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Abstract
Min-max techniques in the calculus of variations are used to prove that the moduli spaces of
self-dual connections on principal SU(2) or SU(3) bundles over S4 are path-connected.

1. Introduction

On a principal bundle P -> S4 whose structure group, G, is a compact,
simple and simply connected Lie group, there are distinguished connections.
These are the connections whose curvature is self-dual with respect to the
Hodge dual of the metric on T*S4 which is induced from the identification
S4 = {x e R5: \x\2 = 1}. (This metric is called the standard metric.)

The moduli space of self-dual connections on P,

3Jt(P) = (Psx (smooth, self-dual connections on P})/Aut P,

is a smooth manifold. Here Ps is the fibre of P at s = south pole, and Aut P
is the group of smooth automorphisms of P. The isomorphism class of P
is specified by its integer degree, k(P) [4]. (For G = SU(2), k(P) =
-c2(P XSU(2)C

2).) If £( />)< 0, then Wl(P)= 0 ; if k(P) = 0, then 2W(P) =
point; and if k(P) > 0, then Wl(P) is nontrivial.

Although these spaces have been the subject of much recent study, [4], [11],
[14], relatively little is known of their global structure. A small advance is made
in this article with the following theorem.

Theorem 1.1. Let P -> S4 be a principal G = SU(2) or SU(3) bundle with
positive degree. Then Wl(P) is path-connected.
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The theorem is known to be true for a few specific cases. If G = SU(2), and
if k(P) > 0, then 2R(P) is ^(/^-dimensional. For G = SU(2), 2R(i>(fc = 1))
- R5 X SO(3) [4], which is path-connected, and Hartshorne has established
that m(P(k = 2)) is path-connected [16]. If G = SU(3), and if k(P) > 0, then
dim Wl(P) = Uk(P). For G = SU(3), it is known that Wt(P(k = 1)) = R5 X
SU(3)/ί/(l) [4], a path-connected space. For no other principal SU(2) or SU(3)
bundles had ττo(2)ϊ) been previously established. Theorem 1.1 is consistent with
the conjectures in [5] and [30] that the inclusion of Wl(P) in the space S ( P ) of
Aut P orbits of (Ps X (smooth connections on P}) is effective in low-
dimensional homotopy.

The proof of Theorem 1.1 is an application of the first Morse inequality on
the infinite-dimensional space, © (P). (The first Morse inequality is the so-called
"mountain pass lemma.")

Consider the following example as a model application of the Morse
inequalities. Let I c S 2 be a subset which is f~\0) for a C3 function /:
S2 -> [0,1] having no critical points outside of X with Morse index less than 2.
Under these circumstances, the first Morse inequality implies that X is con-
nected. In this simple case, the idea behind the proof is easy to describe. Given
two points, p0, ^ e l , consider the space, Θ, of continuous paths φ: [0,1] -> S2

which connect pQ topv Associated to Θ is the number

4 = inf sup / ( φ ( 0 ) .

This number is the altitude, as defined by /, of the lowest mountain pass
betweenp0 and/?!. Whatever the value of/^, a mini-max argument (Ljuster-
nik-Snirelman theory [18]) will provide a critical point, /?*, of / where the
Morse index of /is zero or one. Hence, p* e X. But the continuity of/insures
that /(/?*) =/oo> and so/^ = 0. But if/^ = 0, then/?0 and/?x are in the same
connected component of X.

The proof of Theorem 1.1 requires an infinite-dimensional analog of this
example. Consider the Yang-Mills functional on S(P). At a connection A on
P9 the Yang-Mills functional is 1/2 times the ZΛnorm of the curvature of A9

FA'

(1.1) m(A) = ±[ \FA\\x)dvol(x).
1 JS4

In (1.1), the pointwise norm on FA is the Aut P invariant norm on the vector
bundle Ad P ® Λ 2 T*S4 which is induced from the Killing form on g =
Lie Alg G, and from the standard metric on Γ*S4.

A smooth connection A which is a critical point of g)2W satisfies the
Yang-Mills equations,
(1.2) DA*FA=0.
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Here, * is the standard metric Hodge dual on Λ 2 T*S4, and DA is the

covariant exterior derivative defined by A. A self-dual connection is one whose

curvature satisfies

(1-3) FA= *FA.

An anti-self-dual connection has FA = -* FA. These can be found on bundles

with negative degree and they are obtainable from self-dual connections by

reversing the orientation of S4. The Bianchi identities force a self-dual connec-

tion to satisfy the Yang-Mills equations.

As $)Wl is Aut P invariant, it descends to a functional on $ . A critical point

is 3)2)ϊ on © is the Aut P orbit of a pair (Λ, A) = (point in Ps9 solution to

(1.2)).

For those P with nonnegative degree, k ^ 0, the Yang-Mills functional

restricts to 30Ϊ with the constant value k\ this is the infimum of f)Tl on $ . In

fact, a connection A on such a principal bundle is self-dual if and only if

$)Wl(A) = k. (This defines the normalization of the metric on Ad P ®

Λ 2 T*S4.)

Bourguignon, Lawson and Simons have shown that if P -> S4 has structure

group SU(2) or SU(3), then every local minimum of tyffll on $5(P) is self-dual

if k(P) ^ 0 and anti-self-dual if k(P) < 0 [8]. Presently more information

about the index of the hessian of D Tt is available. This is summarized by

Theorem 1.2 (C. H. Taubes [30]). Let P -> S4 be a principal SU(n)-bundle

with n = 2or3. Let k(P) = degree of P. Ifb e $ ( P ) is a critical point of

which is neither self-dual nor anti-self-dual, then the index of the hessian of

at b is at least 2n\k(P)\ + 2.

If the functional 3)90? were to satisfy the Palais-Smale condition [20] on

©(/*), then Theorem 1.2 and a Ljusternik-Snirelman argument would yield not

only Theorem 1.1, but isomorphisms ^(Tt(P)) = 7τ7 (»(/>)) for / < 2nk(P).

However, the Palais-Smale condition is not satisfied by 2) 3R (and for G =

SU(2), π2(m(P(k = 1))) = (0) while π2($(P(k = 1))) « Z 2 ) .

The failure of the Palais-Smale condition is not always the final word. Sachs

and Uhlenbeck [23] teach that it is potentially profiting to ponder the ways by

which the Ljusternik-Snirelman procedure fails. Concerning the Ljusternik-

Snirelman procedure for $)Wl on $}, the pondering produced the two theorems

below.

Theorem 1.3. Let P -> S4 be a principal SU(2) or SU(3) bundle with degree

k^0. Suppose that there exists φ e C°([0,1]; » ) with φ({0,1}) c m for which

(1.4) sup y)Wl(φ(y)) < k + 2.
V<Ξ[0,1]

φ is homotopic rel{0,1} to a map into 2)ϊ.
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Theorem 1.3 motivated the investigation into the behavior of paths in $

whose endpoints lie in 20Ϊ. This investigation produced the following theorem.

Theorem 1.4. Let P -> S4 be a principal G = SU(2) or SU(3) bundle with

degree k > 0. Suppose that for every principal G-bundle Pf -> S4 with degree

1 < k' < k, Wl(P') is path-connected. Then any two points in Wl(P) are joined

by a path in^(P) which obeys (1.4).

Armed with Theorems 1.3 and 1.4 and the a priori knowledge that

πo(Wl(P(k = 1))) = (0), Theorem 1.1 is obtained by the obvious induction on

the degree of the principal SU(2) or SU(3) bundle.

The threshold phenomenon that is exhibited in Theorem 1.3 appears to be

common to many elliptic variational problems for which the Palais-Smale

condition just fails [9]. The phenomenon is observed in the Yang-Mills-Higgs

equations on R3 in [28] and [15]. It is seen in more classical problems as well,

cf. [10].

This article has two distinct parts. The first part, §§2-5, describes the

Ljusternik-Snirelman procedure for g)2)ϊ on $)(/>), and the result is a proof of

Theorem 1.3. This Ljusternik-Snirelman procedure attempts to study the

homotopy groups π^Wl) for / > 0 via the inclusion map SDΪ *-> SB. The proce-

dure presumes to determine from the critical point set of g)2)ϊ, whether for

31 c 3K, and / > 1, a given path component Θ c C°((Dι, S1'1); (SB, 31)) has

elements which map into Wl (Θ defines an element in 77)(SB, 31)). These

considerations give import to the number

(1.5) 3ί(Θ) = inf ( sup %(®Wt{φ(y)) - k(P))\.

The Ljusternik-Snirelman procedure for 5}2)ϊ is not wholly successful, but it

does yield the following theorem.

Theorem 1.5. Let P -> S4 be a principal G-bundle with nonnegatiυe degree.

For SSI c m and / > 0 , f e ί θ c C°((Dι, 5 ί /" 1); ( » , 31)) be a path-component.

(1) // 91 (Θ) = 0, then Θ has an element which maps into W. (2) // 31 (Θ) ί Z,

then there exists a principal G-bundle, Pf -> S4, and a smooth, critical point of

V)Wl on$(P') which is not an absolute minimum of $)Wl on %(P'). (3) At this

critical point, the hessian of^)3R has index I or less.

Observe that Theorems 1.2 and 1.5 immediately yield Theorem 1.3 as a

corollary. The proof of Theorem 1.5 occupies §§3-5. §2 is an introduction to

the notations and conventions that are used in this article. There, also, certain

useful Sobolev-class Banach manifolds are introduced with their relevant

properties.

The proof of Theorem 1.5 begins in earnest in §3. The theorem is proved in

three steps. In §3, a gradient flow for g)3Dΐ is integrated to prove that ε > 0
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exists for which $)3R([k9 k + ε)) is a tubular neighborhood of 2W =
This is stated as Proposition 3.1; the proposition establishes Theorem 1.5 in the
case when 21 (Θ) = 0. (In [12], Donaldson examines the gradient flow for gJSD?
when restricted to 1-1 connections on a stable, holomorphic vector bundle over
a Kaehler 4-manifold.)

The examination of the convergence of mini-max sequences in SB constitutes
Step 2 in the proof of Theorem 1.5. A mini-max sequence is a sequence
{φ j) c SB which is obtained from a sequence {φ, , φ,-} c X, where

X - { ( φ , φ ) e Θ x S B : φ e φ ( z y )

and for ally e Z>',g)2β(φ) > 2)2R(φ(;>))}

The sequence {φ,} must also be minimizing in the sense that gJSDtίΦ,-) >
g)2)ΐ(φ / + 1)\23ί(Θ) + A:(/>). Step 2 occupies §4, and Proposition 4.4 estab-
lishes assertion (2) of Theorem 1.5.

To prove the third assertion of Theorem 1.5, control must be had on the
hessian of %)Wl at the limiting point of a mini-max sequence in SB. This control
is gained in §5 where the final declaritive of Theorem 1.5 is estblished. The
idea here is that if at this limiting point, the hessian for 2) Wl had more than
/-negative directions, then a "covariant hessian" defined as in [25] would have
this same property for all but a finite number of points in the mini-max
sequence. Then, under such conditions, a deformation along one of these
negative directions would produce a disc in Θ with $)W < %(Θ) + k and a
contradiction (see Proposition 4.2 and Lemma 5.1).

The second part of this article consists of §§6-8, and it includes, in §§6 and
7, the proof of Theorem 1.4. This theorem is proved with a calculation of the
"force" between two connections. For computing this force, a digression in §6
is required to define the subtraction of {a pair (P\ b') of principal G-bundle
P' -> S4 and point V e SB(P')} from {a like pair, (P, b)} to obtain a
principal G-bundle P - Pf -> S4 and a point b - b' e SB(/> - />'). This sub-
traction amounts to gluing P to a~ιP' via an identification of P with P' over
the equator of S4, where a: S4 -> S4 is inversion through the fixed, equatorial
S3. The bundle P - Pr has degree equal to degree P - degree P\ and if b
and V have their curvatures concentrated near the north pole of S4, then
V)Wl(b - b') ~ V)Wl(b) + $)Wl(bf). Some topological conclusions are drawn
with this subtraction procedure in [5] and [26].

When Pf -> S4 has degree +1, then degree (P - Pf) has degree P - 1. The
question arises whether it is possible to choose self-dual V e Wl(P') so that
3)Wl(b - b') < y)SSR{b) + 1. The answer here is affirmative if b is contained in
an open, dense set Q c SB of orbits [h, A] such that (FA + * FA)(s) Φ 0, cf.
Proposition 6.2.
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In general, V as in the preceding paragraph cannot be chosen to depend
continuously on ί>ef l . There are topological obstructions to doing this;
certain 2-dimensional submanifolds exist in £} along which V cannot be made
to depend continuously on b. But for a point, φ E Q , there exists a degree +1
principal G-bundle Px -> S4 and a point b e Tt(Pλ) for which ®Wl(φ - b) <
g)2)ΐ(φ) + 1. This is proved in Proposition 6.2 (In fact, for a continuous path,
φ( ): [0,1] -> Q(P), there exists a continuous path £(•): [0,1] -> ^ ( Λ ) for
which D2R(φ( ) - 6(0) < ?)3W(Φ(')) + l τ h i s fact is relevant for studying

The path for Theorem 1.4 is constructed in §§6 and 7 with the observations
from the preceding paragraph, and the outline of this construction follows: Let
m0, m1 e Wl(P) n &(P) be given. There exists a principal G-bundle, Pλ -> S4,
of degree 1, and self-dual points b09 bx ^W(Pγ) for which ra0 - fe0 and
mx - bλ have 3̂W < k + 1. From the results in §§3-5 and Theorem 1.2, one
obtains via a mini-max argument (Proposition 6.4) that for i e (0,1), there
exists a path γ, e C°([0,1], # ( P - Pλ)) with γ,(0) = mi - bi9 γ,(l) e

P J and such that g)SW(γl ) < Λ + l. Under the given assumption that
Pi) is path-connected, no generality is lost by assuming that γo(l) =

γ^l). Let γ = γ0 γf1, where "•" is the usual composition for paths, and

γ f ' ω = ϊi(i - 0.
On the principal G-bundle a~ιPx -> S4 (of degree -1), there exists a continu-

ous curve φ(/), t e [0,1], of anti-self-dual points in © ( α " ^ ) with very small
scale-size such that γ(/) - φ(/) e C°([0,l]; ®(P)) has gJSOΪ < Λ + 2 (see
Lemma 6.5). The endpoint, γ(0) — φ(0), can be thought of as m0 with an
anti-self-dual connection, -Z?o, of small scale-size, grafted on near s e S4; and
then a self-dual connection, -a*b0, of still smaller scale-size grafted on near s
again [14, §6]. The point (m0 - b0) - a*b0 can be connected to m0 by a
continuous curve η0 e C°([0,1]; S(P)) by cancelling -b0 against -a*b0; this is
described in Lemma 6.6. Crucial is the fact that d$R(ηo(')) < k + 2. Simi-
larly, one obtains the curve ηv The required path for Theorem 1.4 is ηx

(Ύ " Φ) TJo1.
§8 of this article considers two extensions of the results of §§2-7. The first

result concerns ττ0 for moduli spaces of self-dual connections on principal
G-bundles P -* S 4 where rank G > 2: If k(P) > 0 and πo(m(P)) Φ (1), then
there exists a nonflat critical point of g) Wl on S4 X G which is not reducible as
a direct sum of a self-dual and an anti-self-dual connection.

The second result in §8 concerns the moduli space of self-dual connections
on degree 1, principal SU(2) bundles over 4-manifolds, M, with the following
properties: (1) M is compact, oriented and Riemannian. (2) M is 1-connected.
(3) The intersection pairing on H2(M\ Z) is definite (cf. [14]). For such M and
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P -* M, define W(P) as follows: Choose x e M and let

Tt ( P ) = (Px X (self-dual connections on P })/Aut P.

The spaces 5Dΐ(P)/G are studied in detail by Donaldson [11] and also in [14].

In §8, the proof of Theorem 1.6, below, is given.

Theorem 1.6. Let M be a compact, oriented, l-connected 4-manifold with

definite intersection pairing on H2(M\ Z). Let P -> M be a degree 1 principal

STJ(2)-bundle. For an open, dense set of smooth metrics on T*M, the following is

true: Either πo(Wl(P)) = (1), or there exists a connection on P or M X SU(2)

which is a non-self-dual critical point oftyWl.

There is a short appendix to this article which contains the proof of a

technical result from §4 about the convergence of mini-max sequences.

2. Background

Let M be a compact, oriented Riemannian 4-manifold, and let G be a

simple, simply connected, compact Lie group. Fix a principal G-bundle,

P -> M, and denote by ©(P) the space of smooth connections on P. The space

6 is an affine space, and its topology is defined by any affine isomorphism of

6 with Γ (Ad P <8> Γ*), the space of smooth sections of Ad P ® Γ*. Let s e M

be a fixed point, and by fiat s = south pole when M = S4. The group of

automorphisms of P, Aut P, acts continuously and freely on & = Ps X 6; let

$5 = ©/Aut P and give © the quotient topology.

