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Abstract

In this paper we discuss the relationship between the various techniques of proving vanishing

theorems and the method of obtaining the complex-analyticity of harmonic maps between Kahler

manifolds. We then obtain sharp results on the complex-analyticity of harmonic maps with the

curvature conditions on the target manifold expressed in natural and familiar terms and also

results concerning curvature characterizations of compact symmetric Kahler manifolds, Barth-

Lefschetz type theorems, the generalization of the strong Lefschetz theorem, and vanishing

theorem^.

Introduction

This paper is an outgrowth of an attempt to apply the method of proving the
strong rigidity of compact Kahler manifolds to obtain vanishing theorems for
holomorphic vector bundles. To prove the strong rigidity of negatively curved
compact Kahler manifolds, one tried to use harmonic maps/: M -> N between
compact Kahler manifolds (for definition and background of harmonic maps
see [17], [18], or [53]) and the technique of considering Δ | 3/|2. (The technique
of considering the Laplacian of the square norm was first introduced by
Bochner [10] in the case of harmonic tensors on Riemannian manifolds and
later applied by Kodaira [33] to (0, #)-forms on a Kahler manifold with values
in a Hermitian holomorphic line bundle.) With this method of proving strong
rigidity one encountered the difficulty of two curvature terms of opposite signs,
one involving the Ricci curvature of M and the other involving the full
curvature tensor of N. In [53] the author overcame this difficulty by the
following variation of the Bochner-Kodaira technique which for convenience's
sake we refer to in this paper as the 33 Bochner-Kodaira technique. One
considers the integral of dd(Σaβga^fa Adfβ) A ω^2 over M instead of
Δ I 3/|2, where gajis the Kahler metric of N, ωM is the Kahler form of M, and
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n is complex dimension of M. This 33 Bochner-Kodaira technique enables one
to get rid of the Ricci tensor of M and thereby to conclude the complex-analyt-
icity (or conjugate complex-analyticity) of the harmonic map/if rankR df^Λ
and the curvature tensor of M is strongly negative in the sense of [53].

It is natural to attempt to apply this 33 Bochner-Kodaira technique to
obtain vanishing theorems for negative bundles. Suppose E is a holomorphic
vector bundle over a compact Kahler manifold M with Hermitian metric haβ
along its fibers, and suppose φ is a harmonic E-valued (0, q)-ϊoτm. One
considers the integral of ^(Σaβhaβψa Λ φ^) Λ oή^q~λ over M. In this way
one obtains the following vanishing theorem. Let

be the curvature form of E. Let 0 < q < n. If for every nonzero E-valued
(0, #)-form (ξa) at any point of M

()
(*)q

is a negative multiple of ω"M,

then Hq{M, E) — 0. In particular, if the curvature tensor of an ^-dimensional
compact Kahler manifold M is very strongly negative in the sense of [53] (as,
for example, in the case of a compact quotient of the open «-ball), then for
0 < q < n the tangent bundle TM of M satisfies (*)q and Hq(M, E) = 0.

At first these vanishing theorems obtained by the 33 Bochner-Kodaira
technique seemed to the author to be new theorems until he became puzzled by
the following situation. Since the curvature tensor of Pn is the same as that of
the w-ball with an opposite sign and since the tangent bundle of the «-ball
satisfies (*)q for 0 < q < n, it is natural to expect that the cotangent bundle
Ωpw of Pw should also satisfy (*)q for 0 < q < n. However, this would lead to
the vanishing of H\Pn, Ωp ) in the case n > 1 which is a contradiction,
because the Kahler form of Pπ is a nonzero class in that cohomology group.

To resolve this puzzle, I examined closely the curvature form of the dual
bundle of a bundle satisfying (*)qm I discovered that a bundle satisfies (*)q if
and only if its dual bundle satisfies the positivity condition for (0, #)-forms in
the sense of Nakano [41]. In this paper we call this positivity condition Nakano
ςr-positivity (see §4.1). For example, the curvature tensor of a Kahler manifold
is very strongly negative in the sense of [53] if and only if its cotangent bundle
is positive in the sense of Nakano [41] (or Nakano 1-positive in the terminol-
ogy of this paper). The vanishing theorems obtained by the 33 Bochner-Kodaira
technique turn out to be no other than the usual vanishing theorems for
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Nakano ^-positive bundles expressed in dual form via Serre duality. The puzzle
resulted from the fact that the dual bundle of a Nakano ^-positive bundle is in
general not Nakano ̂ -negative (see §4.2).

The original Bochner technique is equivalent to applying integration by
parts to the global square norm of the gradient of a harmonic tensor. In the
case of a Hermitian holomorphic vector bundle E over a compact Kahler
manifold, the gradient of a harmonic E-valued (0, #)-form can be decomposed
into two parts. One part is the (0, l)-gradient and the other is the (1, (^-gradi-
ent. Integration by parts applied to the global square norm of the (0, ^-gradi-
ent yields the vanishing theorem for positive bundles. Integration by parts
applied to the global square norm of the (l,0)-gradient yields the vanishing
theorem for negative bundles. For convenience's sake in this paper we refer to
these two techniques respectively as the V Bochner-Kodaira technique and the
V Bochner-Kodaira technique. The V and V Bochner-Kodaira techniques are
transformed to each other by the Hodge star operator composed with conjuga-
tion. The Akizuki-Nakano vanishing theorem [1] for E-valued harmonic
(/?, #)-forms when E is a line bundle is the consequence of comparing the V
and V Bochner-Kodaira techniques.

Further investigation shows that the 93 Bochner-Kodaira technique is equiv-
alent to the V Bochner-Kodaira technique in the sense that each term in the
equation obtained by the 33 Bochner-Kodaira technique can be transformed
by using identities in multilinear algebra to the corresponding term obtained
by the V Bochner-Kodaira technique. The identity in multilinear algebra used
in transforming the curvature term is not transparent and is an interesting
identity by itself (see §3.6). This identity plays a very useful role in this paper
involving the complex-analyticity of harmonic maps. Moreover, this identity,
together with the relationship between the curvatures of a Hermitian bundle
and its dual, leads us to realize that the underlying reason why the vanishing
theorem of Calabi-Vensentini [12] holds is the Nakano #-positivity of the
cotangent bundle of a bounded symmetric domain for an appropriate q (see
§§6.4 and β.5)._

Since the 33 Bochner-Kodaira technique is equivalent to the V Bochner-
Kodaira technique which in turn can be transformed to the V Bochner-Kodaira
technique by the Hodge star operator composed with conjugation, from the
method [53] of proving the complex-analyticity of harmonic maps by the 33
Bochner-Kodaira technique we can derive two other methods of proving the
complex-analyticity of harmonic maps. One uses the V Bochner-Kodaira
technique and the other uses the V Bochner-Kodaira technique. The one using
the V Bochner-Kodaira technique was presented in [55] without explaining
how it is related to the method of [53]. In this paper we present the one using
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the V Bochner-Kodaira technique. This is the most natural one, because it is
parallel to the proof of the usual Kodaira vanishing theorem and, more
importantly, the Money trick of handling the boundary term in the case with
boundary works most directly in the V Bochner-Kodaira technique. The
method of proof by means of the V Bochner-Kodaira technique explains why
one of the curvature conditions on the target manifold is the Nakano #-positiv-
ity of the cotangent bundle.

By using the V Bochner-Kodaira technique, we get in this paper a proof of
the conjecture [55, §6] concerning the complex-analyticity of harmonic maps of
appropriately high ranks from compact Kahler manifolds into quotients of
irreducible bounded symmetric domains. This proof makes use of the identity
in multilinear algebra mentioned above, the eigenvalues of the curvature
operator computed by Calabi-Vesentini [12] and Borel [11], and the computa-
tion of what we call the degree of the strong nondegeneracy of the bisectional
curvature (see §5.8) which is a measure of the dimensions of the null spaces of
the bisectional curvature. We have to rely on the computation by Zhong [66] of
the degree of the strong nondegeneracy of the bisectional curvature in the case
of the two exceptional domains. This conjecture yields as a corollary the strong
rigidity of the compact quotients of irreducible bounded symmetric domains of
complex dimension > 2. The proof of strong rigidity via this conjecture is the
most natural and elegant and by far the simplest proof.

As a corollary of the confirmation of this conjecture we show by using the
method of Kalka [32] that, for a complex submanifold off appropriately high
dimension in a compact quotient of an irreducible bounded symmetric domain,
the deformation as a submanifold agrees with the deformation as an abstract
manifold.

Besides the quotient of bounded symmetric domains, these results more
generally hold for Kahler manifolds whose cotangent bundle is Nakano
1-semipositive and Nakano ^-positive and whose bisectional curvature is
strongly/7-nondegenerate, when the rank over R of the map is at least 2p + 1
or the complex dimension of the submanifold is at least/? + 1.

Since the Morrey trick is directly applicable to the V Bochner-Kodaira
technique, we obtain also, in the case where the domain manifold has boundary,
results concerning the complex-analyticity of harmonic maps satisfying the
tangential Cauchy-Riemann equations and concerning the extension of maps
satisfying tangential Cauchy-Riemann equations from the boundary of the
domain manifold to holomorphic maps defined on the whole domain mani-
fold.

Though the complex-analyticity of harmonic maps was discussed in [53], [55]
and extended to the case with boundary in [42], [65] (see Remarks 5.19), yet
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there was no real understanding of the geometric meaning of the curvature
conditions on the target manifold introduced in [53] and used in the other
papers. Our discussion of the various Bochner-Kodaira techniques not only
makes sharper the results on the complex-analyticity of harmonic maps but
also reduces the curvature conditions on the tangent manifold to the more
natural and familiar notions of Nakano 1-semiρositivity and /?-positivity of the
cotangent bundle and the strong/7-nondegeneracy of the bisectional curvature.

