative curvature, J. Differential Geometry 13 (1978) 223-230.
- [6] E. Heintze, Mannigfaltigkeiten negativer Krümmung, Habilitationsschrift, Universität Bonn, 1976.
- [7] E. Heintze & H. C. Im Hof, Geometry of horospheres, J. Differential Geometry 12 (1977) 481-491.
- [8] J. Milnor, Morse theory, Annals of Math. Studies No. 51, Princeton University Press, Princeton, 1963.
- [9] M. S. Raghunathan, Discrete subgroups of Lie groups, Springer, Berlin, 1972.
- [10] V. Schroeder, Über die Fundamentalgruppe von Räumen nichtpositiver Krümmung und endlichem Volumen, Münster, 1984.
- [11] W. Thurston, The geometry and topology of 3-manifolds, Lecture Notes, Princeton, 1978.
- [12] I. A. Zaidenman, On the fundamental group of the sum of two connected polyhedrons with unconnected intersection, Moskov. Gos. Univ. Uch. Zap. 163 (1952) Mat. 6, 69–71. (Russian)

Westfalische Wilhelms Universität Münster, West Germany