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ENDS OF MAPS. HI: DIMENSIONS 4 AND 5

FRANK QUINN

Topology in dimension 4 has recently been considerably illuminated by
Freedman's embedding theorem for topological 2-handles, and even more
recently by Donaldson's nonexistence theorem for smooth structures. This
paper complements Donaldson's work, and extends Freedman's to the topo-
logical category, by proving (partial) existence and uniqueness theorems for
smooth structures. The main theorems are actually 5-dimensional versions of
the thin /z-cobordism and end theorems proved in dimensions ^ 6 in Ends of
Maps, I [13]. These theorems are stated in §2.1, and proved in §3. They directly
imply a number of useful facts about 4- and 5-manifolds, which we summarize:

In §2.2 we see that a homeomorphism of smooth 4-manifolds is isotopic to
one which is smooth off a "standard singular set". Applying this to the special
case of an open handle shows 0 and 1 handles can be straightened, and
2-handles can be straightened in several weak senses. (The 0-handle case is the
classical "annulus conjecture".) This implies (via immersion theory) that the
stability map TOP(4)/0(4) -* TOP/O is 3-connected. In turn this implies that
every 4-manifold has a smooth structure in the complement of a point,
extending the canonical one on the boundary. In particular "almost smooth"
can be deleted from the statement of Freedman's classification theorem [6,
Theorem 1.5].

§2.3 demonstrates that topological 5-manifolds have handlebody structures,
relative to arbitrary submanifolds of their boundary. This completes this
problem: all topological manifold pairs (M, 90M) have handlebody structures
except nonsmoothable 4-manifolds.

In §2.4 most of the (few) remaining cases of topological transversality are
settled. Map transversality holds without exception, but two cases of isotopy
transversality of submanifolds remain undecided.

In §2.5 the homotopy characterization of local flatness is extended to
dimension 4, except in codimension 2.

In §2.6 some of the general theory of cell-like maps is extended to dimension
4. The fact that a cell-like map of manifolds can be approximated by
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homeomorphisms is now known in all dimensions (presuming local irreduci-
bility in dimension 3). Similarly ANR homology manifolds of dimension 4
have resolutions. That extends this result to all dimensions except 3 (where it
depends on the Poincare conjecture).

Finally, in §2.7, some non-c 5-dimensional A-cobordism theorems are proved.
These include a proper A-cobordism theorem, and the fact that for certain
πxM, some finite cover has a product structure. This implies in particular that
a manifold homotopy equivalent to Dj X T4~j (Tn — w-torus) and with the
same boundary, has a finite cover homeomorphic to Dj X T4~J.

A remark about the logical order of events may be helpful. The theorems are
stated in their eventual proper generality. However in a number of cases the
topological case of a theorem depends on application of the smooth version.
Strictly, one should do the smooth case of the Thin A-Cobordism Theorem
2.1.1. Then proceed to the annulus conjecture and smooth structures (2.2),
handlebody structures (2.3), and transversality (2.4). This establishes the basic
ingredients of handlebody theory in the topological category. The construc-
tions of §3 now work in a topological setting, so the same proof now
establishes the topological version of the Thin A-Cobordism Theorem. After
this continue, with the End Theorem 2.1.2, local flatness (2.5), cell-like maps
(2.6) and topological A-cobordisms (2.7). Along the same lines we note that
although the Cell-Like Approximation Theorem 2.6.2 is much stronger than
Freedman's S 4 result [6, §9], it is logically dependent on that result.

2. Statements and applications

The thin A-cobordism theorem and the end theorem are stated in 2.1, and
proved in §3. The applications are proved using these theorems.

2.1. Main theorems. Recall that an A-cobordism (Λf; 30M, dλM) deforma-
tion retracts to both d0M and dxM. If M -> X is a proper map to a metric
space, and δ > 0, then (Λf; 30Λf, θjΛf ) is a δ, h-cobordism [13] if the deforma-
tions have diameter < δ in X. This means that the image of each arc {x} X /
C M X / - > M ^ I h a s diameter < δ in X. The question is whether a (δ, A)-
cobordism has a product structure with diameter < c.

A "fundamental group" condition is necessary here. A map M -» X is
(δ, \)-connected if given a relative 2-complex (R, S) and a commutative
diagram

R
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then there is a map R -> M (the dotted arrow) such that the upper triangle

commutes, and the lower one commutes within δ. (This is a little stronger than

the condition used in Ends I, but renders the onto hypothesis unnecessary.)

2.1.1. Thin /z-cobordism theorem. Suppose X is a locally compact locally

\-connectedmetric space. Suppose c. X -* (0, oo). Then there exists δ: X -* (0, oo)

such that if (M;d0M,dxM) -> X is a 5-dimensional (δ, 1) connected (δ, h)-

cobordism then M has a topological product structure of diameter < c.

This is the 5-dimensional version of Theorem 2.7 of Ends I, with C — X and

D = 0 . The analogous relative versions also hold (and will be used below).