In [56], [54] the curvature characterizations of the complex projective space
and the complex hyperquadric were obtained by proving the complex-analytic-
ity of energy-minimizing harmonic maps by the second variation formula. In
this paper we obtain the following partial result on the curvature characteriza-
tion of general compact symmetric Kahler manifolds. If the cotangent bundle
of a compact Kahler manifold is Nakano 1-seminegative and if at some point
the bisectional curvature is irreducible, then either the Kahler manifold is an
irreducible Hermitian symmetric manifold with respect to the given Kahler
metric, or its cohomology righ with coefficients in R is isomorphic to that of
the complex projective space. As a consequence, on an irreducible compact
Hermitian symmetric space of rank > 1 any other Kahler metric which makes
the cotangent bundle Nakano 1-seminegative must be a constant multiple of
the standard invariant Kahler metric. Here the irreducibility of the bisectional
curvature at a point means that it is not possible to decompose the holomor-
phic tangent space into two orthogonal direct summands so that the bisectional
curvature in the direction of two tangent vectors, one from each summand, is
always zero. For the proof of this result we do not use energy-minimizing
harmonic maps. Instead, we use multilinear algebra (cf. [8], [21], [37], [43]) to
transform the curvature term in the v Bochner-Kodaira technique to show
that harmonic (/?, #)-forms are parallel. Then we use Simon's result [51] on the
transitivity of holonomy systems and WeyΓs theory [64] of the invariants of the
unitary group to obtain our result.

In Schneider's scheme [49] of using the Grauert-Riemanschneider vanishing
theorem [22] to prove Barth-Lefschetz type theorems for compact symmetric
Kahler manifolds, he had trouble with the curvature term when the rank of the
symmetric manifold is > 1. The multilinear algebra used in proving the paral-
lelism of harmonic (/?, #)-forms in the curvature characterization of compact
symmetric Kahler manifolds can be used to complete Schneider's scheme.
However, Schneider's proof of the strong hyper-g-convexity of the complement
of a complex submanifold in a compact symmetric Kahler manifold seems to
be invalid. If one indeed has the hyper-^-convexity as Schneider claimed, the
Barth-Lefschetz theorems at the homotopy level can easily be proved by using
Morse theory, which we do in this paper instead of completing Schneider's
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scheme. More precisely, we prove the following. Let M be a compact Kahler
manifold of complex dimension n with nonnegative bisectional curvature. Let
V be a complex submanifold of M admitting a tubular neighborhood U with
smooth boundary such that M — U has strongly hyper-#-convex boundary.
Then vrv{M, V) vanishes for v < n — q. The proof involves using the second
variation formula for arc length and what we call #-plurisubharmonic func-
tions which has the property of being subharmonic on local complex submani-
folds of complex dimension q.

We also prove the surjectivity portion of a Barth-Lefschetz type theorem at
the homology level for compact Kahler manifolds whose bisectional curvature
is nonnegative and appropriately nondegenerate. This is done by proving a
generalized strong Lefschetz theorem which asserts that cupping with the top
Chern class of a Hermitian vector bundle is surjective (respectively injective)
for cohomology groups of dimensions greater than (respectively smaller than) a
certain number when the curvature of the bundle is semipositive in the sense of
Griffiths and is appropriately nondegenerate.

Finally the close look we have at the various Bochner-Kodaira techniques
leads us to two, though very minor, results on vanishing theorems. One is a
generalization of the Akizuki-Nakano theorem to the case of a semi-negative
line bundle over a compact Kahler manifold and a corresponding statement
for vector bundles (see §§4.7 and 4.8). Another is a vanishing theorem for
semipositive line bundles over a non-Kahler compact complex manifold which
is motivated by the Grauert-Riemanschneider conjecture (see §10).

In this paper we will use the summation convention of summing over any
index which appears once as a subscript and once as a superscript. The usual
process of raising and lower indices by using metric tensors will be performed
without explicit mention. Standard notations in Kahler and Riemannian
geometries which carry obvious meanings will not be explained. For example,
when z' are the local holomorphic coordinates, 3, means d/dzι and 3,- means
3/3z'; the components of a (p, q)-ϊoτm φ with values in a vector bundle are
φ"..., - . . - . For a complex manifold M we denote the holomorphic tangent
bundle by TM, and the bundle of holomorphic ^-forms by Ω^. We denote the
holomorphic tangent space of M at P by TM p. The space TM P as a vector
space over R is isomorphic to the real tangent space of M at P (when M is
regarded as a real manifold) under the isomorphism defined by taking the real
part of a tangent vector with complex coefficients. This isomorphism is
actually an isomorphism over C, when the real tangent space of M at P is made
into a C-vector space by the almost complex structure operator of M. Because
of this isomorphism, we denote the real tangent space of M at P also by TM P.
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We will explicitly mention which of the two meanings TM p takes on when it is
used.
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1. The V and V Bochner-Kodaira techniques

1.1. The original Bochner technique [10] is to integrate the Laplacian of the
pointwise square norm of a harmonic form over a compact Riemannian
manifold, yielding thereby two terms. One is the global square norm of the
gradient (i.e., the covariant derivative) of the harmonic form. The other
involves the curvature tensor. If the curvature tensor satisfies some suitable
positivity condition, then it follows that the harmonic form must be zero or
parallel. Equivalently, one can regard this procedure as transforming the global
square norm of the gradient of the harmonic tensor by integration by parts to a
term involving the curvature tensor. In the process of integration by parts the
principlal step of computation is to compute the Laplacian of the harmonic
tensor.

1.2. In the case of a Hermitian holomorphic vector bundle E over a
compact Kahler manifold, the gradient of an E-valued (p, q)-foτm can be
decomposed into two parts. One part is the (0, l)-gradient, and the other is the
(l,0)-gradient. Integration by parts applied to the global square norm of the
(0, l)-gradient in the case p = 0 yields the vanishing theorem for positive line
bundles. This is due to Kodaira [33]. We call this technique the V Bochner-
Kodaira technique.

One can also apply integration by parts to the global square norm of the
(1,0)-gradient in the case/? = 0 and get the'vanishing theorem for negative line
bundles. We call this technique the V Bochner-Kodaira technique. Usually the
vanishing theorem for the negative bundle is obtained^ from the vanishing
theorem for the positive bundle and Serre duality or from the Akizuki-Nakano
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vanishing theorem [1]. It is not proved by using the V Bochner-Kodaira
technique.

One can obtain the Akizuki-Nakano vanishing theorem [1] by comparing the
integration by parts for the (0, l)-gradient of φ with that for the (1,0)-gradient
of φ in the case of a harmonic (/?, #)-form φ. This is not the usual proof which
uses the identity [3, Λ] = - V -̂Γθ* where Λ is the transpose of the operator
defined by multiplication by the Kahler form.

The principal step in the V and V Bochner-Kodaira techniques is the
computation of the Laplacian of an ^-valued (/?, q)-ϊorm. The formulas for
such computations are well-known. We collect them below and fix notations.

1.3. Let M be a Kahler manifold with Kahler metric gzy. Its curvature
tensor is

RifkΓ= Wjgki— g%gkβjgtΓ>

and its Ricci curvature tensor is

Rif= £ Rifkί

Note that in this convention Rjis negative definite as a Hermitian matrix
when the sectional curvature of M is positive.

Let E be a Hermitian holomorphic vector bundle over M with Hermitian
metric haβ along its fibers. The curvature form

of E is given by

This convention is chosen so that Θaβ is a positive (1, l)-form when E is a
positive line bundle, and Ωφf agrees with the curvature tensor when E is the
holomorphic tangent bundle of M. Let

Let v/? Vf denote the covariant differential operators. Let D = 93* + 3*3 and
Π = 33* + 3*3. Let

be an ^-valued (/?, #)-form on M, where Ip - (iv -,ip), Jq = (jl9- -Jq\
dzJp — dziχ Λ Λdz'p, and dzJ* — dzjχ Λ ΛdzJ«. From

(1.3.1) (a«p)U ..Λ = i-iy ί (-O'
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where jv means that the index jv is removed, it follows that

q

v=\

0 3 2 ) - Σ *&?,/;...(/>..../;
v — 1

+ y y R kΓ-ωa - - -
& £ i j Ψi (A:) i / (/) j >

μ=\ v=\

where (k)μ means that the index in the μth place is replaced by k.
When M is compact, by contracting formula (1.3.2) with ψ/(p\q\) and

integrating over M one obtains

ί, + iiβ piis, =

where 11 | | M denotes the global L2 norm over M, and Vφ denotes the
^-valued tensor with components \fi>" J. Formula (1.3.3) is the V Bochner-
Kodaira technique which yields the vanishing theorem for positive line bun-
dles.

By applying the commutation formula for [vz, V/]φ to formula (1.3.2), we
obtain

2^ 2 Λ,- jvΨ?r (k)μ - ipj
7

]---(i)v--jq'
μ=\ p=\
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When M is compact, by contracting formula (1.3.4) with φ/(p\q\) and

integrating over M one obtains

n-l'Λ-1

where Vφ denotes the E-valued tensor with components V,φ/ /. This formula
is the V Bochner-Kodaira technique which yields the vanishing theorem for
negative line bundles. In the same way as deriving (1.3.4), by using D instead
of D, we obtain

χ w ; f a
μ=\

(! 3-6) - Σ ΛXΛ...(/V..Λ
V=\

V <7

+ Σ Σ Riΐιj$ivmμ ipλ ώv - ΰ
μ=\ v=\

Another way to derive this formula is to apply formula (1.3.4) to φ and taking
complex conjugates of both sides. In this derivation one has to be careful about
the interpretation of φ. One has to lower the index a of φa, and regard
% ~ hβzΦ" as a (ήf, /?)-form with coefficients in the dual bundle E* of E. The
curvature form of E* is the negative of that of E (cf. Lemma 4.3). This
accounts for the fact that the terms of (1.3.6) which involve the curvature form
of E differ in sign from those obtained by formally applying (1.3.4) to φ and
taking complex conjugates.

Subtracting (1.3.6) from (1.3.2) we obtain

(1.3.7)
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When E is the trivial line bundle, formula (1.3.7) gives an alternative proof of

the well-known formula D = D for (/?, #)-forms on a Kahler manifold, with

coefficients in the trivial line bundle.

When M is compact, by contracting formula (1.3.7) with φ/(p\q\) and

integrating over M one obtains

This formula yields the Akizuki-Nakano vanishing theorem [1] in the case of a

negative line bundle. This derivation is more transparent than the usual proof

using the identity [3, Λ] = /^T3*. It shows that the Akizuki-Nakano vanish-

ing theorem holds because of the failure of D — D due to the curvature of the

bundle.

1.4. The Hodge star operator * composed with complex conjugation can be

extended to an operator * mapping ^-valued (/?, #)-forms to £*-valued

(n — /?, n — g)-forms, where n is the complex dimension of M. It is straightfor-

ward to verify that the V Bochner-Kodaira technique applied to an Zs-valued

(p, q)-ϊoτm φ is equivalent to the V Bochner-Kodaira technique applied to the

£*-valued (n — p,n — q)-ίorm ϊ φ .

