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TOPOLOGICAL INVARIANTS AND
EQUIDESINGULARIZATION FOR

HOLOMORPHIC VECTOR FIELDS

CESAR CAMACHO, ALCIDES LINS NETO & PAULO SAD

The integrals of a holomorphic vector field Z defined in an open subset °U of
C" are complex curves parametrized locally as the solutions of the differential
equation

They define a complex one-dimensional foliation J^z of °U with singularities at
the zeros of Z. The purpose of this paper is to exhibit several topological
invariants of these foliations near a singular point.

Let Θn be the ring of germs of holomorphic functions defined in some
neighborhood of 0 G Cw and let /(Z^ ,ZM) be the ideal generated by the
germs at O e C of the coordinate functions of Z. We define the Mίlnor
number μ of the vector field Z at 0 e Cn as

μ = d i m c ^ / / ( Z 1 , , Z j .

This number is finite if and only if 0 e Cn is an isolated singularity of Z, a
hypothesis which we will assume from now on. In this case μ coincides with the
topological degree of the Gauss mapping induced by Z, considered as a real
vector field, in a small (In — l)-sphere around 0 e C". In Theorem A we show
that: the Milnor number ofZ is a topological invariant of ̂ z provided that n > 2.

Consider now a polydisc K f centered at O G C " and let /: B -> C*,
/(0) = 0, be an irreducible analytic function. Then V = f~ι(0) is an analytic
sub variety and we say V is invariant by Z if for any p e V we have df(p)
Z(p) = 0. Suppose k = n - 1. Then dimc V = 1 and V - {0} is a leaf of J^z.
Moreover, if B is small enough, then D = B Π V is homeomorphic to a 2-disc
via a Puiseaux's parametrization. Then the restriction of Z to D can be
considered as a real vector field X defined in a 2-disc. The multiplicity of Z
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along V is defined as the topological degree of the Gauss mapping induced by X.

Then Theorem B of Chapter I asserts that the multiplicity of Z along V is a
topological invariant of&z.

In Chapter II we concentrate in dimension two. In this dimension the
integrals of the vector field Z = Zιa/dz1 4- Z23/θz2, i.e. the leaves of J*"z, are
the integrals of the differential form ω = —Z2dz1 + Z1dz2 The main result of
this chapter is an equidesingularization theorem for vector fields or 1-forms
generalizing the equidesingularization theorem for analytic curves (ω = df). In
1932 W. Burau [2] and O. Zariski [17] proved independently that homeomor-
phic singular curves in C 2 have isomorphic desingularizations at singular
points. The desingularization theorem for vector fields (see [1], [8], [16]) is
achieved by a process described in II (2.1). Essentially it says that after finitely
many successive quadratic transformations (blow ups) at singular points the
foliation J**z is transformed into a foliation # z with a finite number of
singularities, all of them simple and lying in the divisor. This means that
around any singular point/? there is a local coordinate chart (zl9 z2), zλ(p) =
z2(p) = 0, where# z is induced by the vector field Z:

Z - ^ ^ - + Z 2 ^ - , Zx(0) = Z2(0) = 0,

and the eigenvalues λx, λ 2 of dZ(0) satisfy one of the following conditions:
(ϊ)λι Φ 0 and λ 2 = 0 or viceversa.

(ϋ) λλ Φ 0 Φ λ 2 and λ1/λ2 ί Q+.
The significance of simple singularities in this context is that they are persistent
once they appear in the desingularization and no further explosions will
simplify them. The local topological structure of these singularities has been
studied by several authors [3,10].

A generalized curve is, by definition, a vector field Z inducing a foliation J^z

whose desingularization admits only simple singularities with nonvanishing
eigenvalues. We will show that the topological structure of these vector fields is
strongly dependent upon the structure of their invariant one dimensional
varieties (separatrices) passing through O G C 2 . Theorem C asserts: // Z is a
generalized curve andZ' is any vector field such that3Fz, and IFz are topologically
equivalent near O G C 2 , then Z' is also a generalized curve and the desingulariza-
tions of Zr and Z are isomorphic. The algebraic multiplicity at 0 e C 2 of a
vector field or 1-form is, by definition, the degree of its first nonzero term in its
Taylor development at 0 G C2. For curves (ω = df) this multiplicity (k) has
the following well-known geometric interpretation: k + 1 is the intersection
number of ( / = 0) with a generic complex line passing through O G C 2 . We
prove in Chapter II that this interpretation survives for generalized curves: Ifk
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is the algebraic multiplicity of a generalized curve, then k + 1 is the sum of

intersection numbers of all separatrices with a generic complex line passing

through O G C 2 . Indeed, a more general formula is shown relating the algebraic
multiplicity of any vector field with the multiplicities along the divisor of its
desingularization. As a consequence of this and Theorem C we obtain that: the
algebraic multiplicity of a generalized curve is a topologίcal invariant in the space

of all holomorphic vector fields with singularity at 0 e C 2 , which extends the

corresponding result on curves.

Let us remark that foliations given by the level curves of a function /:
(C2,0)-» (C,0) are generalized curves as well and the above statements
specialize to the Burau-Zariski Theorem in this case, as it follows from King's
Theorem [7] which asserts that topologically equivalent curves in the sense of
[17] have associated foliations by level curves also equivalent.

A final word must be said on the reason why Theorem C has been proved
only for generalized curves. The main difficulty is that it is unknown whether
topological equivalences can be extended to the divisors in the desingulariza-
tions. If this were the case a proof would follow quickly from Theorem B of
Chapter I. We overcome this difficulty in the case of generalized curves
because there exists a one-to-one correspondence between singularities in the
divisors (out of intersections of protective lines) and separatrices.

CHAPTER I

THE MILNOR NUMBER INVARIANCE AND APPLICATIONS

1. Index of an isolated singularity

Let Z = (Z 1 ? ,ZW) be a holomorphic vector field defined in an open set
t c C f l , θ 2 . Given a C , r > 0, real vector field X defined in ^ , we say that
X is tangent to Z if for each z e f w e have

X(z) e CZ(z) = {λZ(z); λ e C}.

The index of X at p e ^ , denoted by ind^ X), is the topological degree of the
map X/\\X\\: S?"-\p)-> S2"~\ where ||X||2 = Σfax}, S?"-\p)={z\
\\z - p\\ = r] and r > 0 is small enough. In S?n~\p) and S2n~~ι we take the
orientations defined by a normal vector field pointing outside the balls
bounded by the spheres.
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Proposition 1. Let X and Y be continuous real vector fields tangent to Z such
thatp e Wis an isolated singularity for Z, X and Y. Then inάp{ X) = indp(Y).

Proof. It is sufficient to prove that indp(X) = indp(Z) considering Z as a
real vector field. Since X is tangent to Z and {Z(z\ iZ(z)} is a base for the
real vector space CZ(z), if Z(z) Φ 0, it follows that for any z e S?"-\p), r
small, we can write

X(z) = a(z)Z(z) + β(z)iZ(z) = (a(z) + iβ(z))Z(z),

where/= (α, β): S?n~\p) -> R2 - {0} is continuous. Since ^ ^ ( R 2 - {0})
= {0} for n > 2, there exists a homotopy

Λ = (α,, ft): [0,1] X S, 2 - 1 -> R" - {0}; /0 =/,Λ = (1,0).

Let Xt = (α, + iβt)Z and Ff = ̂ /||Λ^||. Then Ft is a homotopy between
X/\\X\\ and Z/\\Z\\. Since the degree is a homotopy invariant, the proposition
is proved.

