FINITE VOLUME AND FUNDAMENTAL GROUP ON MANIFOLDS OF NEGATIVE CURVATURE

VIKTOR SCHROEDER

1. Introduction

Let V be a complete Riemannian manifold of dimension n and sectional curvature $K \leqslant 0$. Then V is a $K(\pi, 1)$-manifold with $\pi=\pi_{1}(V)$ [8, p. 103] and hence determined up to homotopy by the fundamental group. In particular, the homology $H_{*}(V)$ of V is isomorphic to the group homology $H_{*}\left(\pi_{1}(V)\right)$ (see [1]). Therefore V is compact if and only if $H_{n}\left(\pi_{1}(V), \mathbf{Z}_{2}\right)=\mathbf{Z}_{2}$. Hence the compactness of V can be read off from $\pi_{1}(V)$.

We give a similar characterization for the condition of finite volume:
Theorem. Let V be a complete Riemannian manifold of dimension $n \geqslant 3$ with curvature $-b^{2} \leqslant K \leqslant-a^{2}<0$. Then the volume of V is finite if and only if:
(1) $\pi_{1}(V)$ contains only finitely many conjugation classes of maximal almost nilpotent subgroups of rank $n-1$.
(2) If Δ is the amalgamated product of $\pi_{1}(V)$ with itself on these subgroups, then $H_{n}\left(\Delta, \mathbf{Z}_{2}\right)=\mathbf{Z}_{2}$.

For a full definition of Δ we refer to $\S 4$.
For $n=2$, the statement is wrong: Let V be a noncompact surface with constant negative curvature and finite volume. It is known that V has an end E diffeomorphic to $S^{1} \times(0, \infty)$ with a warped product metric $f^{2} d s^{2}+d t^{2}$. The curvature is given by $-f^{\prime \prime} / f$ and the volume of E by $2 \pi \int_{0}^{\infty} f d t$. Using a suitable function \bar{f} we can deform E to an expanding end, such that the new end has bounded negative curvature but infinite volume.

The first part of our proof ($\S 3$) leads to a description of the ends of finite volume in terms of the fundamental group. This part is based on the investigations of Heintze [6], Gromov [5] and Eberlein [3]. A topological argument then finishes the proof (§4).

This paper is a condensed version of parts of my thesis [10] written under the guidance of Professor Wolfgang Meyer at Münster. I am also deeply
grateful to Mikhael Gromov who proposed the result and pointed out essential ideas for the proof.

2. Notation and basic results

(Compare [3], [4].) Let X be a Hadamard manifold, i.e., a complete simply connected Riemannian manifold with curvature $K \leqslant 0$, let $d($,) be the distance function on X and let $\bar{X}=X \cup X(\infty)$ be the Eberlein-O'Neill compactification. For $x \in X$ and $z \in X(\infty)$ let $H S(x, z)$ be the horosphere at z which contains x and $\operatorname{HB}(x, z)$ the corresponding (open) horoball. For an isometry γ of X we define the convex displacement function $d_{\gamma}: x \rightarrow d(x, \gamma x) . \gamma$ is called elliptic (hyperbolic, parabolic), if d_{γ} has zero minimum (positive minimum, no minimum). An isometry γ can be extended to a homeomorphism of \bar{X}. If X has curvature $K \leqslant-a^{2}<0$, a nonelliptic isometry γ can be characterized by the fixed points $\operatorname{Fix}(\gamma)$ on $X(\infty)$: a hyperbolic isometry fixes exactly two points of $X(\infty)$ and translates the unique geodesic joining these points. A parabolic isometry γ has exactly one fixed point $z \in X(\infty)$ and leaves the horospheres $H S(x, z)$ invariant.

