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A LOWER BOUND FOR
THE FIRST EIGENVALUE

OF A NEGATIVELY CURVED MANIFOLD

RICHARD SCHOEN

There has been much work in recent years on the relation of the low
eigenvalues of a compact Riemannian manifold to the geometry of the mani-
fold. For Riemann surfaces with positive genus, it was observed by P. Buser [1]
that one can find a compact hyperbolic surface of fixed genus (hence fixed
area) with arbitrarily small first eigenvalue (see [10] for more information on
this problem). For hyperbolic manifolds of dimension larger than two, Mostow's
theorem implies that the topology uniquely determines the geometry, so the
above phenomenon for λ! is likely to be a two-dimensional phenomenon. In
this note we show that this is the case. Precisely, let M" be a compact
Riemannian manifold with sectional curvature bounded between two negative
constants. We show here that if n > 3, then λx(M) has a lower bound
depending only on the volume of M. Actually, for n > 3, Gromov [7] has
shown that an upper bound on volume implies an upper bound on diameter
(for negatively curved M). Using this result, a bound such as ours would
follow from a general result of S. T. Yau [11]. For n — 3, the diameter is not
bounded in terms of volume (see [2, 3.13]) so our result seems to be of most
interest in this case. Buser [2] has observed that our dependence on the inverse
square of the volume is best possible.

The case n = 3 of our theorem was announced in the Hawaii Symposium in
1979. In this note we give a simplified version, valid for all n > 2, of our
original proof. We wish to thank P. Buser for pointing out reference [9] which
is used in the proof of Lemma 1.

The main results

We will assume throughout that Mn is a compact n dimensional manifold.

We state our main result.

Received December 14, 1981. Research supported by the Sloan Foundation.



234 RICHARD SCHOEN

Theorem. // the sectional curvatures of M satisfy the inequality -1 < KM <
-κ2 for some K E (0,1) and ifn ^ 3, then the first eigenvalue λx(M) satisfies

where δn = 4-1ω^_1[ene-ε»(1"1<)]2""-2, εn = 4<"+3\ ωn = volume of the unit ball
in R", and

We now introduce some terminology. Given a hypersurface Σ in M and a
local orthonormal frame e,, -,en__x tangent to Σ, the mean curvature vector is
given by

where D is the Levi-Civita connection on Λf, and ( )N o Γ means projection
normal to Σ. We will need three preliminary lemmas. The first is an isoperi-
metric inequality.

Lemma l Suppose Σ is a closed {possibly disconnected) hypersurface in M
which bounds a region Ω in M. Suppose the mean curvature vector H points
everywhere into Ω, and assume the inequalities

Then we have Vol(Σ) > (n - l)Vol(Ω).
Proof This result follows from the paper of Heintze-Karcher [9]. The

estimates of [9, p. 453] applied on one side of Σ give the inequality

Vol (Ω)<N°°(coshr- (min |# | ) s inhr) ' 1 *dr\vol(Σ),

where ( )+ indicates the positive part of a function. Using the fact that
\H\> 1, we get immediately the conclusion of Lemma 1.

For a point P G M, let i(P) denote the injectivity radius of M at P. Our
next lemma gives an estimate of i(P) for points along a hypersurface in terms
of the volume of the hypersurface.

Lemma 2. Suppose M satisfies KM < -κ2 for some K ̂  0, and let Σ be a
hypersurface in M with mean curvature H satisfying \ H \ < Λ. Suppose also that
Vol(Σ) < oo and %n~2(Σ - Σ) = 0 where %s denotes Hausdorff s dimensional
measure. Then for every point P EΣwe have

where ωn denotes the volume of the unit ball in Rn.
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Proof. The proof is a modification of a well known monotonicity inequal-

ity for the area of a submanifold of Rn. We do the proof assuming that Σ is

closed since an easy cutoff argument can then be used to prove the general

case. By standard comparison theorems, if r denotes the distance function to a

point, P E M, then we have the Hessian comparison

provided r < i(P). Restricting this inequality to Σ and taking the trace we have

Integrating this inequality over Σ τ = Σ Π Bτ(P) and applying Stokes theorem

we get

τ 4 ' v r !> (w ~1)(1 ~τ(Λ ~ κ ) + ) v o i ( Σ ' ) '
w h e r e V is t h e c o n n e c t i o n o n Σ . S ince for a n y r e g u l a r v a l u e r of r\Σ w e h a v e

j-Vo\{Ί.τ)=j \vr\-\

and since | Vr \ < 1 on Σ, we get the differential inequality

τ ^ V o l ( Σ τ ) > (« - 1)(1 - τ(A - κ)+ )Vol(Στ).

Integrating from ε to i(P) we have

Letting ε 10 then gives the conclusion of Lemma 2.

The third preliminary lemma we need is a version of the Margulis lemma.

Lemma 3. Suppose -KKM< 0, and define a set 0 by © = {P E M: i(P)

< εn : = 4" ( w + 3 )}. The set 0 is an open set having finitely many components

0 P ,07. Each component &i is a neighborhood of a simple closed geodesic Γz

with length (Γ,) < 2 εn. Moreover, each 0, is topologically equivalent to Sι X

B"~ι, and is star-shaped with respect to Γz in the sense that every point of 0, is

connected to Γy by a unique geodesic arc lying within 0, and meeting Γz orthogo-

nally.