2. The Milnor number of a holomorphic vector field

Let Θnp be the ring of germs at p e Ql of holomorphic functions and
[Z^ j Z J c ^ the ideal generated by the components of Z. The number

μ = /x(Z, /?) = dimc ΦHtP/[Zl9 , Z J

is called the Milnor number of Z at/?.
The following facts are well known (cf. [9]):
(1) μ = 0 if and only if Z(p) Φ 0.
(2) 0 < μ < oo if and only ifp is an isolated singularity for Z.
(3) μ = 1 if and only if detidZ^pydzj)^^ Φ 0.
(4) Let 0 < μ < oo. Given ε > 0 there exists δ > 0 such that for a n y c E C "

with ||c|| < S then the number of solutions of the equation Z(z) = c in the ball
βp(£) = i z III2 ~ P\\ < ε) i s a t m o s t /*• Furthermore, if pv- ,/?w, w < μ, are
such solutions, then

- c, ̂ ) =

Property (5) is an easy consequence of the others. In fact, let ε > 0 be such
that p is the unique singularity of Z in B = (z | \\z - p\\ < ε). Let k =
inf{||Z(z)||; z e dB} > 0. If c is a regular value of Z with ||c|| < min{A:, δ},
where δ > 0 is as in (4), then the number of solutions of Z(z) = c in B is μ.
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Let Z* = Z- tc. Then Z\z) Φ 0 for | | ; | | = ε, which implies that F: [0,1] X dB

-> S2"-1, given by F(t,z)= Z ' (z)/ | |Z ' (z) | | is a homotopy between Fo =

Z/\\Z\\ and Fλ = Z - c/\\Z - c\\. Hence Fo and Fλ have the same degree. Let

pl9- - -,pμ be the singularities of Z — c. For eachy = 1, ,μ let 2?y c 2? be a

small ball a r o u n d ^ such that Bj Π Bk= 0 for j Φ k. Let Gy. dBj -> 5 2 " " 1 be

defined by Gy(z) = Z y(z) - c/\\Zj(z) - c\\. By degree theory (cf. [11]) we have
μ

degree Fx= Σ degree Gj.

Now, since c is a regular value of Z, it follows that

degree Gy = μ(Z - c9 pj) = 1, j = 1,••-,/*.

Therefore ind^ίZ) = /i. q.e.d.

We proceed now to give an alternative definition for the index of a

holomorphic vector field which will be useful in the proof of Theorem A. Let

<p:DεXBr^Bp^Cn

be the local complex flow of Z, where Dε = {T e C; |Γ | < ε}, Br = {z G C";

|z| < r} andO < r < p.

Lemma 1. 2>ί T: 5 r — {0} -> Dε — {0} fee a continuous function such that

for any z <Ξ Br - {0} and t e (0, l] we have φ(tτ(z), z) # z. Let g: dBr -^

S2"-1 be defined by

φ ( τ ( z ) ? z ) - z
g U J | | φ ( τ ( z ) , z ) - z | |

i n d o ( Z ) = degree(g).

. Let G: [0,1] X 3£ r ̂  S 2 " " 1 be defined by

tτ(z) z)-z ' **°9

and

τ ( z ) Z(z)

'' | φ ) | ||Z(z)||
Then G(l, z) = g(z) and

φ(tr(z),z)-z

t->0 ίτ(z)
lim

φ(tτ(z),z) -z

r^o ^τ(^)

lim

τ(z) Z(z)

IΦ)I l|Z(z)|Γ
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It follows that G is continuous and therefore is a homotopy between g(z) and
G0(z) = τ(z)/|τ(z)| Z(z)/||Z(z)||.Now, sincen > Xπ^S1) = {0},hence
τ/|τ | : 91?r -> S 1 is homotopic to the constant I G S 1 and g is homotopic to
Z/| |Z| | . Therefore indo(Z) = degree g.

Lemma 2. Le/ φ: Dε X Br, -> l?p fee /Ae foαz/ complex flow of Z. Suppose that
Z(z) Φ 0 for z ^ Br - {0}, wΛere 0 < r < r'. 77ien ί/iere exwte δ > 0 swc/i that
for any T e Dδ - {0} αm/z e Br - {0}, we λtfί e φ(Γ, z) =̂  z.

PAΌO/. Suppose by contradiction that there exist sequences Tn -> 0, 0 < \Tn\
< ε, and z n e 5 Γ - {0} such that φ(Γn, zn) = zw for all n ^ 1. Let Lrt be the
leaf of Z/Br passing through zn. The lemma is a consequence of the following
assertions:

(ϊ)LnΠdBrΦ 0.
(ϋ) For all n> 1 we have φ(Γn, z) = z for all z G Lw Π B.
In fact, suppose that (i)-(ϋ) are true. From (i) we take wn e Ln Π 35,.. Then

||ww|| = r and by taking a subsequence if necessary we can suppose that
™n -> ^o. IKII = r- % (ϋ) we have φ(7;, wπ) = wn and so

which is a contradiction.
Proof of (i). Let L be a nonsingular leaf of Z and suppose by contradiction

that L<z Br = int(ϊ?r). Let f = sup{||z||; z <= L] and qn e L such that ^ -» r̂0

as « -^ oo, where | |# 0 | | = r < r. Since Z{qo)Φ 0, by the complex flow box
theorem there exist a > 0, a neighborhood β °f #o a n ^ a holomoφhic
diffeomoφhism ψ,

ψ: DaXBa-> Q, Ba={z^ C"" 1 ; ||z|| < α},

such that

^ | ) Z and ψ(0,0) = <70, where ^ ( Γ , z) = (1,0).

In terms of flows we have ψ(Γ0 + Γ, z) = ψ(T, ψ(Γ0, z)) provided that both
members are defined.

For q e Q let P^ = ψ(Dα X p2Ψ~\q)) be the plaque of Z/β, where p2:
Da

χ B<* ~* B<χ i s ^ e natural projection. Then Pq is a small disk contained in
the leaf of Z through q and ψ :̂ Dα -> Pq defined by ψ/Da X />2Ψ Htf) i s a n

analytic immersion. Now ψ^ is not constant, therefore by the maximum
principle 0 e Da is not a local maximum of z G Dα ^ ||ψ^(z)||, hence there
exists p0 e P^o such that \\po\\ > \\qo\\ = r. By continuity, it follows that there
exists 8 > 0 such that if \\q — qo\\ < δ, then the plaque Pq contains a point p
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with \\p\\ > r. Therefore if n is sufficiently big, there is p e PQn such that
11/711 > f, which is a contradiction since/? e L.

Proof of (ϋ). Let L be a leaf of Z/Br, r ' > r. We consider L with the
intrinsic topology, that is, the topology generated by plaques contained in L
(cf. [14]). Suppose that φ(Γ0, z0) = z0 for some z0 e L and 0 < |Γ0| < ε. We
shall prove that φ(Γ0, z) = z for any z e L. Let A = {z ^ L\ φ(T0, z) = z}.
Then 1̂ is closed and 4̂ =£ 0 . Since L is connected it is sufficient to prove that
A is open in L. Let ^ e ^ . Since Z(q) Φ 0 we can parametrize a neighborhood
of q in L by the flow ψq: Dε -> L, ψq(T) = φ(T, q). By the properties of the
flow, if \T\ < ε - |Γ0| = p, we have

φ(Γ 0, φ(Γ, q)) = φ(Γ + Γo, r̂) = φ(Γ, φ(Γ0, q)) = φ(Γ, ̂ ) ,

because q ^ A. This implies that for/? e ψq(Dp) we have φ(Γ0, /?)=/? and so

φq(Dp) c yl and 4̂ is open. This finishes the proof of Lemma 2.
Corollary. Le/ Z be as before, 8 > 0 as in Lemma 2 and r: Br — {0} -> D8

- {0} α continuous function. Define f: Br - {0} -* Cn - {0} by f(z) =
φ(τ(z) , z). ΓAe/2 /(z) =?t z for any z (Ξ Br- {0}. Furthermore, if ( / - id)*:

# 2 W - i ( c " - {°}) -> ^ 2 M - i ( C M - {°}) w ^ w ^ /Wwc^ ty / - id in the
homology level, then (/ - id)* is the multiplication by μ = indo(Z).

Observe that H2n_λ(Br - {0}) c # 2 n - i ( C 1 1 ~ {°}) a n d t h i s inclusion is an
isomorphism between the two groups.

Proof. Since 0 < |τ(z)| < δ we have by Lemma 2 that φ(τ(z), z) Φ z,
z e Br— {0}. On the other hand by Lemma 1, μ = indo(Z) = degree(g),
where g(z) = (ψ(τ(z), z) - z)/||φ(τ(z), z) - z||, and so g*: H2n^(dBr) -+
H2n_ι(S2"~1) is given by g*(σ) = μσ, where σ is a generator of H2n_1(dBr).
Now ι5: Cw — {0} -> 3^, given by /5(z) = 5z/||z||, is a homotopy equivalence,
therefore the commutativity of the diagram

H2n-i(BΓ ~ {0})

C / - id). I

^2»-i(C" - {0})

imphes the corollary.