For a complete manifold V of negative curvature let X be the Riemannian universal covering, $\pi: X \rightarrow V$ the projection. Then $V=X / \Gamma$, where Γ is a freely acting, discrete group of isometries on $X, \Gamma \simeq \pi_{1}(V)$. We define the Γ-invariant function $d_{\Gamma}: X \rightarrow(0, \infty)$ by $d_{\Gamma}(x):=\min _{\gamma \in \Gamma-\text { id }} d_{\gamma}(x)$. Then $d_{\Gamma}(x)=2 \operatorname{Inj} \operatorname{Rad}(\pi(x))$, where $\operatorname{Inj} \operatorname{Rad}$ is the injectivity radius. $\operatorname{Inj} \operatorname{Rad}(p) \geqslant$ ε and $K \leqslant 0$ imply that the volume of the distance ball $B_{\varepsilon}(p)$ is larger than the volume of the ε-ball in euclidean space. Therefore $\operatorname{vol}(V)<\infty$ implies that the set $\{\operatorname{Inj} \operatorname{Rad} \geqslant \varepsilon\}$ is compact for all $\varepsilon>0$.

An end of V is a function E that assigns to each compact subset K of V a connected component $E(K)$ of $V-K$ with the condition that $E(K) \supset E\left(K^{\prime}\right)$ if $K \subset K^{\prime}$. An open set $U \subset V$ is a neighborhood of an end E if $E(K) \subset U$ for some compact subset K. An end E has finite volume if there is a neighborhood U of E with $\operatorname{vol}(U)<\infty$.

For the proof of our theorem, we can assume (by scaling the metric) that V satisfies the curvature condition $-1 \leqslant K \leqslant-a^{2}$, where a is positive. This enables us to use the Margulis lemma in the following form.

Margulis Lemma. There is a number $\mu=\mu(n)>0$, depending only on n, with the following property: let X be an n-dimensional Hadamard manifold with curvature $-1 \leqslant K \leqslant 0$, let Γ be a discrete group of isometries on $X, x \in X$, and let $\Gamma_{\mu}(x)$ be the subgroup of Γ generated by the elements $\gamma \in \Gamma$ with $d_{\gamma}(x) \leqslant \mu$. Then $\Gamma_{\mu}(x)$ is almost nilpotent, that is, $\Gamma_{\mu}(x)$ contains a nilpotent subgroup of finite index.

For a proof see [11, p. 5.51], [2, p. 27], [5], [10].
Lemma 1. Let X be a Hadamard manifold with curvature $K \leqslant-a^{2}$ and let Γ be a freely acting, discrete and almost nilpotent group of isometries on X. Then $\operatorname{Fix}\left(\gamma_{1}\right)=\operatorname{Fix}\left(\gamma_{2}\right)$ for all $\gamma_{1}, \gamma_{2} \in \Gamma$ - id. Hence the elements of $\Gamma-\mathrm{id}$ are either all parabolic with a common fixed point $z \in X(\infty)$, or all hyperbolic with common axis c. In the second case Γ is infinite cyclic.

For a proof see [3, Lemma 3.1b].

3. Ends of finite volume

The main result of this section is the following description of the ends of finite volume.

Proposition. Let $V=X / \Gamma$ satisfy $-1 \leqslant K \leqslant-a^{2}, 0<r \leqslant \mu$.
(1) If E is an end of finite volume, then there is a unique connected component $U_{r}(E)$ of $\{\operatorname{Inj} \mathrm{Rad}<r / 2\}$ such that $U_{r}(E)$ is a neighborhood of E. The volume of $U_{r}(E)$ is finite. For two different ends E and E^{*} of finite volume, the neighborhoods $U_{r}(E)$ and $U_{r}\left(E^{*}\right)$ are disjoint.
(2) If $n=\operatorname{dim} V \geqslant 3$, then the ends of finite volume correspond one-to-one to the conjugation classes of the maximal almost nilpotent subgroups of rank $n-1$ in Γ.
(3) The ends of finite volume have disjoint neighborhoods U diffeomorphic to $B \times(0, \infty)$, where B is a compact codimension 1 submanifold of V.

Before we will prove this result, we need some preparations. Our manifold V was represented as $V=X / \Gamma$. Now we look for a similar description for subsets $U \subset V$ as $U=W / \Gamma_{W}$, where $W \subset X$ is precisely invariant, i.e. for any $\gamma \in \Gamma$ either $\gamma W=W$ or $\gamma W \cap W=\varnothing$, and Γ_{W} is the subgroup $\{\gamma \in \Gamma \mid \gamma W$ $=W\}$.
Lemma 2. Let Γ be a discrete group of isometries acting on a Hadamard manifold X. Let $r>0$ and let $W \subset X$ be a connected component of $\left\{d_{\Gamma}<r\right\}$. Then:
(1) W is precisely invariant.
(2) If $\gamma \in \Gamma, x \in W$ and $d_{\gamma}(x)<r$, then $\gamma \in \Gamma_{W}$.