For technical reasons, it is convenient to consider 6 as a dense subset of the

Banach spaces ©f, 2 < p < oo, of connections on P. These are connections

whose connection form and its first derivatives are locally in Lp. For A G ©f,

its curvature F^ e L^(Ad P ® Λ 2 Γ*) (see, e.g., [14], [21] for an account).

The group © = @2 °f continuous automorphisms of P whose first and

second derivatives are in L3 acts smoothly and freely on © = Ps X S 3 . The

quotient,

(2.1) 93 = (P 5 X ©?)/©,

is a smooth, L3-Banach manifold and the sequence l - * @ - > © - » 9 3 - > l

defines a smooth, principal ©-bundle [14]. It is a fact that the inclusion $ >̂ 93

is a homotopy equivalence.

Observe that both S and 93 admit smooth G actions; multiplication on the

right induced by the action of G on Ps. These are never free G actions and they

are not often free (//Center G actions. Nonetheless, the quotients S / G and

93/G exist as topological spaces and they appear in a few places in this article.
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Two principal G-bundles, P, P' -> M, are isomorphic if and only if they

have the same integer degree; indeed [M; BG] - Z [29]. The degree of P is

denoted k{P). An isomorphism from P to Pr is a global section of iso(P, Pf)

= />' ® G ^ ^ ^ a n d ^ ' a r e isomoφhic, then S ( P ) and $(/>') are canonically

identified. As the Yang-Mills equations and all of the constructions in this

article are isomorphism equivariant, 33(P) and 33(P') will be implicitly identi-

fied for isomoφhic P, P\

The given Riemannian metric on T* and the Killing metric on g define

©-invariant metrics on Ad P Θ Λ^ Γ*, A: e (0, ,4). With the volume form of

the metric, one obtains ©-invariant, Lp (p > 1) metrics on Γ(Ad P <8> Ak T*).

These ©-invariant metrics are the only ones used in this article. It is this

ZΛmetric which defines the Yang-Mills functional, (1.1), but with integration

over M.

The functional 3)2)ϊ on ©^ descends to define a smooth, (/-invariant func-

tional on 53. But all critical points of $)Wl on 33, weak solutions to (1.2) on M,

lie in 23 [32].

Let * denote the Hodge dual of the metric. A connection, A, is self-dual if

and only if FA = * FA. Let

Wl(P) = (Ps X (self-dual connections on P })/Aut P.

It is to be topologized by the inclusion Wl °-> 33.

To study Wl via its inclusion in 33, it is convenient to use the functional 31

= i(2)5Dΐ - k(P)). Let P±= %(1 ± *) denote the pointwise self-dual and

anti-self-dual projections on Λ 2 P . The normalization of the metric on Ad P

is set by the requirment that the value of 91 at b = [h, A] e 93 is

(2.2) %{b) = \ ( \P_FA\\x)dvo\{x).

Thus, if 2R(P) Φ 0 , then Wl(P) = %-ι(0). (In general, the infimum of 3ί over

33( i > ) i szeroi f£( i > )>0[29] .)

The gradient of 21, V 91, is defined as a smooth, linear form on the tangent

bundle, Γ33 -» 33. This bundle is defined via the vector bundle exact sequence

over 33,

0 -+ 6 X&L3

2(AdP) -> e X @ ( g X L\(Ad P ® T*)) -* Γ33 -> 0.

But Γ33 itself is not as convenient to work with as is the vector bundle

(2.3) S3 = e X @ ({0) X L3

x(Ad P Θ T*)) -> 33,

together with the vector bundle map Π: 33 -> Γ33. By pull-back via Π, the

gradient of 91 defines a smooth, linear functional on 33.
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There is an alternative way to define v3ί e 33*. The affine structure of the

space of connections on P provides a map f: 33 -> 93 which sends v = [h9 A, ϋ]

e 93ft (the fibre over b = [h, A] e 33) to the point f (v) = [A, Λ + 0] e 93.

Then

With f, one can define a "covariant hessian" of 31. This section, φ, of

(Sym2 33)* -> 93 is defined on ι;, i^ e 33 fo by [25]

When b is a critical point of 21, then φ f t descends to Γ 93 ̂  as the usual hessian

of 31.

For v, υx e 93 ̂  as above,

(2.4) V9ί f t (f;)= V « , ( 6 ) = (P.DAϋ, P_FA)2,

and

(2.5) φ 6 ( ϋ , ^ ) = ^ ( β , β j = ( P _ ^ 0 , P_Z>A>2 + (^-[β . »il. ^ - ^ > 2

Here. DA: L\(Ad P ® Λ* Γ*) -* L2(Ad P ® Λ^+ 1Γ*) denotes the covariant

exterior derivative that is defined by A. (Unless otherwise noted, v^:

L\(Ad P ® Λk Γ*) -> L2(Ad P Θ ΛΛ Γ* ® Γ*) denotes the covariant deriva-

tive that is defined by 4̂ and the standard metric's Riemannian connection.)

A point b e 93 is a critical point of 9ί if and only i fv3ί / ? = Oe33^ .

It is convenient to define a norm on 33. For A e © 2 ( P ) and w G

L2(Ad P ® Γ*), let

(2.6) IHI^IIv^+IHll
The properties of this norm are listed below.

Proposition 2.1. As a map from S 2 X L\(Ad P ® Γ*) /o [0, oo), rAe assign-

ment (A, u) -> ||M||^ is smooth. In addition, there exists z < oo which is indepen-

dent of (A, u) such that ||w||4 < z-||t/||̂ .

Further, for all {A, u, a) e g 2 X2 L2(Ad P Θ Γ*),

(2.7) m«ιμ+β -llwiui < 4||M |uiHμ < ̂ ^IIMII^ n«ιμ.
The symbol ( , ) Λ will denote the metric on L2(Ad P <8> T*) which || 1̂

induces by polarization.

The utility of || ||^ for the Yang-Mills problem is due to the following a

priori estimates.
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Proposition 2.2. The Yang-Mills functional is smooth on&l and there exists
a constant, z < oo, which is independent of A e ©^ and a, w, υ e Li(Ad P ® Γ*)

(2 8) ( 2 )

(3)

(1)

(2.9) (2)

Both Propositions 2.1 and 2.2 will be proved at the end of this section.
As the assignment of (A, u) G ©j* X L^(Ad P Θ T*) to \\u\\2

A is ©-equi-
variant, there is a natural norm that is induced on the vector bundle 23 -> 93.
At b = [A, A] G 93, the norm induced on 23 ̂  by || Ĥ  will be denoted || \\b.
With this norm are defined the following measures of V 91 and φ on 23 ̂

Definition 2.3. Let b = 93. Denote the \\-\\b dual norm of v3t Λ on 23 ̂  by
|| v 21JU; that is,

(2.10) I | v 3 ί j * = inf
\\ϋ\\b

1, define λ^ by

(2.11) λ ^ inf f max

where the infimum above is over all /-dimensional subspaces E c 23 .̂
Observe that λ^ < 0 if and only if there exists an /-dimensional subspace in

23^ on which §b < 0.
The Yang-Mills equations and functional are invariant under pointwise

conformal changes of the metric on Γ*. When M = S4 with its standard
metric, the group of conformal diffeomorphisms is isomorphic to SO(5,1). It is
convenient to exploit the invariance of $)Wl under this group action. Until
further notice, restrict M = S4 with its standard metric. Let C = SO(4) X R*
X R4 denote the subgroup of the group of conformal diffeomorphisms of S4

which fix s = south pole G S4. The group C acts on 93 by sending b = [A, A]
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to tb = [t~ιh, t*A] for t e C. That is, [rιh9 t*A] is in 33(r 1/>) = 33(i>). This

action commutes with the action of G on 33 and so C acts on 33/G also. (In

fact, the full conformal group, SO(5,1), acts on 33/G.)

The action of C on 33 lifts to an action on 33 given by t[h, A, a] =

[Λ, t*A, t*a]. The functionals 21 on 33, and V91, φ on 33 are C-invariant.

It is convenient to define a C-invariant inner product on 33. This is done by

exploiting the conformal equivalence between S4\s and R4 which is induced

by stereographic projection. Stereographic coordinates y = {yv}: S4\s -» R4

are the Cartesian coordinates on R4. For a G &j(P) and w, υ G Γ(Ad P Θ Γ*)

with compact support in S 4 \ 5, define

Here, V^ is the covariant derivative on Ad P ® T*(S4\s) which comes from

the connection A and the flat, Euclidean connection on T*(S4 \s) which pulls

back under y from Γ*R4. The properties of | \A are listed in the propositions

below; their proof are at the end of this section.

Proposition 2.4. For fixed A G &l(P), \-\A extends to a continuous norm on

L^(Ad P <E> 71*), which is equivalent to the usual L\-norm. In addition, there is a

fixed z e (1, oo) which is independent of P and {A, u) e S j ( P ) X L^(Ad P ®

(2.12) ^"ΊIΦ <I«U <ΦIU
Proposition 2.5. Let M = S4 with its standard metric. Then the statements of

Propositions 2.1 and 2.2 are true when \-\A replaces \\m\\A.

As the norm 1*1̂  is @-equivariant, it too defines a norm, \ \h, on 33^ for

b = [Λ, A] G 33, which as fc varies gives a continuous map from 33 onto [0, oo).

The advantage of \-\h over \\ \\h is that the former is C-equivariant: If u e 33^

and t G C, then |/w|r/) =|w|fe. Proposition 2.5 allows this C-equivariance to be

exploited through the following definition/convention.

Definition 2.6. When M = S4 with its standard metric, then || V2l J * and

λ^, / > 0, are to be defined by (2.10) and (2.11), respectively, but with | \h

replacing || | | 6 therein.

Now let M be unrestricted again. In the present context, the two most

important properties of the maps b -> | |V31J|* and b -> λ^ are stated in the

following proposition.

Proposition 2.7. The assignments of b G 33 to \\ V3l f t | |* and }lb for I > 0

define continuous, G-invariant functions on 33. When M = S4 with the standard

metric, these functions are all C-inυariant.

Proof of Proposition 2.7, given Propositions 2.1, 2.2 and 2.5. The continuity

of the maps in question is a direct consequence of (2.7) and (2.9). When

M = S4 with its standard metric, C-invariance is by construction.
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The functions || V9l ( ) | |* and λ ^ on 93 are G-equivariant and therefore they
descend as continuous functions on 33/G. It will be convenient in §§4 and 5 to
consider these functions on 93/G.

Now turn to the proofs of Proposition 2.1, 2.2, 2.4 and 2.5. The primary tool
is Kato's inequality, which states that if V is a metric compatible connection
on a Riemannian vector bundle E over a Riemannian manifold M, and if
v e L\.λoc(E\ then

(2.13) \w\(x)>\d\v\\(x) a.e.

Proof of Proposition 2.1. The fact that the assignment {A, u) ->||κ|β is
smooth is now standard [21]. The L2 estimate follows from (2.13) and the
Sobolev embedding, L\(M) -> L4(M). The last assertion follows from the
identity VA+aΦ = VAΦ + [a, φ] for A e 6, a e Γ(Ad P 0 Γ*) and φ e
Γ(Ad P).

Proof of Proposition 2.2. This is standard, given Proposition 2.1; use the
identities FA+a = FA + Z^α + ^[α, α] and DA+au = DAu + [α, w] for α, w G
Γ(Ad P ® Γ*).

Proof of Proposition 2.4. For smooth ̂ e g and w e Γ(Ad P Θ Γ*) which is
compactly supported on S4 \ s, there exist the two inequalities

(2.14) \u\A > i\\u\\4.R4 = j | |n | | 4 ; s s \u\A ^ l l M " 1 " ! ^ -

Here, the subscript " R 4 " means that the norm is defined with Euclidean
metric on R4, while " S4 " means that the norm is defined by the standard
metric on S4. The first inequality above uses (2.13), a standard Sobolev
embedding [6, Theorem 2.14], and the conformal invariance of the L4 norm in
4-dimensions. The second inequality is proved as in [22, Lemma 5.4]. With
(2.13) and (2.14), Proposition 2.4 is a straightforward exercise left to the
reader.

Proof of Proposition 2.5. Equation (2.7) with | \A instead of || \\A is

II44+* -\U\A\ < 4||ιι||4|M|4 < 914*144,
with the right-hand inequality due to (2.14). To obtain (2.8) and (2.9) with | \A

instead of \\m\\A, use the invariance of the left-hand sides of these equations
under pull-back by a conformal diffeomorphism; specificallyy~ι: R4 -> S4\s.
When pulled back to R4 via y~ι

9 (2.8) and (2.9) with | 1̂  become self-evident
using (2.14).

3. The gradient flow for g) Wl

As in §2, let M be a compact, oriented, 4-dimensional Riemannian manifold.
Let P -> M be a principal G-bundle with k{P) > 0, and suppose that 2)1 (P) is
nonempty. It is important to establish the circumstances under which there
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exists ε > 0 such that 93 ε = 2ί "1([0, ε)) is a nice tubular neighborhood of 3JI.

For this purpose, define for A E E the unbounded operators

©Λ = }/2P_DA : L 2(Ad P Θ Γ*) -> L 2(Ad P ® P_Λ 2 T*)9

®* /2£>* L 2(Ad /> ® P_Λ2T*) -* L 2(Ad P 0 Γ*).

These are formal ZΛadjoints of each other. The formally positive, self-adjoint

operator 2) ̂ 5 on L2(Ad P Θ P_Λ 2 Γ*) is discussed in [31]. For c = [A] e

93/G, letμ(c) = inf s p e c t r u m ^ ® * ) -

Proposition 3.1. Gwe T*S4 its standard metric, and let P ^> S4 be a prin-

cipal G-bundle with k(P) > 0. Then there exists ε > 0 and a strong deformation

retract of Bε onto 2)ΐ. More generally, let P -> M be a principal G-bundle with

&(P) > 0, Wl(P)Φ 0 and be such that there exists μ, δ > 0 with the property

that μ(c) ^ μ for all c e 93 δ(P)/G. ΓΛe/? rΛere ejcwί5 ε > 0 and a strong,

deformation retract of^8ε(P) onto Tt(P).

Proposition 3.1 is proved with the aid of the gradient flow for the functional

31 on 93; its construction and the proof of the proposition are the subjects of

this section.

The gradient flow for 31 is obtained by integrating a smooth vector field on

93 € = 3ί"1([0, ε)). Formally, this vector field is obtained by composing the

vector bundle map Π: 93 -> Γ93 with the section a: 93ε -> 93 defined as

follows: As a ©-equivariant map from (£ε = 3t "1([0, ε)) Π © to L3

x(Ad P ® Γ*),

(3.2) a((h9 A)) = a(A) = -y[2®*(®A®*ylP_FA.

The retract of 93 e onto Wl is obtained from the flow Ψ: [0, oo) X 93 ε -^ 93 ε

whose defining equation is

(3.3) ^ = Π fl and Ϋ(O, ft) = b.

This flow satisfies

(3.4) %(Ψ(t,b)) = %(b)e-2ΐ.

The retraction Φ: [0,1] X 93 ε -> 93 ε is formally given by

One obtains Proposition 3.1 by proving that this map Φ is continuous. Four

parts comprise this task: (1) Establish the existence of ε > 0 and the existence

of the smooth section a: 93ε -> 93 of (3.2). (2) Integrate the vector field Π a:

93 ε -> Γ93ε to obtain the flow Ψ for small time. (3) For fixed b e 93 ε, establish

the existence for all time of the curve t -> Ψ(t, b) and establish that as / -> oo,

Ψ(t, b) converges strongly to Ψ(oo, b) e W. (4) Establish that the set of maps

•); ί e [0, oo]} defines a m a p t e C°([0, oo] X 93ε; » e ) .
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The first part above is obtained with

Proposition 3.2. Give T*S4 its standard metric, and let P -> S4 be a prin-

cipal G-bundle with k(P) > 0, or let M, and P -* M, be as specified by

Proposition 3.1. Then there exists ε > 0 such that (1) for all A e SJ.e = β 3 Π

%-\[0, ε)), ίΛe m ^ Φ,,®*: L3

2(Ad P <8> P_ Λ2 Γ*) -> L3(Ad P ® P_ Λ2 Γ*) w

ύr« isomorphism. (2) /« /isc/, /Λere exwto λ > 0 swcΛ rtύtf /br eαcΛ (.4, w) G 6 ^

(3.5) Il®>ll2>

(3) The map (A, u) -* Φ * ^ ® * ) " 1 * / /w/w Sx3., X L](Ad P ® P_Λ2T*) to

L\(Ad P ® T*) is smooth.