3. Topological invariance of the Milnor number

This section is devoted to the proof of
Theorem A. The Milnor number of a holomorphic vector field is a topological

invariant in C", n ^ 2. In other words, if Z and Z are holomorphic vector fields
in Cn, n > 2, locally topologicaly equivalent atp andp, then μ(Z, /?) = μ(Z, p).
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Suppose that Z and Z are locally equivalent at 0 e Cn by a homeomorphism
A: Br, -> A(£ r,) = ί/. Let φ: D e X 5 r ^ C" and φ: DεxB~r-> Cn be the local
complex flows of Z and Z respectively. If we take r' small we can suppose that
Br, c £ Γ and U a B~r Let 0 < p < r ' be such that φ(Dε X Bp) c Λr, and
φ(Z>ε X h(Bp)) c IΛ Let δ = δ(Z) and δ = δ(Z) be as in Lemma 2, that is,
for all (Γ, z) e (Z>, - {0}) X (Br - {0}) and (Γ, z) e (2), - {0}) X ( ^ -
{0}) we have φ(Γ, z)Φ z and φ(f, z) # z.

Lemma 3. ΓAere ex/sί continuous functions τ: Bp — {0} -> (0, δ) <z«<i f:
- {0} -^ D~8 - {0} 5MC/I ίΛαί/or all z G ΰ p - {0}

We need a notation. Let z0^ Br- {0}. Since Z(z0) Φ 0, by the
complex flow box theorem, there exist a > 0, a neighborhood Q(z0) = β of z0

and a holomorphic diffeomorphism g: Z>α X Ba -+ Q, Ba = {z e C n - 1 1 ||z|| <
α}, such that g(0,0) = z0 and g(Γ + Γo, w) = φ(Γ, g(Γ0, w)), provided the
two members are defined. Let F(z0) = V = g(£>α/2

 x 5«) c 6 W e c a l 1 t n e

triple (F, Q, a) a distinguished flow box of Z. For # e Q we call P^ =
g(A* X.Piί^"1!^))) the plaque of q in β, where p2: DaX Ba^> Ba is the
natural projection. We remark that the leaves of Z/Q are the plaques of Q and
the foliation of Z/Q is trivial. Moreover if |Γ| < a/2 and q e F, then
φ{T,q)^ Pq<z Q. We shall use the notation (F, Q, ά) for a distinguished flow
box of Z, and /^ for a plaque of Q.

Let (F, Q, a) and (F, Q, a) be distinguished flow boxes for Z and Z
respectively such that h(Q) c F. Since Λ is an equivalence between Z and Z, it
is clear that h{Pq) c Ph{qY It follows that there exists a continuous function S:
K/2 XV^£>2& such that A(φ(Γ, ?)) = φ(S(Γ, 9 ) , A(9)) and S(Γ, 9 ) = 0 if
and only if T = 0.

Let {(^ , β y , αy)}°l0

 a n d {(ίy» βy>
 fiy)}ylo b e countable sets of distinguished

flow boxes for Z and Z respectively satisfying the following properties:
(a) {VJ}JL0 and {V}}°°=0 are locally finite coverings of Bp - {0} and h(Bp) -

{0} respectively.
(b) For any j e N there exists i(j)= i such that h(Qj) c Fj.
(c) aj < 8/2 and άj < 8/4 for anyy e N.
Let Sy: Z)α./2 X ^. -* 2)2a be so that h(ψ(T, q)) = φ(Sy(Γ, 9 ) , h(q)) for

(Γ, r̂) e Da/1 X ^.. Observe that if q e V. n Vr Φ 0 and |Γ| < \
min{αy, αy,}, then φ(Γ, q) G Qy n β y, and the equality

A(φ(7\ 9 ) ) = φ(Sy(Γ, 9 ) , A(ί)) = φ(Sj,(T, q),h(q))

imphes that Sy(Γ, q) = 5y,(Γ, r̂). Let T: Bp - {0} -* (0, δ) be a continuous
function such that τ(q) < a/2 if q ^ Vy Define f: h{Bp) - {0} -* D~8- {0}
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by τ(q) = Sj{τ(h-\q)\ h~\q)) if q €Ξ H(Vj). By the preceding remark, it is
clear that r(q) does not depend on j such that q G h(Vj) and so f is well
defined. Moreover

HvWv)>q)) = ψ{Sj(τ(q),q), h(q)) = φ(τ(h(q)), h(q)).

q.e.d.

We write /(z) = φ(τ(z), z), z G £p - {0}, and f(w) = φ(τ(w), w), w G
A(2?p) - (0). By Lemma 3 we have A ° / = /° A. On the other hand, by the
corollary, ( / - id)* and ( / - id)*, at the homology level, are the multipli-
cations by μ and μ respectively. Let

h*:H2n_l(C"-{0})^H2n_1(C"-{0})

be the isomorphism induced by A. Clearly the following lemma implies
Theorem A.

Lemma 4. The following diagram commutes:

#2Π-i(C - {0}) ( /~ l d )* . / ^ ( C " - {0})
h*\ V*

# 2 - i ( C " - {0}) ( / " d ) > > ff2B-i(C" - {0})

Proof. Since /io/ = /°Λwe have (/ — id) <> Λ = / ° Λ — h = h° f — h. It is
sufficient to prove that ho f — h and A °(/— id): i?p — {0} -> Cw — {0} are
homotopic. We define a homotopy F: [0,1] X (£ p - {0}) -> C" - {0} by
F(ί, z) = A(/(z) - (1 - /)z) - A(/z). Then F is continuous and F(t, z) Φ 0
for all (/, Z ) G [ 0 , l ] X ( 5 p - {0}), because F(t, z) = 0 implies A(/(z) -
(1 — /)z) = A(ίz) and since A is a homeomorphism /(z) — (1 — t)z = tz,
hence/(z) = z, which contradicts <p(τ(z), z) Φ z.

4. Invariance of the multiplicity along a subvariety

We observe that Theorem A is false for n = 1. For instance, let Z(z) = zm

and Z(z) = zw, m Φ n. Then indo(Z) = m Φ indo(Z) = n. On the other
hand, C — {0} is the unique nonsingular leaf for Z and Z, which implies that
the identity of C is an equivalence between Z and Z.

Nevertheless Theorem A remains true for n = 1 in the "restricted case", as
we shall see below.

Definition. Let Z be a germ at/? £ Cn of a holomorphic vector field and V
a germ at p of an analytic subvariety, say given by V = f~\0), where /:
(C", /?) -> (C*,0) is a germ at p of an analytic mapping. We say that V is
invariant by Z if for any q ̂  Vwe have dfq-Z(q) = 0.
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It follows from the definition that if V is an invariant subvariety, then V is
saturated by the foliation defined by Z, that is, for any q e V the leaf Lq of Z
through q satisfies Lq c F. From the point of view of topological equivalence
the situation is particularly interesting when p is an isolated singularity and
dim c V = 1. In this case if we restrict Z to a sufficiently small neighborhood of
p, then V — { p } is a leaf of Z and we have the following proposition.

Proposition 2. Let p and p be isolated singularities of Z and Z respectively
and V a germ at p of an analytic irreducible subvariety invariant by Z and with
complex dimension 1. Suppose that h: (Cw, p) -+ (Cn, p) is a local topological
equivalence between (Z, p) and (Z, p). Then V = h(V) is a germ at p of an
irreducible analytic subvariety invariant by Z.

Proof. Let h: U -» U be a local equivalence between Z and Z, where U, JJ
are open neighborhoods of /?, p respectively, such that Z(q) Φ 0 if q e U —
{p} and Z(q) Φ 0 iϊ q ̂  U - {p}. We can suppose also that VΠ U is
connected. From now on we consider Z and Z restricted to U and U
respectively and V c U. Since V — {p} is connected, invariant by Z and
dim c V = 1 it follows that F - {p} is a leaf of Z. This implies that V- {p}
= h(V — {/?})isa leaf of Z. Therefore F — {p} is an analytic submanifold
of U. On the other hand the closure in U of V - { p } is

<MF-{/>}) = <*ϋ(h(V-{p})) - h(dυ(V-{p})) = h(V) = F.

It follows from Remmer-Stein's theorem (cf. [6]) that V is an analytic sub-
variety, clearly invariant by Z. q.e.d.

Now let p be a singularity of Z and F an invariant subvariety such that
p e F and dim c F = 1. If B is a small ball around p, then 5 Π F is homeo-
morphic to a 2-dimensional disc. Such homeomorphism could be realized for
example by a Puiseaux's parametrization of B Π F. We are in the following
situation: We have a disk D = B Γ) V and a vector field A" = Z/D with an
unique singularity p e D. In this case if we consider l a s a real vector field,
then the index of X at p is well defined. This motivates the following definition.