2. The Morrey trick for the boundary term

2.1. The Morrey trick was introduced by Morrey [40, p. 176, Th. 6.1] to

handle the boundary terms when the V Bochner-Kodaira technique is applied

to a domain with boundary. He did the case of (0, l)-forms, and Kohn [35, p.

113, Th. 5.6] extended it to the case of (/?, #)-forms.

We use the notations of §1. Let G be a relatively compact subdomain of M

with smooth boundary given b y G = {ρ<0}, where p is a smooth function on

M so that the pointwise norm of dp is identically one on 3G. Let Dom G 3*

denote the domain of the adjoint operator of the operator 3 defined for smooth

E'valued (0, # — l)-forms. Then a smooth E-valued (p,q)-ίoτm φ on G

belongs to DomG 3* if and only if

(2.1-1) S'^v, = 0

on 3G, where ρs = dsρ.
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When one tries to derive (1.3.3) from (1.3.2) with M replaced by G, one has
the following two additional terms on the right-hand side:

coming respectively from | | 3 φ | | ^ and llvφll^. (The boundary term form
H9*φllllc vanishes because φ belongs to DomG3*.) By using (1.3.1) we
combine these two boundary terms together to get

(2-1.2) -j Σ

From (2.1.1) it follows that for 1 < v < q

//•* Ί o \ / j . ίsΛ •/ f / /, ••/ •/

( Z . I . 3 ) p-(p-pJX v '" 79 — nψ PJ] Jv Jq

for some smooth ψa

TpJl"'jv' 'J" on G. Applying 2£ = 1 φ"/Vy p to (2.1.1) we obtain

^ — = ^ =

v=\ Pq v=\

v=\

= 0

on ΘG, because φ" /(Vy"p) = 0 on dG due to (2.1.1). Hence the boundary term
in (2.1.2) becomes

(q-l)\

We thus have the following formula:

ttdφUl + \\d*φ\\2c = ~

ntJn-\

( 2 L 4 )

for smooth E-valued (/?, ^)-form on G belonging to DomG 3*.
2.2. It is natural to ask whether there is a similar Morrey trick to take care

of the boundary terms of the V Bochner-Kodaira technique in the case of a
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domain with boundary. Hopefully this trick can yield vanishing theorems in
the case of pseudoconcave boundary so that it is in some sense dual to the
original Money trick used to take care of pseudoconvex boundaries. Unfor-
tunately so far such a dual Morrey trick has not been found. However, as
observed in §1.4 the V and V Bochner-Kodaira techniques can be trans-
formed to each other by the generalized Hodge star operator *. When the v
Bochner-Kodaira technique is applied to a smooth E-valued (/?, g)-form φ on
G, the boundary terms can be handled by expressing the integrand in terms of
ψ = *φ. A computation strictly analogous to that carried out above yields

( 2 2 1 )

-\)\JG ' m i+ {p-\)\{q-\)\JG

when ψ = *φ belongs to DomG9*. We need the condition ψ E DomG9*
instead of φ G DomG 9* because the boundary terms are handled by the
Morrey trick for the V Bochner-Kodaira technique after transformation by the
generalized Hodge star operator *. The condition ψ E DomG9* is easily seen
to be equivalent to the condition

(2.2.2) dp Λ φ = 0 at every point of 9G.

Because of a multilinear algebra lemma proved in §3.6 formula (2.2.1) for φ is
identical to formula (2.1.4) for *φ.

3. The 9 9 Bochner-Kodaira technique

3.1. In [53] the complex-analyticity of a harmonic map f:M-+N between
compact Kahler manifolds is proved under suitable negative_curvature and
rank conditions by considering the integral of 99(Λα)g9/αt Λ 9/ )̂ Λ ωn~2 over
M, where Λα^is the Kahler metric of N9 ω is the Kahler form of M, and n is the
complex dimension of M. This leads one to using this kind of integral to get
vanishing theorems for holomorphic vector bundles over compact Kahler
manifolds. More precisely, let E be a Hermitian holomorphic vector bundle



68 YUM-TONG SIU

with Hermitian metric ft^over an w-dimensional compact Kahler manifold M

with Kahler_form ω. For an ^-valued (0, #)-form φ on M the integral of

dd(haβ<pa Λφ^) Λ ωn~q~λ over M vanishes by Stokes' theorem. By expanding

the integrand one obtains a vanishing theorem. We call this technique the 33

Bochner-Kodaira technique. The vanishing theorem obtained this way looks at

first sight different from the vanishing theorems obtained from the V and V

Bochner-Kodaira techniques. However, upon closer observation this 93

Bochner-Kodaira technique is equivalent to the V Bochner-Kodaira technique.

This equivalence can easily be obtained by using the exterior algebra of

Hermitian vector spaces [62, Chap. I]. This is done in this section. The

knowledge of this equivalence will be used in later sections of this paper to get

new results on the complex-analyticity of harmonic maps.

3.2. Direct computation (by using normal coordinates of M and normal

fiber coordinates of E) yields

dd(haβφ
a A ^ Λ ωn~q'x) = pϊθaβA φa A " ^ Λ ωn~q~ι

(3.2.1) +haβDdφa A~^ Λ ωn~q-χ + (-\)q+lhaβdφa AΊU^ A ( o " " ^ 1

+ (-l)qhaβDφa Λ Ϊ V Λ <*n~q~X - haβψa A Ddφβ Λ co""^"1,

where Θα^is the curvature form of E (see §1.3), and Dφa (respectively Ddφa) is

the E-valued (1, #)-form (respectively (l9q+ l)-form) obtained from φ (re-

spectively 3<p) by covariant differentiation. Integrating it over M yields

/-F ί θαj3-Λ φa A ~^ Λ ωn~q~λ + f haoDdφa Λ ^ Λ ωn~q~ι

JM JM

1 f halβφa Λ dψβ Λ ω"-q-λ + (-\)q ί haoDψa A Dφβ A ωn-q-\

Λ/

~ ί haβψa A Ddψβ A ω"-q-1 = 0.
JM

We now apply integration by parts to the second term and the last term. From

/ \ φ ^ Λ ωn'q~x + (—l)<7"H1ΛΛ>g- 3φ α Λ 3φ^ Λ ω""^" 1,

it follows that

ί haβDdφa Λ ^ Λ ω'7"'7"1 = (-l)q ί haβ dtp" A dφβ A ω"~q~x.

Likewise

ί h g- φa A Ddψβ A ωn~q~x = (-l )^ + 1 f hao 3^α n-q-\

M
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Hence

( - 1 ) * f haβ 3φα Λ " θ ^ Λ ω"-*- 1 + (-1)* f haβDψa A ~D^ A «""*- ]

JM JM

+ fΛ ( θaoAφa A~^ Aωn~£ί-] = 0.
JM

We are going to transform, by using the exterior algebra of Hermitian vector

spaces, each term in (3.2.2) to a corresponding term obtained from the V

Bochner-Kodaira technique.

3.3. We collect together the formulas we need concerning exterior algebras

of Hermitian vector spaces. We use the following standard notations. Let L be

the operator of taking wedge product with the Kahler form ω. Let ( , ) be the

pointwise inner product. Let Λ be the adjoint operator of L with respect to

( , ). The Hodge star operator * is with respect to ( , ). A A:-form ψ is called

primitive if Λψ = 0.

For any primitive λ>form ψ and s < r

(3.3.1) Λ'L'ψ = 'Π (r - ί) I Π (π - k - r +y)UΓ~'Ψ-

Let εpq = (-i)kp+<MP+«+λχ}f-i)P-«. For any primitive (p9 q)-ίorm ψ with

p + q = k

"••* =

for 0 < / ̂  n - k. One has *Z/ψ = 0 if / > n - k.

Every λ -form v can be uniquely written as

(3.3.3) υ= ΣLrvr,
r

where each vr is primitive, and r runs from max(0, k — n) to the largest integer

[k/2] not exceeding k/2.

For proofs of these three formulas see [62, pp. 21-28].

3.4. Lemma. For any (1, q)-form η

Λ f Λ «>'q (n — q — 1)!

Proof. By (3.3.3) we can write uniquely η — η0 + Lηl9 where η 0 , ηx are

both primitive. Then by (3.3.1)

(3.4.1) Aη = ALηx = (n — q + l)η, .
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One has

(Lηx, Lηx)

Hence

(3-4.2) (η, η)= <τj0, ηo> + (n - q + l ) ^ , ηλ).

Since ε,^ = -εo,^-i by direct computation, it follows from (3.3.2) that

^ η Λί jΛ Co""*-1 = έ l f^(i | 0 + Lηx) Λ ( η 0 + Lij,) Λ ωn^~ι

Λ i " " * " 1 ^ - eo^-ii?o

 Λ ^

Λ L^^- 1 ^ - e o ^ l V l A L

, η o ) ~ ( n - q + l ) \ ( η l 9

= [(n-q-l)l<η09η0)-(n-q+l)\(ηl9ηι)]£,£
because (η0, Lηx)= (Aη0, ηx)= 0. By (3.4.2) we have

χ,Vι)-(n ~ q){n - q+

3.5. Lemma, (a)

where as before Θaβ - - fΛΏ,aβs^dzs Λ dz' and Ώaβ- = Ώttβs,-gsί with ω

f s Λ dz'.
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(b) Let ζ = ϊφ. Then

n\{n-q)\ "** '.'-«-.* it! "

Proo/. (a) Since φ^ is a (0, <7)-form, it is primitive. By (3.3.2),

-έO9θα/s- Λ f Λ / Λ ^ " " ^ Ί ) , = - *V Λ φ« Λ

Using local coordinates we have

Contracting both sides with g5' we obtain

)

from which the desired equation follows upon taking the inner product with

(b) We choose local coordinates and fiber coordinates such that both
Hermitian matrices haβ and gy/are identity matrices. Let Σ' denote summation
over distinct indices. Then

(n + IV ^ ^ ^
V1/ x/ a,β j } , —Jn u,v=\

ω
βftrWμ *«l njjq+r yr

Λ ί^l nfJq+2- y»TΓ

aβst~ *a\ - nt7g+2 • fnζβ\' nϊfq+2' • fn~^J >

<*,β Jq+2>'' Jn s>*

from which the desired equation follows, q.e.d.
In the proof of Lemma 3.5 computation is carried out pointwise, and only

multilinear algebra is used. By using local coordinates so that both Hermitian
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matrices haβ and g,/are identity matrices, we can combine Part (a) and Part (b)

of Lemma 3.5 together to obtain the following lemma in multilinear algebra

which will be used later in this paper.