Proof. (1) Because d_{Γ} is Γ-invariant, γW is also a connected component of $\left\{d_{\Gamma}<r\right\}$ for all $\gamma \in \Gamma$. Thus $\gamma W \cap W \neq \varnothing$ implies $\gamma W=W$.
(2) $d_{\gamma}(x)=d_{\gamma}(\gamma x)<r$. The convexity of d_{γ} now implies $d_{\gamma}<r$ hence $d_{\Gamma}<r$ on the geodesic from x to γx. Thus both x and γx are in W. By (1), $\gamma \in \Gamma_{W}$. q.e.d.

Let U be a component (i.e., a connected component) of $\{\operatorname{Inj} \operatorname{Rad}<r / 2\}$ and W be a component of $\pi^{-1}(U) \subset X$. Then W is a component of $\left\{d_{\Gamma}<r\right\}$
and, by Lemma 2, $U=W / \Gamma_{W}$. With regard to the Margulis Lemma we will study components U of $\{\operatorname{Inj} \operatorname{Rad}<r / 2\}$ and the corresponding components W of $\left\{d_{\Gamma}<r\right\}$, where r is smaller than the constant μ of the Margulis Lemma.

Lemma 3. Let V be complete, $-1 \leqslant K \leqslant-a^{2}, 0<r \leqslant \mu$. Let $U \subset V$ be a component of $\{\operatorname{Inj} \operatorname{Rad}<r / 2\}$ in V, W a component of $\pi^{-1}(U)$ in X and $\Gamma_{W}=\{\gamma \in \Gamma \mid \gamma W=W\}$.
(1) Either there is a unique geodesic c in X, such that Γ_{W} is the infinite cyclic group $\Gamma_{W}=\Gamma_{c}:=\{\gamma \in \Gamma \mid \gamma$ has axis $c\}$ or Γ_{W} is a group of parabolic isometries and there is a unique $z \in X(\infty)$ with $\Gamma_{W}=\Gamma_{z}:=\{\gamma \in \Gamma \mid \gamma(z)=z\}$. W is bounded in the first and unbounded in the second case.
(2) $W=\left\{d_{\Gamma_{W}}<r\right\}$.
(3) If W_{1} and W_{2} are distinct components of $\left\{d_{\Gamma}<r\right\}$, then $\Gamma_{W_{1}}$ and $\Gamma_{W_{2}}$ intersect only in the identity.

Proof. (1) Using Lemma 1 it is easy to prove (see [3, Lemma 3.1c]): if $x, y \in W, d_{\alpha}(x), d_{\beta}(y)<r$ for nontrivial $\alpha, \beta \in \Gamma$, then $\operatorname{Fix}(\alpha)=\operatorname{Fix}(\beta)$. Thus for $A:=\left\{\gamma \in \Gamma-\mathrm{id} \mid\right.$ there exists $x \in W$ with $\left.d_{\gamma}(x)<r\right\}$, the classification of isometries yields: either all $\alpha \in A$ are hyperbolic with a unique common axis c, or all $\alpha \in A$ are parabolic with a unique common fixed point z. If $\gamma \in \Gamma_{W}$ id, $x \in W$, then $\gamma x \in W$ and there is an $\alpha \in A$ with $r>$ $d_{\alpha}(\gamma x)=d_{\gamma^{-1} \alpha \gamma}(x)$. Hence $\gamma^{-1} \alpha \gamma \in A$.

If $\alpha \in A$ is hyperbolic with axis c, then $\gamma^{-1} c$ is the axis of $\gamma^{-1} \alpha \gamma \in A$ and hence $\gamma^{-1} c=c$. Therefore γ leaves c invariant and γ is hyperbolic with axis c.