Definition. Let Z,V, B, D = B n V and p e D be as before. We define the
multiplicity of Z along F at /? e D as the topological index of Jf = Z/D at /?,
considered as a real vector field in D. We shall use the notation indp(Z/V) for
this index.

We have the following result.
Theorem B. The multiplicity of Z along V is a topological invariant. More

specifically, let Z and Z be holomorphic vector fields locally topologically equiva-
lent by a homeomorphism h: (Cπ, p) -> (Cw, p), where p and p are isolated
singularities of Z and Z respectively. Suppose that V is an invariant subvariety of
Zwithp e Vand d i m c F = I. Let V= h(V). Thenindp(Z/V) = ind^(Z/F).
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Now let us compute this index in terms of a Puiseaux's parametrization of F.
Proposition 3. Let V be an invariant subυariety of Z of dimension 1 and

p G V an isolated singularity of Z. Let a: (D,0) -> (Cn, p) be a Puiseaux's
parametrization of a neighborhood of p in V. Then there exists a unique
holomorphic vector field X in D such that da X = Z ° a. Furthermore if
X(t) = Σj>m ajt\ with am Φ 0, then i n d / Z / F ) = m.

Proof. We can suppose p = 0. Since a: (D,0) -> (Cw,0) is a Puiseaux's
parametrization of F, then a is one-to-one, holomorphic in D and a'(t) Φ 0 if
t Φ 0 (cf. [12]).

Let t G D — {0}. Then the tangent space of V at a(t) is generated by a'(t).
Therefore, by invariance, we can write Z(a(t)) = X(t)a'(t) = da(t) X(t),
where X(t) e C. Clearly X: D - {0} -> C is holomoφhic. Let us prove that X
extends analytically to 0. We can write <x(t) = (a^t)),- ,αn(/)), where α 7(0
= tmJξj(t), mj > 1, ^(0) ^ O o r ξj = 0. Let mk = min{my | ξy Φ 0}. Since
0 e C" is a singularity of Z, the Taylor series of Zk at 0 e C r can be written as
Zk(z) = ΣH>1aσz

σ, where σ = (σ1?- ,σj, zσ = z^ z°« and |σ| = σλ +
• + σn. From this expression we have

Z*(α(/))= Σ ^ ( σ ' m > Γ , where (σ, m> = Σ w ,

It follows that Zk(a(t)) = tmk\(t\ where λ(/) is analytic in a neighborhood
of 0. On the other hand we have ak(t) = mkt

mk~ιζk{t) + tmkξk(t) = tmk~ιu(t\
where w(0) =£ 0. This implies that

is analytic in a neighborhood of 0.
Since a: D -> V is a diffeomorphism outside 0 e D it is clear that the

indices of ^ at 0 e D and Z/K at 0 e F are equal.
Now let A^O = tmy(t), where γ(0) Φ 0. If p > 0 is small, then the variation

of the argument of X(ρeiθ) = ρmeimθy(ρeiθ\ as θ varies from 0 to 2ττ, is 2mπ.
Hence indo( X) = m. This ends the proof.

Proof of Theorem B. Except for Lemma 1 the proof is similar to the proof
of Theorem A. Let Z and Z be holomoφhic vector fields with an isolated
singularity at 0 e C", n > 2, and suppose they are locally equivalent by a
homeomoφhism h: Br -> h{Br) = U. Let F c l?r be an invariant variety of Z
with 0 e Fand F = Λ(F). We want to prove that ind 0 (Z/F) = ind 0 (Z/F).
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Let φ and φ be the local complex flows of Z and Z respectively, let T and f
be continuous functions as in Lemma 3 and let/(z) = φ(τ(z\ z) and/(w) =
Φ(T(H>), W) be as before, so that we have h° f = f ° h. Let a: D -> V and a:
D -> V be Puiseaux's parametrizations of V and V and let X and X be the
vector fields in D given by Proposition 3, that is, such that da X = Z° a and
da - X= Z°ά. Define F: a~l(Bp) -> D and F: όΓ^/ί^p)) -> Z) by F =
a~ι ° f ° a and F = a'1 ° f ° a. If H = ά° h <> a'1, then clearly i/ ° i 7 = # o £
The same proof of Lemma 4 implies that the following diagram commutes:

From this fact, it is sufficient to prove that (F — id)* and (F — id)* are the
multiplications by m = ind o (Z/F) = indoίX) and m = indo(X) respec-
tively. We shall prove this fact for (F — id)*.

Using the homotopy equivalence is: C - {0} -> S}, is(z) = sz/\z\, we see
that it is sufficient to prove that the maps γ0, γx: Ŝ 1 -> 511 defined by
γo(z) = l(z)/ |X(z) | and yλ(z) = (/"(z) - z)/\F(z) - z\ are homotopic. Let
ψ(Γ, z) = ά-^φίΓ, ά(z))) be the local flow in D induced by φ. Define G:
[0,1] X S} -* S1 by

ψ(rf Q ά ( z ) , z ) - z
G\^z) = T77~Γ~τrτ—: Γ

|ψ(/τoα(z),z) - z |

Then G(l, z) = γx(z) and

Now, the maps 1 and f: £/ - {0} -> C - {0} are homotopic, because U - {0}
= h(Br) - {0} is homotopically equivalent to S 2 "" 1 and ^2 / ϊ_1(C - {0}) is
trivial. If f, is a homotopy between 1 and f, then f, ° ά/|fr o ά| is a homotopy
between 1 and f <> ά/|f ° ά|, which ends the proof of Theorem B.

5. Applications

(5.1) Vector fields for which the first nonzero jet is isolated. Here we

consider two holomorphic vector fields Z 1 and Z 2 in Cw, n ^ 2, whose Taylor's
series at 0 are of the form

Zj{z)= ΣZf(z), 7 = 1,2,
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where Z{ are homogeneous vector fields of degree / (j = 1,2) and Z\ and Z\
(the first nonzero jets of Z 1 and Z 2 ) have 0 as an isolated singularity. We have
the following result.

Proposition 4. Let Z 1 and Z 2 be as before and suppose that they are locally
topologically equivalent at 0. Then kx = k2.

Proof. We shall prove that μ(ZJ\0) = k* (j = 1,2). From Theorem A it
follows that k" = k2 and so kx = /c2.

Let Z = Zk + Zk+ι+ be the Taylor's series of Z in a neighborhood of
0, where 0 is an isolated singularity of Zk. Let m = inf{||Z'A:(z)||; ||z|| = 1} and
ntj = sup{||Zy(z)||; ||z|| = 1}. We have ||Zy(z)|| < my||z|K, y > k + 1. This
implies that

||Z(z)||>(m- £ m,||z|Γ

By the convergence of the series, there exists ε > 0 such that for ||z|| < ε we
havem - ΣJ>k+1mJ\\z\\J-k > m/2 and so||Z(z)|| > m\\z\\k/2 for ||z|| < ε. Let
0 < r < ε and consider the homotopy G: [0,1] X S2n~ι -> S2n~ι given by

Then G(l, z) = Z(z)/||Z(z)| | and G(0, z) = ZΛ(z)/||ZΛ(z)||. Hence μ(Z,0) =
μ(Zk90). Now, if c Φ 0 is a regular value of the map Zk: Cn -* Cw, then by
Bezout's theorem the number of solutions of the equation Zk(z) = c is exactly
kn. It follows from remark (4) in §2 that μ(Zfc,0) = kn. This proves the
proposition.

Remark. In the case where kλ = 1 we do not need to suppose that 0 is an
isolated singularity for Zk . This fact, together with k2 = 1, follows from the
local equivalence and the fact that μ(Z, 0) = 1 if and only if det(Z>Z(0)) Φ 0.

(5.2) Complex saddle-nodes.
Definition. Let Z be a vector field in C 2 with an isolated singularity at

p e C2. We say that p is a saddle-node for Z if the eigenvalues of the linear
part of Z at/?, DZ(p), say λλ and λ2, satisfy λx = 0 and λ 2 =£ 0. If ϋ^ and E2

are the eigenspaces of DZ(p) corresponding to λλ and λ2, we call Eλ and E2

the weak direction and strong direction of Z respectively. The name saddle-node
is used here in analogy with the real case.

Proposition 5. Let Z and Z be holomorphic vector fields in C 2 with isolated
singularities at p and p respectively. Suppose that Z and Z are locally topologi-
cally equivalent at p and p and that p is a saddle-node for Z. Then p is a
saddle-node for Z.
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Proof. We need the following theorem (cf. [10]).
Theorem. Let p be a saddle-node for Z and E the strong direction of Z at p.