Proof of Proposition 3.2. If M is a compact, oriented, Riemannian 4-mani-

fold and P -> M is a principal G-bundle, then the map ( ^ w ) - * ® ^ ® ^ from

g? X L\(Aά P ® P Λ 2 71*) ^ L^(Ad P ® P_Λ 2 T*) is smooth; while for fixed

Λ e ©J, the operator ®^®^ on L2(Ad P <8> P_Λ 2 Γ*) is unbounded, self-ad-

joint with discrete spectrum, and as a bounded, linear map from L 2 to LQ,

® Λ ® * is Fredholm. See §3 of [31]. The Fredholm alternative implies that if for

fixed A, inf spectrumί®^®^) > 0, then ®^®* is an isomorphism between L\

and LQ. If there exists δ > 0 such that for all A e g j . δ , the map ®^®* is an

isomorphism from L\ to LQ, then according to §3 of [31], the map (A, u) -->

® * ( ® ^ ® * ) " l w f r o m ®i;β x ^2 t 0 ^i(Ad P Θ Γ*) is smooth. Thus, statements

(1) and (3) of Proposition 3.2 follow from statement (2). Statement (2) of

Proposition 3.2 is proved with the Weitzenbόch formula for ®^®* [29]: When

A e 6X

3 and u e L^Ad P ® P_Λ 2 Γ*), then

(3.6) ® ^ ® > = vίV^n + * » ( « ) + { P . ^ , u).

Here, V* is the formal ZΛadjoint of v^; {P_FA,u} has components

{P_FA, u}1 = - ]/2([P_FA

2, u3] - [P_FA

3, u2]) , etc. with respect to a local,

orthonormal frame for P_Λ 2 Γ*; and SR e Γ(End P_Λ 2 71*) is a linear combi-

nation of the scalar and anti-self-dual Weyl curvtures of the metric on T*.

When there exists /x, 8 > 0 such that | | ® > | | 2 > μ\\u\\j for all (A, u) e S j ^ X

L2(Ad P Θ P_Λ 2 Γ*), then one obtains (3.5) by first contracting both sides of

(3.6) with w, integrating over M and applying Holder's inequality to obtain

Now, by assumption, | | ® > | | ^ > μ\\u\\l And, by (2.13) and the L\(M) -+

L4(M) Sobolev embedding, || VAu\\\ + \\u\\\ > f||w||^ with f > 0 independent
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of A G @j*.ε. Thus, one obtains from a rearrangement of the preceding equa-
tion that

\\^λui>z(l-z'\\P.Fλ\\2)(\\vAu\\l+\\u£j.
Here, z, z' depend only on μ and the metric on T*. This final equation implies
the existence of the required ε £ (0, δ] and λ > 0.

When M = S4 with its standard metric, statement (2) of Proposition 3.2 is
obtained as follows: The endomorphism 9ΐ is here multiplication by the
constant, positive scalar curvature, R. In this case, contraction of both sides of
(3.6) with a yields

and the argument now proceeds essentially as before.
Proposition 3.2 insures that (3.2) is defining a smooth map from 6 to

L3

x(Ad P <8> 71*), cf. §3 of [31]. This map is ©-equivariant so (3.2) defines the
smooth section a: 93 ε -> 93.

The small time existence of the flow Ψ is a standard construction (cf. [1,
Theorem 4.1.13]). Indeed, for each ft = [Λ, A] e 93ε, there exists t(b) > 0 and
a unique, smooth curve Ψ(ί, b): [0, t(b)) -> 93ε which satisfies (3.3). In addi-
tion, for t < /(ft), Ψ defines a smooth map from [0, t) X (a neighborhood of b
in93ε} into93ε.

The utility of the flow Ψ stems from the fact that if one lifts Φ(t, b) to
(Λ, A{t)) e 6 ε = a-^IO, e)) Π ©, then for f e [0,

(3.7) jtP_FA(t)=-P_FA(ί) a.e.

As a consequence of (3.7),

for/? e (0,3] and / e [0,
For step 3 in the proof of Proposition 3.1, the existence of the flow Ψ(/, ft)

for t EL [0, oo) must be established. It is convenient to do this upstairs,
©-equivariantly on β ε . Let U c 93 ε be an open neighborhood, and suppose
that Ψ e C°([0, T) X U; 93ε) exists for some T > 0. Let s/cz 6 ε be the image
of II by a local section of the fibration S ε -> 93 ε. The flow Ψ lifts to a flow
Λ e C°([0, T) X J^; ©ε) and there is no loss of generality to suppose that with
c = (h,A)es/9

(3.9) Λ(r, c) = (A, i4 + α(ί, c)) = (Λ, ^ ( 0 ) Ξ c(/),

where α e C°([0, T) X si, L3

x(Ad P Θ T*)) satisfies

(3.10) ^ = β ( c ( 0 ) . α(0,c) = 0.
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Proposition 3.1 follows from the two lemmas below.

Lemma 3.3. For fixed c G J / , a{-,c) converges strongly in L\(Ad P <8> Γ*)

as t -> T e (0, oo].

Lemma 3.4. The convergence tf/α( , c) described in Lemma 3.3 is uniform on

closedL\ balls ins/for τ e (0, oo].

Proof of Proposition 3.1, given Lemmas 3.3 and 3.4. The uniform, strong

convergence of α( , c) implies that Λ extends to C°([0, r] X J / ; ©ε). If T < oo,

then an open/closed argument for the half-line [0, oo) allows one to conclude

that Λ e C°([0, oo) X J / ; ©e). Since T = oo is admissible in Lemmas 3.3 and

3.4, Λ e C ° ( [ 0 , o o ] X j / ; I £ ) . As Λ is ©-equivariant by construction, the

existence of Ψ e C°([0, oo) X U; @ε) is obtained. Because the small time

evolution for the ODE in (3.3) is unique, the flows from two open sets

VLl9 U 2 c «Be agree on Ux Π U 2 . Thus, the solution, Ψ, (3.3), is in C°([0, oo] X

23 ε; 93 ε) as required.

The proofs of Lemmas 3.3 and 3.4 require a priori estimates on the vector

field a(c) e 7 ^ of (3.2). These estimates are provided by Lemmas 3.5-3.7

below; the estimates are obtained from the identity below, (3.12).

Because the vector field a(c) and the flow α(/, c) factor through the

projection © -> ©J, the /^-dependence will be suppressed by writing a = a(A)

and α = α(ί, A) ίor A e 6^ ;e.

Define the elliptic, first-order operator

(3.11) 8A = ( ® y 4 , Z ) * ) : L 3

1 ( A d P ^ V) -> L 3(Ad /> Θ(P_Λ 2 Γ* Θ R)).

The vector field a(Λ) on ©i;<? satisfies

δ ^ ( ^ ) = Q(A) s J2(-P_FΛ,2*{P-FA A u(A) - u(A) A P_FA))9

where

(3.12) 1

Let r0 > 0 be the injectivity radius of M.

Lemma 3.5. ΓΛere exwto a constant z < oo wλ/cλ w independent of A

Lemma 3.6. There exist constants p e (0, r 0], z < oo which are independent

of A G (£3

; ε andr e (0, p) swcA

- sup
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Lemma 3.7. There exist constants K > 0, z < oo which are independent of

A G (£J.e and r G (0, p) swcΛ /Λύtf if

(3.13) /
^ c , y)<2r

then

f \vAa(A)\\y) dvol(y)
•Mister, y)<r

Proof of Lemma 3.3 α«d 3.4, assuming Lemmas 3.5-3.7. In the sequel,

z G (0, oo) will always denote a constant which is independent of connections

in ®i ; c. Its actual value may vary from equation to equation.

By assumption, the curve <x(t, A) for A G (£j*;ε is defined for / G [0, T) for

some T G (0, oo]. Along the curve A(t\ let έi(ί) denote a{A(t)) and let / ^ ( 0

denote FA(^t). Observe that L2 convergence of a(t, A) to α(τ, A) is immediate

from Lemma 3.6 and (3.8) as

\\a(t, A) - a(t>, A)\\2 < f\\a(s)\\2ds < z\\P_FΛ\\2(\

Observe that the convergence above is uniform in a neighborhood of A in 6^.ε.

To obtain the L 3 convergence of a(t\ A) one requires a bump function: For

r G (0, r0) and x G M, let 0 < # * G C°°(M) be a bump function with (1)

jβ^jO = 1 if dist(jc, y) < r\ (2) βr

x(y) = 0 if dist(x, >>) > 3/2r; and (3)

|</#(JO| < Ar-\

Lemma 3.8. There exists a constant z < oo which is independent of A G 6 3

; ε ,

r G (0, p), x G M, T G [0, oo) αra/ ί, ί' G [0, T) .SWCΛ ίΛαr

Proof of Lemma 3.8. For notational convenience, write β = ySr

x. Using the

Bianchi identity (DAFA = 0 for all A G (S3), one obtains the identity

(3.14) | | | ^ + J F , ( 0 | | 2 < - 4 ( ^ Λ α ( ί ) , ^ + ^ ( 0 > 2

+ 4<</j8Λα(ί),i8P_F/((0>2

-2(β2P_FA(t),P_FA(t))r

Now, use the fact that

(3.15) \\dβ Λ a(t)f2 *ζ zV2r(A(t))
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with Lemma 3.6 and (3.8) and (3.14). The result is

(3.16)

The lemma follows by integration of (3.16).
The import of Lemma 3.8 is in its implication, namely
Lemma 3.9. Let K > 0 be as in Lemma 3.6 and let A' G gj*;ε. There exists a

neighborhood ft c gj.c of A' and a number r(ft) e (0, p) which is independent
of[t, r) such that for all A G ft

sup

Proof of Lemma 3.9. If T < oo, then the lemma is immediate from Lemma
3.8. If T = oo, there exists t' e [0, oo) for which

(3.17) e-'^P_FA]\2(l+\\P_FA,\\3)
4<\κ.

The set of ,4 G 6^;ε which satisfy (3.17) is open; this equation is satisfied on
a neighborhood 9ΐ' B 4̂' in Si ; ε. On a possibly smaller neighborhood, 31 c 9ΐr

containing^', one can choose r = r(9ϊ) so that for all A e 9ΐ,

(3.18) N ^

The lemma now follows from (3.18) and Lemma 3.8.
Observe that Lemma 3.9 gives the uniform L\ convergence of α(/, A):
Lemma 3.10. Let A' e @ ;̂ε. There exists a neighborhood 31 c g J ;e 6>/

α constant c(3t) < oo vvΛ/cΛ w independent of Ί and t, tf G [0, T) 5WCΛ that for all

A eft,

Proof of Lemma 3.10. Let 9Ϊ c 6^;e be the neighborhood of Λ from Lemma
3.9. Observe first that α(r, A) converges strongly in L4 as t -> T, uniformly on
ft. Indeed,

(3.19) ||α(ί, ^ ) - «(/

Now, due to Lemmas 3.7, 3.9 and (3.8),

(3.20) \\vAωa(A(s))\\2+\\a(A(s))\\2

if 4̂ e f t . From (3.20) and Proposition 2.1, one can conclude that if A
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then

(3.21) MA(s))\\4<

From (3.19) and (3.21) it follows that

(3.22) ||α(/, A) - a(t', A)\\4

MA e 9?.
Next, consider that when A e 9ΐ,

| |vA(a(t, A) - a(t', A))\\2 < ί'ds\\vAa(A(s))\\2,

(3.23) ''

Lemma 3.10 follows now from (3.20)-(3.23).
To complete the proofs of Lemmas 3.3 and 3.4, one must exaime the

ZΛconvergence of VAa{t, A). The result is stated in the next lemma.
Lemma 3.11. Let A' e (£ J.e. There exists a neighborhood 9Ϊ c 6^.e of A' and

a constant c(9ΐ) which is independent of τ and of t, t' e [0, T) such that for all

The proof of Lemma 3.11 requires
Lemma 3.12. Let A' e (£j*;ε. There exists a neighborhood SSI c 6j*;ε ofΆ' and

a constant, | (9ΐ) > 0, such that for every v e L\(Ad P <8> T*) and for all

Proof of Lemma 3.12. The operator 8A for A e 9Ϊ of (3.11) is uniformly
elliptic, first order; the lemma is essentially Theorem 6.26 of [19].

Proof of Lemma 3.11. To begin, observe that for A e 9Ϊ, if/(?) denotes

<\\vAa(A(t))\\3

)!,+\\a(A(t))\\3)
(3.24)

Here, the second line utilizes Lemma 3.12. The quantity ||δ^(r)α(^4(r))||3 is
bounded using (3.8), (3.12) and Lemma 3.5. In (3.24), ||tf(Λ(0)||3 is bounded
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using (3.20). As for the term q(t) = || \a(t, A)\ \a(A(ΐ))\ | |3 in (3.24), one uses
first Holder's inequality

q(t) φ(A(t))\\M*>

and then (2.13) and a Sobolev inequality (L{(M) ^ LU{M)) to deduce that

(3.25) q(t) < z\\a(A(t))l{\\vAa(t, A) 3).

With (3.22) and (3.25), one obtains from (3.24) the inequality

(3.26)
dt

Here, c(9ϊ) is constant which is independent of t. Integrating the inequality in
(3.26) yields

(3.27) In - έΓ f o r / , / ' G [0, T ) .

Equation (3.27) implies that/(ί) converges to/(τ) as / -> T. NOW, replace/(/)
in (3.24) by/(O = \\VA(a(t9 A) - a(t\ A))\\3 for ί, f e [0, r). Since df/dt =
J//Λ, one obtains from (3.26) and (3.27) the bound \df/dt\ < c(9ΐ)e' r, which
when integrated, gives

as required.
Equation 3.22 and Lemma 3.11 complete the proof of Lemmas 3.3 and 3.4.
Now, turn to the proofs of Lemmas 3.5-3.7.
Proof of Lemma 3.5. Due to (3.5), the norm of u(A) = (ΐ)AΊ)^yιP_F

satisfies

(3.28) WvAl + bWUλ-ψ-FAl

From (3.6), one obtains for |W|2(JC) the equation

(3.29) - Δ ^ L

where -Δ is the positive Laplacian on C°°(M). Let x G M be given, and let
{j"}y=i by Gaussian coordinates centered at x. Let β = βr

x. Multiply both
sides of (3.29) by β\y\~2 and integrate over the set where \y\ < 2r0. Here, | |
denotes the Euclidean distance. Remember that (4772)"1|x - y\~2 is the Green's
function for -ΔR4, and that -Δ = -ΔR4 + y (lower order terms) for | y\ - 0
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(near the point x). One obtains from (3.29) the inequality

H 2 (x)<z (/ |« | 2 φ + / J

l Vl<2r0

 J.V<2r0

As \y\3 G Lι({y G R4: \y\ < 2r0}), an application of Holder's inequality to the

second term above is justified, and this yields with (3.28),

\yY

\u\\x) + \\P-FAh[l ^
\ Ί> |<2ro|.FΓ

2/3 \

As |>Ί 1 5 / 4 e Lι{{y e R4: \y\ < 2r0}), one obtains from this last equation,

\ 2/151

\u\\x)^z-l\\P_FΛ\\\HP-FAU '
,15

and then

(3.30) \u\\x) < 2

The choice of x was an arbitrary one, so (3.30) yields

(3.3i) H I 2 . < z -{||p FA\\1 + ||/>_Fj|3 |μ||Γ||u||2oO

2 / 1 5

Now, use (2.7), the Sobolev inequality and (3.28) to obtain from (3.31) the final

bound

The lemma follows from this last bound.

Proof of Lemma 3.6. Return to (3.29), and multiply both sides by β\y\~2

where, now, β = β? with r G (0, r0] and x G M. NOW integrate over the set

where |>>| < 2r. Use the fact that

f l-β\y\-2Δ\u\2) - 4π2 |«|2(0)

With the above inequality, (3.29) yields

z r ~4
\u\2.

\<2r

(3.32)
Ί.vi<r \y\λ

\u\\P.FA\

y\<2r \y\2

Lemma 3.6 follows immediately from Lemma 3.5, (3.32), and the fact that
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Proof of Lemma 3.7. The proof requires the following result (compare

Lemma 3.12).

Lemma 3.13. There exists z, K > 0 and p e (0, A*0) such that for all /I e g j ,

r e (0, p) and x e M the following is true: Let B = {y e M: dist(*, j;) ^ r } .
< κ> r ^ e w ^^O 7 <° G L\(Ad P ® Γ*) w/ίλ compact support in B obeys

Proof of Lemma 3.13. This follows easily from the Weitzenbόch formula

for δA (cf. [29], [14]): Indeed, as M has bounded Riemannian curvature, the

Weitzenboch formula with Holder's inequality gives

(3.33) IIMI2 >I|V^«||2 - z{\\P+FA\\2 + > 2 )Ml4.

Here, z is a numerical constant. Now, if ω has compact support in B, then

(3.34) \\o>\\U 4J\«\\\U zΛvMl
The first line above is a Sobolev inequality, while line 2 uses (2.7). Here, zλ is a

constant which only depends on the metric of M. The lemma is now a

consequence of (3.33) and (3.34).