Addendum. If M is smooth, then there is an € product structure 30M X / ^
M which is smooth off U X I, where U is a "standard c singular set".
Topologically this is an c topological regular neighborhood of a locally finite
1-complex. Smoothly it is contained in a smooth € regular neighborhood of a
locally finite smooth 2-comρlex K U T. K has H2(K; Z) = 0. T is a disjoint

union of 5-stage towers, attached to K along circles in general position with

respect to the intrinsic 1-skeleton Kl9 and which do not separate components

of K — Kx. There is a framed immersed transverse sphere for each component

of K — Kλ disjoint from the rest of K U T. Finally each tower, sphere, and

component of K — Kλ has diameter < c.

This is rather complicated, but it will turn out we can push 2-complexes off

such things by topological isotopy, and by smooth isotopy after small finger

moves. (See the proof of 2.2.2.)

The smooth structure of the singular set is unlikely to be simplified much. It

is possible that the topological structure may be improved to: a union of

topological 4-balls. Note that if M is compact and 1-connected, then a

1-complex lies in a ball.

The next is the 5-dimensional analog of Ends I, Theorem 1.4. There are also

relative and approximate versions corresponding to Ends I, 2.1 and 2.5. Refer

to Ends I for terminology.

2.1.2. End theorem. Suppose X is a locally compact locally \-connected

metric space. Suppose e: M -* X has a tame \-LC end, and dim(M) = 5. Then

a completion of e: dM -» X extends to a topological completion of e.

2.2. The annulus conjecture, and smoothίngs of 4-manifolds. We begin with

our best approximation to the hauptvermutung.

2.2.1. Theorem. Suppose h: M -» N is a homeomorphism of smooth A-mani-

folds, and c: N -> (0, oo). Then h is c isotopic to a homeomorphism which is

smooth except on an "c semistandard" singular set. (See below for "semistan-

dard ".) This can be held fixed on a closed set with a neighborhood on which h is

smooth.
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Suppose the mapping cylinder of h, denoted Nh, has a smooth structure

extending the given one on M U N U Kh where h is smooth on h~ι(K) -* K.

Then projection (Nh; ΛΓ, N) -> N makes this a smooth (δ, l)-connected,

(δ, Λ)-cobordism over iV, for all δ: N -> (0, oo). The thin A-cobordism theorem

(relative version, preserving the product structure given over K) would then

apply to give small product structures. The homeomorphism M -» N from this

product structure is a close approximation to h, and is smooth off a standard

singular set. If the approximation is close enough, local contractibility of the

homeomorphism group [4] provides an isotopy to h. Therefore the theorem

would follow from a smooth structure on Nh.

By a semistandard singular set we mean: an c regular neighborhood of a

smooth 1-manifold S C M, a function δ: M -> [0,1) such that δ~\0) = S and

δ < c, and a δ standard singular set in M — S. (We have made no attempt to

beautify this.) If there were a smooth structure on the mapping cylinder of

h: M — S -* N — h(S)we could get a δ approximation to this with δ standard

singular set. But the choice of δ ensures that a δ approximation would extend

to an € approximation on all of M, by defining it to be h on S -> h(S). This
gives semistandard singularities.

Finally we find S. Since Nh is 5-dimensional, the extension problem is a map
(Nh, M U N) -> BTop/o [9]. Since Nh ^ M X / this is the suspension of a map
M -* Top/O =* S 3 U2Z>4 U (higher cells). Deform into S3 U2D

4 and make
transverse to the circle {pt} U [-1,1]. The inverse image serves as S, since the
obstruction is trivial on the complement.

This completes the proof of 2.2.1. Applied to the special case of an open
handle we get

2.2.2. Handle straightening (Generalized annulus conjecture). Suppose h: Dj

X RΛ~J -* W is a homeomorphism of smooth manifolds, smooth on the boundary.

If j — 0 or 1 then h is isotopic rel boundary and a neighborhood of the end to a

map which is smooth on a neighborhood of DJ X {0}. This is generally false if

j = 2, but there is an isotopy to a map smooth on a set V, which can be taken to

be either a neighborhood of D2 X {0} after some finger moves to introduce

self-intersections, or the image of a neighborhood ofD2 X {0} under a topological

ambient isotopy {rel 8 and oo).

We note the unfortunate possibility, unlike higher dimensions, that a topo-

logical ambient isotopy can change the smooth structure. (Concordance does

not imply isotopy.) A little more information about 2-handles is given in 2.2.4.

The original form of the annulus conjecture was: suppose/: Sn -> Dn+ι is a

topologically locally flat embedding. Then the region between Sn and f(Sn) is

homeomorphic to Sn X / (an annulus). The case n — 0 of the theorem implies
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this if n = 3: M. Brown showed [1] that / extends to an embedding Dn+X -*

Dn+\ the theorem provides an ambient isotopy of a neighborhood which

makes this smooth, in which case the result is well known (and easy). This is

now known in all dimensions, the higher-dimensional cases being the key step

in the Kirby-Siebenmann theory [8], [9].