If $\alpha \in A$ is parabolic with fixed point $z \in X(\infty)$, the same argument shows that $\gamma z=z . \gamma$ is also parabolic by [4, Proposition 6.8].

Hence we have proved that the elements of Γ_{W} are either all hyperbolic with axis $c\left(\Gamma_{W} \subset \Gamma_{c}\right)$ or all parabolic with fixed point $z\left(\Gamma_{W} \subset \Gamma_{z}\right)$. In the first case c is contained in W and hence $\Gamma_{c} \subset \Gamma_{W}$. The discreteness of Γ then implies that Γ_{c} is infinite cyclic. In the second case let $g:[0, \infty) \rightarrow X$ be a geodesic ray with $g(0) \in W$ and $g(\infty)=z$. Because $K \leqslant-a^{2}<0, d_{\gamma}(g(t)) \rightarrow 0$ for all $\gamma \in \Gamma_{z}$ as t goes to ∞. Hence g is contained in W and, by Lemma 2(2), $\Gamma_{z} \subset \Gamma_{W}$.

If U is bounded, then $\operatorname{Inj} \operatorname{Rad}$ assumes a minimum in $p \in U$. Let $x \in W$ with $\pi(x)=p$ and $d_{\Gamma}(x)=d_{\gamma}(x)$ for some $\gamma \in \Gamma_{W}$. If γ is parabolic, then there is a nearby y with $d_{\gamma}(y)<d_{\Gamma}(x)$, hence $\operatorname{Inj} \operatorname{Rad}(\pi(y))<\operatorname{Inj} \operatorname{Rad}(\pi(x))$, a contradiction.

On the other hand let Γ_{W} be an infinite cyclic group of isometries with common axis c. Then the curvature assumption implies that $d_{\Gamma_{w}}(y)>r$ for all $y \in X$ with $d(y, c)>R$ for a suitable R. Therefore $d(q, \pi(c))<R$ for all $q \in U$ and U is bounded.
(2) By Lemma 2(2), $W \subset\left\{d_{\Gamma_{W}}<r\right\}$. Now it is easy to see that for
a geodesic c or a point $z \in X(\infty)$, the sets $\left\{d_{\Gamma_{c}}<r\right\}$ and $\left\{d_{\Gamma_{z}}<r\right\}$ are connected. Therefore $W=\left\{d_{\Gamma_{W}}<r\right\}$.
(3) Let $\gamma \in \Gamma_{W_{1}} \cap \Gamma_{W_{2}}$ be a nontrivial element. If γ is hyperbolic with axis c, then $\Gamma_{W_{1}}=\Gamma_{c}=\Gamma_{W_{2}}$ and if γ is parabolic with fixed point z, then $\Gamma_{W_{1}}=\Gamma_{z}=$ $\Gamma_{W_{2}} \cdot \mathrm{By}(2), \Gamma_{W_{1}}=\Gamma_{W_{2}}$ implies $W_{1}=W_{2}$.

Lemma 4. Let $V=X / \Gamma$ satisfy $-1 \leqslant K \leqslant-a^{2}, 0<r \leqslant \mu$. Let $U \subset V$ be an unbounded component of $\{\operatorname{Inj} \operatorname{Rad}<r / 2\}$, and let W be a component of $\pi^{-1}(U)$ with Γ_{W} as above. Then the volume of U is finite if and only if Γ_{W} is an almost nilpotent group of rank $n-1$.

Remark. The rank of an almost nilpotent group is the rank of a nilpotent subgroup of finite index. For the definition of rank and other facts about nilpotent groups compare Chapter II of [9].