In the present context, use Lemma 3.13 with ω = βa, with β = βr

x and with

r such that (3.13) is obeyed. Then

In (3.35), z is a constant which is independent of A. The derivation of the

second line uses (3.12) and (3.15). Lemma 3.7 follows from (3.35) with Lemmas

3.5 and 3.6.

4. Ljusternik-Snirelman theory

Let M be a compact, oriented Riemannian 4-manifold, and let P -> M be a

principal G-bundle for which Wl(P) Φ 0 . To study the topology of Wl via the

inclusion Tt °-> 33, consider for a given 9Ϊ c Wl and / > 0, a path component

Θ c C 0 ^ / ) 7 , S '" 1 ); (93, 9ΐ)). Let X be the obvious generalization of the space

defined by (1.6). Certain sequences in X are more useful than others; prior to

defining these good sequences, some notation is required. For a sequence

{φf , φ,} c X, denote by 21,, vSί,, φ f and || | | ( / ) the functionals 9l(Λ + (•)),

V « 6 ( ), § f t ( , ) and II \\b on »,. ^ » f t when ft = [A, Λ] = φz. For such a

sequence in X, or just for a sequence {φ,} in 93 or in 93/G, denote by || V 9l, |U

and λ7, the numbers || V 9ί b\\* and λ^ when b = φ,.
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Definition 4.1. A sequence of points {[Λ,]} e 33/G is a good sequence if

1 is bounded and if

For given 9? c 3W, / > 0, and path component Θ c C°((Dι, Sι~ι)\ (33, 9ΐ)), a

sequence (φ,, φ, } c X is good if (1) 1 ^ , ^ 3 1 ( ^ ) ^ 3 1 ( 0 ) ; (2)

l i m ^ J | v 3 y * - 0; and (3) l i m ^ λ ^ 1 > 0.

The existence of good sequences in X is provided by Proposition 4.2, below.

(This proposition has antecedents in [25].) The proof of Proposition 4.2 is given

in §5.

Proposition 4.2. For 9ΐ c Wl and I > 0, let Θ c CQ{{Dι, Sι~ι)\ (33, SR)) 6e

a path component. There exist good sequences in X αs defined by Definition 4.1.

Presented with a good sequence (φ,, φ,} c X, the convergence of {φ,} c 33

is analyzed following Sedlacek [24]. The following notion of convergence is

relevant.

Definition 4.3. Let P9 P' -> M be principal G-bundles. Let [A] e SQ(P')/G

and let { [ ^ J j ^ i e » ( P ) / G . Let Ω = {xk}
n

k=ι c M. The sequence {[Λ,]} is

said to converge weakly (strongly) in L\.loc onN = M \ Ω to [A] if there exists

a sequence {gy} e L^isoίP' ; i 5 ) !^) such that in any domain U c TV with

compact closure in AT, the sequence {g*At — A) c L^(Ad P ' <8> Γ*!^) con-

verges weakly (strongly) to zero in the Z^-topology. A sequence {At} {

or a sequence {bέ = [Af , >4f-]} e 93(P) is said to converge to [A]

weakly (strongly) in L^;loc on Λ̂  if {[Λ,]} converges appropriately to [A],

The convergence of a good sequence is discussed in Proposition 4.4, below.

Proposition 4.4 is in many respects analogous to the existence theorems for

harmonic maps from S 2 that are derived by Sacks and Uhlenbeck [23], and Siu

and Yau [27].

In the statement of Proposition 4.4, the conformal group, C, was defined in

§2.

Proposition 4.4. Let M be a compact, oriented, Riemannian 4-manifold. Let

P -> M be a principal G-bundle with degree k > 0. Let {[A(]} c 93/G be a good

sequence for which l i m ^ ^ (A;) -» tyWl^. There exists a subsequence of {[Aj]}9

also denoted {[Λ,-]}, and a finite set of pairs {(Pα, Aa))l=0, where Po -> M is a

principal G-bundle and Ao is a smooth connection on Po and a solution to the

Yang-Mills equations on M, while for a > 0, each Pa -> S4 is a principal

G-bundle and Aa is a smooth connection on Pa which is a solution to the

Yang-Mills equations on S4 for the standard metric on Γ*5 4 . These data have the

following properties:

(1) {[Aj]} converges strongly in L\.λoc ofM\ { finite set} to [Ao].
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(2) For a > 0, Aa is not flat.

(4)Σ"a=0k(Pa) = k.

(5) Suppose that λ > 0, and {la}a=ι e (0,1, ) exist such that for each

a e (0, ,«), λ ^ j < -λ. Letf / = Σ«=o'« 7%e« for all i sufficiently large,

λ ' , < - * - λ .

Though not relevant in this article, it is a fact that if M = S 4 with its

standard metric, then in addition to assertions (l)-(5), there exist sequences

{'Πα=o c c s u c h t h a t f o r e a c h α> {'ΓI^/l} converges strongly to [Aa] in Lj of

5 4 \ {finite set}.

Proof of assertions (2), (3) of Theorem 1.5, given Propositions 4.2, 4.4.

According to Proposition 4.2, a good sequence {φz , ψ j c X can be found. Let

{(Pa, Aa)}Z=0 be the limiting pairs of principal G-bundle and Yang-Mills

solution as provides by Proposition 4.4. If each Aa were either self-dual or

anti-self-dual, then for each a one would have $)Wl(Aa) = \ka\. In such case,

statements (3) and (4) of Proposition 4.4 would require that 21 (Θ)

= iΣ«=o(l^αl ~~ ̂ α) G Z This contradicts the given assumptions of Theorem

1.5 so at least one of the Aa must be nonminimal. Statement (5), above, insures

that γ ^ 1 ^ 0; for if γ ^ 1 < -28 < 0, then for all * large enough, γ/ < -δ, and

this contradicts the fact that {[̂ 4/]} is a good sequence.

The proof of Proposition 4.4 exploits the compactness results in Proposition

4.5, below.

Proposition 4.5. Let P -> M be a principal G-bundle of degree k > 0. Let

{{A^} e 33(P)/G be a good sequence. There exists (1) a bundle Pf -» M and a

smooth critical point, A,of%onP'\{2) a finite set Ω = (x7 }f=1 c M; and (3) a

subsequence of {{A^} which converges strongly in L\.λoc on M \ Ω to [A]. The set

Ω is characterized as follows: There exists a constant K > 0 which is universal for

M such that if for an open set U c M,

(4.1) l i m - i n f | | ^ | | </c,
i-*oo ' '

then U Π Ω = 0 .

S. Sedlacek proves a similar result in [24] with a weaker notion of conver-

gence that "strongly in Lf.loc". He uses K. Uhlenbeck's weakcompactness

theorems in [32] and her removable singularity theorem in [33]. Sedlacek's

proof can be appropriated almost word for word to prove Proposition 4.5,

once a technical extension of Theorem 3.6 of K. Uhlenbeck in [32] is estab-

lished. The proof of Proposition 4.5 is presented in the Appendix.

Proof of Proposition 4.4. The proposition has analogies with Proposition 2

of Siu and Yau [27] concerning energy-minimizing harmonic maps from S2.

The proof here is modelled on Siu and Yau's proof of their Proposition 2.
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It is proved in [29], an essentially proved in [13] (see also §3), that any
nontrivial solution to the Yang-Mills equations with the standard metric on S4

has $)Wl > t) > 0 for some fixed t). Let K be the constant in (4.1). Let / be the
smallest integer for which 2)2)?^ < \l min(t), κ2). Proposition 4.4 is proved
by induction on /. The case / = 1 is true, see Proposition 4.5. It is necessary to
prove the case / = n + 1 under the assumption that the case / = n is true.

Let {[ΛJ} e *>8(P)/G be the given sequence, and let (Ω, Pθ9 A = Ao) be the
data generated by the convergence of {[At]} as described in Proposition 4.5.
Here, Ω c M is a finite set specified by (4.1), Po -» M is a principal G-bundle,
and A is a smooth connection on Po which satisfies the Yang-Mills equations
on M. Denote by {[A^} the subsequence of the original sequence which
converges strongly in Lj ; l o c of M\ Ω to [A]. Proposition 4.5 gives Proposition
4.4 when Ω = 0 so assume Ω Φ 0.

Let r0 be the injectivity radius of M, and let r ^ (0, r0) be such that the balls
Br(x) of radius r about x e Ω are disjoint. Let

tr( Λ ): Sym^AdPΘ Λ 2 Γ * ) ^ R

denote the induced Killing form from the Killing form on Q .
In order to investigate the behavior of {[At]} near points x e Ω, define

(4.2)
€ι(x) = lim c(G) f (tτ(Fi Λ /;.) - tr(F A F))9

i->cc JBJx)

where Ft, F = FΛ, FΛ, respectively, and c(G) is group theoretic constant which
is defined so that k{Pf) is given via the Chern-Weil formula [4]:

(4.3) c(G)f t r ( F Λ F ) = /c(P')

Choose a subsequence of {[A^] for which the limits in (4.4) are well defined,

and rename this subsequence {[ΛJ}. Due to (4.1) and Proposition 4.5, @(x)

> ^κ2 if x e Ω. In addition,

Lemma 4.6. Le/ 3)3^^ β«rf k be as specified by Proposition A A. The

following sum rules are obeyed:
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Proof of Lemma 4.6. To obtain the first sum rule, use the following facts:

(1) gjaRί^.) -> ϋ^loo (2) τ h e Li;ioc s t r o n § convergence of {[At]} to [A] on

M\ Ω implies that for each ε > 0 and p G (0, r) there exists /(ε, p) < oo such

that for all / > z'(ε, p).

(4.4)

(3) Since the limit, A, is smooth, for any p e (0, r), and for any x e Λf,

(4.5) / |F | 2 ~

The second sum rule is obtained similarly with (4.3).
Choose JC e Ω. It is necessary to isolate that part of {[A(]} which is

responsible for @(x), £l(x). This is accomplished in part by constructing two
new sequences from {[ΛJ}.

The construction begins by trivializing Po over B = Br{x) so that with
respect to the flat, product connection θ on P0\B9A = θ + a where a e T(T*Br

X Q) satisfies

(4.6) fl(jc) = 0, I^JΛ = 0,

where i^ e Γ(Γ*^r) is tangent to the radial geodesies through x. This is the
polar gauge for A [33].

Due to the strong L\.Xoc convergence of {[Aj]} to [̂ 4] in B \ JC, there exists a
sequence {g;} c L2(iso(i? X G, P ) ! ^ ^ ) with the following property: Given
λ e (0, r), there exists z(λ) < oo such that for all / > /(λ), the g-valued
1-forms a{ = g*At — A satisfy

(4.7) /

For n > 1, let λπ = 2""-^. Let j8n( ) = β(λ'n
ι\(-) ~ x\) e C0°°(Λ) be the

usual bump function (β(t)^O satisfies β = 1 iϊ t < 1 and β = 0 if ί > 3/2).
For simplicity, set Bn = Bp(x) when p = λn. For each /ι > 1, define in = i(λn)
as above by (4.7), and let In = [iΛ, / π + 1 ) . It is convenient to take as {[Aj]} the
subsequence with l e / 1 (

Choose Gaussian coordinates, y\ BfQ(x) -» R4, centered at x. Identify R4

with S4\s with the stereographic projection from the south pole, and identify
B withy(B) a S4\s. This identifies x with the north pole.

For each z, define principal G-bundles P} -> S4 and P, 2 -> M as follows.
Define P} = P over ^ and P;1 - ( 5 4 \ Λ) X G over S 4 \ π, where g, identifies
(»S4 \ n) X G with P over (B \ x). For each /, define Pf

 2 = P over M \ JC and
P,.2 = B X G where gy identifies £ X G with P over 5 \ x.
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For each a = (1,2), and for each /, define connections A" on P" as follows:
When i e /„, set

(4 8) i 4 i =

*' ™*M\BΛ_X,(4 9) A*-I
K • > Λ i \θ+{\-βn){aι-a)

The relevant properties of {(P/\ Af)}, a = 1,2, are listed in the next two
lemmas.

Lemma 4.7. ΓΛere exists i < oo swcft ίλίtf /or α// / > /, each P} (P?) is
isomorphic to a fixed, principal G-bundle P1 -* S4 (P2 -> M). Γ/zê e two fixed
bundles satisfy k{Pι) = Q(x) and k(P2) = k - £ι(x).

Rename as {[A^]} the subsequence for which / = 1, and consider, for each α,
{[A?]} c »(P«)/G.

Lemma 4.8. ΓΛe sequence {[A]]} c 93 ( P 1 ) / ^ w α good sequence for S4 with
its standard metric and hmi_+o0$)3Jl(A))= <&(x). The sequence {[A2]} c
%(P2)/G is a good sequence and Hm^^tyWliA2) = tyWl^ - @(JC).

Proo/ o/ Lemma 4.7. The isomoφhism class of P/* is specified by k(P*)
[29], which can be computed with 4? using (4.3). Using (4.5) and (4.7) with the
fact that a e Γ(Γ*^ X g), one obtains for / e 7n that

^(i^1) = c(G) ί [tr(f; Λ Ft) - tr(F Λ F)] + O ( λ J .

As A:(P̂ X) must be an integer, (4.4) implies that for all / sufficiently large,
k(P}) = Q(Λ ). The argument proving that &(PZ

2) = fc - Q(x) for all / suffi-
ciently large is similar.

Proof of Lemma 4.8. As y: BrQ(x) -> R4 are Gaussian coordinates, the
pullback metric y*dslΛλcMtan a n ^ Λe given metric on Γ*M differ in C° near
/? G B by O(|j>(/>)|2) and they differ in C1 near^ by O(\y(p)\) (cf. [31], [14]).
Using this fact, (4.5), (4.7) and the fact that a is smooth, one obtains for / e In

that

Here, the norm on the left-hand side above is the S^-norm and those on the
right-hand side are the norms on M. This calculation is similar to the
calculations in §§8, 9 or [14]. Thus, (4.2) implies that l i m , ^ ®3R(A)) =
A similar argument proves that l i m ^ ^ $)Wl(A2) = ^2)?^ - <5(x).
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It is necessary to establish that for each a = 1,2, the sequence {|| V9l?||* =
|| V2ίc||* with c = Af} has limit zero. Consider α = 1, as the other case is
similar. For / e In9 let v e L\(Ad P} Θ Γ*S4) have compact support in Bn.
Then v3ίj(^)= v9l, (ι?). Because of the C^closeness of y*dsζucMean to the
given metric on Bn, the following is true: Let | | ( 1 7) = | | c with c = A). There is
a constant, z < oo, which is independent of v as above such that

Therefore, for v as above, and i e /π,

(4.io) IvaK^l^llv

Consider i; e L](Ad i3;1 Θ T1*^4) with compact support in S4 \y(B). For such
υ, V9l?(ϋ) = 0. Finally, consider those i; with compact support in the annulus
5 2 r ( x ) \ 5 n + 1 . For these υ, (4.7) and (4.8) imply that

(4.H) |v2ί?(»)| <f-Hd oλ1/2,

where f is a constant which is independent of n and /. Again, one can ignore
the difference between the metric y*dsζucMean and the given metric to order λn

in Bn_v Equations (4.10), (4.11) imply that l i m , ^ || V9l)\\* -> 0.
Lemma 4.9. Suppose that λ > 0 and p, q G (0,1, ) exist such that for all

i sufficiently large, λfAι]9 λf^j < λ. Let I = p + q. Then given ε > 0, there exists
i0 such that for all i > ;'o, λ', ^ -λ.

Proof of Lemma 4.9. Fix z'o sufficiently large so that λ^, λp

Λ < -λ with
A = A* for a = 1,2 and all / > /0. The proof requires the following a priori
estimate.

Lemma 4.10. Given ε > 0, there exists M < oo α«d δ = δ ( λ ) > 0 w/ίA ίAe
following property. For all i G /Π > /0, /Aere exw/ /?- απί/ q-dimensional vector
spaces E} c L^(Ad P/ ® Γ*^4) α/irf£;2 c L^(Ad P* 0 Γ*) 5wcA

(1) Let A=A). Then for all v e £/, ^ ( ϋ , ϋ) < - λ ( l -

(2) Let A = 4?. ΓΛe« for all v e ^ 2 , φ ^ u , ϋ) < -λ(l - e)||ι;||^ and

11(1 " iSL-i)ϋ||4+4β < M\\v\\A.
The proof of Lemma 4.10 is given at the end of this section; assume for now

its validity.
Lemma 4.10 is used in the proof of Lemma 4.9 as follows: Fix / e In> i0.

Let v e E}, and write A = A). Observe that

(4.12) WβA* =\\βA2A ΦU(l + zM2\»n),

(4.13) $,(βnv,βnv) < (-λ + zM2λs

n)\\v\\2

A.
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Here, z < oo is independent of i and n. Both estimates follow from an
application of Holder's inequality. Similar estimates are valid for / e In> i0

and ΐoτ (I - βn_ι)υ when υ e Ef. These estimates imply the following: Given
ε > 0, there exists ix < oo such that for all / > ιl5 (1) the span of E} U Ef is
I = p + q dimensional ((4.12)). (2) For all v e Span(£/ U E?\ $i(v,υ)<
-λ(l - ε)||ι>||? (this is (4.13)). Therefore, λ',- < -λ(l - e)whenι > ix as claimed.