Then there exists a germ of analytic manifold W c C2, such that p G W, W is
tangent toEatp and W is invariant by Z.

Since WΊs an analytic submanifold of C2, there exist analytical coordinates
(x, y) in a neighborhood of p such that x(p) = y(p) = 0 and W c {(*, y) \ y
= 0). Let Z(x, y) = (P(x, y\ Q(x, y)) be the expression of Z in this coordi-
nate system. The invariance of W implies that Q(x, 0 ) ^ 0 and P(x, 0) = λjc 4-
a2x

2 + , because Wis tangent to E. It follows that indo(Z/W) = 1. Now,
let h: (C",0) -> (Cπ, p) be a local equivalence between Z and Z. We can
suppose that p = 0. Let W = h(W). By Proposition 2, W is an analytic sub-
variety of C 2 and since πι(Br - W) = Z, Br= {(w, υ) e C 2 | \u\2 + |y|2 < ^},
r small, we can conclude that W is in fact a submanifold of C 2 (cf. [14]). Let
E be the subspace of dimension 1 tangent to W. Then E is invariant by DZ(0)
and by Theorem B indo(Z/W) = 1. These facts imply that the eigenvalue of
DZ(0)/E is not zero. Now μ(Z,0) > 1 and so by Theorem A, μ(Z,0) > 1,
which implies that det(Z>Z(0)) = 0, hence the other eigenvalue of DZ(0) is 0,
therefore 0 is a saddle-node of Z.

CHAPTER II
THE EQUIDESINGULARIZATION THEOREM

It is a well-known theorem in the theory of singularities of curves in C 2 that
locally homeomorphic singularities have isomorphic desingularizations. We
discuss here the corresponding problem for isolated singularities of holomor-
phic vector fields in C2.

1. Generalized curves
The blowing-up method (Cf. [10]). Let Z be a holomorphic vector field

defined in an open subset Φ c C 2 , with 0 e ^ and Z(0) = 0, i.e., 0 G C 2 is a
singularity of Z. We assume that 0 e C 2 is the unique singularity of Z in °U.
Most of the time we will be interested in the foliation J^z induced by the
1-form ω,

ω = Z2(JC, y) dx - Zx(x, y) dy = 0,

where

Z Z ( ) + Z ( )
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Clearly J^z is regular in ̂ except a t O e C 2 . The singularity is said to be simple
if the eigenvalues λ1? λ2 of dZ(0) satisfy one of the conditions:

(i) λ1-λ2Φ 0 and λ 1/λ2 ί Q+;
(ή)λ1 = 0 a n d λ 2 Φ 0.
The blow up (or explosion) of 0 G C 2 consists of replacing 0 G C 2 by a

one-dimensional projective line P considered as the set of limit directions at
0 e C2. We introduce complex coordinates in ̂ ( 1 ) = <8r\ {0} U P as follows:
any open subset of ̂ \ {0} keeps its coordinates; in order to cover P we use
two charts φ: Vx X C -> <V\{y = 0) U P \ {0} and ψ:CxV2^U\(x = 0)
U P \ {oo} related by ψ" 1 © φ(r, *) = (t~\ tx\ t Φ 0; that is, we select points
0 and oo in P (which is the same as choosing two independent complex lines in
C 2); these charts cover neighborhoods of P \ {oo} and P \ {0}. The projection
τr(1): <^(1) -> ̂ Tis given by π{p) = p forp e P and π(p) = 0 for/? G P and is
written in these coordinates as (x, f) •-> (x, ίx) and (w, j ) •-> (wy, j;) respec-
tively. We now lift the foliation J^z to ̂ ( 1 ) . Suppose

x = av(x, y) + Rι(x,y),

y = bv(x,y) + R2(x,y),

where (av(x, y), bv(x, y)) is the first nonzero jet of Z at 0 e C2; v = *>z e N
is the algebraic multiplicity of Z (or J^z) at the singularity. We have the
following equations for π*Z:

* = x'(a9(l,t)+xR[(x9t))9

i = χ9-\b9(\, t) - tor(l, 0) + x'(*'2(x, 0 - tR[(x, 0);

(Λί'(^ -V) - ««ί(κ, y)),

Now, all points of P are singularities of ττ*Z. We have two ways of de-
singularizing it, according to whether 6,(1, t) — tav{\, t) is identically zero or
not.

(i) Nondicritical singularity. bv(l, t) - tav(l, t) Φ 0. Dividing (*) by xp~ι we
get

x = x(a9(l,t)+xR[(x9t))9
(**)

i = bv(l,t)-tav(l,t)^x(R'2(x,t)-tR[(x9t)).
The expression found in the other coordinate system (after dividing by yv~λ)

fits with (**) to define a foliation J ^ 1 } in %{l) having P as an invariant set.
More precisely, up to a certain number of isolated singularities given by the
roots of b9(l91) - tap(l91) = 0, P is a leaf of &g\ Observe that &£> and
it*^z coincide outside P ( 1 ) .
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(ii) Dicritical singularity. bv(l, t) — tav(l, t) = 0. After dividing (*) by xv we

find

x = av{\9t)+xR[(x9t)9

i = R'2(x,t)-tR'1(x9t).

Combining this with the correspondent expression in the other coordinate
system, we get equations of a foliation &£> which coincides with τr*J^"z outside
P but this time the projective line P is no longer an invariant set. The foliation
&§* is transverse to P except at a finite number of points (the roots of
av(l, t) = 0) which may or may not be singularities.

It is important to notice in both cases that the foliations are locally given by
analytic expressions. Therefore, we can repeat the process at any of the
singularities of J^ 1 } . A new foliation J ^ 2 ) is found in a neighborhood of a
union of projective lines having normal crossings and again exhibiting a finite
number of singularities. The process can be repeated as long as we want. After
k blow ups we have a foliation J ^ ^ defined in a neighborhood fyψ* of a union
^ Z

Λ ) of projective lines with normal crossings and a proper analytic projection

πW. yg) _> ^ w h i c h s e n d s g>ψ) t o O G C 2 and such that mψ>\ « z *>\^*> ->
Ql\ {0} is an isomorphism between the foliations J ^ ^ and J^z. We will write
(#z*>, 77 W, &ψ\ &±k>>) to denote a ifcth blow up of Z at 0 e C2; ττ(/c> will be
called its projection and ̂ z

f e ) its divisor. The divisor is a union of embedded
projective lines intersecting transversely at points called corners, each corner
being the intersection of two projective lines. The Desingularization Theorem
for vector fields ([1], [8], [16]) asserts that all singularities become simple after a
finite number of blow ups and these just repeat themselves under new
explosions. Therefore if we start exploding O e C 2 and if we agree that simple
singularities, once they appear, are not submitted to further explosions, we
definitely arrive to a situation where after / blow ups all singularities become
simple. This defines uniquely the blow up (^z

7 ), 7rz

/}, ^ z

/ ) , J ^ ° ) as the desin-
gularization of Z at O e C 2 . An alternative notation we will use for the
desingularization of Z is (^ z , τrz, ^ z , # z ) . Sometimes when no confusion
arises we will drop the subindices in either notation. In fact, we will often say
that the divisor 9 with marked points, which are the singularities of # , is the
desingularization of Z.

2. The nondicritical case (finitely many separatrices)

In order to make the exposition more understandable we will assume first

that the dicritical case does not appear in the blow up process. The remaining

case will be considered in §5.
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A formula for the computation of the algebraic multiplicity. In this section we

describe how to compute the algebraic multiplicity of a singularity from data

read off from its desingularization.

Definition. The weight p(P) of a protective line P which appears in the

process of desingularization is:

(i) 1, if the projective line appears immediately after exploding 0 e C 2 ,

(ii) the sum of the weights of the projective lines meeting at the singularity

which was blown up to originate P.

Observe that once P is created we assign to it an integer ρ(P) which will

remain untouched under further explosions. This number coincides with the

algebraic multiplicity of an irreducible curve whose desingularization is trans-

versal to P. This fact will be proved in §3.

Suppose now that a smooth invariant analytic line S contains the singularity

of a foliation IF (given in a neighborhood of the singularity by an analytic

vector field). Choosing convenient coordinates we may write

x = x"P(x)+yQ(x,y),

y=yR(x,y)9

where y = 0 stands for S and P(0) Φ 0.

Definition. The integer n e N i s the multiplicity of 3F in q e S along S.

We denote it by μ^iq, S); it is easy to check the invariance of the definition

under analytic changes of coordinates.