3.6. Lemma. Let α, β run from 1 to r, andju Jn9 s, t from 1 to n. Fix a

positive integer q < n. Let £/,.../, Ξ^-fce complex numbers. Assume ίj...j is

skew-symmetric inj\y- — Jq. Define

Then

1

1

i_ lΛf A "aβstSϊJi j
V a,β,s,t,j\, Jq_ι

_, «//, • jq_,

q _ ι

β

3.7. We are now ready to transform the terms in (3.2.2) to terms obtained

from the V Bochner-Kodaira technique. The procedure is done pointwise. Fix

a point of M, and choose local coordinates of M and fiber coordinates of E so

that at that point both Hermitian matrices g,j-and haβ are equal to identity

matrices.

By applying (3.3.2) to the case ψ = 3φ and / = 0, we obtain

( Λ - g 1 ) |

By applying Lemma 3.4 to the case η = Dφa, we obtain

Λ D^ A

because Vφ = /)φ and 3*φα = ADψa.

Using Lemma 3.5(a) and ε lfί7 = -εo,^+i = (-I)<5r+1/-Tεo^» w e conclude that,
after we multiply the equation (3.2.2) by (-\)qελq/(n — q — 1)!, we obtain
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which is the same as the equation obtained by the V Bochner-Kodaira
technique.

3.8. Even in the case of Kahler manifolds with boundaries the 33 Bochner-
Kodaira technique is equivalent to the V Bochner-Kodaira technique. We
drop the condition that M is compact. Let G be a relatively compact subdo-
main of M with smooth boundary. Let φ be a smooth E-valued (0, <7)-form on
G. When we apply the 33 Bochner-Kodaira technique to G instead of M, we
get the following three additional boundary terms on the left-hand side of
(3.2.2) (besides the three integrals over G).

n-q~\

Jar. v H ' J KΠ

which is equal to

l f L-φ^
JdG( β f

JdG JdG

Let G — (p < 0}, where p is a smooth function on M so that the pointwise
norm of dp is identically one on 3D. We use the following formula to convert
the above two boundary integrals. For any (In — l)-form η on dG

ί η= f UpΛτi,M
he JdG\ n-

where on the right-hand side the integral is with respect to the volume form of
dG which is omitted.

As in the V Bochner-Kodaira technique in the case with boundary, we
assume that *φ belongs to DomG3*. According to (2.2.2) this condition is
equivalent to 3p Λ φ = 0 at every point of 3G. Hence

f haβ-ψa Λ I ^ Λ ωn-«-] = [ (dp Λ haβ-φ«
JdG JdG \

vanishes. For the other boundary term we have

From the vanishing of 3p Λ φ at every point of dG it follows that 3p Λ φ = pψ
for some £-valued (0, q + l)-form ψ on G. Applying D to both sides, we obtain

33p Λ φ — dp Λ Dφ — 3p Λ ψ
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at every point of dG. Hence

dp A ha0ψ
a A Dφfi = (-\)qhapψa A dp A Dtp*

βψ" Λ 39p Λ Ψβ + (-iY+lhaβψa Λ 3p Λ

at every point of dG, because dp A φ = 0 at every point of dG. Thus

Λ Kpf Λ <^ Λ ί ° π " ' " 1 ' ̂ y

The integrand corresponds to the value of the Levi form at *φ.

4. Various notions of positivity

4.1. In this section we give the various notions of positivity which will be

needed for the discussion of the complex-analyticity of harmonic maps and

other results of this paper.

Definition. Let M be a Kahler manifold with Kahler metric gff. A Hermi-

tian holomorphic vector bundle E over M with curvature form Θaβ = -

J^ΪΣijΩaβifdz' Λ dzj is said to be Nakano q-positiυe (respectively semiposi-

tiυe, negative, seminegative) if at any point of M with giJr= δ,7 (the Kronecker

delta), for any nonzero set of complex numbers ξf which is skew-symmetric in

the q-tuple Ip of indices, the expression

a,β,k,l,Iq_x

is positive (respectively nonnegative, negative, nonpositive).

Remarks. 1. Any subbundle of a Nakano #-(semi)negative vector bundle is

also Nakano ^-(semi)negative (cf. the computations of [26, p. 197, (2.14)]).

2. In the case when E is a line bundle, Nakano ^-positivity (respectively

semipositivity, negativity, seminegativity) means that at every point the sum of

any set of q eigenvalues of the curvature form is positive (respectively nonnega-

tive, negative, nonpositive) when the eigenvalues are computed with respect to

the Kahler metric of M.

Definition. E is said to be q-positiυe (respectively semipositive, negative,

seminegative) in the dual Nakano sense if at every point of M with g, / = δ/y, for
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any nonzero set of complex numbers ξf which is skew-symmetric in the #-tuple

Iq of indices, the expression

V i V i
a,β,k,l,Iq_λ

is positive (respectively nonnegative, negative, nonpositive).
Remarks. 1. When E is a line bundle, Nakano fc-positivity is equivalent to

λ>positivity in the dual Nakano sense. The same holds for semipositivity,
negativity, and seminegativity.

2. When the exterior product Λ qE of q copies of E is given the Hermitian
metric induced from E9 E is Nakano ^-positive (respectively ^-positive in the
dual Nakano sense) if and only if Λ qE is Nakano 1-positive (respectively
1-positive and the dual Nakano sense). The same holds for semipositivity,
negativity, and seminegativity.

3. The condition that the curvature tensor of a Kahler manifold is very
strongly (semi)negative as defined in [53] is equivalent to its tangent bundle
being l-(semi)negative in the dual Nakano sense.

4.2. For vector bundles of rank > 1 Nakano #-positivity is in general
different from qr-positivity in the dual Nakano sense. As an illustration we give
below the example which is responsible for motivating part of the discussion
which leads to the results of this paper. We take the holomorphic tangent
bundle TPi of P2. Using the Fubini-Study metric and a suitable coordinate
system, we have g, / = StJ and

^ l ϊ l ϊ = ^2222 = ~2,

with all the other components Ω^y being zero. The bundle TPi is 1-positive in
the dual Nakano sense, because the Hermitian matrix

Ω l ϊ l ΐ Ω1Ϊ2Ϊ
Ω l ΐ l2 Ω1Ϊ22
Ω 2Ϊlΐ Ω2Ϊ2Ϊ

\ O2Ϊ12 Ω2Ϊ2Ϊ

Ω121l

Ω1212

Ω22lΐ
Ω2212

Ω1221

Ω1222

Ω222Ϊ

Ω2222

ί2

0

0

\ 1

0

1

0

0

0

0
1

0

! \

0

0

2

is positive definite. However, the bundle ΓP is only Nakano 1-semipositive
and not Nakano 1-positive, because the Hermitian matrix

"1111 "111? "1?11 "191?1211

^21122112

Ω1222

Ω2212

Ω2225)

—
2
0
0
0

0
1
1
0

0
1
1
0

0
0
0
2
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is only positive semidefinite and not positive definite (the second and third

rows being equal).

4.3. Lemma. A Hermitian holomorphic vector bundle E over a Kάhler

manifold is q-positiυe (respectively semipositive, negative, seminegative) in the

dual Nakano sense if and only if its dual bundle E* is Nakano q-negative

(respectively seminegative, positive, semipositive).

Proof. Let haβ be the Hermitian metric of E. Then haβ is the Hermitian

metric of E*. Fix a point and choose local trivializations of E and E* so

that at that point h_aβ — 8aβ and dhaβ — 0. The curvature form &«£ =

- ^ - Γ Σ ί f y tiafijdzl ΛdzJ of 2s_is given by Ωα^ / = ^fijhaβ. The curvature form

Θ& = ~f^\j ®tβiJdzi Λdz* of E* is given by Ω ^ v = dfljh"*. Since

0 = dd(ha%j) = (33λαγ~ )hβ- + h^ddhβ- = 33*"* + ddhβ-,

it follows that Q*βij-= - Ω ^ y, from which the assertions of the lemma are

clear, q.e.d.

As a corollary of Lemma 4.3, any quotient bundle of a #-(semi)positive

bundle in the dual Nakano sense is also ^-(semi)positive in the dual Nakano

sense.

4.4. Definition. Let £ be a Hermitian holomorphic vector bundle over a

complex m a n i f o l d _ M of complex dimension n. Let Θα/8- =

- \/^TΣ/ y Qφjdz* f\dzj be the curvature form of E. The bundle E is said to

be Griffiths q-positive (respectively semipositive, negative, seminegative) if at

any point of_M and for any nonzero set of complex number ί-a the (1, l)-form

Σa β ®aβζaζβ has at least n — q 4- 1 positive (respectively nonnegative, nega-

tive, nonpositive) eigenvalues.

Remarks. 1. Clearly E is Griffiths ^-positive (respectively semipositive,

negative, seminegative) if and only if its dual bundle E* is Griffiths g-negative

(respectively seminegative, positive, semipositive). This property is different

from the case of Nakano positivity and negativity.

2. E is Griffiths ^-positive if E is Nakano ^-positive of if E is ^-positive in

the dual Nakano sense. The same holds for semipositivity, negativity, and

seminegativity. On the other hand, Demailly and Skoda [14], [15] proved that if

E is Griffiths l-(semi)positive over M, then E 0 det E and E* ® (det E)k are

both Nakano l-(semi)positive and are also l-(semi)positive in the dual Nakano

sense, where k is the minimum of the rank of E and the complex dimension of

M.

3. When E is a line bundle, Griffiths #-positivity (respectively semipositivity,

negativity, seminegativity) means that the curvature form has at least n — q + 1

positive (respectively semipositive, negative, seminegative) eigenvalues at every

point.



COMPLEX-ANALYTICITY OF HARMONIC MAPS 77

4. Any subbundle of a Griffiths ^-(semi)negative vector bundle is also

Griffiths #-(semi)negative when given the induced Hermitian metric (see [26, p.

197, (2.14)]). Any quotient bundle of a Griffiths #-(semi)positive vector bundle

is also Griffiths ^-(semi)positive when given the induced Hermitian metric.