Now, to complete the proof of Proposition 4.4, it is necessary to observe that
if Ω contains 2 or more elements, or if $)Wl(A0)> \\), then the induction
hypothesis applied to the good sequences {[A?]} c 93(Pα)/G for a = 1,2,
together with Lemmas 4.7-4.9 establishes the proposition.

IfD3K(i4 0)<ii) and Ω = {*}, then one must analyze the good sequence
{[A]]} over S4 with its standard metric. Here, the conformal invariance of 2)2W
plays an explicit role; it is used to center the distribution on the sphere of the
curvature of each [A]].

For this purpose, fix stereographic coordinates y: S4\s -> R4. Let d4y
denote the pull-back by y of the Lebesque measure on R4. The convention in
what follows is that all norms which appear in integrals with d4y are those that
are induced from j>*£fc|uclidean on T*(S4 \ s).

A subgroup Γ c C which is isomorphic to R* X R4 is defined by its action
on the coordinate functions^ as follows: For t = (p, x) e R* x R4,

(4.14) t*y = p-ι(y-x).

For a bundle P -> S4, define a map z: (^(P)/G)\^3R-\0) -> B5 (the
unit 5-ball) by sending [̂ 4] to

This map is evidently continuous. The map z is used here with the following
lemma.

Lemma 4.11. For each [A] e »(/>) there exists t e T such that z(t*[A]) =
O e B5.

The proof of this lemma will be given momentarily, assume for now its
validity.

It is notationally convenient to let [At] = [A]]. Due to Proposition 2.7 and
Lemma 4.11, there is no loss of generality in assuming that z(At) = 0 for each
/. The convergence of the good sequence {[At]} is analyzed with Proposition
4.5: Let (Ω, P', A) be the data generated. Here, Ω c S4 is a finite set specified
by (4.1), Pr -> S4 is a principal G-bundle, and A is a connection on P' which
satisfies the Yang-Mills equations on S4. Denote by {[A^} the subsequence of
the original sequence which converges strongly in L\.Xoc of S4 \ Ω to [A].
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Proposition 4.4 is obtained from the induction step, Lemmas 4.7-4.9 and

Lemma 4.12. Give T*S4 its standard metric. Let {[A^]} be a good sequence

with lim^oo DSDϊί^ ) > 0, which converges strongly in L\.loc of S4\ti to [A'] as

described by Proposition 4.5. Assume that z{At) = 0. Then g)3W(Λ') > ΐ) > 0 or

Ω contains more than one point.

Proof of Lemma 4.7. Suppose the converse were true. By Proposition 4.5, Ω

can not be empty, so it must have one point, x. For 1 > p > 0, let Bp denote

the geodesic ball of radius p about x. According to Proposition 4.5, there exists

i(p) such that for all i > /(p), / β | i ^ . | > κ2, while fs*\B \FA\ < p. Under

these conditions, it is evident that for / > /(p), z{Ai) = x + O(p); here, S4 is

identified with dB5. Hence, a contradiction is obtained.

Proof of Lemma 4.11. Observe that for t e T defined by (4.14),

z(t*A)

( f U l * \pyl%:
yy + x\ + 1 \py + x\z 4-

Fix [A], and consider (4.16) as defining a map z(p, x ) : R * x R 4 - > B5. Be-

cause stereographic coordinates identify S4\s with R4, z defines a map from

R* X ( S 4 \ s ) -> 2?5. Three claims are made: First, z extends to a continuous

map from R* X S4 -> 2?5 with z( , 5) = 5 e 32?5. Second, z extends to a

continuous map from (0, 00] X S4 -» 2?5 with z(oo, •) = s e 3J95. Third, z

extends to a continuous map from [0, 00] X S4 -> B5 with z(0, •) = id54.

Together, these three claims imply that z - 1(0) Π R* X R4 Φ 0 because if it

were true that \z\ > 8 > 0, then z/|z|: [0, 00] X S 4 -» S4 would provide a

continuous homotopy of a degree 1 map, idS4, with the constant map. No such

homotopy exists.

The three claims are proved using the fact that \FA\(y) e L 2(R 4). Specifi-

cally, this implies that given δ > 0, there exist 0 < r ( δ ) < Λ ( δ ) < o o such that

for any x e R4,

(1) / d4y\FA\\y)<8,

(4.17)

(2) / d4y\FA\\y)<8.

To establish the first claim, pick ε > 0. If |Λ:| > ε"1 4- pR(ε), then \py + x\

< ε~ι only if y > R{ε). By splitting the integrand in (4.16) into domains

\y\ (,) R(ε) and using (4.17.2), one observes that for \x\ > ε"1 + ρR(ε\

(4.18) z{p, x) == (0,0,0,0,1) + O{ε) e B5.

Hence, z extends continuously to R* X S4.
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To establish the second claim, pick ε > 0 and observe that if p is sufficiently

large so that p ' V 1 < r(ε), then \py + JC| < ε"1 only if \y + p~ιx\ < r(ε). By

splitting the integrand in (4.16) into domains \y\(, ) r (ε) and using (4.17.1),

one observes that for p > ε~V(ε)~\ z(p, x) is again given by (4.18) where the

0(ε) is independent of x. Hence, z extends as required to (0, oo] X S4.

To establish the third claim, pick ε > 0 and observe that if p < εR~ι(ε), then

\py + x - x\ > ε only if \y\ > R(ε). By splitting the integrand in (4.16) again

into domains \y\( ,) R(ε) one observes that if p < εR~ι(ε), then uniformly on

S4, z(p, •) = id54 + 0(ε), and z extends as required to [0, oo] X S4.

The proof of Proposition 4.4 is finally completed with the promised proof of

Lemma 4.10:

Proof of Lemma 4.10. Consider A = A] for i e In > /0; the proof for A) is

similar. The quadratic form φA(-,' ) on L\ is bounded, but not compact.

Nonetheless, because there exists a ^-dimensional vector space in L\ on which

ΦΛ(">" ) < ~λ < 0, a direct minimization argument obtains eigenvectors

{Όa}qa=\ °f ΦΛ(*>" ) w ^ h Γ^spect to the metric ( ,-)A\ and each va has

eigenvalue -λ α < -λ. The eigenvalue equation for v = va is

(4.19) λ β ( i ; , u)Λ + (P+DAυ, P+DAu)2 + (P+FA9[υ9 u])2 = 0

for all u e L\{Kά P ® T*). As λ α > λ, this equation is uniformly elliptic for υ

and standard estimates [19, Chapter 6] imply that v e L^(Ad P <8> Γ*). For

p < r/2, let )8p denote the usual cut-off function. With δ > 0, consider w =

j8p

2(M2 + l)δv. Ifδ < min(i, 2λ), then one obtains, with/ = (1 + | ί ; | 2 ) ( 1 + δ ) / 2 ,

(4.20)
(1 + δ ) 2

Here, z < oo is independent of A\ Proposition 2.1 is used in this derivation. As

IL/II2 ^ ZIML> o n e obtains from (4.20) an inequality for/p = βpf:

Here, z < 00 is still independent of A. As the sequence {Aj} converges

strongly in L\ of Br to Ao, there exists iλ < 00 and p > 0 such that for all

i > iv and A = A),

\KP+F A\\2
<

For such i, /p is uniformly bounded in L 2 and hence L4, and so the L4+4δ norm

of each f e £"/ is uniformly bounded in βp as required.
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5. The hessian

It is reasonable to conjecture that mini-max over curves should produce
critical points with hessian index less than 2; an experiment with a length of
string on a hilly surface will illustrate this principle. One extrapolates that
mini-max over an /-disc produces critical points with indices less than / + 1.
This is Proposition 4.2's assertion, and Proposition 4.2 is proved here.

This proof has four steps. Step 1 is represented by Lemma 5.1 where, given
ε > 0, a pseudo-gradient vector field for 21 is used to construct a disc
(φ, φ ) G X with 2ί(φ) < 21^ + ε and || V2ίφ||* < ε. Step 2 is represented by
Lemma 5.2. Here, the pseudo-graident vector field is used to deform φ to a new
disc, (ψ, ψ ) e X which has 2l(ψ) < 21^ + ε, and || V9lψ(v) | |* < ε on the set of
y, where 2l(ψ(j>)) > SΪQO In step 3, the disc ψ is deformed along a negative
direction of φ ψ to obtain finally (η(ε), η) e X which has 21̂  < 21^ + ε,
|| V9l,,||* < ε, and λ^1 > -ε. Step 4 is to construct for each n, η(l/n) e Θ.
The sequence {τj(l/«), η(l/n)} is a good sequence.

A deformation of a disc, φ G θ, to a new disc, ψ e θ , can be constructed
given a section υ e C°(DI; 33) which vanishes on S1'1 = dDι. The procedure
follows: Because Dι is contractible, the bundle Φ*(PS X ©?) -> Dι is isomor-
phic to the product bundle Dι X %\. Each such isomorphism defines and is
defined by a lift of φ to a map from Dι to ^ X Sj. Choose a lift of φ; a disc
(A( )> Λ( )) e C°(Z>/; P5 X ©J) which projects to φ. With respect to the
induced trivialization of φ*(Ps X Sj), a section υ e φ*3S -> />' defines a map,
!>(•)€= C°(i)/; L\(Ad P (8> Γ )). Define

If ϋ e Γφ = (the continuous sections of φ*33 -^ D7 which vanish on S*~1},
then ψ e θ . Note that ψ is defined independently of the choice of the lift of φ.

Proof of Proposition 4.2. It is convenient to first introduce the following
notation: If φ e Θ, then %y = 2ί(φ(j)); v2l^ = V» φ ( y ) ; || | | ( y ) =

By definition, given ε > 0, there exist (φ,φ)^X with 2ί^ < 21^ + ε. This
observation and the lemma below give step 1 of the proof of Proposition 4.2.

Lemma 5.1. Let φ e θ . There exists a disc ( ψ , ψ ) e X satisfying for all
y e Z>7, 2 l ( ψ ( j ) ) ^ 2ί(φ(>>)) and in addition satisfying

where z < oo is a constant which is independent of φ and θ .
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Proof of Lemma 5.1. With a locally, uniformly finite partition of unity of

Dι, one constructs a pseudo-gradient vector field [20], a G Γφ, satisfying

(5.2) HjOllo-HlvSyi*, V3l,(α(.y))<-i||v3g|i.
Let z be the constant in Proposition 2.2. Define the open sets

Ω ( e Qo: HvaJSfl + ||v2lv||,)~1 > 4(1 + 8z)(3lv - ϊ j ) .

Let 0(;c) denote the usual step function; 0 = 1 when x > 0, and 0 = 0 when

x < 0. Define

(5.4) 31* = sup 31 y .

A section, v G Γφ, is defined as follows: In /)/\S21, set t; = 0 and for

>> G Ω1? set

(5.5) v(y) = 4|| V2l,| |*2(9ί, - « * ) « ( » , - »*) a(y).

Observe that υ is continuous, \\u{y)\\(v) < 1, and I ( J ) = 0 on S 7 " 1 as required

for an element in Γφ.

Define ψ e Θ by (5.1) using υ as defined above. When y € Ωx, then

= φ(^). When^ e Ωx, one computes with (2.8.2) the following inequal-

ity:

(5.6)

One concludes from (5.6) that ψ can be chosen to lie in φ^D^Q^. Since
= Φ(y) f°Γ y G ΰ ' X δ i , the lemma follows.

The next lemma summarizes step 2 of the proof of Proposition 4.2.

Lemma 5.2. Given e > 0, there exist (φ, φ ) e X with (1) 91 φ - 31 ^ < ε,

{2) for ally e Dι where %γ > 9100, || v3l v |U < c

Proof of Lemma 5.2. Fix 1 > δ > 0 and choose (φ, φ ) e X with 9ίφ < 91 ̂

+ δ and with | |v9lφ | |* < δ. Let y e Φ'HΦ)- There exists a neighborhood

UQ Dι of y such that for all>> G ί/,

(5.7) | | v 3 ί v | | , < δ .

Let 0 < β < 1 be a function in C0°°((7) with j8(>?) = 1. Let a e Γφ be the

pseudo-gradient vector field of (5.2), and define Ωo, Ωx by (5.6). Define υ e Γφ

as follows: When>> ί Ωo, set ϋ = 0. When j G ΩX, set

(5.8) v(y) = 4(1 - iβ(^))| | V9ί, | | , 2(3t v - ^)θ{%y - 3 1 J a(y).

Ψheny e ΩoXΩ^set

(5.9) v(y) = (1 - /l(>0)(l + δ z Γ 1 ) ! + | | v « , | U ) " 1 a(y).



370 CLIFFORD HENRY TAUBES

The continuity of v follows from the definition of Ωx, as does the fact that

Hu(^)ll(v) < l ^ e s e c t i ° n v vanishes on S1'1 because a(-) vanishes there.

Define ψ e θ b y using υ as defined above in (5.1). Using (2.8.2), one can

make the following observations: First, 9l(ψ(j>)) < 9l(Φ(>0), but ψ(y) = φ{y)

= φ so one can choose ψ = φ. Fory <£ Ωo, ψ(j>) = Φ(^). For >> G Int(Ωx \ (/),

(5.10) 9 ί ( ψ ( j ) ) < 9lv, - ( 9 ί , - S t o o ) ^ ^ - ϊ j < a w .

The main consequence of (5.10) is that only for y G ( Ω o \ Ω x ) U f/ = B is it

possible that 2 ί ( ψ ( y ) ) ^ 21^.

T o prove the lemma, an estimate for || V2 l^ ( v ) | | * when y ^ B is required.

For this purpose, write φ = [Λ( ), A( )] and ψ = [Λ( ), ^ ( * ) + ^ ( ) ] Let u e

L3

x(Ad P Θ Γ*) be fixed. Using (2.9.1), one find that for y e J5,

(5.11) <||u|b){l|v«J + 2z(l

Use (2.7), (5.3), (5.7) and (5.9) to evaluate || v 2 t v | | * and | | t ; ( ^ ) | | ( v ) when j>

The result is the bound

(5.12) | v 3 ί M + l ) ) ( v ) ( w ) | < | M | M + I 0 O , ) Z ( 1 + ^ ί ^ ) 1 7 ^

Here, z < oo is independent of φ, δ < 1 and θ . Lemma 5.2 is a direct

consequence of (5.10) and (5.12).

Step 3 of the proof of Proposition 4.2 is summarized by

Lemma 5.3. Given ε > 0, there exists (φ,φ)^X with ( l ) 3 l φ < 3 l o o + ε and

(2) for ally G Dιwhere%y > 31^, | | v 3 ί v | | * < eand^1 > -ε.

For the proof of Lemma 5.3, define with φ £ θ and 1 > δ > 0, the set

(5.13) Ω ( δ ) = { j e D ' λ ' ; 1 < - « } .

Lemma 5.3 is a consequence of

Lemma 5.4. Given ψ e θ and δ, δ' e (0,1), there exists u G Γφ which satis-

fies β ^ ε O ( J ) , | | W ( 7 ) | | = 1 ; V%y(u(y))<δ'\ and §y{u(y\ u{y)) <

7 1

O/ Lemma 5.3, assuming Lemma 5.4. Let (φ, φ) e X satisfy the

statements of Lemma 5.2 with ε e (0,1). For δ, δ' G (0,1) to be determined

shortly, consider v = /M G Γφ, where w is given by Lemma 5.4 and/ G C°(Di)

takes values in [0,1]. Let ψ be defined by (5.1) using v. From (2.8.3), one

obtains the inequality

(5.14)
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Define/more explicitly as follows: Fory G Ω(2δ), set

(5.15) / ( j ) = (l + 16zΓ1min{l,|λ';1|}.

F o r j ί Ω(2δ), set

(5.16) f(y) = 2(1 + lόz^flλ';1! - δ)θ{-^ - δ).

With no loss of generality, suppose that εl6(l + 16z)2 < 1 and choose

(5.17) δ = ( d 6 ( l + 16z) 2) 1 / 3.

Restrict δ' < ε. Fory G Ω(2δ), (5.14), (5.15) and (5.17) imply that

(5.18)

Fory G Ω(δ)\Ω(2δ), (5.14), (5.16) and (5.17) imply that

(5.19)

Explicit in the choice of φ is the requirement that | |v9t v | |* < ε when

51 y > 31 ̂  Choose δr G (0, ε) so that when 31 v > 3t^ - δ', then || V 31 v | |* < 2ε.