Proof. We divide the proof into three steps:
(a) If $\operatorname{vol}(U)<\infty$, then Γ_{z} is almost nilpotent and operates with compact quotient on the horospheres $H S(x, z)$:

The proof of Lemma 3.1 g of [3] shows that Γ_{z} operates with compact quotient on the horospheres and therefore Γ_{z} is finitely generated. Let $\gamma_{1}, \cdots, \gamma_{m}$ be a system of generators. $K \leqslant-a^{2}$ implies that there is a point $g\left(t_{0}\right)$ with $d_{\gamma_{i}}\left(g\left(t_{0}\right)\right) \leqslant r$. By the Margulis Lemma, Γ_{z} is almost nilpotent with nilpotent subgroup N of finite index. Then N also operates with compact quotient on the horospheres.
(b) rank $N=n-1: N$ is nilpotent, finitely generated and without torsion. By a theorem of Malcev N is isomorphic to a lattice in a simply connected nilpotent Lie group A with $\operatorname{dim} A=\operatorname{rank} N=: m$ [9, Theorem II.2.18]. Because every lattice in a nilpotent Lie group has a compact quotient and A is homeomorphic to \mathbf{R}^{m}, N operates with compact quotient on \mathbf{R}^{m}. Because N operates also on a horosphere, hence on \mathbf{R}^{n-1} with compact quotient, we conclude $m=n-1$ by comparing the homology groups of these $K(\pi, 1)$ manifolds.
(c) If Γ_{z} contains a nilpotent subgroup N of finite index and rank $n-1$, then N and hence Γ_{z} operate with compact quotient on the horospheres $H S(x, z)$ by inversion of the arguments of b. Because $d_{\Gamma_{z}}(g(t)) \rightarrow \infty$ as $t \rightarrow-\infty$, we conclude easily that there is a horoball $\operatorname{HB}\left(x_{0}, z\right)$ with $W \subset$ $H B\left(x_{0}, z\right)$, and thus $\operatorname{vol}(U) \leqslant \operatorname{vol}\left(H B\left(x_{0}, z\right) / \Gamma_{z}\right)$. We prove that the latter is finite: $H B\left(x_{0}, z\right) / \Gamma_{z}$ is diffeomorphic to $B \times(0, \infty)$, where the projection on $(0, \infty)$ is a riemannian submersion and $B_{t}=B \times\{t\}$ is the quotient of a horosphere. Because of the curvature condition, we control the stable Jacobifields (see [7]). This implies $\operatorname{vol}\left(B_{t}\right) \leqslant k e^{-a t}$ with a constant k. Hence

$$
\operatorname{vol}\left(H B\left(x_{0}, z\right) / \Gamma_{z}\right) \leqslant \int_{0}^{\infty} k e^{-a t} d t<\infty .
$$

Lemma 5. Let $V=X / \Gamma$ satisfy $-1 \leqslant K \leqslant-a^{2}, 0<r_{1} \leqslant r_{2} \leqslant \mu$. Let U_{i} be components of $\left\{\operatorname{Inj} \operatorname{Rad}<r_{i} / 2\right\}$ with $U_{1} \subset U_{2}$ and let W_{i} be components of $\pi^{-1}\left(U_{i}\right)$ with $W_{1} \subset W_{2}$. Then:
(1) $\Gamma_{W_{1}}=\Gamma_{W_{2}}$.
(2) U_{1} is the only component of $\left\{\operatorname{Inj} \operatorname{Rad}<r_{1} / 2\right\}$ which is contained in U_{2}.

Proof. (1) $W_{1} \subset W_{2}$ immediately implies $\Gamma_{W_{1}} \subset \Gamma_{W_{2}}$. Using Lemma 3(1) we conclude that either $\Gamma_{W_{1}}=\Gamma_{c}=\Gamma_{W_{2}}$ or $\Gamma_{W_{1}}=\Gamma_{z}=\Gamma_{W_{2}}$ for a geodesic c or a point $z \in X(\infty)$.
(2) is a consequence of (1) and Lemma 3(3).

Now we are able to prove our proposition.
Proof. (1) Because E has finite volume, there is a compact set $K \subset V$ with $\operatorname{vol}(E(K))<\infty$ and $\operatorname{Inj} \operatorname{Rad}_{\mid E(K)}<r / 2$. Let $U_{r}(E)$ be the component of $\{\operatorname{Inj} \operatorname{Rad}<r / 2\}$ which contains $E(K)$. If U^{\prime} is another component of $\{\operatorname{Inj} \operatorname{Rad}<r / 2\}$ which is a neighborhood of E, then $U^{\prime} \cap U_{r}(E) \neq \varnothing$ and hence $U^{\prime}=U_{r}(E)$.