Proof of 2.2.2. Apply 2.2.1, holding a neighborhood of the boundary

(where h is smooth) fixed. We use the local contractibility of homeomorphisms

[4] to see that we can hold a neighborhood of the end fixed also. Now in the

casesy = 0 or 1 there is a smooth ambient isotopy of Dj X {0} off the singular

set. If j — 2 since it is topologically 1-dimensional there is a topological isotopy

of D2 X {0} off. It remains only to see that there is a differentiable isotopy off

after finger moves.

Let K U T be the core of the smooth description of the singular set, and put

D2 in general position. Intersections with the towers T can be pushed down

into the manifold part of K. We arrange the algebraic intersection of D2 with

each component of K — Kx to be algebraically zero: since H2(K,Z) = 0 the

algebraic intersections come from a cochain on Kλ. This can be realized as

intersections by pushing pieces of D2 across arcs in the 1-skeleton. So far we

have changed D2 only by smooth isotopy.

Choose smoothly immersed Whitney discs for the intersections D2 Γ\ K.

Since the attaching circles of the towers do not separate components of

K — Kλ9 the Whitney arcs in K can be chosen to lie in the manifold part. Push

the Whitney discs off the towers T through K, and use the transverse spheres

to the components of K — K{ to get discs disjoint from K. Finally make the

discs disjointly embedded by pushing intersections off through D2. They are

disjoint from ^ U Γ now, but may intersect D2. Remove intersections with D2

by pushing D2 off through itself. These are the finger moves of the theorem.

Finally use the Whitney discs to push D2 off K. The image of the D2 with

finger moves is now disjoint from the singular set of the homeomorphism.

The reason the theorem is false fory = 2 without finger moves comes from

Donaldson's theorem [2]. Consider the Kummer surface, which has quadratic

form Es θ Es θ 3[^λ

0]. Since there is no smooth manifold with form 2E%, it is

impossible to find 3 smoothly embedded 2-spheres representing the 3[ξ)1

0]

summands (otherwise do surgery). Freedman [6, Theorem 1.9] has constructed

smooth immersions, together with topologically embedded Whitney 2-handles

(D2 X R2) which can be used to make the spheres topologically embedded. If

all of the topological 2-handles, considered as smooth manifold homeomorphic

to D2 X R2, contained smooth 2-handles, then we would obtain the forbidden

smooth embeddings.
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This completes the proof of 2.2.2. Immersion theory [7], [12], [11], [9]
interprets the handle result as a calculation of homotopy groups of classifying
spaces. Therefore we immediately obtain

2.2.3. Corollary. The map TOP(4)/0(4) -> TOP/O is ^-connected. Conse-
quently any ^-manifold has a smooth structure in the complement of a point,
extending the canonical structure on the boundary.

Freedman's embedding theorem, and the central nature of the Whitney
trick, makes clear the importance of smooth structures on D2 X R2. The main
theorem of Freedman [6] is that a Casson handle is homeomorphic to D2 X R2.
The next proposition relates the general case to this class of examples. For this
we define an embeddingy: D2 X (int D2) -*• D2 X R2 which is the identity on
the boundary to be weakly unknotted if there is a (topological) ambient isotopy
of the standard D2 X (int D2) rel boundary and a neighborhood of the end,
into the image of j .

2.2A. Proposition. Every smooth structure on D2 X R2 smoothly contains a
weakly unknotted Casson handle. Any Casson handle has a smooth weakly
unknotted embedding in the standard structure.

All of these are understood to be standard on the boundary, (dD2) X
(int D2). Note that putting the two clauses together gives: there is a topological
ambient isotopy rel boundary of D2 X R2, so that the image of D2 X (int D2)
has a strange smooth structure.

Proof of 2.2.4. In each case we construct a Casson handle in the standard
D2 X R2 by: begin with D2 X {0}. Do finger moves to introduce intersections.
These have standard embedded discs spanning the kinks. Do finger moves on
the cores of these inside regular neighborhoods of the discs. Repeat infinitely.
In the first case the finger moves are necessary to avoid the singularities of a
homeomorphism D2 X R2 -> W given by 2.2.1. In the second case we are
realizing some preassigned pattern (this is an essential step in Freedman's
proof).

The unknottedness comes from an observation of R. Edwards that we can
undo the finger moves on the core, inside the Casson handle and obtain a disc
isotopic to the original core. This depends on a double unknotting lemma of
Casson and Gordon. However it is easy to see if the Casson handle is built
with Whitney and accessory discs, as in [15]. A finger move comes with a
canonical Whitney disc which undoes it. Later stages of the construction give a
5-stage tower inside a regular neighborhood of this disc, so by Freedman an
embedded Whitney disc. This smaller Whitney disc also undoes the finger
move, and gives an isotopic image of D2 X {0} inside the handle.
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2.3. Handlebody structures on 5-manifolds. Suppose M is a manifold, 9 0 M

a codimension 0 submanifold of 9M. A handlebody structure on (Λf, 9 0 M) is a

description of M as built up by attaching layers of handles to the top of a

collar 9 0 M X /. There were shown to exist if dim(M) > 6 by Kirby and

Siebenmann [9]. The hauptvermutung for 3-manifolds shows that a 4-manifold

has such a structure if and only if it is smoothable. The next theorem settles the

remaining case.