Consider the consequences: First of all, from (5.19), 31 (ψ) < 31^ + 2ε. Sec-

ond, if one defines tt'0= {y <Ξ Dι: 3t(ψ(>0) > 3too}» t h e n Ωό c Dι\ίl(2δ)

and

(5.20) \W®Φ(y)\\*<2* whence Ω .̂

Now use (2.9.1) to estimate || V3tψ(y) | |* when y e ΩQ. Use the fact that for

such y,

(5.21) | | , ( J ) | | ( v ) < ( 2 ) 1 / 3

The conclusion is that for j> G ΩQ,

(5.22)

Here, z < oo is independent of φ, ε and θ . Use (2.9.2) and (5.13), (5.17) and

(5.21) to estimate λ ' ^ fory e Ω'(0). The result is

, > -2(εl6(l + 16z) 2) 1 / 3 - z' pl/3

In the last line, above, z < oo is independent of φ, ε and θ .

Observe that Lemma 5.3 follows directly from (5.20), (5.22) and (5.23) by

redefining ε.
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Proof of Lemma 5.4. One reduces the problem to one of finding an

appropriate section of a finite-dimensional vector bundle, L c φ*3S -> Dι. A

standard general position argument gives the required section, u. This argu-

ment fails if one were to replace λ7^1 with λk

y, k < /, in the statement of

Lemma 5.4.

Lemma 5.5. Let ψ c θ . Given δ > 0, there exists a vector subbundle L c

φ*3S -> Z)7 vv/YA / + 1 < dim L < oo and such that at each y ^ Dι, the restric-

tion of $y to Ly has at least / + 1 eigenvectors with respect to ( , ) ( > ; ) with

eigenvalue less than λ7^1 + \δ.

Proof of Lemma 5.5. Write φ = [Λ( )» Λ( )]. At each y G Z)7, there exists

an / + 1-dimensional vector subspace, E(y) c Z^(Ad P <8> Γ*), such that

(5.24) sup UA(y)(υ,o)-()!;1 + U)\\v\fny)) < 0.

Continuity implies the existence of a neighborhood U(y) Q D1 such that for all

(5.25) sup UA{x)(v,o)-(}i;1 + U)\\v\\2A(x)) < 0.

As Z)7 is compact, there exists a finite set {yj}j/

=ι with the property that

{C/(^ )}jii is a cover of Z>7. Define L = S p a n U j L i ^ ί ^ ) c ^i(Ad P 0 Γ*),

and set L = [Λ( ), i4( )» ^] c Φ*SS The reader can readily verify that L has

the required properties.

For λ G [λ7^1 + iδ, λ7^1 + iδ], let ττ(j, λ) denote the ( , ) (7)-orthogonal

projection onto the eigenspaces of the restriction of φ v to L with eigenvalue

less than λ. When λ is not an eigenvalue of this restricted form, there exists a

ball, B(y, λ) c Z)7, centered at y, of positive radius such that K(y) =

{τr(x, λ ) L c L , x e B(y,λ)} defines a continuous subbundle of L over

2?(j>, λ). As Dι is compact, there exists a finite set {yj}fίι c Z>7 such that

( 5 ( y ) = «(^. ,λ, )}jli covers Z)7.

Lemma 5.6. Λx δ > 0. Lei ω* ί/ewoίe ί/*e restriction of v 3 ί ( ) to L*. Given

δ' > 0, there exists a continuous section, ω of L*, wΛ/cΛ has the following

properties: (1) At eachy G Z>7, |ω - ω*|L* < δ r. (2) For each] G (1, ,M), ίΛe

restriction of ω to K(yj)* is nonvanishing.

Proof of Lemma 5.6. This is a straightforward, general position argument

of the kind discussed in Chapter 3 of [17]; see specifically Theorems 2.2 and

2.6 there. These results are applicable only because dim K(yj)^ I + 1.

To construct the section u of Lemma 5.4, let {βj} be a partition of unity for

the cover {B(j)} of Dι. In B(j\ let Vj G C°(B(j); K(yj)) c C°(B(j)] L) be
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dual in K(yj) to ω. Define

(5.26) jj

Observe that v e C°(D'; L), and at eachy e D1,

(5.27) <*y(v(y)) = -

Hence, v is nonvanishing. Because Vj

(5.28) $y(υ(y), v(y))

at eachy Gfl*. Finally, at eachy e Z)\

(5.29) I

To obtain Lemma 5.4, set w(>0 HNjOII^VίjO when >> G Ω(δ). As S1'1 c

Z>' \ Ω(δ), there exists a continuous extension of u(y) to Z)7 which vanishes on

S1'1. The requirements of Lemma 5.5 follow from (5.28) and (5.29).

6. Constructing paths

The proof of Theorem 1.4 was outline in the Introduction; the details of it

are provided here and in §7. The exposition of the proof is presented here, but

the propositions in this section have their proofs in §7.

Let M be a compact, oriented Riemannian 4-manifold. A preliminary

digression is required for the purpose of explaining how to subtract a pair

(P\ b') of principal G-bundle P' -* S4 and point V G &(/>') from a pair

(P, b) of principal G-bundle P -> M and point b G $}(P) to obtain a principal

G-bundle, " P - P / M -» M and a point "b - V" G » ( P - />')•

This subtraction procedure requires the orientation reversing map a: S4 ->

S4, the inversion of S 4 through its equatorial S3, which is fixed. The procedure

also requires the choice of a point s G M and a Gaussian coordinate system, z:

2? -» R4, centered at s and defined on a ball 2? about s. It is convenient to

identify S4\n with R4 via stereographic projection from n, and then to

identify B with z(B) c S4\/ι, and 5 G M with j = south pole G 514 with

0 G R4. It is no less of generality to assume that B is the set {z : \z\ < 1} c R4

— S4\n. An identification of P with a~λPf over U = B\s is canonically

defined, given fc, b'. Indeed, each (h, A) G P5 X ®(P) defines a section

φ(A, i4) G Γ(P | B ) by the parallel transport of A by A along the short, radial

geodesies through s. This is an Aut P equivariant map from Ps X © to

hence it is a continuous section of the fibre bundle
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With this trivialization, each fc e $ ( P ) defines a trivialization of P -> B.

Similarly, b' = [h\ A'] defines a trivialization of P' over S~= S4\n and

hence, one of a~ιP' over S+= S4 \ s. By identifying the two trivializations over

B\s, one obtains a principal G-bundle which is, by definition, P — P'. Note

that degree(P - P') = degree P - degree P'. Here, the notation is cryptic,

because although the isomorphism class of P - P' is independent of the choice

(b, b') c Φ(P) X $ ( P % the actual bundle is not independent of this choice.

Next, a family of points, {(b - b')p e $ ( P - P'): p e (0, | ) } , will be

defined. For this purpose, introduce the family of smooth, radial bump

functions, {ηp(z) = η(\z\/ / p ) ; p e (0, oo) and z e R 4 } . Require that η = 0 if

\z\ < \ and that η = 1 if \z\ > 1. Introduce the subgroup T c C of (4.2) and

define the family of pure dilations, {tp = (p,0) G R * x R 4 = Γ : p G (0, ^) } .

Thus, t*z = pz.

It is important to note that P - P' as constructed from (ft, br) has a

canonical product structure over U = i? \ s. Let ί denote the induced flat,

product connection on P — Pf\u. Suppose that b = [Λ, A] and that br = [h\ A'].

A family of connections {(Λ - A')p: p e (0, ̂ )} on P - Pf\u is given by

setting

(6.1) [A - A% = θ 4- /p

On the set M + = {^ e M: dist(/?, 5) > i}, P - P ' is canonically identified

with P9 and a family of connections, {(̂ 4 - A')p : p e (0, ̂ )} on P - P'|M+ is

given by setting

(6.2) (A-A')P = A.

Similarly, o n ^ " = { z G R 4 : | z | < jp3/2 }, P - P' is canonically identified with

oΓιP\ and a family of connections, {(Λ - A')p: p e (0, ̂ )} on P - P r | β - is

given by setting

(6.3) (A-A')p = a*tpA'.

These three families agree where the domains of definition overlap, and so

define a family of connections, {(A - Ά)p : p e (0, ̂ )} on P - P'.

To complete the definition of {(b — b')p: p e (0, ̂ ) ) , it is necessary to fix

once and for all a half great circle on S4 running between s and n. Denote it by

/. Let l(h\ A') denote the point in P'n obtained by the parallel transport of

W e P's along / by the connection A'.

Define {(b - b')p : p e (0, ̂ )} by setting

(6.4) {b-b')p=[aΓιl(h\A'),{A-A')9\.
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It is an exercise that is left to the reader to show that the map from
(0, ^ ) X »(/>) X »(/>') to &(/> - P') which sends (p, b, V) to (b - b')p is
continuous. (Recall that if Pl9 P2 are isomoφhic principal G-bundles, then
»(Pχ) and »(P 2 ) are canonically identified.)

An estimate for g)93ϊ((Z> - Z>')P)> P G (0, π)» *s provided in Proposition 6.1
as an expansion in powers of p. For the present purposes, a precise estimate is
necessary only for the case where Pf -> S4 has k(P') > 0, T*S4 has its
standard metric, and ft' e l ( P ' ) . To state this proposition, it is necessary to
introduce ( , ) to denote the metric on (Ad P <8> P+Λ 2 T*M)S and to remark
that the Gaussian coordinate chart identifies T*M\S isometrically with T*S4\S

and isometrically with Γ*R4|0.
Proposition 6.1. Let S4 have its standard metric. Let M be a compact,

oriented Riemannian 4-manifold. Let P -> M and Pr -> S4 be principal G-bun-
dles. Let b = [A, A] e $(/>), to 6' = [A', Λ'] e &(/>'), flflrf fer p e (0, £

where \Ip(b9 b')\ = O(p4ln|p|). However, ifk(P') > 0 andV e 20ϊ(Prχ then

Iβ(b, b') = -*Y{h'-ιP+FAs)h'9 h-ιP+FA(s)h) + p4θ(p1^4).

An important corollary to Proposition 6.1 is stated below in the next
proposition. To state the result requires

(6.5) <QC(P)= {&= [ * , Λ ] e » ( P ) : P + i ^ ( j ) = 0} andQ = » \ Q c .

Proposition 6.2. Le/ M and S4 be as in Proposition 6.1. Let P -> M be a
principal G-bundle and let b e £l(P). Let Px -+ S4 be a principal G-bundle of
degree 1, αwd feί [A] e ^ ( P ^ / G . ΓAere exwte &! = [Ax, ^] G Tt(Pλ) and
Po e (0» Tβ) such that for all p e (0, p0),

(6.6)

For the remainder of this section, M = S4 with the standard metric. To
begin the proof of Theorem 1.4, let P -> S4 be the given principal G-bundle
and let m0, /wx e ^ ( P ) . To use Propositions 6.1, 6.2, one requires

Lemma 6.3. Let P -* S4 be a principal G-bundle of positive degree. Then
£L(P) (Ί 3Jt(P) is dense in Wl(P).

It is therefore no loss of generality to assume that ^ w i j G Q n u ! . By

invoking Proposition 6.2, one obtains [A]e3Jl(Pι)/G and points {fef =

[A7, Λ] e SKίPiJJl-o a n d Po G (°» w) s u c h t h a t f o r a 1 1 P G (°» Po) a n d f o r e a c h

(6.7) 8aK((mf. - ^ ) p ) < k + 1 = (k - 1) + 2.
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Each (mι•, - bt)p is in S ( P - Pλ). Further progress requires

Proposition 6.4. Let P -> S4 be a principal G = SU(2) or SU(3) fowrffe 0/

nonnegatiυe degree, k. Every point b G 93(P) swcA rAfl/ 2)5Dΐ(&) < fc + 2 w

connected to Wl(P) by a path γ in 93 /or wA/cA 2)2)ϊ(γ( )) w monotone

decreasing.

Apply Proposition 6.4 to (m, - ftf ) p for i = 0, then 1. The proposition

supplies two paths, γ, = γ^pK X i G {0,1}, with one endpoint (mi - bj)p

and with the other endpoint in Wl(P — Pλ). As degree P — Pλ = k — 1,

πo(Wl(P — Pλ)) = (1), by assumption, so there is no loss of generality in

assuming that γ o (l) = γ ^ l ) ^ Wl(P - P^. By density, one can take γz c $).

Define γ = γ[p]( ) e C°([0,l]; » ( P - ^ ) ) by γ = γf1 γ0. Thus, γ(ι) =

(m/ - 6f.)p for / e (0,1}, and due to Proposition 6.4,

The next step is to use the subtraction procedure to translate γ back to

» ( P ) . This notion requires the definition of ab e ^(a~lP), for each b e » ( P ) ,

where α : S4 -* 5 4 is the inversion: For each fc = [A, A] e S ( P ) , define α& G

© ( α ^ P ) by ab = [a-ιl(h,A),a*A]. Observe that α : » ( P ) -> © ( α ^ P ) is

continuous, a2 = 1, and α maps orbits of self-dual connections on P one-to-one

onto orbits of anti-self-dual connections on a~ιP.

Let φ G C°([0,l]; ^ ( Λ ) ) be a given path. According to Proposition 6.1,

there exists r( ) : (0, ^ ] -> (0,1) such that for all p G (0, p 0) and r G (0, r(p)),

the path ψ[p, /*](•) = (γ[p]( ) - αφ( )), e C°([0, 1]; $(/>)) satisfies

SJSDΪίΨί*)) < ^ + 2. As G is path-connected, one can choose such a path φ to

satisfy φ(i) = t^b^ for / e (0,1}. Thus, one obtains

Lemma 6.5. Let P ^ S4 be a principal G = SU(2) or SU(3) bundle of

degree > 0. Let m0, mλ G 20ΐ(P) Π Q ί P ) . ΓAere exists ρ0 G (0, ^ ) and

r( ) : (0, p 0) -> (0,1] and Z?o, 6X G Wl(P) with the following property: For all

p e (0, p 0) α/i£/ r G (0, r(p)), ίAere exwte ψ[p, r]( ) e C°([0,1]; » ( P ) ) ^/^/y-

wg/0r / G (0,1}, ψ(ί) = {{mi - bi)p - at9bi)n and satisfying for all t G [0,1],

To finish the proof of Theorem 1.4, the endpoint ψ(/) of ψ must be joined to

its respective mι by a path on which $)W < k + 2. One's ability to do this is

asserted in the final lemma.

Lemma 6.6. Let P -> S 4 be a principal SU(2) 6w«d/e 0/ degree > 0. Le/

m G &(P), and let b G SKίPj) α«ί/ p 0 G (0, ^ ) te ŵcA /A^/or all p G (0, p 0),

3)30ϊ((m - 6) p ) < g a » ( m ) + 1. Then there exists r( ) : (0, p 0) -> (0,1] w/YA ίAe

following property: For all p e (0, p 0) α/?ί/ A* G (0, r(p)) /Aere ex/^ η[p, r]( ) G

C°([0,l]; ^(/>)) satisfying η(0) = ((m - fc)p - atpb)n η(l) = m and for all
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A path connecting m0 to mx in ^M~l([k, k + 2)) n S ( P ) is provided by
Lemmas 6.5 and 6.6. The proof of Propositions 6.1, 6.2 and 6.4 and of Lemmas
6.3 and 6.6 are provided in §7.

7. Properties of subtraction

The proof of Proposition 6.4 requires analysis which is different from the
proofs of the other assertions in the last section. The proof requires the
mini-max theory for free homotopy classes of spheres in S which is sum-
marized by Proposition 7.1, below. Proposition 6.4 follows as a corollary.

Let M be a compact, oriented Riemannian 4-manifold, and let P -» M be a
principal G-bundle with k(P) > 0.

For / > 0, let φ e C°(5f/; 93(P)) be a fixed sphere. To construct the Ljus-
ternik-Snirelman procedure for spheres homotopic to φ, define

Λ(φ) Ξ { λ G C°([0,l] X S'; » ( P ) ) : λ(0, •) = φ}.

For each λ e Λ, define /(λ) e [0,1] by

ε ( 0 , l ] : supλ(ί,.y)> supλ(0, j)

if the bound exists or t(λ) = 1 if it does not. To each λ e Λ, associate the
number

2ίλ = inf

and to φ, associate
= inf 9t(λ).

λeΛ(φ)

A mini-max sequence for Λ(φ) is by definition a sequence {(λf , λf )} in the
space Ϋ = {(λ, λ ) e Λ x 5 3 : 3(ί, y) e [0, ί(λ)] X S/ with λ = λ(ί, y) and
2l(λ) = sup^e5/ 3ί(λ(r, y)) = 3ίλ} for which

(7.1) 9 i ( \ ) \ 3loo(Φ)

By mimicking the proof of Theorem 1.5, one obtains

Proposition 7.1. Let P -> M be as described above, and for / > 0, let

φ e C°(5|/; ®(P))

(1) //SίooίΦ) ί Z, ίΛe« wer M or wer S4 with its standard metric there exists

a principal G-bundle Pf and a smooth critical point of<ί)Wton^Q{Pf) which is not

an absolute minimum of$)Wl on 93(P')
(2) At this critical point, the hessian of$)W has index I or less.
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(3) If Msatisfies Proposition 3.1'$ conditions and ifH^iΦ) = 0, then λ e Λ(φ)

exists with λ( l , •) e C°(S'; 3R(P)) and for all x e [0,1] X S7, « ( λ ( x ) ) ^

sup v G 5/2l(φ(>0).