We now prove that $\operatorname{vol}\left(U_{r}(E)\right)<\infty$. Let K be as above. Then there is an r^{\prime} with $0<r^{\prime}<r$ and $\operatorname{Inj} \operatorname{Rad}_{{ }_{K} K}>r^{\prime} / 2$. By construction $U_{r^{\prime}}(E) \subset E(K) \subset$ $U_{r}(E)$ and hence $\operatorname{vol}\left(U_{r^{\prime}}(E)\right)<\infty$. Let $W_{r^{\prime}} \subset W_{r}$ be components of $\pi^{-1}\left(U_{r^{\prime}}(E)\right)$ and $\pi^{-1}\left(U_{r}(E)\right)$. By Lemma $5, \Gamma_{W_{r^{\prime}}}=\Gamma_{W_{r}}$ and, by Lemma 4, the finiteness of the volume of $U_{r^{\prime}}(E)$ implies $\operatorname{vol}\left(U_{r}(E)\right)<\infty$.

If E, E^{*} are different ends of finite volume, there is a compact set $K \subset V$ with $E(K) \neq E^{*}(K)$ and hence $E(K)$ and $E^{*}(K)$ are disjoint. As above there is an $r^{\prime}, 0<r^{\prime}<r$, with $U_{r^{\prime}}(E) \subset E(K)$ and $U_{r^{\prime}}\left(E^{*}\right) \subset E^{*}(K)$. By Lemma 5(2), $U_{r}(E)$ and $U_{r}\left(E^{*}\right)$ are distinct, hence disjoint.
(2) For an end E of finite volume let $U_{r}(E), W_{r}$ be as in (1). By Lemma 4, $\Gamma_{W_{r}}$ is almost nilpotent of rank $n-1$ and $\Gamma_{W_{r}}=\Gamma_{z}$ for some $z \in X(\infty) . \Gamma_{z}$ is maximal almost nilpotent: if $\Gamma^{\prime} \supset \Gamma_{z}$ is almost nilpotent, then, by Lemma 1, all $\gamma \in \Gamma^{\prime}$ have a common fixed point in $X(\infty)$ and hence $\Gamma^{\prime} \subset \Gamma_{z}$.

If $W_{r}^{\prime}=\gamma W_{r}$ is another component of $\pi^{-1}\left(U_{r}(E)\right)$, then $\Gamma_{W_{r}^{\prime}}=\gamma \Gamma_{W_{r}} \gamma^{-1}$. Thus we assign to every end of finite volume a conjugation class of the maximal almost nilpotent subgroups of rank $n-1$. We prove that this map is bijective:
(a) Different ends E and E^{*} have disjoint $U_{r}(E)$ and $U_{r}\left(E^{*}\right)$. If W_{r} and W_{r}^{*} are components of $\pi^{-1}\left(U_{r}(E)\right)$ and $\pi^{-1}\left(U_{r}\left(E^{*}\right)\right)$, then there is no $\gamma \in \Gamma$ with $\gamma W_{r}=W_{r}^{*}$. Therefore $\Gamma_{W_{r}}$ and $\Gamma_{W_{r}^{*}}$ define different conjugation classes by Lemma 3(3).
(b) On the other hand let $\Delta \subset \Gamma$ be a maximal almost nilpotent subgroup of rank $n-1 \geqslant 2$. Then Δ is not infinite cyclic and hence, by Lemma $1, \Delta$ is a group of parabolic isometries with a common fixed point $z \in X(\infty)$. Thus
$\Delta \subset \Gamma_{z}$. By the arguments of Lemma $4, \Delta$ operates with compact quotient on the horospheres $H S(x, z)$ and $\operatorname{vol}(H B(x, z))<\infty$. Then Γ_{z} also operates with compact quotient on the horospheres and the argument of Lemma 4(a) proves that Γ_{z} is almost nilpotent. Hence $\Delta=\Gamma_{z}$ by maximality. Part (c) of that lemma shows that for suitable $x \in X$ the volume of $H B(x, z) / \Gamma_{z}$ is arbitrarily small, and hence also the injectivity radius on $\pi(H B(x, z))$ is small. For $0<r \leqslant \mu$ let U_{r} be the component of $\{\operatorname{Inj} \operatorname{Rad}<r / 2\}$ which contains $\pi(H B(x, z)$) for suitable x. Let W_{r} be the component of $\pi^{-1}\left(U_{r}\right)$ containing $H B(x, r)$. Then $\Gamma_{W_{r}}=\Gamma_{z}$ and, by Lemma 4, vol $\left(U_{r}\right)<\infty$. By definition $U_{r^{\prime}} \subset U_{r}$ for $0<r^{\prime} \leqslant r$ $\leqslant \mu$, and therefore one checks that the following function E defines an end of finite volume:

For compact $K \subset V$ let $E(K)$ be the component of $V-K$ which contains U_{r}, where r is chosen such that $\operatorname{Inj} \operatorname{Rad}_{\mid K}>r / 2$. By construction the conjugation class assigned by E is the class of Δ.
(3) The proof of (2) shows that an end E of finite volume has a neighborhood of the form $E(B)=H B(x, z) / \Gamma_{z}$ which is diffeomorphic to $B \times(0, \infty)$ with $B=H S(x, z) / \Gamma_{z}$. These neighborhoods are contained in $U_{r}(E)$, hence different ends have disjoint neighborhoods.

Remark. Part (1) implies the theorem, due to Heintze [6, p. 33], that a complete manifold V with $\operatorname{vol}(V)<\infty$ and $-1 \leqslant K \leqslant-a^{2}$ has only finitely many ends: the ends have disjoint neighborhoods $U_{r}(E)$. In $U_{r}(E)$ we will find an injectively imbedded r /4-ball, thus $\operatorname{vol}\left(U_{r}(E)\right)$ is larger than a constant depending on r and n.

4. Finite volume and fundamental group

Let V be a complete Riemannian manifold of dimension $n \geqslant 3$, which satisfies $-1 \leqslant K \leqslant-a^{2}$. Using the result of Heintze remarked above, we see that the volume of V is finite if and only if V has only finitely many ends and every end has finite volume. This is equivalent to the conditions:
(1) V has only finitely many ends of finite volume, and
(2) V has no further ends.

According to the proposition, condition (1) is equivalent to the finiteness of the conjugation classes of the maximal almost nilpotent subgroups of rank $n-1$ in $\pi_{1}(V)$.

We will prove that (2) also is equivalent to a condition on the fundamental group. Therefore let us assume that V has finitely many ends E_{0}, \cdots, E_{k} of finite volume. By our proposition the ends E_{i} have disjoint neighborhoods diffeomorphic to $B_{i} \times(0, \infty)$. We identify $B_{i} \times(0, \infty)$ with subsets of V. Then
$M:=V-\bigcup_{i=0}^{k}\left(B_{i} \times(0, \infty)\right)$ is a manifold with $k+1$ boundary components B_{0}, \cdots, B_{k}. It is easily checked that V has no further ends if and only if M is compact. Now we define a manifold W without boundary by glueing two copies M^{1}, M^{2} of M canonically along their common boundary. Clearly M is compact if and only if W is compact. Therefore condition (2) is equivalent to:
(2*) W is compact.
To prove that (2*) is a condition on $\pi_{1}(V)$, we show:
(a) The fundamental group of W can be computed purely algebraically from $\pi_{1}(V)$.
(b) W is a $K(\pi, 1)$-manifold, hence W is compact if and only if $H_{n}\left(\pi_{1}(W), \mathbf{Z}_{2}\right)=\mathbf{Z}_{2}$.