We consider now the desingularization (βl, π, P, # ) of Z. Let p e P be a

singularity of β'. We take

(Pβ iPyP) if/? e Pis not a corner,

\μβr(p, P) — I ifp e P is a corner.

Notice that two integers ψ(p, Px) and ψ(p, P2) are associated to a corner

{p)~PιnP2.

Theorem 1. The algebraic multiplicity v = vzofZ is given by

where the summation runs through the singularities

Proof. Let us prove the formula for the foliation J^ ( 1 ) . Call P the projective

line created from the explosion of Z, and pv -,ps the singularities of

Then

s

κ + i = ΣΨ(PI,P)
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In fact, from

X = x(ap(l9t)+xR[(x9t))9

i = 6,(1, t) - te,(l, t) + JC(Λ'2(JC, 0 - tR[(x, /)),

we find that the singularities of ^ ( 1 ) are the roots of 6,(1, /) - tap(l, 0 = 0

(we may arrange the coordinates so that oo is not a singularity of ^" ( 1 ) ; in this

case, degree av(l, t) = v). Now

bv(ht)-tav(l,t) = (t-tiy\---,(t-tsr.

We conclude that φ(pi9 P) = at and

Σ

In order to prove the formula in general, assume that we have

(•) " + 1= Σ p(P)φ(p,P)

at the kth stage of the desingularization process. If p e P is to be exploded to

a projective line P', two cases arise:

(i) p is not a corner. Introduce coordinates (x, j ) a t ^ G ? j along P and JC

normal to it and write ^ k ) near p e P as a vector field having an algebraic

multiplicity v\ We know that pr + 1 = Σμ(q, P')9 where ^ e P ' a r e singulari-

ties of J^ ( / c + 1 ) . Let us still write {p) = P Π P r and denote for the moment by

φ'(p,P) the number /ijpj*+i>(/>, P) - 1. It is easy to see that φ'(p,P) =

φ(p9 P) — (V — 1). Observe that in (*) φ(p, P) appears multiplied by a factor

ρ(P); so we can replace p(P) φ(/?, P) by

p(/>)(φ'(/>, P) + V - 1) = p(P)(φ'(/», P) - 1 + Σ μ(<?, P') - l)

= p(P)(φ'(p, P) - 1) + Σ P(i')<p(ί, P')

We have p(P) = ρ(P'). Again changing the notation we find that ρ(P)φ(p, P)

has been replaced by

p(P)(φ(p, P) - 1) + Σ P(^)φ(^ P') + Pί̂ Oίφί/ ,̂ ̂ 0 " 1)

(ii) ^ is a corner Px Π P2. Let {^x} = PλC\P' and {jζ72} = P2 Π P r . The

idea is to find a substitute in (*) for
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As before, call v' the algebraic multiplicity of a local analytic expression for
aXp G Px n P2. We have

so that

= p(Pi)(ψ(Pι, Pi) + v'-l) + P(P2){φ(p2, P2) + v'-l)

= p ( Λ ) φ ( ^ , P1) + p(P2)ψ(p2, P2) +(v' - l)(p(Pl) + P(P2))

= p(ΛM/>i> PI) + p(Pi)ψ(P2, Pi)

φ{p1,P') + φ(p2,P')+ Σ φ(q,P'))p(P').

Therefore the (k + l)th stage of the desingularization also produces a formula
(*) for the computation of v + 1.

3. Generalized curves and their desingularizations

We want to consider now vector fields whose singularities in the desingulari-
zation can be foreseen before starting the blow up process (remark: we don't
include the corners). The idea is the following: to detect the singularity in the
desingularization picture by simply looking at the invariant curve which passes
through it transversely to the projective line; this curve has a projection which
is also an invariant curve but now containing O G C 2 . So we must guarantee
that a normal invariant curve issues from every singularity located at the
desingularization picture of the vector field. Let us adopt the following
definition.

Definition. The vector field Z is a generalized curve if # i n the desingulari-
zation of Z has no singularities with zero eigenvalues.

Definition. A separatrix of Z is a connected integral curve V of Z such that
V= VU {0}.

By the discussion above there exists a well-defined one-to-one correspon-
dence between the separatrices of Z and the singularities of # which are not
corners. We shall prove that the desingularization of a generalized curve is
intimately linked to that of its separatrices.

As an example we may consider Z = Zf given by

x = - 3 2 / ( * , y), y = V ( * > y)>
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where /: °U c C 2 -> C is an analytic function having a singularity at 0 e C2.
The integral curves of Z^ are the connected components of /(x, y) = c for
c e C* small and its separatrices the connected components of f~1(0) in
<% — {0}. All integral curves are closed in °ll and do not approach O e C 2 ,
exception made to f(x, y) = 0. This property is not compatible with the
existence of singularities of # z which have zero eigenvalue; in fact, an
invariant curve along the nonzero eigenvalue direction would have a holonomy
of the type z -> z + azk+ι + , where a Φ 0 and k e N, in which case the
leaves would no longer be closed [3].

More generally, let Z be a vector field in <#fwith Z(0) = 0 and let (SJ)j=1 be
the set of separatrices of Z at 0 G C2. Then to each separatrix Sj there
corresponds an irreducible function/): W -> C,^(0) = 0, such that Sj = f~\0)
Π ( ^ \ {0}). Then / = Πj=1fj is a decomposition of / in irreducible factors
and if S = U*= 1 SJ9 then 5 = f~\0) Π ( Φ \ {0}).

Theorem 2. Lei Z be a generalized curve with an isolated singularity at
O G C 2 . If S is the union of separatrices of Z, then S and Z have the same
desingularizations.

Having the same desingularization means that the same sequence of explo-
sions will lead to the desingularizations of Z and/above. As a consequence the
final structure of projective lines and marked points in the divisor are the
same. Notice that the statement is not completely true when Z is already a
simple singularity; in order to unify all the possibilities we prefer to submit it
to an explosion before saying it is desingularized.

Remark. S Φ 0 by [4].
The proof of Theorem 2 is based upon the following lemma.

Lemma 1. Any singularity of a generalized curve which possesses exactly two
transversal smooth separatrices is simple.

Proof. A curve which becomes transverse to a projective line of weight
greater than one cannot be smooth. Therefore if v is the algebraic multiplicity
of Z we obtain from Theorem 1 that y + 1 = 2, i.e. v = 1. Let A = Z>Z(0).
Then A Φ 0 and we have the following possibilities:

$ 2

Case (i) will be excluded from our considerations because A has two
independent eigenspaces (namely, the tangent spaces of the separatrices), so it
is diagonalizable. In case (ϋ) if \λ = 0, Z is not a generalized curve; if
λ 1 /λ 2 = n e Z + , the normal form of Dulac [5] allows us to write Z = (λ1z1 +
a - zj, λ 2 z 2 ) and if a Φ 0, Z has only one separatrix; if a = 0, Z has dicritical



HOLOMORPHIC VECTOR FIELDS 163

components in its desingularization. Similarly if λ2/λ 1 e Z + . Finally if neither
λ 1 /λ 2 e Z + nor λ 2/λ 1 G Z + , then Z is linearizable [13] and its desingulariza-
tion has dicritical components. Only (ϋi) remains, but this means that the
singularity is simple, q.e.d.

Proof of Theorem 2. Let us follow Z through the sequence of explosions
which is demanded to desingularize S. It follows from the definition that J^ (/c)

is a generalized curve near its singularities in ^ ( / c ) . Through the corners pass
two invariant projective lines. Thus from Lemma 1 we obtain they are simple
singularities. The points where the transformed irreducible curves of S touch
the divisor must also be singularities of J^(A:); again by Lemma 1 they are
simple singularities. Suppose ^^k) has another singularity; it will have only
one separatrix contained in the divisor. From Theorem 1 we find a local
algebraic multiplicity for#"(/c) equal to zero which is not possible, q.e.d.

Remark. Let us consider again the example Z = Zf\ suppose / is irreduci-
ble. By Theorem 2, the desingularizations of Zf and /are the same. Apply now
the formula of Theorem 1: we get vz 4- 1 = p(P), where P is the projective
line in & transverse to the transformed curve of /(JC, y) = 0. But vz + 1 is the
algebraic multiplicity of / at 0 e C2, so that *y = p(P). Observe that further
explosions do not change the weight of the projective line transversal to the
transformed curve of f(x, y) = 0. Now suppose/(JC, y) = 0 is reducible. Once
we desingularize one of its components, we obtain a projective line transversal
of weight equal to the algebraic multiplicity of that component.