2.3.1. Theorem. Any 5-manifold pair (Λf, 9 0 M) has a (topological) hand-

lebody structure.

Proof. It is sufficient to consider the compact case. Also suppose 9 0 M and

dγM (= dM — int 90Af) are nonempty; delete a ball ( = 0 or 5-handle) if not.

The obstruction to finding a vector bundle structure on the stable tangent

bundle is a map to Bτop/O. As in the proof of 2.2.1 this is trivial on the

complement of a locally flat 1-manifold. By pushing pieces of this to the

boundary we can assume it consists of finitely many flat arcs from (int 90Λf) to

(int 9,Λf). Delete these, and at least one arc ending on each component of ΘOM

and 9 ^ . Denote the result by (M\d0M
ι,dιM

ι). Then each component of

djM] is open. By the Stability Theorem 2.2.3 there is a 0(4) structure on the

unstable tangent bundle, and by immersion theory a corresponding smooth

structure extending the canonical one given on 9(8,.Aί1). Since the bundle

structure extends to M 1 , again immersion theory extends the smooth structure

to all of M 1 .

The ends of M\ d0M
ι are topologically collared as [0, oo) X S3 X /, so are

(δ, Λ)-cobordisms over [1, oo) C [0, oo) for any 8 > 0. (Or alternatively proper

Λ-cobordisms satisfying Freedman [6, 1.12] or 2.6.1 below.) The proof of the

Λ-cobordism theorem asserts that a handlebody structure on M\ 9M1 (which is

smooth) sufficiently small near the ends, can be manipulated so that the

handles near the ends cancel (topologically). This leaves a finite handlebody

structure on (M\d0M
ι). Replacing the arcs gives a finite handlebody struc-

ture, on a manifold easily seen to be homeomorphic to M.

2.4. Topological transversality. Map transversality concerns a map/: M -> X

with M a manifold and X containing a microbundle. The assertion is that / is
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homotopic to a map transverse to the microbundle. Submanifold transversality

concerns locally flat submanifolds P, Q C M, and asserts that one is ambient

isotopic to a submanifold transverse to the other.

2.4.1. Theorem. Map transυersality holds in all dimensions. Submanifold

transversality holds except possibly in ambient dimension 4 with one submanifold

of dimension 3 and the other > 2 {i.e. dimension of intersection > 1).

Proof. The cases excluded by Kirby and Siebenmann [9, essay 111] are

those with ambient dimension 4, preimage dimension 4, or one submanifold of

dimension 4 and the other of codimension 1. The preimage dimension 4 cases

follow from Freedman's theorem [6, Corollary 1.4], via Scharlemann [17]. The

ambient dimension 4 map theorem and submanifold of dimension 4 follow

from the almost smoothability of 4-manifolds (2.2.3).

Submanifolds of a 4-manifold remain. Working locally, we may assume the

one of larger dimension, say P, is a smooth submanifold of a smooth

4-manifold. If the other, Q, has dimension 0 or 1 then the Handle Straight-

ening Theorem 2.2.1 provides an isotopy to a smooth submanifold, which can

then be made transverse. The case remaining is Q of dimension 2.

By the handle straightening theorem, the nonsmooth surface is isotopic to a

smooth one, Q', after some finger moves which introduce self-intersections.

Each finger move comes with a topological Whitney disc. As in the proof of

2.2.4 we can find a smooth 5-stage tower inside a neighborhood of this disc.

Now by smooth isotopy we can make Q' with its towers transverse to P. Then

push intersections with the towers off through Q'. Finally undo the finger

moves in Qf with a Freedman disc inside the towers. This gives a surface

topologically isotopic to Q (see 2.2.4), and transverse to P.

We remark here that N2 C M4 is the only dimension in which locally flat

codimension 2 submanifolds are not known to have normal bundles [10].

2.5. Local flatness. The homotopy criteria for local flatness extend to

dimension 4, except for codimension 2.

2.5.1. Theorem. Suppose Np C int(M 4), with p = 0,1, or 3. Then N is

locally flat in M if and only if it is \-LC embedded.

Considerably stronger (but more complicated) statements are true. In partic-

ular Theorem 3.4.1 of Ends I is now known for M", n > 4, except for

codimension 2 in n — 4. Note that the manifold factor hypothesis is redundant

[16]. In codimension 1, Theorem 3.4.2 of Ends I is now known for dimensions

^ 4. The proof given here gives a sharpened version of Lemma 4.3 of Ends I,

from which these things follow.

Proof. According to the higher-dimensional characterization, N X R is

locally flat in M X R. By restricting to an open set in N if necessary, we may

assume that N X R is flat: there is a homeomorphism on a neighborhood



ENDS OF MAPS III: DIMENSIONS 4 AND 5 511

θ: (NX R)X R' -> MX R. Choose / large enough so that M X {0} and

Θ(N X [t] X Bj) are disjoint. Define W = Θ(N X (-oo, /] X Bj) Π MX

[0, oo), and define/?: W -> JV X [0, oo) by projecting NX RX RJ to N, and the

radius in the RJ coordinate. Note that N X [0, t] = /Γ^TV X {0}).