The following lemma follows from the standard projectivization argument

(see [26, pp. 201-203]).

4.5. Lemma. Let E be a Hermitian holomorphic vector bundle of rank r over

a complex manifold M. Let π:P(E) -> M be the projective bundle over M

associated to E, and let L be the tautological line bundle over P(E) with the

Hermitian metric induced from that of E. Then the following two statements hold:

(a) E is Griffiths q-(semi)negative if and only if L is Griffiths q-(semi)nega-

tive.

(b) E is Griffiths q-(semi)positive if and only if L is Griffiths (q + r — 1)-

(semi) positive.

To conclude this section, we give a generalization of the Akizuki-Nakano

theorem to the case of vector bundles which are 1-seminegative and λ -negative

in the sense of Griffiths. This generalization will not be used in this paper, but

the idea of its proof will be used later in §9.

4.6. Lemma. Let M be a compact Kάhler manifold of complex dimension n

with Kάhler form ω. Let 1 < k < n and let ube a smooth (1, X)-form on M, which

is positive semidefinite and has at least k positive eigenvalues at every point of M.

For ε > 0 let ωε = u + εω. Then for ε sufficiently small the following condition is

satisfied at every point x of M: For p + q< k and for any subset A of p distinct

elements and any subset B of q distinct elements in {1, ••,«},

n

2 λ γ(ε, x)- 2 λa(ε9x)- 2 \s(ε> *)
γ=l a£A βBB

is positive, where λ^ε, x) > λ2(ε, x) > > λrt(ε, x) are the eigenvalues of u

with respect to the Kάhler metric whose Kάhler form is ωε.

Proof For x G M let λx(x) ^ λ2(x) > > λn(x) be the eigenvalues of u

at x with respect to the Kahler metric whose Kahler form is ω. The functions

λa(x\ 1 < a ^ «, are continuous functions of x. Clearly

Let/(ε, x) be the minimum of

n

2 λγ(ε, x) - 2 λ«(ε> x) - 2 '
γ=l «e/l 0G5
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over all A and B, where A is a subset of p distinct elements, and B is a subset

of q distinct elements in (1, -,«}. For/? + q even, let /, = /2 = ^(/? + q). For

/? + q odd, let /, = \{p + 4 — 1) and /2 = £(/? + q — 1). Clearly the mini-

mum/(ε, x) is achieved when A — {1, , /,} and B — {1, , /2}. Thus

k h

f(ε,x)= 2 λ«(ε>*) - Σ λ«(ε>*)
α = /, + l 0=1

which approaches k — (p + q) uniformly in x as ε approaches zero, because

each λa(x) is a positive continuous function on M for 1 < a < A:. Hence for ε

sufficiently small,/(ε, x) is positive for every x E M.

4.7. Proposition. Let M be a compact Kάhler manifold of complex dimension

n. Let 1 < s < n. Let L be a Hermitian holomorphic line bundle over M, which is

Griffiths λ-seminegatiυe and Griffiths s-negative. Then HP(M, Ω^ ® L) vanishes

for p + q^n — s.

Proof. Let ω be the Kahler form of M, and v the curvature form of L. Let

u — -υ and A: = « — s + 1. We use the notations of Lemma 4.6. Then the

assumptions of Lemma 4.6 are satisfied, and we obtain a sufficiently small

ε > 0. We give M the new Kahler form ωε. Fix /? and q with /? + q < k. Let φ

be an L-valued (/?, #)-form on M, which is harmonic with respect to the new

Kahler form ωE. On the manifold M with the new Kahler metric ωε (and with

E = L), when we take the global inner product of both sides of (1.3.7) with φ,

we obtain -l lθφll^ — H3*φ| |^ from the left-hand side, and obtain from the

right-hand side an expression which is > η 11 φ 112

M, where η is the minimum over

x G M of the function/(ε, x) defined in the proof of Lemma 4.6. Since η is

positive, it follows that φ is identically zero.

4.8. Theorem. Let M be a compact Kahler manifold of complex dimension n,

and let E be a Hermitian holomorphic vector bundle of rank r over M, which is

Griffiths \-seminegative and Griffiths k-negative for some 1 < k < n. Then

HP(M, Ω^ <8> E) vanishes for p + q ^ n - k - r + 1.

Proof. This theorem follows from Proposition 4.7 and the argument of

Schneider [48].

5. Complex-analyticity of harmonic maps

5.1. In [53] the complex-analyticity of a harmonic map between compact

Kahler manifolds when the target manifold is strongly negatively curved in the

sense of [53] was proved by using the 33 Bochner-Kodaira technique. The
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difference between Bochner-Kodaira techniques for bundle-valued forms and
Bochner-Kodaira techniques for harmonic maps lies only in the curvature
terms in the formula. Since the 33 Bochner-Kodaira technique is equivalent to
the V Bochner-Kodaira technique, the complex-analyticity of harmonic maps
can also be proved by using the V Bochner-Kodaira technique. Such a proof
was given in [55] without explaining how it is related to the old proof of [53].

Here we investigate the complex-analyticity of harmonic maps when the
target manifold is strongly seminegatively curved in the sense of [53]. A class of
examples of such target manifolds are the compact quotients of bounded
symmetric domains of rank higher than one. We obtain the complex-analytic-
ity of the harmonic map, when the curvature tensor of the target manifold is
very strongly seminegative in the sense of [53] and is sufficiently nondegenerate
and when the harmonic map has sufficiently high rank. This result for the case
of compact quotients of irreducible bounded symmetric domains of rank
higher than one was conjectured in [55, §8]. In the previous proofs [53], [55] of
the complex-analyticity of a harmonic map /, either the 33 or the V Bochner-
Kodaira technique was applied to 3/. This corresponds to the Bochner-Kodaira
techniques for bundle-valued (0, l)-forms. The vanishing of 3/(or 3/) follows
when one has the strongest kind of negativity for the curvature tensor of the
target manifold but only the weakest condition on the rank of/. Here we apply
the Bochner-Kodaira techniques to 3/Λ Λ3/(/? times). This corresponds
to applying the Bochner-Kodaira techniques to bundle-valued (0, /?)-forms.
The negativity required of the curvature tensor of the target manifold is
weaker. On the other hand, one has to assume that / has a higher rank. Since
the 33 and the V Bochner-Kodaira techniques are equivalent and since the V
and the v Bochner-Kodaira techniques can be transformed to each other by
the generalized Hodge star operator *, to prove the complex-analyticity of a
harmonic map / one can apply any one of the three Bochner-Kodaira tech-
niques to 3/Λ Λ3/. The 33 Bochner-Kodaira technique was used in the
proof given in [53], and the V Bochner-Kodaira technique in the proof given
in [55]. Here we choose the V Bochner-Kodaira technique to show how it is
applied to prove the complex-analyticity of a harmonic map. There is another
reason for this choice. In this paper we will consider also the complex-analytic-
ity of harmonic maps when the domain manifold has a boundary. To take care
of the boundary term one needs the Morrey trick which works most directly in
the V Bochner-Kodaira technique. The Morrey tricks for the other two kinds
of Bochner-Kodaira techniques are obtained only after transformation back to
the case of the V Bochner-Kodaira technique.

5.2. Let MJV be Kahler manifolds with Kahler metrics Σ™ ̂  haβdzadzβ,
1 respectively. We use the lower-case Greek letters α, β, γ,
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to denote the coordinate indices for M, and the lower-case Latin letters
z, j \ k, to denote the coordinate indices for N. Let G be a relatively
compact subdomain of N with smooth boundary. Let p be a smooth function
on N9 such that G — {p < 0} and dp is of unit length at every point of the
boundary 3G of G. Let /: G -> M be a map smooth up to 3G. (The results in
this section hold also when G is a compact Kahler manifold with boundary
instead of being the closure of a relatively compact subdomain of a Kahler
manifold N.)

Denote by Λ p(df) the exterior product 3/Λ Λdf(p times) which is a
(0, p)-foτm on G with values in the bundle / * Λ T 1 ' ° M . We apply the
generalized Hodge star operator * of N to Λ p(df)9 and obtain an (n9n — p)-
form ξ on G with values in/*Ω^. That is, ξ = (ξaι.. ) and

with

whereg,...^..,^ = d e t ί g ^ ^ / < w . Wedenote alsof by *(Λ<7(3/)).
We now apply to f the V Bochner-Kodaira technique. The vector bundle

f*Ω%f over N is in general not holomorphic. We can still use the V Bochner-
Kodaira technique, but the curvature terms are more complicated. We denote
by V; (respectively Vf) the covariant differential operator with respect to
3/3w' (respectively 3/3wz) for /*Ω^-valued forms. Denote by D the exterior
differential operator defined by covariant differentiation which sends /*Ωj£r
valued («, #)-forms to /*Ωj£rvalued («, q + l)-forms. Let D* be the adjoint
operator of ϊ^and let D = D*D +DD*. We now compute Df.

From

n
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*>=/?+ 1

= - i (-i
!>=/>+1

it follows that

Σ (-

The above computation runs exactly in the same way as the case of the V
Bochner-Kodaira technique applied to a holomorphic vector bundle; the
difference lies in the computation of the commutation [v, , VfJ which we are
going to carry out.

5.3. For the computation of [v, , V,rJ we choose normal coordinates of M
and N at the_points under consideration. Let ff = 3,/α, ff = 3/-/α, f* = 3/",
and ff = djfa. Clearly ff =ff and ff =ff. Denote the Christoffel symbols
and the curvature tensors of M and N respectively by Γ^γ, Tjk and Raβγ£, RjfM-
Though Γ and R are used for both manifolds, confusion is avoided by using
Greek letters for coordinate indices for M and Latin letters for coordinate
indices for N. We denote the Ricci tensor of N by R^-. From

1 ij &«, -apip+ι «(SV -iΛ_^

FJT

μ = i

v=p+\
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μ=\

μ=\

it follows that

Hence

Σ *Jβ&« ^. ..^. ίftfί
μ=\

n

~~ Σ RSFvk$av- apίp+ι-' -(i)r •/"„_„

n

2
=p+\

n

- Σ (-
v=p+\

P

μ=\

+ Σ
μΦv

n

+ Y ( U
v=p+ 1

«ΛH

t

Since
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vanishes by the symmetry of RsfJ'p in s, j and the skew-symmetry of

t h a t

(5.3.1) />

T Zί ZJ

μ=lv=p+\

5.4. We now consider the curvature term obtained from (5.3.1) by taking

the pointwise inner product of D ξ and ξ, namely, the term

We denote this term by C and we want to simplify it.