Proof of Proposition 7.1. One need only establish the existence of good

sequences in Y. These are mini-max sequences {(λ,, λ,)} e Λ(φ) for which

lim | |v2l ; |U \ 0 , lim λ^ 1 > 0,
ϊ I -> 00

in addition to (7.1). By altering a few definitions in §5, one obtains the

existence of good sequences. The details are left to the reader.

Proposition 6.4 is part of the following corollary:

Corollary 7.2. On S4 with its standard metric, let P be a principal SU(2) or

SU(3) bundle with degree k > 0. Then a point b e 33 for which 2)30ΐ(fc) < k + 2

w connected to Wl(P) by a continuous path on which tyWl is nonincreasing. A

loop φ e 93 (i>) on which 3)2)ϊ < k + 2 w free-homotopic to a loop in Wl by a

homotopy on which g) 93Ϊ < k + 2.

/V00/ 0/ Corollary 12. According to Proposition 7.1, the corollary must

hold unless there is a nonminimal critical point of 3)2)ϊ at which the hessian

has index < 2. Theorem 1.2 rules out the latter case.

The remainder of this section is occupied with the proof of Propositions 6.1,

6.2 and Lemmas 6.3, 6.6.

Proof of Proposition 6.1. Consider the self-dual curvature of Φ = {A — A')p

over M, and more generally (with Lemma 6.6 in mind) the self-dual curvature

of Φ = Φ(p, r) which is defined for p e (0, ^ ) and r e (p1/2,1) by (6.1)-(6.4)

with the replacement of η p by ηpr but all else unchanged.

On B, let α = φ*(λ, Λ)Λ and on S 4 V , let αr = a*tpφ*(h\ A')A'. Let

TJX = ηp3r and η 2 = α*ηp-iΓ. Then on B \ 5,

P + F φ = ηιP+Fθ+a + P+dηiΛa

( 7 * 2 ) rfη2 Λ α' + i η 2 ( η 2

Note that P + is the self-dual projection on Λ 2T* as defined by the given

metric on M.

Let z: B -> R4 be the Gaussian coordinates as in §6 which map 5 e 5 to

{0} e R4 and as in §6, identify B with {z e R 4 : |z| < 1} with the southern

hemisphere of S4. Let | | e denote norms with respect to the Euclidean metric,

^Euclidean o n B- Finally, let P+ : Λ 2 Γ* -• Λ 2 Γ* denote the self-dual projec-

tion from ώ | u c l i d e a n .

For b = [Λ, Λ] G »(/>), define ξ(b) to be the sup{ | i^ | e (z) : z <= ̂ } . For

6' = [A', ^'] e « (P 'X define £(&') = sup{(l + | z | 2 ) 2 | / ^ ^ ( z ) : Z G R 4 } , Alter-

natively, f(6') is the L°°-norm of FA. e Γ(Ad P r
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Lemma 7.3. Let b, b' be as stated in Proposition 6.1. For p e (0, ̂ ) and
r e [p1/2,1], let P+Fφ be given by (7.2). Let ξ(b) + ξ(b') = N. Then

where ξ < oo is independent ofb, bf and p.
Proof of Lemma 7.3. To obtain the lemma, one must use the following

facts:
(1) \dηx\ < c (p 3 r)" 1 / 2 and both dηx and ηλ(ηι - 1) have their support in

F = { Z G R 4 ; (p3ryι/2\z\ e (±, 1)}. Here, c is a fixed constant.
(2) Similarly, \dη2\ < c (r/p)ι/2 and both dη2 and η2(η2 — 1) have their

support in V= {z e R4 : (p/r)~ι/2\z\ e (i,l)}.
(3) For z e ^,

(7-3) \P + Pβ + a \ e ( Z ) < S ( b ) .

Since β is the connection form for A on P\B in Uhlenbeck's polar gauge [33], it
is given in B by

(7.4) a(z) = I Dττ\z\ JFΘ+CI(TZ).

Λ) θ|z |
Hence, for z G B,

(4) A similar argument, but using the fact that Φ*(h\ A')A' is the polar
gauge for A on S4 \ n, yields for \z\ e (\{p3r)ι/1, (pr)ι/2) the bounds

(7.6)

with c < 00 a metric dependent constant.
(5) Finally, observe that the data (S+X G, θ + 0') and (P'|s+> α*^^ ') are

isomorphic as bundles with connection. Thus, \\P+Fθ+a,\\l.S4 = \\P-FA>\\l;S*-
With (7.3)-(7.6) and the preceding discussion, one readily obtains Lemma 7.3.

The first assertion of Proposition 6.1 follows from Lemma 7.3 by setting

r = 1 and using the facts: (1) ®Wl(Φ) = \\P+FΛ\\\.M - (k - k% (2) ^Tl(A)

= ll^+^ll2;A# - k> and (3) m(A') = ||P_^,||2

; S4 + k'.
Now consider the situation when b' = [A', ̂ 4'] e ^ ( P ' ) . In this case, as
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and (7.2), (7.3) and (7.5), (7.6) yield

(7.7) \\P+F9f2.M=\\P+FA\^M + 2Jd*z^{P+Fβ+a, dη2 A a')e + θ{r-γ).

To proceed requires the leading order terms of the small \z\ expansion for
P+Fθ+a, and those of the \z\~ι expansion for a'. To obtain the expansion, it is
convenient to identify R4, and hence S4\n, with the quaternion algebra, H.
This is accomplished in practice by choosing an orthonormal basis, { τι }?=1 for
ImH and sending z = {z"}4

=1 to z° + Σ^=1z
/τ/. Once this is done, an

isomorphism of S~X ImH with P+ Λ 2 T*S~ is obtained by sending {r'} to

{ ω' = (2i/2 Γ1^'", dz Λdz)}aP+Λ2 T*\s-.

On 5+Π S'lety = z"1. The functiony extends smoothly to S+ and gives the
stereographic coordinates y: S+-+ R4. With y9 one obtains an isomorphism
between 5 + x H and P+Λ 2 Γ*|5-; the one obtained by sending {T1*} to
{ω1 = (2v^)-1(τI, dy A dy)} c P+Λ 2 Γ* | 5 + .

Lemma 7.4. 7/|z| < 1, ί/ie«

P+Fθ+a = {h-ιP+FA(s)h, ωι)ω> + vv^z),

where |w1| < |(^4) |z|.
Proof of Lemma 7.4. As ί + α is smooth on S~, P+Fθ + a = φ*(Λ, A)P+FA

has a Taylor's expansion in z about s = { z = 0}. It is a straightforward
exercise for the reader to establish the leading order term above.

As for a\ one obtains
Lemma 7.5. Let a' = a*φφ*(h\ Af)Af with V = [h\ A'\ e Wl(P'). If \z\ >

2, then

Λ a') = \\z\~3^η2y{h'-ιP+FA(s)h'9 ωi)ωi + w2(z),

where \w2\ < ξ(Af)p6\z\-4\dη2/d\z\\e.
Proof of Lemma 7.5. Let a = φ*(h\ A')Af e ΓίS'-X g). The 1-form a is

given by (7.4), but with a replacing a there. A 1-term Taylor's expansion yields

(7.8)
2 3|z|

Now observe that because

2
<ξ(A')\z\ \dz\e.

d\z\
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and a*z = z"1, one has

(7.9) a' = ^=r\z\~4p4(P+FA(s), uf){τ',zdz) + θ(p<>\z\~\

Now, let ξ G C^iS') be a function of \z\ only. Then d\z\ is real, and

rf*Λ(τ\z<fe) = \\z\'l^-{τi,d\z\ Λzdz-zdz Λd\z\)

= τk|——(T 1 ' , dz Λ dz - zdz A dzz).
9|z|

Hence,

(7-10) P^, , -
y2 3|z|

Lemma 7.5 follows from this last equality and (7.9).
Together, (7.7) and Lemmas 7.4, 7.5 yield the following refinement of

Lemma 7.3.
Lemma 7.6. Let b, b\ p, r and P+Fφ be given as described in Lemma 7.3.

Then

\\P+FΦ\\2

2 = \\P+FA\\l,M - πy{h"ιP+FA,(s)h\ h'ιP+FA(s)h) + w3,

where \w3\ < z(A9 A')p\p/r)1/2.
Proof of Lemma 7.6. Use Lemmas 7.4, 7.5 in (7.7) with the integration by

parts to identify

1 - T79) = - 1 .

The second assertion of Proposition 6.1 follows from Lemma 7.6 by setting
r = 1 there.

Proof of Proposition 6.2. The moduli space Wl(Pλ) is known explicitly, as
every point in it is the orbit under Aut Px of a connection reducible to SU(2)
[4]. More explicitly, let P -> S4 be a principal SU(2) bundle of degree 1. Let
T: SU(2) -> G be a group homomorphism which generates π3(G). Then ^ is
isomorphic to P XTG, and Wl^) = Wl(P) XTG/H, where H c G is the
maximal subgroup of G which commutes with τ(SU(2)). If G is simple, any two
such homomorphisms are conjugate in G and so W{Pλ) does not depend on
the choice of T.

Choose any bλ = [hv A] e ^ ( ^ X and let 6 = [A, A'}. For any p G (0, ̂ ) ,
write the leading order (in p) term from Proposition 6.1 of 2)99? ((6 - ^ x) p) -
g)aW(fe) - 1 as -π2p4J(b, bλ\ where

(7.11) /(ft, M = ( A Γ ^ + ^ ί ^ ) * ! , h-ιP+FA,(s)h).

Let ftxg = [Axg, yί] and let μ(g) denote Harr measure on G.
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As every σ e g is conjugate by Ad G to -σ, if there exists g e G such that
J(b9 bλg) Φ 0, then there exists g e G for which /(ft, Z^g) > 0. For such g, the
requirements of Proposition 6.2 are satisfied with bxg and with all p small
enough so that -π2p4J(b, bxg) gives the dominant contribution to ^)Tl((b —
b\g)p) - ΌWt(b) ~ 1. The function/(6, bx(')) : G e R does not vanish identi-
cally for the following reason: For [hvA]^3R(Pι% P+FA(s)Φ0 as the
explicit formulae attest [7]. In fact, if {ωf'}?=1 is an orthonormal basis for
P+Λ 2T*\S, then {r' = (ω', h{ιP+FA(s)hx)} c g are orthogonal and they de-
termine a principle embedding of 3u(2) in g. Let {ηι = (ωι', h~ιP+ FA,(s)h)} c
g and with no loss of generality, suppose that ηι Φ 0. As Span{ grιg~ι: g e G}
is an Ad g invariant subspace in g and g is a simple Lie-algebra, one has
g = Span{gτιg~ι: g e G}. Hence, there exists g e G such that (gr^" 1, η1) >
0. Let {σ'"}?βl = {gr'g-1}?.!, and let Λ̂  = exp θσ1 e G for 0 e [0,77). When

/=2

so there exists 0 e [0, TΓ) such that

as required.1

Proof of Lemma 6.3. Let [A] e 30ϊ(/>)/G. As degree P > 0, ^ is not flat
and it is a fact that P+FA is nonvanishing on an open, dense set in S4 [3]. The
second fact is that the group of rotations of S4, SO(5), acts on Wl(P)/G via
R[A] = [Λ*^], where Λ : S4 -• 5 4 is a rotation. These two facts imply that for
any [Λ] e Wl(P)/G9 there exist Λ e SO(5), arbitrarily close to 1, such that
P+FR.A(s) Φ 0.

Proof of Lemma 6.6. It is convenient to first state the following associativ-
ity property of the subtraction procedure:

Lemma 7.7. Let {Pιf-* S4}3

i==ι be principal G-bundles, and let {bt; =
U Thenforallp e (O^)andr e (0, p2),

Proof of Lemma 7.7. This is a tedious untangling of definitions which is left
to the reader. But the following facts may help: (1) atλ = ίλ-iα; (2) t%ηp = τjpλ-2;
hence (3) if r < \p then ηp3ijp3r3 = ηp3 while (aηp-i)(aηp-ιr-i) = ατ|p-iΓ-i.

An immediate result of Lemma 7.7 is the corollary that

(7.12) ((m - b)p - ab)μr = (m - tr2(ab - atpώ)βr)

1 This version of the proof of Proposition 6.2 is due to T. Parker.
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Lemma 7.8. Let m, b be as in Lemma 6.6, and let b = [A, A], Then P+FA(n)

Φ 0, and there exists p 0 G (0, j$) and for each p G (0, p 0) ίΛere exwίs r(p) G

(0, p2] w/YA the following properties: For each p G (0, p 0) α^d r G (0, r(p)),

/θΓfl//λG(0,p],

(1) Ί)m(tr,{ab - atpώ)pr) < 2 - fr2r*\P + FA(n)\\

(2) m((m - tr2(ab - atp2b)pr)χ) < $Wl(m) + 2 -

Proof of Lemma 6.6, assuming Lemma 7.8. Due to assertion (1) of Lemma

7.8, and Proposition 6.4, for each p G (0, p0) and r G (0, r(p)), there exists

Φ[P '•KO e C°([0,l]; » ( 5 4 X G)) satisfying φ(0) = YΓ2(o* - atpib)pr, φ(l) =
4 X G), and for all t G [0,1]

Due to Lemma 7.3 and the fact that φ([0,l]) is a compact set in $ ( S 4 x G),

there exists ξ < oo which is independent of λ G (0, p] with the following

property: For all / G [0,1],

(7.13) gaβ((m - φ(O)λ) < ®W{m) + 2 + fλ4ln|λ| - \τr2r4\P+F(n)\\

For each λ G (0, p], define a path η[p, r, λ]( ) G C°([0, f ]; »(P)) as fol-

lows: Let λ (0 = (1 - 3 0 P + 3ίλ. When / G [0, ^], set

(7.14) ( )

When r e [ i f ] , set

(7.15)

Observe that due to assertion (2) of Lemma 7.8 and (7.13),

$m(m) + 2 for all /G[0,f] . Notice that η(f) = (m - *) λ . However, as

λ -> 0, (m — * ) λ converges strongly in L2 on S 4 to m G %ί(P). Hence, for

λ > 0, but small, there exists a continuous extension of η to C°([0,1]; ©(P))

which satisfies all of the requirements of Lemma 6.6.

Proof of Lemma 7.8. As previously remarked, there is an explicit formula

for b = [A, A] G WliPJ which reveals that P+F(n) Φ 0 [7].

Let Φ(r) = (ab - ab)r and let Φ(r, p) = (aft - atpib)pr. If p G (0, ̂ ) and

' e (0, τβP2X then also r G (0, ̂ ) and p G (r 1 / 2 ,1). In this case, g)2Jΐ(Φ(r, p))

is estimated by Lemma 7.6 (with the orientation reversed). Assertion (1) of

Lemma 7.8 follows from Lemma 7.6.

To obtain assertion (2) of Lemma 7.8, write φ , p] = triΦ(r, p) = [Ac, Ac].

The claim is that if λ G (0, p] and z G ί/ = {z G R4 : |z| > ^λ3 / 2}, then

(7.16)
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Indeed, by construction, the data (S4 X G,(hc, Ac)) and (Px,(h, A)) are

isomorphic on {z e R 4 : t£z < i(p3>*3)1 / 2} = {z^R4:z < K P 3 A ) 1 / 2 } see

(6.3). Further, as r < ^ p 2 , this set contains V= {z e R 4 : \Z\ < 2/p}. Thus,

a*φφ*(h9A)A = a*φφ*(hciAc)Ac on a~\}V = {z^R4:\z\ > \\2/{p},

and this contains U.

Equation (7.16) implies assertion (2) as follows: Write m = [hm, Am]. Let

λ e (0, p]. Then on t/,

(7.17) θ + ηλ3φ*(Λm, Λ j Λ m + α (i,λ-i/J-2φ (A, Λ)Λ)

= θ + τ,λ3φ*(Λm, ^ m ) ^ m + α*(ηλ-i/λ*-2φ*(Λc, ^ c ) ^ c ) ,

and hence the two numbers

Iλ = g a » ( ( w - ft)λ) - gatt(/w) - I and

/ 2 = m((m - c[r, p ] ) λ ) - g)2R(/w) - 2)2K(c[r, p])

are equal. This is because Iγ involves the expression on the left-hand side of

(7.17), integrated over U, and in a similar way, I2 involves the right-hand side

of (7.17). By assumption, Iλ < 0 for all λ e (0, p0] and so the same is true for

I2 for all λ e (0, p 0]. With (7.15), this establishes assertion (2) of Lemma 7.8,

given (7.16).

8. Extensions

Let M be a compact, oriented Riemannian 4-manifold which is 1-connected

and which has nonnegative intersection pairing on H2(M; Z), and let P -> M

be a principal SU(2) bundle of degree 1. Or, let S4 have its standard metric,

and let P -> S4 be a principal G-bundle of positive degree, where rank G > 2.