Proof of (a). By the theorem of Zaidenman ([12], compare Steenrod's reviews, Part I, Amer. Math. Soc., 1968, p. 52) we can compute the fundamental group of W in the following way: we choose points $p_{i} \in B_{i}$, and by arcs from p_{i} to p_{0} we define imbeddings $\phi_{i}^{j}: \pi_{1}\left(B_{i}, p_{i}\right) \rightarrow \pi_{1}\left(M^{j}, p_{0}\right)$. Let F_{k} be the free group with k generators $\gamma_{1}, \cdots, \gamma_{k}$. Then $\pi_{1}(W)$ is isomorphic to the quotient of the free product $\pi_{1}\left(M^{1}, p_{0}\right)^{*} \pi_{1}\left(M^{2}, p_{0}\right)^{*} F_{k}$ divided by the normal subgroup generated by the elements $\phi_{0}^{1}\left(\alpha_{0}\right) \phi_{0}^{2}\left(\alpha_{0}\right)^{-1}, \phi_{i}^{1}\left(\alpha_{i}\right) \gamma_{i} \phi_{i}^{2}\left(\alpha_{i}\right)^{-1} \gamma_{i}^{-1}, 1 \leqslant i \leqslant k$, where $\alpha_{i} \in \pi_{1}\left(B_{i}, p_{i}\right)$. This computation is purely algebraic, because by the construction of our proposition $\phi_{i}^{j}\left(\pi_{1}\left(B_{i}, p_{i}\right)\right)$ is a maximal system of pairwise nonconjugate maximal almost nilpotent subgroups of $\operatorname{rank} n-1: \pi_{1}(W)$ is an amalgamated product with itself on the maximal almost nilpotent subgroups of rank $n-1$.

Proof of (b). To prove that W is a $K(\pi, 1)$-manifold, we note:
(i) $B_{i} \subset M$ is, as a quotient of a horosphere, a $K(\pi, 1)$-manifold.
(ii) By construction, the inclusion $B_{i} \subset M$ induces an injection $\pi_{1}\left(B_{i}\right) \rightarrow$ $\pi_{1}(M)$.
(iii) It is easy to see that the inclusions $M^{1}, M^{2} \subset W$ induce injections $\pi_{1}\left(M^{j}\right) \rightarrow \pi_{1}(W)$.

Now W is a $K(\pi, 1)$-manifold by the following lemma, which is an easy consequence of Whitehead's theorem [1, p. 49].

Lemma 6. Let W be a $C W$-complex which is the union of two connected subcomplexes M^{1} and M^{2} whose intersection consists of $k+1$ components B_{0}, \cdots, B_{k}. Let $M^{1}, M^{2}, B_{0}, \cdots, B_{k}$ be $K(\pi, 1)$-spaces and the maps $\pi_{1}\left(B_{i}\right) \rightarrow$ $\pi_{1}(W), \pi_{1}\left(M^{j}\right) \rightarrow \pi_{1}(W)$, induced by the inclusions, be injective. Then W is a $K(\pi, 1)$-manifold.

References

[1] K. S. Brown, Cohomology of groups, Graduate Texts in Math., No. 87, Springer, Berlin, 1982.
[2] P. Buser \& H. Karcher, Gromov's almost flat manifolds, Astérisque 81, Paris, 1981.
[3] P. Eberlein, Lattices in spaces of nonpositive curvature, Ann. of Math. 111 (1980) 435-476.
[4] P. Eberlein \& B. O'Neill, Visibility manifolds, Pacific J. Math. 46 (1973) 45-109.
[5] M. Gromov, Manifolds of negative curvature, J. Differential Geometry 13 (1978) 223-230.
[6] E. Heintze, Mannigfaltigkeiten negativer Krümmung, Habilitationsschrift, Universität Bonn, 1976.
[7] E. Heintze \& H. C. Im Hof, Geometry of horospheres, J. Differential Geometry 12 (1977) 481-491.
[8] J. Milnor, Morse theory, Annals of Math. Studies No. 51, Princeton University Press, Princeton, 1963.
[9] M. S. Raghunathan, Discrete subgroups of Lie groups, Springer, Berlin, 1972.
[10] V. Schroeder, Über die Fundamentalgruppe von Räumen nichtpositiver Krümmung und endlichem Volumen, Münster, 1984.
[11] W. Thurston, The geometry and topology of 3-manifolds, Lecture Notes, Princeton, 1978.
[12] I. A. Zaidenman, On the fundamental group of the sum of two connected polyhedrons with unconnected intersection, Moskov. Gos. Univ. Uch. Zap. 163 (1952) Mat. 6, 69-71. (Russian)

Westfalische Wilhelms Universität MUUnster, West Germany