Let

Λ dfβi Λ Λdfβ*

f*ι ;S,βχ β,(iwiι Λ

We will use this only for the cases (s, t) = (/?,0), (p + 1,0). Clearly

f«\ ;«aβ\ βt is the skew-symmetrization of ffι-'ffsffι --ff' with re-

spect to its subscripts iv , is+r We will need the following obvious identity

1 / p

4 1) f^-:a.pfi = — - — /:αi ;αp ̂  - V
. t . iy Ji\'-ipj p Λ - \ \ l λ ' " ι P J ^

This identity also holds when /? is replaced by ̂ 8.

We use normal coordinates at both points under consideration. Then

In the following computation of C, in addition to the usual summation

convention, we use the summation convention that an index is being summed

if it occurs either twice as a subscript or twice as a superscript, once with a bar

and once without a bar. An index with (respectively without) a bar in an

expression carrying a bar is considered without (respectively with) a bar. As

before, we use Σ' to denote summation over distinct indices. Since we have
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normal coordinates at both points under consideration, we have

i P n

fff[-ffjf)Lv-aJp+l-l-

We separate the summation in j into two parts, the first part with j = iv and
the second part withy Φ iv.

P n

.(fβfβ- fβf*)Ί - 7
^ J ι v J i v

 J ϊ v

J l v ' 5 « Γ " •«/,'/,+ !• ' 'ιn

-(γ)μ
--apip+x •••(/)„• ij<fjfϊv hjj )*ar 'apΓp+ι FH)

f ff f
~iv Jjv Jiv >Jir ip

P

•ώ •''•l ('»)λ 'ι

λ = l

1 v.

P

λ = l

l 2
(/'-l)!/"ι1....

( fβfδ — fβ fδ\ f°<*2"<i\
•i V Ji\ JT J- Jix ) Jii i )

P λ ιp+\ lp+\ λ ' P

ί,+ i °ΎβS

fya2- • ap fβ fσa2- • ap fδ _ fya2- • ΰp fδ fσά2- ap fβ
Jii - ip Jip+, Jiχ •• ip Jip+ x Ji] ip Jip+ \ Ji\ -' ip Jip+ \

p - ~τz—i—r-
Z Jiλ-- (ip+

P

λ)λ ipJiλ //, i , / ; Λ ; 7 + , /•

λ^ 3 1
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By (5.4.1) and the identity obtained from (5.4.1) by replacing the β there by β,
we have

c — I——— R - -
(p- \)\p\ σΎβδ

_ fya2- apδ faa2- -α, /0 |
Ji\ i p + \ Jh ip J i p + \ ) '

^.v^* is skew-symmetric in γ, δ, and Rσyβ£ is symmetric in γ, δ, it
follows that

Hence

r — ^ 1? _ -fy<*2 <*pβ fσa2 ά fδ

(p- l)\p\ σ ^ δ / < •</>+> Λi ^ ^ + I

Since the inner product of a skew-symmetric tensor with another tensor
remains unchanged when the second tensor is replaced by its skew-symmetriza-
tion, we have

(*> 4 7\ Γ = " ~ ι 1? _ -fya2- -a β fσa2 ά δ
{ } (p- \)\p\ K°tf'Ji\ •'/>+' Λv v i

As before, we use ( , ) to denote the pointwise inner product. By combin-
ing together (5.3.1) and (5.4.2), we obtain the following.

5.5. Lemma.

, f > = - <

5.6. Lemma, (a) D*ξ vanishes identically on Gfor any smooth map f.
(b) Ifp — 1 and f is harmonic on G9 then Dξ vanishes identically on G.
(c) For general p, if f is pluriharmonic on G, i.e., Ddf= 0 on G, then Dξ

vanishes identically on G.
(d) // Vjζ = 0 on Gfor all] whenp = 1, then fis pluriharmonic on G.
Proof. For the proof we use normal coordinates at both points under

consideration.



86 YUM-TONG SIU

(a) From the definition of ζ it follows that

ί / « r apip+2 in

n

Σ v/ί+Iίβl...v;+1.../;

*"'" »'/»+!

Σ . Σ

which vanishes because sgn(Z l ι") is skew-symmetric / + 1 and / , whereas
1 n P

3/ +?i/a" ^ s symmetric in / / 7 + j and iv.

(b) Assume/7 = 1. Then

= Σ

) ' -(-1)'

7 = 1

which vanishes because/is harmonic.
(c) Assume that/is pluriharmonic. Then d djf" = 0. Hence

— V (— 1
v=p

-i)^"-l) Σ (-I
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(d) Assumep = 1 and Vjζ = 0 for ally. Since

where (il9- -,/„) is a permutation of (1, • ,/ι), it follows that θ/θ,-/"1 = 0 for

ally and /j.

5.7. Proposition. Suppose f satisfies the tangential Cauchy-Riemann equa-

tions of the boundary dG ofG(in notation dbf — Q on dG). Then

ί ί R - -fβi βpΎ far-ap8h _
- 1)! JG "iftyMi' ip+i ί v V i α2̂ 2>\ ( / > - ! ) !

|| G means the global L2 norm over G, and v f means

tensor of rank n — p + \ on G whose components are V]ζaχ ..« Γ + 1 - Γn

Proof. This proof is a straightforward adaptation of the Morrey trick. First
we verify that the vanishing of 8bf on 3 G implies that

(5-7.1) gVβI...β,*7,+1.. ,=; = 0 onθG.

To verify (5.7.1), we fix a point P on dG and choose local coordinates, so that
dw\ -,dwn are orthonormal at P and the tangent space of 3G at P is defined
by d(ite w") = 0. It follows from the vanishing of 3^/ at P that 3^/α = 0 at P
for 1 < k^ n - 1. AtP

vanishes, because the only possible nonzero terms in the sum are those with
kx, - ,kp not equal to n. (5.7.1) follows from g//= S^ and p, = 0 for / φ n at
P.

By integrating the equation in Lemma 5.5 over G and performing three
integration by parts, we obtain an equation which is the desired one except
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that the boundary term is replaced by the sum of the following three boundary
terms:

-1

where p- = d-p and py = 9yp.
It follows from (5.7.1) that B2 vanishes. By

\DS)ar' apsϊp+ι ϊH —

we have

From (5.7.1) it follows that

(5.7.2) ~ ~ ~ ~

for some smooth η«. «Λ+r ' ^ on G. Applying Σϊ = / , + 1?αi...v^+I...^V1'" to
(5.7.2), we obtain

2>α, • α / , i / , + 1 /Λ V

v=p+ 1

= Σ f.I...β,ί;+I...ί(v^)η«1 β'''+ '' '' = o
l

on 3G, because Saι -apΓp+r' ii^
ipP) = 0 on 3G due to (5.7.1). Hence ^ + B3

equals the boundary term of the desired equation.
5.8. Before we introduce our main result on the complex-analyticity of

harmonic maps, we need some definitions.
Definition. Let s> I. The bisectional curvature of a Kahler manifold M is

said to be strongly s-nondegenerate at a point P of M when the following holds.
If k and / are positive integers, and £(1), 'Λ(k) (respectively τj(1), ,Ί?(/)) are
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C-linearly independent tangent vectors of M of type (1,0) at P such that

at P for all 1 < μ < k and 1 < v < /, then k + / < s, where Raβy£ is the

curvature tensor of M.

When the above condition is satisfied only for the special case k = 1, we say

that the bisectional curvature of M is s-nondegenerate at P.

The smallest 5 so that the bisectional curvature of M is (strongly) s-nonde-

generate at P is called the degree of the {strong) nondegeneracy of the bisec-

tional curvature of M at P.

Remarks. 1. If the holomorphic tangent bundle TM of M is ^-negative (or

s-positive) in the dual Nakano sense, then the bisectional curvature of M is

j-nondegenerate. For we can apply the inequality in the definition of negativity

of positivity in the dual Nakano sense to the set of complex numbers

The same statement holds when TM is Nakano s-negative (or Nakano s-posi-

tive) in which case we use

2. If the bisectional curvature of M is s-nondegenerate, then the bisectional

curvature of M is strongly ί-nondegenerate, where t — max(l,2,s — 2). For we

have 1 + / < s by considering £ ( 1 ), η ( 1 ) , ,η ( / ) and we have k + 1 < s by

changing the roles of £ ( μ ) and τj(ϊ;). Hence k + / < 2,s — 2.

Definition. Let G be a relatively compact subdomain of a Kahler manifold

N given by G = (p < 0} for some smooth function p on N whose gradient is of

unit length at every point of the boundary dG of G. The boundary dG of G is

said to be hyper-q-convex (respectively strongly hyper-q-convex) at P G dG if

the sum of any q eigenvalues of the Hermitian matrix dfip> computed with

respect to the given Kahler metric is nonnegative (respectively positive). When

dG is hyper-#-convex at every point of ΘG, we simply say that dG is hyper-#-

convex.

We now continue to use the notations M, N, G, /, ξ etc. introduced in §§5.1

through 5.7. _ _

5.9. Lemma. Let 1 < / ? < « — 1 and ξ = *(Λ p(df)). Suppose Dξ vanishes

identically on G. Assume that dG is hyper-(n — p)-convex, and the holomorphic

tangent bundle TM of M is p-seminegatiυe in the dual Nakano sense. Then the

following statements hold:
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(a) "v? and the following two expressions vanish identically on G:

(5.9.1) (3,

Vy.:?.^ ^ α ^ y β / i , •••!,+ , Jjr"jp+ι na2β2

 napβp5 5

(b) // 3G w strongly hyper-p-convex at some Q E 3G, //zefl Λ ^(3/) vanishes

atQ.

(c) // TM w p-negative in the dual Nakano sense at some Q E M, /Ae«

( Λ W ) ) Λd~f vanishes at Q.

Proof. The expression (5.9.1) is nonnegative, because 3G is hyper-(« — 1)-

convex. The expression (5.9.2) is nonnegative, because TM is /?-seminegative in

the dual Nakano sense. By Lemma 5.6 (a), D*ξ = 0 on G. Statement (a) now

follows from Proposition 5.7. The other two statements (b) and (c) are clear,

because ζ vanishes at a point if and only if Λ p(df) vanishes.