In both cases, the statement "ττo(3W(P)) = (1)" cannot be proved by the

methods in §§2-7. This is because the analog of Theorem 1.2 is not available.

For the first case above, one obtains using §§2-7 the result stated in

Theorem 1.6. For the second case, one can return to [30] to analyze why

Theorem 1.2 fails. The result is Theorem 8.1 below. This section contains the

proofs of Theorem 8.1 and 1.6.

Theorem 8.1. Let S4 have its standard metric, and let P -> S4 be a principal

G-bundle of positive degree, where rank G>2.Ifπo(Wl(P))* (1), there exists a

connection A on a principal G-bundle Pf -> S4 which satisfies the following

conditions:

(1) A solves the Yang-Mills equations on S4.

(2) 0 < $Wl(A) < 2.

(3) QA( , ) has < 1 negative direction.
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(4) Let x e S4, and let {P±F\x)}]=ι be the components of P±FA(x) with
respect to an orthonormal frame for P±A 2T*\X. At each x e S4, and for all i,j9

[P+Fjί(x)9 P_Fj(x)] = 0. But, at almost every x e S4 and for all i Φj, [P+Fj,
P+Fΐ(x)] Φ 0 and[P_F>(x\ P_Fi(x)] Φ 0.

It is remarked that the solution, A, above would not be a direct sum of
self-dual and anti-self-dual connections, because that situation would imply
thatg)2RO4)> 2.

Proof of Theorem 8.1. Let P -> S4 be a principal G-bundle of smallest,
positive degree such that πo(Wl(P)) Φ (1). Assume this degree is finite. Let
m09 mλ e Wl(P) be in distinct path components. Let Θ = (φ e
C°([0,l]; 23(P)): φ(0) = mo and φ(l) = mλ}. If 9l(Θ) < 2, then assertions
(l)-(3) follow from Proposition 4.4. If 31 (Θ) > 2, then the proof of Theorem
1.4 has broken down. For this to happen, there must exist a point b e
» ( P - Px) with 2l(Z?) < 2 which is not connected to 3K(P - Pλ) by a path
φ e C°([0,1]; » ( P - i^)) with 3ί(φ( )) < 2. In this situation, Proposition 7.1
implies assertions (l)-(3).

At a connection A satisfying (l)-(3) above, neither P_FA nor P+FA can
vanish identically. Let y = {yv}: S4\s -> R4 be stereographic coordinates.
As in §7, identify S 4 V with R4 using y. The sections |_y| 3/9 |jμ| J ̂ ^ ^ and
(d/dyvjP+FA)

4

=1 of Γ*R4 X Q are (1) square integrable and (2) in the kernel
of δ^ = (P_DA, v ί ) : L2(Γ*R4 X fi) -> L2(P_Λ 2 Γ* Θ R X g) [30]. The analy-
sis of [30] implies that assertion (3) is true only if each of these sections is also
in ker φA. Assertion (4) follows from the three conditions P+FA & 0, P_FA ^ 0
and {d/dyvjP+FA} c kerδ^ Π ker %A Π L2; see §3 of [30].

Proof of Theorem 1.6. It is useful to list some a priori facts concerning M
and principal SU(2) bundles P -> M of degree 1.

(1) Because M is 1-connected, 2ft(M X SU(2)) = point [11], [14].
(2) For a dense set, g, of smooth metrics on Γ*M, Wl(P) is a smooth,

5-dimensional manifold [14, §3].

(3) If the metric on Γ* is in g, then for all [A] e 2)ϊ(/>)/(?,

(8.1)
^®^ : L2(Ad P ® P_Λ 2 Γ ) -> L2(Ad P ® P_Λ 2 T*)) > 0.

For (3), see also [14, §3].
Lemma 8.2. Let M be as in Theorem 1.6 and letP -^ Mbe a principal SU(2)

bundle of degree +1 . Suppose that the metric on T* is in g. ίλe« /Λere ex/5/5
ε > 0 ύf«rf a strong deformation retract ofϋε(P) onto 2)Ϊ(P), and of^βε(MX G)
ontoTt(MX G).

Proof of Theorem 1.6, assuming Lemma 8.2. Suppose that 3K(P) is the
disjoint union of nonempty sets 3W0, Wlv Let Θ be the space of continuous
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maps of [0,1] into »(/>) sending {0} -* 3K0 and {1) -> Wlv If 3ί(Θ) < 2,

then Proposition 4.4, Lemma 8.2 and Theorem 1.2 imply that there exists a

critical point, b, of 2)3W in either 33(P) or 93(Λf X G). The critical point /?

cannot be self-dual, but the hessian there has at most 1 negative direction.

If 31 (Θ) > 2, then one does not have Theorem 1.4 for Wl(P\ and if this is

the case, it is because one does not have Proposition 6.4 for 33(M X G).

Indeed, given Proposition 6.4, the construction of a path γ E θ with 3ί(γ( ))

< 2 proceeds as in the case M = S4 which is detailed in §§6 and 7. If

Proposition 6.4 fails for 93(Λf X G), then Proposition 7.1 and Lemma 8.1

imply that there exists a critical point b of $)Wl in 1B(M X G) which is not flat,

but it is a local minimum of £) W.

Proof of Lemma 8.2. Due to Proposition 3.1, it is sufficient to establish the

existence of μ, δ > 0 such that for all [A] e 33δ(P) or 33δ(M X G), inf spec-

trumί®^®^) > μ > 0. Consider the case for P -> M and assume the contrary.

Then a sequence {[Λ,]} c ^ ( P y G exists with (1) 3ί ([ΛJ) \ 0 and (2) μz =

inf spectrumί®^ ®^ ) \ 0. As 31 has uniform second derivatives (Proposition

2.2) then as in §5 one can readily show that || vSt H* \ 0 also. Hence, {[A^] is

a good sequence. Let {Aa}^=0 be the limiting connections as given by

Proposition 4.4. Either n = 0 and [Ao] e Wl(P)/G or n = 1 and Ao is flat,

while v4x is self-dual on a degree 1, principal SU(2) bundle over S4. Consider

the sequence {μ,}. In the case n = 0 above, {[A^} converges strongly in L\ on

M and so { μι} converges to μ(A0) which is positive by assumption.

In the case n = 1, above, the eigenvalue estimates in [29] and [31] can be

applied here to show that limμ, > 0 also. But the limit of {μ,} was 0 by

assumption. This contradiction establishes the lemma for P. The proof for

M x G i s similar and left as an exercise.

Appendix: Uhlenbeck's compactness theorem

The purpose here is to prove Proposition 4.5. First, consider a sequence

{[Af]} G ^8(P)/G for which ^ ( Λ , ) < K for all /. According to Sedlacek

[24], there exists a constant K > 0 which is a function only of the metric on M\

a finite set Ω e M; a cover of M\ Ω by open balls, {ί/α}; and a subsequence

of {[Λ/]}, now renamed {[A;]} such that on each ί/α,

(A.I) / \FA
J

FA

Using Theorem 2.1 of [32], Sedlacek deduces the existence, for each α, of

sequences {gai} e L2(iso(M X G, P)\Ua) such that if one defines θ to be the
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product connectiononMxG, and if, for each α, /, one definesaai = g^Aj - 0,
then

(i) /{|v# βJ 2+μj 2}<f/|Fj 2,
ίA2) U Ua

V * } (2) Dβ*aai = 0 inί/ β ,
(3) /*(* aai) = 0 in ί/α where /: dUa -> l/α is the inclusion.

Here, f < oo depends only on the metric on M.

In each nonempty UaΠUβ9 define sequences {gaβi = g~}gβi} ^ L3

2(UaΠ

Uβ\ G). In each nonempty Ua (Ί Uβ,

( A 3) ««/ = gaβi<*βigaβi + gaβ&aβi'

By a diagonalization argument, Sedlacek obtains with (A.2), (A.3) a subse-

quence of {[-4,-]}, now renamed {[ΛJ} such that in each ί/α, {ααi } converges

weakly in L{($ X T*\Ua) to «α, and in each nonempty UaΠ Uβ, {gaβi}

converges weakly in L\(Ua Π Uβ\ G) to gα/8. Sedlacek deduced that in each t/α,

αα satisfies (A2); while in each nonempty UaΠ Uβ,

(A.4) 0α = g ^ S

and in each nonempty ί/α Π L^ Π ί/γ,

(A.5) gaβgβygya = XG a e

For fixed ψ e Lj(g ^ 7*1^) with compact support, the map a ^ L\(Q ®

T*\uΰ)'~* v 9 l 0 + α ( ψ ) ^ R is weakly continuous. Hence, if one now assumes

additionally that {||V21,11*} has limit zero, then θ + aa is a weak solution to

the Yang-Mills equations in Ua.

Equation (A.2.2) for aa and the equation V9l^+ α a( ) = 0 form a uniformly

elliptic system for aa on t/α, so the standard arguments imply that each aa is

C 0 0 [32]. Equation (A.5) implies that where Ua Π L^ # 0 , the map gα/8 is also

C 0 0 . Hence, the data {Ua,gaβ9aa} define a C 0 0 principal G-bundle, Pr-»M\Ω,

and a smooth connection y4 o n ? ' which satisfies the Yang-Mills equations.

K. Uhlenbeck's removable singularity theorem states that (P\ A) extends as a

C°° bundle with connection over M, where A satisfies the Yang-Mills equations

[33].

Although not discussed by Sedlacek, it is nonetheless a fairly standard

boot-strap argument to deduce from the condition || V 9l/||* \ 0 and from (A.2)

that {aai} converges strongly to a in L\.1OC(Q ® ^*lί/β) Via (A.3), this implies

that where Ua Π Uβ Φ 0, the sequence {gaβi} converges strongly to gaβ in

4,ioc(ί4 Π Uβ; G).
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Thus, Sedlacek's argument yields here a form of local convergence of the

sequence {[Λz]} e %(P)/G to [A] e 93(P')/G. But this convergence is some-

what weaker than the L^-strong convergence as given in Definition 4.3 because

it is not obtained by pulling Ax back from P\M\Q to P'\M\Q by gi e

L\(iso(P', P)\M\Ώ)- TO complete the proof of Proposition 4.5, it is necessary

to construct these gr These problem amounts to finding a sequence of

splittings, {ηai} c L\(Ua\ G) such that (1) where Ua Π Uβ Φ 0 ,

(A.6) Va^aβiV'β) = gaβ>

and (2) {ηa i} converges strongly to 1G in Lj.loc(Ua; G).

If the convergence of { gaβi} to gaβ were in

cL(va π tfc; G ) n L| ; tec(ί/α n tfc; G ) ,

then the existence of this splitting is established in §3 of [32], cf. Proposition

3.2 there. The fact that in UaΠ Uβ, {gaβi} converges strongly to gaβ would

make irrelevant the restriction in said proposition that the cover { Ua} is finite.

Indeed, if Ω Φ 0 , then for each f, one can restrict attention to a compact

subset Mι ; c M\ Ω on which Proposition 3.2 of [32] is applicable. Due to the

strong convergence of {gaβi} to gaβ in C° Π L\, Proposition 3.2 of [32] allows

for Mi_1 c Mi and UiMi = M\ Ω. One can assume with no loss of generality

that for all / sufficiently large, (M\tt)\Mιf = U ΩS3 X (0,1). Thus, for all i

sufficiently large, there is no obstruction to extending the isomorphism over M;

given by Proposition 3.2 of [32] to an isomorphism over M \ Ω which agrees

with the constructed one over Mt.

A propos the discussion above, Proposition 4.4 follows from an argument

which establishes the C ^ convergence in UaΓ\Uβ of {gaβi} to gaβ. In

particular,

Lemma A.I. Let U be an open ball in a Riemannian 4-manifold. Let

g = {(g, α, b) e XLj(ί/; G) X2 L?(fl ® Γ*): α = gbg~ι + g^/g"1 απrf both a

and b satisfy (A.2.2) in U). The projection g -* L^C/; G) sending (g, α, ί?) ίo g

factors continuously through C^iU).

Proof of Lemma A.I. Consider the case where U is the unit ball in R4; a

nonflat metric adds no essential complication and this generalization is left to

the reader. It is convenient to represent G as a subgroup of SU(«) for some

n < oo. Then G and g are realized as submanifolds of M n , the space oΐ n X n

complex matrices. In this regard, ξη for ζ, η e G or Q is to be interpreted as

matrix multiplication in Mn.

Observe that because of (A.2.2), g satisfies

(A.7) d*dg = gb- b-la gb + a- ag,
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where : Θ 2 M Π X Γ*ί/ -> Mπ is matrix multiplication and contraction by the
metric on T*U.

For ε > 0, let Uε *-+ U be the open ball of radius 1 — ε, and letyε: Lι(Uε) <->
C°°(U) be a standard mollifier. For x e £/, let βx be a cut-off function which
at j> e t/ is 1 if |JC - y\ < idist(x, dU) and 0 if |x - y\ > idist(x, 31/). Sup-
pose also that \dβx(y)\ ^ 8dist(x, dU)~\

To prove that g is continuous, it is helpful to mollify both sides of (A.7) with
j ε . This obtains

(A.8) d*d(je*g)(y) = U*L)(y) atj e t/ε,

where L = the right-hand side of (A.7). Let x e £/2e, and multiply both sides
of (A.8) by |x - y\~2βx(y) and then integrate the resulting equation over U.
The result after an integration by parts is

< A 9 )

Because jε*g converges strongly to g in Lf^U) for any 1 ̂ p < oo, the
continuity of g follows from a proof that the ε = 0 of the right-hand side of
(A.9) defines a continuous function from U to Mπ. Let gί(>>)> Sliy) denote the
first and second terms, there. Because dist(x, suppdβx) ^ ^dist(x, 3(7), the
ε = 0 limit of gf exists. Indeed, the map x *-> 2\x - y\~3dβx(y) d\x - y\ -
\x - y\~2d*dβx(y) is a smooth map from ί/into C°°(ί/). The implications are
summarized with the following lemma.

Lemma A.2. The map h2:UX L\U) -> R defined to be

ί
Ju

d*dβ
^

\χ-yγ \χ-y\
is jointly continuous.

The analysis for gί(jc) is more complicated. The first observation to make is
that in dimension 4, the map /: U X L\{U) -> L2(U) which sends (x, f(y)) to
I* - y\'lf(y) is, for fixed jce(/, continuous (cf. (2.15), and §6 of [30]).
Therefore, the ε = 0 limit of g[ exists as a map g x: t/ -> Mn. In fact, this
observation establishes that the map hλ: t/ X (L1 Π L00) X2 L?(ί7) -> R, de-
fined as

\χ - y\
is well defined. Its properties are summarized by

Lemma A.3. The map hv above, is continuous on its domain, K = U X (Lι

n uc)x1L\(U).
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Proof of Lemma A.3. Let K = (L1 Π L°°) X2L
2(U). For fixed χ e [ / , let

{/:, = (w,, £>,-, w,)} c £ converge strongly to k ^ K. Let m = lir

Observe that

\u - u,\vw

\x-y\2 \x-y\2

{Qa) G C°°(ί/) converge strongly to \x — y\2υw in Lλ(U). For any α,

Here, c(m) is a constant which depends on m and dist(x, θί/), and all

integrations are integrations over U. Given ε > 0, choose α so that \\qa —

\x - y\'2vw\\λ < c'ιε/3, and choose i so that \\u - u^ < c'ι\\qa\\'ιε/3 and

Ho - v,\\ia\\w - H-,.||12 < c~ιe/3. Then for ally > /, {h^x, k) - hx{x, kj)\ < ε.

For fixed k e K, consider the continuity of/!(•,&):{/->!*: Let x e U and

ij e £/!_,„. Then

uvw

uvw

— x

For |η| sufficiently small, the difference ^ ^ ( ^ + η) - βx~η(y) vanishes where

\.y — x\ < \ dist(x, 3ί/), and specifically where \y — x + η\2 is singular. Also,

as \η\ -> 0, the measure of the set where βx(y + η) - βx~η(y) differs from

zero vanishes. Therefore, the second term on the right-hand side of (A.10)

vanishes as η -> 0.

As for the first term on the right-hand side of (A.10), define the translation

map Γ:C/ e xL)F(ί/)->LΠI/i- e ) by Γ(x, v)(y) = υ(y - x). For \η\ «

dist(jχ;, θί/), that first term may be rewritten as

y ^
\x-y\

As T is jointly continuous (cf. [19, Lemma 3.4.2]), this first term must vanish as

7) -> 0 also since hλ{x, •): K -> R has been established as continuous.

The continuity of g^x) follows from Lemma A.3. This establishes that the

projection from g -> /^(ί/; G ) sending (g, a, b) to g factors through
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C^iU; G). Lemmas A.2 and A.3 imply as well that the map factors continu-
ously through Cχ^iU, G). This completes the proof of Lemma A.I and
Proposition 4.5.
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