We claim that by modifying the [0, oo) coordinate by an automorphism, the

map p: W — N X [0, /] -> N X (0, oo) can be made a (δ, /z)-cobordism over

N X (0,1) for any 8: N X (0, oo) -* (0, oo).

The theorem follows from this claim: let c: N X (0, oo) -»(0, oo) be projec-

tion on the second coordinate. Then by 2.1.1 there is a δ so that a (δ, 1)-

connected (δ, Λ)-cobordism over NX (0,1) has an e product structure. The

claim gives a (δ, A)-cobordism, which is (δ, l)-connected if j (the codimension

of N) is not 2. The choice of e ensures that the homeomorphism between the

ends of this ft-cobordism extends continuously by the identity on N to give a

homeomorphism of a neighborhood of N C N X {t} X RJ with a neighbor-

hood ofNCMX {0}. Therefore N is locally flat in M.

We verify the claim. There is a deformation retraction of M X [0, oo) to

M X {0} which is standard on N X [0, oo) and preserves its complement. This

restricts in particular to give a deformation of W in M X [0, oo ). Next there is

a deformation retraction of N X RX Rj to N X (-oo, t] X RJ\ standard on

N X R and preserving its complement. Use this second retraction on the image

Θ(N X R X RJ) to push the image of the first retraction (on some neighbor-

hood of N X [0, t]) into W. This gives a deformation of a neighborhood of

iV X [0, t] in W to M X {0}, standard on TV X [0, t] and preserving its comple-

ment. On W — N X [0, t] this gives a proper deformation retraction of some

neighborhood of the end over N X {0} into one boundary component. This

retraction satisfies δ estimates in the iV coordinate for sufficiently small r in the

(0, oo) coordinate, because it extends to W by the standard deformation of

N X [0, t] to N X {0}. Properness can be used to obtain δ estimates in the

(0, oo) coordinate after reparameterization, as in the proof of 2.7.1.

This gives a δ-deformation retraction of (a neighborhood of the end of)

W — N X [0, t] to one boundary. A deformation to the other boundary is

obtained similarly, giving it the structure of a (δ, Λ)-cobordism.

2.6. Cell-like maps. The next result extends the resolution theorem of [16]

to dimension 4.

2.6.1. Theorem. Suppose (X, dX) is a ^-dimensioned ANR homology mani-

fold, with dX a manifold. Then there is a cell-like map (resolution) M -» X with

M a manifold, which is a homeomorphism on the boundary. Any two such are

boundaries of a resolution of X X /, so in particular are € homeomorphic for any

c > 0 .
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This is now known in every dimension except 3, where it depends on the

Poincare conjecture. We note Edwards' shrinking theorem [3] has no 4-dimen-

sional analog yet, so we do not have a characterization of manifolds in that

dimension.

The following corollary (of uniqueness, with X SL manifold) fills the gap

between theorems of Armentrout (dim = 3) and Siebenmann (dim > 5), so is

known in all dimensions. (Assuming no fake cells in dimension 3.)

2.6.2. Corollary. A cell-like map between 4-manifolds can be approximated by

homeomorphisms.

Proof of 2.6.1. According to [16], X X R has a resolution, N ^ XXR

which is a homeomorphism on the boundary. The End Theorem 2.1.2 (rel

boundary version) applies to one end of the composition N -> X. The boundary

of the resulting completion is a resolution (cf. Ends I, 3.2.2). Given two

resolutions /: M -» X, / ' : AT -> X, we get a cell-like map of the double

mapping cylinder XyU Xf, -* XX I. Apply [16] to resolve the double mapping

cylinder, then the composition to X X / gives the uniqueness statement. The

Thin Λ-cobordism Theorem 2.1.1 gives e product structures (over X) on

resolutions of X X /.

2.7. 5-dimensional /z-cobordisms. The objective is to use the thin /z-cobor-

dism theorem to obtain results which do not involve c.

2.7.1. Proper /z-cobordism theorem (weak version). Suppose (M; 30M, 3jM)

is a ^-dimensionalproper h-cobordism with finitely many \-connected ends. Then

there is a topologicalproduct structure in a neighborhood of the ends. If M itself is

l-connected, then M is a product.

Notice that Freedman's version [6, Theorem 10.4] is not restricted to finitely

many ends. For example it applies to proper /z-cobordisms of the universal

cover of (Sι X S 3 ) p ! X S3).

Proof. There is a proper map to a 1-point union of half-open intervals

VΛ[0, oo) which takes each end to an interval. Since the /z-cobordism has

proper deformation retractions, we can describe its size in terms of closed

intervals in [0, oo). Then by composing with a compression toward 0 we can

convert this into a δ estimate, any 8 > 0. It can therefore be made a (δ, /z)-

cobordism over V w[0, oo). Similarly if the ends are 1-connected we can make

it (δ, l)-connected off of V π[0,1], and if M is also 1-connected we can make it

(δ, l)-connected over all of V n [0, oo). Then apply the Thin Λ-Cobordism

Theorem 2.1.1.