Theorem 3. Let Z be a generalized curve and fλ(x, y) = 0, -,fk(x, y) = 0
the equations of its separatrices. Then

k

Proof. If / = fx " fk9 then, by Theorem 2, Z and Zf have the same
desingularizations. Now apply the remark discussed above.

4. The Milnor number of a generalized curve

The reader must have noticed that the converse to Theorem 2 is missing. In
fact, the converse is untrue. We have to introduce an algebraic condition in
order to assure that a vector field which has the same desingularization as its
separatrices is a generalized curve. This condition is to be discussed now.

We turn our attention to the Milnor number of a singularity of a vector field
in C2. As before, we denote by /(x, y) = 0 the equation for the union of the
separatrices of Z.
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Theorem 4. Given a vector field Z one has μ(Z,0) ^ μ(Z/?0), and equality
holds if and only ifZ is a generalized curve.

Proof. Let us observe first that the theorem is true for simple singularities.
In general we proceed by induction on the number of explosions Zf needs to
become desingularized. We will make use of a formula which relates the
Milnor number of a vector field to the Milnor numbers of the singularities
appearing in the first explosion, namely

(•) μ(Z,0) = vl-(vz+ 1) + iμ{*P,pt),

where pl9 ,ps are the singularities of J ^ 1 } [10]. Suppose now Zf needs just
one explosion to become desingularized. In this case J ^ 1 } has singularities
pl9- - -,ps, all of them simple, thus with Milnor number equal to one; through
each of them passes a smooth curve transversal to the projective line and
invariant foτ^ι\ This also holds for^ 1 *, except that perhapspl9- ,ps are
no longer simple and other singularities ps+v- —,Pk oΐ^l) may exist. Accord-
ingly we have two cases.

(1) Z is a generalized curve. Then s = k and all singularities pl9 -,ps are
simple; so, from Theorem 1, vz = vz and, by (*), μ(Z, 0) = μ(Zf9 0).

(2) Z is not a generalized curve. Then

In fact, if k > s this is obvious. On the other hand if k = s and if all the
singularities pl9 ,pk have Milnor number one, it follows that J^ X ) at pt has
algebraic multiplicity one. Now a case by case argument like in the proof of
Lemma 1 leads to a contradiction.

Let us assume now the theorem has been proved for all singularities whose
set of separatrices needs / e N explosions to be desingularized. Let Z be given
such that it needs / + 1 explosions to reach the desingularized picture. Explode
Zf once and look to the J^-singularities pv ,/?5. All of these are also
singularities of ̂ l \ There appear the same alternatives as above.

(1) Z is a generalized curve. The pointspl9- ,ps are all the singularities of
^ l ) . By the induction hypothesis, Theorem 1 and (*) one finds μ(Z,0) =
μ(Zf,0).

(2) Z is not a generalized curve. Therefore either Pι,-'-9ps are all the
singularities of !F£> SO at least one of them is not a generalized curve or J?Γ^1)

has additional singularitiesp s + v -,pk.
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In the first situation

Σ μW\ P,) > Σ μ(^\ P,)
1 = 1 1 = 1

by the induction hypothesis; in the second one obviously

As vz>vz, we get from (*) that /x(Z,0) > μ(Zf90).

5. The case with infinitely many separatrices

We have not analysed up to now the appearance in the desingularization
process of a dicritical singularity, i.e. of the type

x = a v ( x , y ) + ••• ,

y = bv(x, y ) + ••• ,

where (av(x, y), bv(x, y)) is the homogeneous part of the vector field and
bv(l, t) — tav(l, t) = 0. Remember that an explosion gives us a foliation

i = R'2(x, t)-tR[(x9t)

in the first of the two coordinate systems. Now only at roots of av(l, t) we may
find singularities; outside these points the foliation is transverse to the projec-
tive line. This means that there exists a continuous family of separatrices of Z.
Let us discuss some examples.

(i) x = 2x, y = y.

1st blowing up 2nd blowing up
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After one blowing up we find two singularities, one of them dicritical. A
further explosion applied to this singularity produces a desingularization with
only one singular point.

(ϋ)
k>4.

The desingularization will be achieved in three steps. We consider first the
case k = 4.

1st step. After two blow ups all three singularities of ^" ( 2 ) have nonzero
eigenvalues. The corner is a singularity and there is a singularity with both
separatrices transverse to the divisor.

2nd step. An explosion is produced at each of these two singular points. At
this stage the dicritical component is isolated in a projective line P' of the
divisor, however through a corner P ' Π P " passes a separatrix transverse to
both P' and P".

3rd step. A further blow up isolates the dicritical component in one projec-
tive line and now no separatrix passes through a corner. In the general case
(any k > 4), it is necessary to proceed to A>blow ups in the corner of the 1st
step in order to arrive to the 2nd step whose divisor will now have k projective
lines. The passage to the 3rd step is the same as in k = 4.

explosion here

explosion
here

explosion here

1st step 2nd step

(iii) Let P(t) be a polynomial of degree v. Consider

3rd step

The first blow up yields:

* = />(/), i = 1.
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There are no singularities; J^ ( 1 ) is transverse to the projective line except at a
finite member of points. Suppose for simplicity that all roots of P(t) are
simple. Then at each of these tangency points the desingularization needs two
blowing ups.

The reader should notice that we are allowing additional blow ups; we look
not only for simple singularities but also we insist on having all the separatrices
desingularized. To be more precise, we adopt the following.

Definition. The set of separatrices of a vector field is said to be
desingularized when (i) all separatrices have become smooth and disjoint; (ϋ)
no separatrix passes through a corner; (in) all separatrices are transverse to the
divisor. If besides this, also the singularities appearing in the blow up are
simple and he in invariant projective lines, then the vector field is said to be
desingularized.

Of course in the nondicritical case we just need to ask for all singularities
being simple. We intend to show now that the Desingularization Theorem
(which guarantees simple singularities after a number of blow ups) can be
extended in the dicritical case to include also the conditions (i), (ϋ) and (iii)
above. In order to do so let us introduce a "measure" of tangency between a
vector field and a smooth curve.

Definition. Let Z be a vector field defined in a neighborhood of p e C 2

and S a. smooth curve, p e 5, which is not invariant by Z. We consider local
coordinates (x, y) at/? e C 2 with/7 = (0,0) and S = (y = 0). Let

x = α(x, y), y = b(x, y)

be the equation for Z in this coordinate system. We then define the order of
tangency of Z with S as the multiplicity of 0 G C as a root of b(x, 0). We
denote it by ηz(p9 S) or τ^r(/?, S), where J^is the foliation induced by Z. We
leave to the reader the verification that this definition is independent of the
coordinate system.

Lemma 2. Let !Fbe a foliation defined in a neighborhood of p e C 2 , with

algebraic multiplicity v. Let S be a smooth curve containing p and not invariant by
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be the foliation obtained by blowing up at p e S. Then

(i) Ifp G S is a nondicritical singularity, then

,S) -v.

(ϋ) Ifp G S is a dicritical singularity, then

η<?a)(p,S) = η^(p,S) -(v + 1).

(iii) ///? e S is not a singularity and η#r(p, S) Φ 0, then p e S is a simple
nondicritical singularity for <^(1) with eigenvalues 1 and — 1

Proof. The blow up at /? e S is represented in coordinates (x, t) by the
change of coordinates^ = tx. The curve S is now represented by S = (t = 0)
and /? = (0,0). The foliation J^ ( 1 ) near /? is induced by the differential equa-
tions

. _ a(x, tx) . _ b(x9 tx) — ta(x9 tx)

where σ = v in case p is nondicritical and σ = ? + 1 in case p is a dicritical
singularity. In both cases

η^d)(p, S) = multiplicity of * ; = η ^ ( ^ , 5') - σ.

This proves (i) and (ϋ). Suppose now that p Ξ S is not a singular point. Then &

can be given by the vector field

x = 1, > = &(*, >>)

and J Γ ( 1 ) is given locally around/? e 5 by

JC = x, ί' = Z?(x, ta) — /.

Therefore/? e 5 is a simple singularity of J^ ( 1 ) with eigenvalues 1 and — 1 and

ηsra)(p, S) = multiplicity of b(x,0) = η^(p, S).

q.e.d.
Now we can prove the extended Desingularization Theorem.

Theorem 5. Let Z be a holomorphic vector field with infinitely many sep-

aratrices through O e C 2 . Then there exists a desingularization for Z.