5.10. Lemma. Suppose dG is hyper-(n — l)-convex, and TM is l-seminegative

in the dual Nakano sense. Let 1 < / ? < « — 1 and ξ = *(Λ p(df)). If f is

harmonic on G, then f is pluriharmonic on G and, consequently, Dξ vanishes

identically on G.

Proof. Let η = ϊ(3/) . By Lemma 5.6 (b), ^ = 0 o n G. By Lemma 5.9 (a)

for the case/? = 1, we have Vη = 0 on G which, according to Lemma 5.6(d),

implies that/is pluriharmonic. Hence by Lemma 5.6 (c), Dξ = 0 on G.

5.11. Lemma. Suppose f is pluriharmonic on G. If r a n k c 3 / < q at every

point of some nonempty open subset H of 3G, then rank c df<qat every point of

G.

Proof. Take a connected open subset U of N such that U Γ) dG is non-

empty and is contained in H. Let φ = Λ *(3/). Since rank c 3/< q at every

point of 7/, φ vanishes at every point of U Π 3G. From the pluriharmonicity of

/ it follows that Vφ = 0 on G. Extend φ to φ on G U U by setting φ = 0 on

U — G. Since φ Ξ O o n £/ U 3G, and the differential operator V is of first

order, it follows that Vφ = 0 on G U U in the sense of distributions. Hence

(5.11.1) g^φΞO onGUί/

in the sense of distributions. From the ellipticity of the differential operator

gkJV£Vj we conclude that φ is smooth on G U U and (5.11.1) holds in the

usual sense. Since φ = 0 on the nonempty open subset U — G of G U U, from

the identity theorem for solutions of second-order elliptic equations [2] it

follows that φ = 0 on G U U. Hence rank c 3/ < q at every point of G.

5.12. Lemma. Let Q E G and 1 <p<n- 1.

(a) // rankR df> 4p — 3 at Q, then either rankc df>p or rankc df>p at
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(b) If (A p(df)) Λ 9 / = 0 at Q andmnkcdf>p + I at Q9 then 3/ = 0. The

statement remains true when 3 and 3 are interchanged.

(c) Suppose rankR df^ max(4/? - 3,2/? + 1) at Q. If (Λ p(df)) Λ 3/ and

(Ap(df))A dfboth vanish at Q, then either df=OatQordf=Oat Q.

Proof (a) Using Re/ α = i ( / α + fa) and Im f° = (l/2v^T)(/α - ~f) to

compute rankR d/, we conclude from rankR df > 4/? — 3 at Q that

(5.12.1) Λ
/ - I

μ = i

4/?-3

A Λ d(r
,=/

is nonzero at g for some (not necessarily distinct) indices aλ α4 / 7_3 and

some 1 < / ̂  4/7 - 2. We use dfa = 3/α + 3/α and rf/5 = 3/" + 3/« to write

the expression (5.12.1) as a linear combination of terms of the form

(5.12.2) I Λ 3 / M Λ Λ dfβλ Λ ( Λ 3 / ^ ) Λ Λ^ ) Λ
τ=j+l

At least one expression of the form (5.12.2) is nonzero at Q. Since each of the

four factors in that expression is nonzero at Q, we have

rank c 3/ + rank c 3/ 4- rank c 3/ 4- rank c 3/ > 4p — 3

at Q. From rank c 3/ = rank c 3/ and rank c 3/ = rank c 3/it follows that either

rank c 3/ > p at Q or rank c 3/ > p at Q.

(b) Let r = rank c 3/. We can choose local coordinates at Q and at/(β) such

that dfa = ώv" for 1 < a < r, and 3/^ = 0 for )8 > r. Take γ and i arbitrarily,

and we want to show that 3 / / γ = 0 at Q. Since r>p+ 1, we can choose

1 < a} ap < r so that they are all distinct and all different from /. Then

3/α> Λ . . ~ ( ~ Γ 7 ) ΰ ^ ^ ^

From the vanishing of (Λ p(df)) Λ 3/ at β it follows that 3 y / γ = 0 at Q for

j =£ ax — ap. In particular, dif
Ύ = O at (λ The statement with 3 and 3

interchanged is proved analogously.

(c) Assume that neither 3/ nor 3/ vanishes at Q and we want to derive a

contradiction. By (a), either τankcdf>p or rank c 3/^/? at Q. We consider

only the case τankcdf>p at Q, because the other case is completely analo-

gous. By (b), rank c 3/ = p. We can choose local coordinates at Q and at f(Q)

so that dfa = dwa for 1 ̂  a ^/?, and dfβ = 0 for /? >/?. As in the proof of

(b), it follows from the vanishing of 3/1 Λ Adfp A dp at Q that 3 y / γ = 0

for all γ and all/? <j < n. Hence both 3^/and djf vanish for/? <j < «. In the

computation of rank R J/ we can ignore the variables M^"1"1,- ,wΛ Thus

rankR df < 2/? and we have a contradiction.
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5.13. Lemma. Let 1 < / ? < « — 1 and Q E G. Assume that at Q

(5-13.1) Raβ-yS-dψgifgkί= 0.

Suppose TM is l-seminegatiυe in the dual Nakano sense at f(Q\ and the
bisectional curvature of M is strongly p-nondegenerate atf(Q). Suppose rankR df
^2pΛ-\atQ. If either (Λ p(df)) Λdf or (Λ p(df)) A df vanishes at Q, then
either 3/ or df vanishes at Q.

Proof. We consider only the case (Λ^θ/)) Λ 3/= 0 at <2, because the
other case is completely analogous. Let r — rankc 3/ at Q. We assume that
r > 0, and we are going to prove that df= 0 at Q. By Lemma 5.12 (b) it
suffices to consider the case r < p.

Ktrdf is a real subspace of real dimension < In — 2p — 1 in the real
tangent space TN Q of N at Q (when N is reparded as a real manifold). Let Gr
be the Grassmannian of all complex linear subspaces of complex dimension
p + 1 in TN Q (when TNQ is given the complex structure from N). Take a real
linear subspace F of real codimension 1 in Kerrf/. Since dimR F < In — 2p
- 2 , the set of all L E Gr with L Π F = 0 is dense in Gr (see e.g. [53, p. 85,
Lemma 1]). Thus the set of all L E Gr with dimR L Π Ker<#"< 1 is dense in
Gr. Hence we can choose normal coordinates w1,- ,w" of N at Q such that if
we denote by L the complex linear subspace of TN Q spanned over R by Re ̂ 7,
Im^7 (1 < i < p\ then dimR L Π Ker df < 1 and 3/| L ψ 0. Let s be the rank
of 3/| L over C. Then 1 < s < r < /?. Choose local coordinates za of M at /(ζ?)
such that dfa\L = dwa for 1 < a < * and dfβ \ L = 0 for β > 5.

Fix 1 < ĵ  ̂  s <j < p + 1. Then ff = 0 for all α, and/^ = δg, (the Kronecker
delta) for all β. Since w\ , wn are normal coordinates at Q, we have gk[— 8kl

at β. Since TM is 1-seminegative in the dual Nakano sense at f(Q), it follows
from (5.13.1) that at Q

A « i8γί \ Ji Jj Jj Ji ) \ Ji Jj Jj Ji ) U

Hence

0= Σ
/3,γ

Let| ( μ ) = & (1 < μ < 5) andη(r) = ΣβΛα3P (* < " < ^ + 1) at Q. Then

It follows from the strong /?-nondegeneracy of the bisectional curvature of M
at f(Q) that η ( j + 1 ) ? ,η ( ; 7 + 1 ) cannot be C-linearly independent. There exist
complex numbers av(s < v </? + 1) not all zero such that Σp=s

ι

+X av\v) — 0.
Let X=Σξ=s

ι+λav&,9 Yx = ReX, and Y2 = Im X at ρ. Then η , Y2 are
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R-linearly independent elements of L. Since X(f) = 0 and X(f) = 0, it

follows that (df)(Yμ) = 0 (μ = 1,2), contradicting dimR L Π Kerrf/< 1.

5.14. Theorem. Let M be a Kdhler manifold whose holomorphic tangent

bundle TM is l-seminegative in the dual Nakano sense. Let G be a relatively

compact subdomain with smooth boundary in an n-dimensional Kάhler manifold N

such that dG is hyper-(n — \)-conυex. Let f: G -» M be a harmonic map smooth

up to dG such that dbf = 0 on dG. Assume that one of the following three

conditions (a), (b), (c) is satisfied:

(a) dG is strongly hyper-(n — X)-convex at some point ofdG.

(b) There exists 1 < / ? < « — 1 such that (i) dG is hyper-(n — p)-convex, (ii)

TM is p-negative in the dual Nakano sense, and (ϋi) rankR df > max(4/? — 3,2p

+ 1) at some point Q of G.

(c) There exists 1 <p < n — 1 such that (i) dG is hyper-(n — p)-convex, (ii)

TM is p-negative in the dual Nakano sense, (in) the bisectional curvature of M is

strongly p-nondegenerate, and (iv) rankR df>2p+\ at some point Q of G.

Then f is holomorphic when dG is nonempty, and f is either holomorphic or

antiholomorphic when dG is empty.

Proof. We continue to use the notations we have been using in this section.

Let p be the positive integer given in condition (b) or condition (c). When

condition (a) is satisfied, we set/7 = 1. The conclusion for condition (a) follows

from Lemmas 5.10, 5.9(b) both for the case/? = 1, and Lemma 5.11 for the

case# = 1.

We now assume the common subconditions (i) and (ii) of conditions (b) and

(c). By Lemmas 5.10 and 5.0 (a), we have the vanishing of the expression

(5.9.2), which, by the /^-negativity of TM in the dual Nakano sense, implies

( Λ * ( 8 / ) ) Λ 9 7 = O on G. By applying the same argument to the Kahler

manifold which is the complex conjugate of N instead of to N, we conclude

t h a t ( Λ | l ( 8 / ) ) Λ 8 7 Ξ O o n σ .

When condition (b) is satisfied, it follows from Lemma 5.12 (c) that either 3/

or 3/ vanishes identically on some open neighborhood of Q in G and hence on

all of G because of the harmonicity of /(cf. [53, p. 88, Prop. 4]).