2.7.2. Proposition. Suppose (M,d0M,dιM) is a compact ^-dimensional h-

cobordism such that ττxMhas a free abelian group of finite index. Then some finite

cover of M has a product structure.
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It may be possible to extend this to poly- (finite or cyclic) groups (i.e., finite

index poly Z) by using the methods of [5].

Proof. We show that for every δ > 0 there is a finite cover M -» Tn which

is a (δ, l)-connected (δ, Λ)-cobordism over Tn. The Thin Λ-Cobordism Theo-

rem 2.1.1 will then apply.

Suppose (after finite cover if necessary) that /: M -> Tn induces isomor-

phism on πλ. Choose deformations of M to 90Af, 3jM. Then in the universal

cover f:M-*fn = W these have some bounded diameter b, as measured in

R". Let k be so large that kS > b. Then

/ \/k
M/kZn >Rn/kZn •IT/Z11 = Tn

has deformations of diameter < δ.

There is a similar argument for (δ, 1 ̂ connectedness: let S be the 1-skeleton

of M and R the mapping cylinder of S to the 2-skeleton of Tn. Since / is an

isomorphism on irx, the inclusion S C M extends to a map R -* M. On the

universal cover there is some bounded distance between the inclusion R cRn

and the composition R -» M -> Rn. Pass to a cover as above to get skeleta and

distance < δ. Any relative 2-complex δ-deforms into this one, so has a δ lift.

2.7.3. Corollary. Suppose/: W -> Dι X T4~J is a homotopy equivalence which

is a homeomorphism on the boundary. Then some finite cover of f is homotopic rel

boundary to a homeomorphism.

Proof. It follows from 5-dimensional surgery that there is an Λ-cobordism

from W to Dj X T4~J.

3. Proof of the main theorems

The key to the proof is the Disc Deployment Lemma 3.2, which disjointly

embeds an infinite number of discs with c control. Essentially this is all that is

missing from the high-dimensional proof. The deployment lemma follows from

careful use of the pushing operation described in 3.1. This is built up of

standard operations. See [14] for simple descriptions and applications of these

operations.

These constructions are valid (up until the application of Freedman's

theorem) in both the differentiable and topological settings. However, as

remarked in the introduction, the topological case uses basic facts about discs

(approximation by immersion, transversality) which require the smooth case in

their proof.

3.1. Pushing over a transverse sphere. The data is: M is a 4-manifold with

immersed surfaces CUC2, and framed immersed spheres C{, C2'. These are all
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in general position and have intersections qi G Cz Π C/, p G C, Π C2 (and

possibly others). In applications C/ will usually be a transverse sphere (i.e.

C, Π Cf = #,), but we do not require this here. We picture this with half of

these surfaces drawn 1-dimensional, so that the intersections can be drawn

correctly.

Next there is a disc D attached to Cλ U C2 by an arc which changes sheets at

p (usually a Whitney disc), and a surface E which intersects D. This completes

the data. The objective is to move E off of D.

Choose arcs aλ, a2 in C, from p to qi9 and an arc b from the intersection

E Π D to C
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Modify E as follows: near the intersection point E Π D push E along the arc

b9 off D. This introduces new intersection points with Cx. Remove these by

connected sums with parallel copies of C{, along arcs parallel to bx in Cv Call

the result E'.

connected sum

Parallels
ofcξ

We say that Ef is obtained from E by pushing to C, and over C{. As

suggested by the terminology there is a canonical regular homotopy from E to

E'. We will not use it, so will not display it.

The important properties of E' are:

(1) New intersections of E' with any surface result from intersections with

C\-Pv

(2) These intersections occur in pairs, with Whitney discs. The Whitney discs

intersect only surfaces which intersect C{ ~~ p2-

(3) E' and these Whitney discs lie in a regular neighborhood of the data given.

These Whitney discs are constructed as follows: let C[ intersect a surface F,

and choose an arc from F Γ) C{ to pλ. There is a ribbon lying between the

copies of this arc on the copies of C\ used in the connected sum. This

continues by a ribbon between the parallel tubes used in the connected sum.

The result is a Whitney disc for the intersections E' Π F which satisfies all the

conditions, except for an intersection point with C2 just below/?. Finally take a

connected sum of this Whitney disc with C[ along the arc a2.
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Whitney
disc

In most applications of this operation we will want to change E' further, to

make it disjoint from some of these F which intersect C[ — pλ. We cannot

immediately push E' across the Whitney disc supplied in (2). Usually it will

intersect some G (which intersects C[ — p2), and we want E' Π G — 0. What

we will be able to arrange is that intersections are allowed between F and G.

Therefore after pushing G off the Whitney disc through F, we can use it to

separate E' and F.

G pushed off
through F

The end result is that at the expense of finger moves (Casson moves) of G

through F, we can separate E from D, G, F. We will repeat this argument in

each application, to specify what the F, G are.