Proof. First of all we proceed as far as to make simple all the singularities
which appear after blowing up Z. Let us list the possibilities for the sep-
aratrices of Z and handle each case.
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(i) The separatrix is transverse to an invariant protective line, outside a
corner. Clearly it is already desingularized.

(ii) The separatrix is transverse to an invariant projective line at a corner. It
follows that the other projective line at the corner is not invariant; the worse
case appears when the separatrix is tangent to it. By Lemma 2, part (i), a
sequence of blow ups at the point of tangency will eventually lead to the
separatrix being transverse to both projective lines it touches. Therefore just an
extra explosion is demanded to desingularize the separatrix.

(in) The separatrix passes through a corner where two noninvariant projec-
tive lines meet. If it is transverse to both projective lines we need to explode it
just once.

It could also happen that it is tangent to one of the projective lines; one
explosion will bring us back to case (ii).

(iv) The separatrix is transverse to a noninvariant projective line and their
intersection is a singularity (not a corner). Again just one explosion is needed.
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/
\
\

\
\

(v) The separatrix is tangent to a noninvariant protective line (at a point
which is not a corner). One explosion will produce case (ii) again:

We see that the possibilities above add up to a finite number of cases; in
particular, all separatrices involved will eventually appear transversely to
invariant projective lines, outside corners. As a consequence of the above
constructions, the set of separatrices of Z is already desingularized. In order to
avoid singularities in noninvariant projective lines, a further step must be
taken. Suppose there exists a saddle-node at the intersection between two
projective lines, with only one of them invariant. Furthermore, assume the
singularity has only one separatrix (which necessarily will be contained in the
invariant projective line). In this situation, we need an explosion at the
singularity:

Now we can say that all noninvariant projective lines appearing in the
desingularization are free from singularites; therefore they are fibered by
separatrices (except at corners, where they necessarily meet invariant projective
lines). The desingularization is completed now. q.e.d.

As we can see from Theorem 5, there exists a certain number of disjoint
noninvariant projective lines fibered by disks which project, with two excep-
tions at most, on separatrices of Z. Each of such families of separatrices will be
called a dicritical component of the vector field Z. Therefore the set of
separatrices can be written as a union of a finite number of isolated sep-
aratrices (types (i)-(v) above) and a finite number of dicritical components of
Z. We stress the point that although being infinite in number, the set of
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separatrices of a vector field is desingularized after a finite number of blow
ups.

Definition. . A vector field Z with a singularity at 0 e C 2 is said to be a
generalized curve when any singularity of its desingularization has nonvanish-
ing eigenvalues.

This is the same definition as in the nondicritical case. The analogue of
Theorem 2 also holds true. Call S the set of separatrices of Z.

Theorem 6. // Z is a generalized curve, then Z and S have the same
desingularizations.

Proof. Desingularize S first; let us look for the singularities of ̂ k \ where
JΓ^/c) is the foliation which results from the application of the same explosions
to Z. Given an isolated separatrix, the point where it crosses a projective line is
a singularity of J ^ Λ ) ; there are exactly two separatrices going through it, and
transversal. By the proof of Lemma 1 it has algebraic multiplicity one;
moreover, both eigenvalues must be nonzero. It is easy to see that the
eigenvalues λx and λ 2 of this singularity are not linked by any relation of the
type mλ1 = « λ 2 f o r m , « G N ; in fact, either the singularity is equivalent to
x = λ1x, y = λ2y or it is equivalent to x = λ1x, y = λ2y + axp for/? e N. In
the first case, we would have infinitely many separatrices going through that
singularity of &^k\ in the second case, we would have obtained just one
separatrix. None of these cases happens. Therefore this singularity is simple.

As for the corners, observe that there are no separatrices of Z going through
them. There are two possible cases: either one of the projective lines meeting at
that corner is fibered by a family of separatrices or not. In the first case, if the
corner were a singularity oί^k) it would have at most one separatrix of ̂ k \
contradicting Theorem 1. In the second case, both projective lines are invariant
for ^ k \ and it is easy to see it must be a simple singularity.

Any other singularity oϊ^k) along an invariant projective line would imply
the existence of separatrices of Z which are not in S; this is not possible.
Finally, Theorem 1 implies that no singularities of ^ k ) may exist along
noninvariant projective lines, q.e.d.

Unlike the situation where only a finite number of separatrices of Z exists,
we have no analogue of Theorem 1 for the case with infinitely many sep-
aratrices. In fact, for each vector field we have a different formula relating its
algebraic multiplicity to data obtained from the desingularization. We intend
now to explain how this can be achieved.

Lemma 3. Suppose that

x = av(x,y) + av+ι(x,y)+ •••,

y = bv(x, y) + bv+1(x,y) + •••
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are the differential equations for Z and bv(l, t) - tap(l, t) = 0. If P is the
projectiυe line and^{l) the foliation which results from the explosion ofO e C2,
then

Proof. We can assume that bv(Q, 1) Φ 0. Then all the nontransversal points
relative to P will appear in the (x, ^-coordinate system:

/ = [ b 9 + ι ( l 9 t ) - t a 9 + ι ( l 9 t ) \ + * ( • • • ) •

We conclude that the sum of the orders of tangency of J*"(1) with P is exactly of
degree α v(l, t). Now, we have av(u91) — ubv(u,l) = 0, therefore u/av(u, 1)
and if α^x, ^) = aλ(y)x + + av(y)xp, then degree ax(y) = degree
Λ,(1, 0 = " - l qe.d.

Let us imagine now that, while performing the desingularization of a vector
field, we come across a dicritical singularity/? e P c ^ ( / c ) in some stage J^(A:).
Up to that point we may apply Theorem 1. What comes next? Two cases arise:

(a)/? G P is not a corner. We have a term p(P)/xjr(^)(/?, P) which appears in
the formula given by Theorem 1. It is easy to see that

i)(/>, P)

Up e P is exploded to P' and { pv

not transversal to P\ then v - 1 =
p(P)μJlr(k)(p9 P) will be replaced by

,/>5} is the set of points, where J^^+ 1> is

(Pi> P'\ by Lemma 3. Hence

9 P)

(b) p Pλ n P2 is a corner. We now have to replace a term like
p, Λ) + P(^>2)iLt^w(/7» Λ) Assume/? is blown up to P r, and

/ Π P 1 ? ^ 2 G f n P2. As before

i> Λ )
?2, P 2 )

, Λ) - ̂ .
9 P2) - v
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and v — 1 = Σ J = 1 y&rc+viPj, P ') It results in an expression like

ί^Dίp!, P)

p(P2))ίl + Σ I?^ + D(Λ, P'))

Therefore, we are able to produce a formula when a dicritical singularity

appears. There is still a point to be studied: how to transform a singularity/?

which appears on a projective line P not invariant by ̂ (k+1\ The resulting

formula depends on the nature of this singularity. If it has just a finite number

of separatrices, the order of tangency η(p, P) will be changed to η(p, P) — v\

if it is a dicritical singularity we will get τj(/?, P ) — (v + 1). In both cases we

may write v in terms of data arising from the explosion as we have been doing

until now. This twofold situation is responsible for the absence of a universal

formula.

What can be effectively said is the following: given the desingularization of

the vector field, there exists a formula which involves: (1) a contribution from

the singularities as in the nondicritical case; (2) an algebraic expression

involving the weights of the projective lines; it reflects the presence of dicritical

singularities in the process of desingularization, and depends only on the

desingularization of the dicritical components.

Theorem 7. Let Z,Z'be vector fields with Z(0) = Z'(0) = 0 and having Sz,

Sz, as sets of separatrices. Assume Z is a generalized curve and that Sz and Sz,

have isomorphic desingularizations. Then μ(Z / ,0) > μ(Z,0), and equality holds

if and only if Zf is a generalized curve.

The proof is similar to that of Theorem 4, and it is left to the reader.

6. Proof of Theorem C

Theorem C. Let Z be a generalized curve with a singular point O G C 2 . Let

Z' be any vector field topologically equivalent to Z at 0 e C 2 . Then Zf is also a

generalized curve and both Z and Z' have isomorphic desingularizations.

Proof. Let Sz and Sz> be the set of separatrices of Z and Z'. The

topological equivalence between Z and Z ' is also an equivalence between Sz

and SZ/. Therefore Sz and Sz> have isomorphic desingularizations. Since the

Milnor number is an invariant up to topological equivalence, we obtain by

Theorems 4 and 7 that Z' is also a generalized curve and by Theorems 3 and 6

they have isomorphic desingularizations.

Corollary. The algebraic multiplicity of a generalized curve is a topological

invariant.
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