Proof. By a version of the Margulis lemma given by Buser-Karcher [3,2.5.4]

we have, under our hypotheses, that if α, β are loops at a point q E M which

have lengths | a \ , | β | < 2εn then α, β generate a cyclic subgroup of irx(M, q).

Lemma 3 can be derived from this result as follows. Let P G 0 be a given

point, and let P be a point in the universal cover M of M lying above P. Since

i(P) < εΛ, there is a deck transformation γ which translates P a distance less

than 2εn. Because M has negative curvature, there is a unique geodesic σ which
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is preserved by γ. Let (g) denote the cyclic group of deck transformations
which preserve σ. For any h E (g), the function δh(x) = d(x9 hx) is a convex
function on M which achieves its minimum value on σ. The set 0f. defined by

6,. = {xEM: δh(x) < εn for some A E <g>}

is therefore a finite union of convex neighborhoods of σ. Hence 6. is star-shaped
with respect to σ. Now if k is a deck transformation such that both x and fc(x)
lie in 6,. for some x, then for some integers r, s, gr (resp. gs) translates x (resp.
k(x)) a distance less than 2εn. But then both gr an k~λgsk translate x less than
2εM and hence we have k~λgsk E (g). From this it follows that g, k generate a
solvable subgroup of TΓ, which is cyclic by Preissman's theorem and hence
k G (g). Therefore, the set ^i/{g)— 6,. is a domain in Λf containing the
original point P and is a component of Θ. This gives the conclusions of Lemma
3.

Proof of Theorem. To prove the theorem we will use the isoperimetric
quantity h(M) of Cheeger [4] defined by

mm{Vl9V2}

where the infimum is taken over all smooth embedded hypersurfaces Σn~ι (not
necessarily connected) which divide M into two components with volumes
VVV2. In [4], Cheeger proved the inequality

(1) λι(M)>ih2(M).

Thus we concentrate our efforts on giving a lower bound on h(M). We will use
the following existence theorem from minimal surface theory (see [5, Chapter
5], [6])

Existence Theorem. For any v with 0 < v < \ Vol(M), there exist an open
set Qv C M with VolίΩ^) = υ, and a smooth embedded hypersurface Σ^ with the
property that Σv = dΩυ, %S(ΣV - Συ) = 0 for s > n - 8, and &υ has the
extremal property

Vol(Σj = inf{Vol(9Ω): Ω c Mwith Vol(Ω) = υ).

Moreover, the mean curvature vector H of Σv satisfies \H\= Hvfor a constant

Hv > 0 as well as the property that H points everywhere into or everywhere out of

From the extremal property of Συ it is clear that

(2) h(M) > inf{u-'Vol(2j: 0 < v <
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We divide our proof into two cases. First, if Hv > 1 then Lemma 1 can be
applied to give

(3) t Γ ι V o l ( Σ β ) > ι ι - l .

Note that one has to take some care in applying Lemma 1 because for large n,
Σv may have singularities. By the observation of Gromov [8], a nearest point to
Συ from any given point of M ~ Συ is always a regular point and hence the
methods of [9] are applicable.

The remaining case is Hυ < 1. Now if it were true that

(4)

where εn = 4~(/l+3), then we would be finished in light of (l)-(4). Therefore we
assume that (4) does not hold. Then from Lemma 2 we would have i(P) < εn

for every p €Ξ Συ\ that is, we have Σv C θ in the terminology of Lemma 3.
Since n > 2, the set M ~ 0 is connected. Let Uυ be the component of M ~ Σv

which contains M ~ 0, and let Ω'Ό = M~UΌ and Σ; = Συ Π 8Ω;. By construc-
tion we have

(5) tr'voicsj > voi(o;rVoi(Σ;)

(recall that t; < ^Vol(M)). Let Ω be a component of Ω̂  and let Σ = Σ o Π 3Ω.
Then Ω C 0̂  for some component 0, of 0. Since 0Z is the quotient by a cyclic
group of a star-shaped neighborhood of a geodesic σ in M (see the proof of
Lemma 3), the distance function to σ is a well defined function in 6f which we
denote by p. By standard comparison methods we have ΔMp > (n — \)κ in 6f.
Thus Stokes theorem applied in Ω gives

(n- l)/cVol(Ω)<Vol(Σ).

Since any two components of Ω̂  have disjoint closures, we can sum these
inequalities over all components of Ω̂  to conclude

( 6 ) V O K '

Combining (l)-(6) we have

, 1
1 4 Vol2(M)J

where δn = 4-1ω^1[ε^-e» ( 1-' t )]2"-2, εn = 4" ( n + 3 ). The final inequaUty of the
theorem follows from this because by Lemma 3 there is a point P E M with
i(P)> εn hence the volume satisfies

Vol(Λ/) > ωne"n.
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Thus we have

where δ^κ = 4~\n - X)2κ2ω2

nε
2

n

n. (Note that for n ^ 3 we have 8^κ < 8n.) This

completes the proof of the main theorem.
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