3.2. The disc deployment lemma. Suppose X is a locally compact, locally

\-connected, metric space. Then given c > 0 there exists a 8 > 0 (c, 8 are

functions, X -> (0, oo) if X is not compact) such that: given the data

(1)/: N4 -> Xproper, (8, l)-connected.

(2) Ca, dCa -> N, dN are immersed 2-discs with disjoint boundary circles, are

locally finite, and have algebraic intersections Ca Cβ — 0.
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(3) Cj -> N is a set of framed immersed transverse spheres for the Cα, and

(4) Cα, C*a have images in X of diameter < δ,

then there exists a collection of disjoint 5-stage towers Ta-> M bounding the

curves 3Cα with the same framings, with images in X of diameter < c5 and smooth

if M is smooth.

We will usually use Freedman's theorem to embed discs in all these towers.

Recall that transverse spheres for a collection intersect the whole collection in

the single points Ca Π C'a.

Proof. We will show that in the situation of 3.2 we can make the Ca disjoint

from each other. We then build 5-stage towers by embedding single layers 5

times.

The Cα are separated in two steps. First they are separated into groups. The

number of operations required, hence the size estimate, depends on the

numbers of groups which can intersect. Since we will be able to choose δ after

the number is known, we can control the size of this step directly.

Next the discs inside a group are separated from each other. The number of

operations required for this cannot be estimated. However, we will build

enough data into each "group" so that these operations can be done in a

regular neighborhood of the group. The final size estimate comes from the size

of (components of) the groups.

The first step is to construct Whitney discs for the intersections CaΠ Cβ,

a Φ β. Since algebraically Ca Cβ = 0 the intersections can be arranged in

pairs with Whitney circles. These circles have images of diameter < 2δ in X.

Since X is locally 1-connected, if δ is small enough the circles extend to maps

of discs of diameter < γ, for any preassigned γ > 0. Then since N -+ X is

(δ, l)-connected these lift within 8 to discs in N.

Call these discs D^. We change them to be Whitney discs disjoint from C*

and C^, and to have zero algebraic intersections.

Spin about arcs on dD^ to correct the framing, if necessary. This makes

them Whitney. Take connected sum with the C* to make disjoint from C.

Then correct the algebraic intersections. This can be done by pushing some

intersections among the D^ to C* and over CJ, (operation 3.1). The new

intersections are algebraically zero, since they even have Whitney discs. These

operations involve connected sum of Da with C«, only if Ca Π Db φ 0 and

Db Π Da Φ 0 for some b. Therefore the result has diameter < 3γ 4- 4δ.

It remains to make the D^ disjoint from C^. At every intersection point push

CJ, to C+ and over CJ,. The resulting (C*)' also intersect the /)*, but only in

new intersections with Whitney discs. The Whitney discs intersect (CJ,)' and D

since the C do. Push the intersections of Z># off across D^. Then push (CJ,)'

across the Whitney discs. The D^ have been changed by finger moves, and are
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disjoint from (C^)'. Again these moves involve only adjacent discs and spheres,

so have limited diameter ( < 12δ).

Group separation. Suppose we have the data of 3.2, and also the Whitney

discs constructed above, all of diameter < 8. Suppose the C* are assigned to n

groups C, *,• ,Cn *. Then they can be modified to satisfy the previous

hypotheses, except now diameter < 12wδ, and for iφj, C/s!t Π CjΛ — 0 .

Furthermore this modification can be done in a regular neighborhood of the

data given.

We actually separate the Whitney discs, then push across them. Let Dι ^

denote the Whitney discs for intersections between discs in C f > and Cj *,y > /.

Let D[JtH]tm denote U^.D^.

At all intersections of DλΛ with D [ 2 , Π ] f # push D[2n]ifi to C* and over C*.

Since C\ Π D^= 0 this gives separate DxΛ and D'[2n]^. It introduces in-

tersections D[2,n],* n C* i n P a i f S with Whitney discs. The Whitney discs may

intersect D[2n]^ and C^. Push C* off through C*, and push Df

[2n]^ across

the disc.

This separates Dλ ^ and D[2n]^ reproduces the other data, and increases

diameter by a factor of 12 or so.

Repeat the process to separate Z)2)* from ^[3^]*. Since the ^[3,,,]* a r e

already disjoint from Dx ^ and the separation takes place in a neighborhood of

^[2,Λ],* U C* U ( C # — ̂ i,*)» it does not create new intersections with Dλ^.

After n steps, the D^ are separated as desired, and have diameter < 12wδ.

Next use these Whitney discs to move C*. Push ClΛ across the D l r This

may introduce intersections among the C, *, but they become disjoint from

Cj #, j > 1, and stay disjoint from C£ and Dj #,j> 1. Repeat to separate all

This proves the statement of "group separation". However, we have to

separate more data for each group before we try to separate within groups.

Suppose the Cji(ί are separated as above. Choose small Whitney discs ΌJ ̂  for

each group, and separate them by the same argument. Do this a third time:

choose Whitney discs EjΛ for the intersections of Dj^, and separate them. The

final data we require is transverse spheres Dj ̂  which are also separated. Note

the Z), E are disjoint from C^.

Construct D\ ̂  by beginning with small 2-spheres which intersect Dx ^ in

exactly two points. Push one point to C+ and over C^. Aside from the

remaining point D[^ n D u these intersect only C^ and other D[ ̂  These

intersections occur in pairs with Whitney discs, which also intersect only C^

and D{ +. Separate D\Λ from C* as usual: push C* off the Whitney disc

through C^, and then push D{ ̂  across the disc. Repeat to construct spheres
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Dj^. Since the construction takes place in a neighborhood of C^,* which are

disjoint from D[Λ, D^ is disjoint from D[Λ. Continue, to obtain Dj+.

We now have the following statement: given n, c, there is δ so that if we

begin with discs C* of diameter < δ and assign them to n groups, we can

separate the following for these groups: the C/J|c, Whitney discs for these (DiΛ\

Whitney discs for these {EiΛ\ and transverse spheres Z>/*. Finally all of these

have diameter < c.

With this we can complete the argument, except for the choice of the groups.

Fixy. A regular neighborhood of DjΛ U EjΛ U DjΛ satisfies the hypotheses of

the group separation statement, forgetting about e, δ and letting each Dj a be a

group. The conclusion is that we can separate the D} a completely, inside this

regular neighborhood. Since the groups /, j have disjoint neighborhoods, we

can separate all the D^ completely. Push across them to separate the C*

completely.

Finally we explain how to choose the groups. In the last step all we know

about the separated Dj^ is that they lie in a regular neighborhood of the data

Dj ^ U Ejx U Dj^. We arrange this regular neighborhood to have small com-

ponents.

Suppose c is the eventual size goal. Cover X by open sets with compact

closure, and diameter < c. Choose a locally finite subcover. From this we get a

cover {Yt) such that each component of Yέ has diameter < e. (Yx is a maximal

subset of the locally finite cover whose elements are disjoint. Y2 is a maximal

subset of the remainder, and so on.) If K is a (large) compact set in X, it will

intersect finitely many of the Yi9 say n. Then there is γ > 0 so that for each i if

the components of Yi which intersect K are enlarged by adding points with γ,

they will still be disjoint. Now let δ be small enough to separate n groups of

discs and end up with size < γ.

If we start with data in 3.2 of size less than this δ, and assign discs to groups

depending on which Yt their image intersects, we will be able to separate them

completely, over K. Such δ over various K can be pieced together to give

δ: X -> (0, oc) which works over all of X. (This piecing is not absolutely trivial,

however.)

This completes the disjoint deployment of single discs. As indicated at the

beginning of the proof, the tower statement follows by applying this re-

peatedly.

3.3. Proof of the thin /z-cobordism theorem 2.1.1. Again we remark that

since the first step is to choose a handlebody structure, we must have the

smooth version and therefore 2.3 before we can even start the topological case.

The proof given in Ends I, 6.3 is valid up to the last paragraph of page 313.

This reduces to 2- and 3-handles with 2-sρheres correctly paired algebraically
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in the middle level. Next the handles can be moved by isotopies so that the
union of both collections of spheres has (framed immersed) transverse spheres.
This is essentially Lemma 10.1 of Freedman [6], and can easily be done with c
control. Then framed immersed Whitney discs can be found as in the proof of
the deployment lemma, disjoint from the spheres and transverse sphere. The
deployment lemma itself replaces these by disjoint towers. Applying Freed-
man's embedding theorem we obtain disjoint embedded topological Whitney
discs. Now the high-dimensional proof resumes, cancelling the handles and
leaving a product structure.

We justify the addendum. The only nonsmoothness comes from the last
Whitney push, across discs from Freedman's theorem. The product structure is
therefore smooth off a smooth regular neighborhood of the image in 30M of
the attaching sphere of the 3-handles, and the 5-stage towers. Transverse
spheres come from those for the attaching spheres, and the cohomology
statement follows from the properties of the intersection form. This gives the
smooth addendum.

For the topological addendum, note the structure is smooth off a topological
regular neighborhood of the image of the attaching spheres, union the discs
embedded in the 5-stage towers. The image in d0M of the ascending spheres of
the 2-handle is the linking circle. So the image of attaching spheres for
3-handles is a sphere with punctures, and boundaries of the punctures identi-
fied to these circles. Whitney discs close off loops between sheets.

Such a thing has the same regular neighborhood as a surface with fewer
punctures and an arc to the circle.



ENDS OF MAPS III: DIMENSIONS 4 AND 5 521

Do this with all Whitney discs and we are left with embedded discs (which

collapse to points) and various arcs. This proves the topological addendum to

2.1.

3.4. Proof of the end theorem 2.1.2. As with the Λ-cobordism theorem the

only missing ingredient is the disc deployment lemma. This is required to

construct (topological) approximate completions, in the fourth paragraph on

page 320 of Ends I. Note that transverse spheres are supplied. This and the

topological thin Λ-cobordism theorem imply the end theorem (Ends I, 2.8).

This concludes the proof.
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