Since dG is hyper-(« — l)-convex and TM is l-seminegative in the dual

Nakano sense, it follows from Lemma 5.9 (a) that (5.13.1) is satisfied at every

point of G. When condition (c) is satisfied, it follows from Lemma 5.13 that

either 3/ or 3/ vanishes identically on some open neighborhood of Q in G and

hence on all of G.

What remains to be proved is that when dG is nonempty and condition (b)

or (c) is satisfied, 3/ cannot vanish identically on G. Suppose the contrary.

Since dbf= 0 on dG, it follows that rank c 3/< 1 at every point of dG. By
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Lemma 5.11, rank c 3/< 1 at every point of G. Thus rankR<//< 2 at every
point of G, contradicting rankR df> 2p + 1 > 3 at Q.

5.15 Remarks. 1. In Theorem 5.14, condition (c) implies condition (b)
because of Remark 2 of §5.8. We give a direct proof of the case of condition
(b) here because its proof is much easier than the proof of the case of condition
(c).

2. Instead of using the V Bochner-Kodaira technique as is done here, we
can also use the 33 Bochner-Kodaira technique to prove Theorem 5.14. We
give the key step of such an approach here. We first show that 33/ = 0 by
considering the integral of dd(haβdfa A dfβ A ωn~2) over G, where ω is the
Kahler form of N. The boundary term has to be taken care of as in §3.8. Then
we consider

β ^ Λ Λ 3 / ^ Λ ωn^

v=\

Λ3/α' Λ Λdfap Λ djh Λ Λ 3 / ^ Λ ωn~p~λ

Σ Kφλ ' K^Rχβajha^+] hapβ-dfλ A dp

v— 1

Λ3/α> Λ Λdf«p A djh A Λ 3 / ^ Λ ωn~p~λ

(because R\pajip is symmetric in λ, av, and
3/ λ Λ dfa" is skew-symmetric in λ, av)

' Ίp+\

and integrate it over G. Again we have to take care of the boundary term as in
§3.8. The computation of the curvature term by using the 33 Bochner-Kodaira
technique is easier than by using the V Bochner-Kodaira technique, because
skew-symmetrization is a built-in process in the exterior algebra of forms.
However, when one uses the V Bochner-Kodaira technique, it is slightly easier
to deal with the boundary term and is by far much easier to get the D* and D
terms for a general smooth map satisfying the tangential Cauchy-Riemann
equations at the boundary. We choose the V Bochner-Kodaira technique here,
because we want to have the formula in §5.7 for a general smooth map
satisfying the tangential Cauchy-Riemann equations at the boundary.
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5.16. Theorem. Let M be a compact Kάhler manifold of complex dimension

m > 2 whose holomorphic tangent bundle TM is \-seminegative in the dual

Nakano sense. Then M is strongly rigid {in the sense that any compact Kάhler

manifold which is a homotopic to M must be either biholomorphic or antibiholo-

morphic to it) if one of the following two conditions is satisfied:

(a) TM is p-negatiυe in the dual Nakano sense for some p < min(m — 1, m-γ1).

(b) TM is (m — \)-negative in the dual Nakano sense, and the bisectional

curvature of M is strongly (m — \)-nondegenerate.

Proof. Since TM is 1-seminegative in the dual Nakano sense, the sectional

curvature of M is nonpositive. By the theorem of Eells-Sampson [18], if N is a

compact Kahler manifold homotopic to M, then we can find a harmonic map

f: N -* M which is a homotopic equivalence. Since rank R df>2m at some

point of N9 it follows from Theorem 5.14 that /is holomorphic or antiholomor-

phic. For every P G M , f~λ(P) is a subvariety which must be O-dimensional

otherwise the homology class represented by f~ι(P) is mapped to 0 by /,

contradicting that / is a homotopy equivalence. Since the degree of / must be

one, / is a homeomorphism and is therefore either a biholomorphism or an

antibiholomorphism.

5.17. Theorem. Let M be a Kahler manifold whose holomorphic tangent

bundle TM is Vseminegative andp-negative in the dual Nakano sense. Let N be a

compact complex submanifold of M. Then the deformation of N as a complex

submanifold of M agrees with the deformation of N as an abstract complex

manifold if one of the following two conditions is satisfied:

(a) The complex dimension ofN is > max(2p — 1, p + 1).

(b) The bisectionαl curvature of M is strongly p-nondegenerate, and the

complex dimension ofNis>p+ 1.

Proof. This follows from Theorem 5.14 and the method of Kalka [32]. The

only thing we have to show is that every holomorphic cross section s — sad/dz"

of TM\N over N must be identically zero. Let P be the point of N where the

maximum of the pointwise square norm | s \2 of s on N is achieved. Let n be the

complex dimension of N, and let Xv — ξ"vβ/dza, 1 < v ^ «, be holomorphic

tangent vector fields of N defined on an open neighborhood of P so that they

are C-linearly independent at P. Then for 1 < v < n we have at P

0 ^ XvXv\s\2 =| V |̂2 + Λ ^ ^ V ,

where Raβy$is the curvature tensor of M. Since n> p + I and the bisectional

curvature of M is /?-nondegenerate (see Remark 1 of §5.8), it follows that s

vanishes at P. Hence s is identically zero on N.
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5.18. Theorem. Let M be a complete Kάhler manifold whose holomorphic

tangent bundle TM is \-seminegative in the dual Nakano sense. Let N be a Kάhler

manifold of complex dimension n, and G be a relatively compact subdomain with

smooth nonempty boundary in N such that dG is hyper-(n — \)-conυex. Let

φ: dG -> M be a smooth map satisfying the tangential Cauchy-Riemann equation

of dG. Suppose φ can be extended to a continuous map Φ from G to M. Then φ

can be extended to a smooth map from G to M, which is holomorphic on G if one

of the following three conditions is satisfied:

(a) dG is strongly hyper-(n — \)-conυex at some point ofdG.

(b) There exists 1 < / ? < « — 1 such that (i) dG is hyper-(n — p)-convex, (ii)

TM is p-negatiυe in the dual Nakano sense, and (in) either rankR dψ > max(4/?

- 3,2/? + 1) at some point of dG or Φ*: Hq(G, 3G,R) -* Hq(M, φ(dG),R) is

nonzero for some q > max(4/? — 3,2p + 1).

(c) There exists 1 < / ? < « — 1 such that (i) dG is hyper-(n — p)-convex9 (ϋ)

TM is p-negatiυe in the dual Nakano sense, (iii) the bisectional curvature of M

is strongly p-nondegenerate, and (iv) either rankR dφ > 2p + 1 at some point of

dG or Φ*: Hq(G9 3G, R) -> Hq(M9 φ(3G), R) is nonzero for some q > 2p + 1.

Proof. Since M is complete and has nonpositive sectional curvature, by

Schoen's result [50, p. 115] there exists a harmonic map/: G -* M smooth up to

dG such that/agrees with φ on dG and/is homotopic to Φ relative to dG. Now

the desired result follows from Theorem 5.14. The condition of Φ* being

nonzero is used to conclude that rankR df^qzX some point of G.

5.19. Remarks. 1. In Theorem 5.18, instead of assuming that M is com-

plete, we can assume that M is compact with convex boundary. In that case we

use Hamilton's result [28] instead of Schoen's result to get the harmonic map /.

2. Wood [65] gave an extension theorem proved by extending to the case

with boundary the method given in [53] of showing the complex-analyticity of

harmonic maps. Wood does not assume any hyperconvexity condition on the

boundary of the domain space and claims that the boundary term which

occurs in the proof automatically vanishes because the given map satisfies the

tangential Cauchy-Riemann equations. His claim and his final results are both

incorrect. His argument can be made to work only when it is possible to

choose, in his notations, a local coordinate system z\ ,z m at/? such that 3 ^

is defined by Im zm = constant in a neighborhood of/?. The existence of such

a local coordinate system implies that 3Xis Levi flat at/?.

3. After the author wrote up this paper, he received a preprint from S.

Nishikawa and K. Shiga [42] in which they applied to the case with boundary

his 33 Bochner-Kodaira method [53] and proved the following. Let M, N be

complete Kahler manifolds of complex dimension n > 2. Let D, C M and

D2 C N be relatively compact subdomains in M and N with smooth boundaries
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dDx and dD2. Suppose N has adequately negative curvature in the sense of [53,

p. 84], and 32), is pseudoconvex (or more generally hyper-(w — l)-convex). If

f:dDx -> dD2 is a smooth map which satisfies the tangential Cauchy-Riemann

equations and extends to a homotopy equivalence of Dλ and D2, then/extends

to a biholomorphic map from Dλ to D2 diffeomorphic up to the boundary.

6. Negativity of Einstein bundles

6.1. Let M_be a Kahler manifold of complex dimension n with Kahler

metric gijdz^dz*. Let E be a holomorphic vector bundle with Hermitian metric

haβ along its fibers. Let Θaβ = - }ΓΛShaβijdzidzj be the curvature form of E.

Definition. E is said to be Einstein if there exists a real-valued function κE

on M such that Ωα^ = κEhaβ&t every point of M.

For every point P of M let χE(P) be the largest eigenvalue of the Hermitian

form

That is, χE equals the supremum of Ωaβijξa'ζβJ for all (£"') satisfying

6.2. Lemma. Suppose E is Einstein, and 0 < q < n is an integer. If κE> qχE

(respectively κE^ qχE) at some point P of M, then E is (n — q)-negative

(respectively (n — q)-seminegative) in the dual Nakano sense at P. Hence if

κE^ qχE on M with strict inequality at some point, then HV(M, E) = 0 for

v < q.

Proof. Choose local coordinates of M at P and fiber coordinates of E at P

such that gij-= 8ij and haβ = 8aβ. Let f£_ be a nonzero set of complex

numbers which is skew-symmetric in the (n — q)-tuple In-qoi indices. Let

By Lemma 3.6, at P

1

- T 7 Σ Ωαj

V It |2
2ί I ?αΛ I
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The last statement follows from the V Bochner-Kodaira technique (1.3.5).

q.e.d.

For the special case where E is the holomophic tangent bundle TM of M,

there is a trick of Calabi-Vesentini [12] which can be used to improve the result

of Lemma 6.2.

6.4. Lemma. For a Kάhler-Einstein manifold M of complex dimension n, the

holomorphic tangent bundle TM of M is (n — q)-negatiυe (respectively (n — q)-

seminegative) in the dual Nakano sense at P if KTM > \(q + ϊ)XτM (respectively

KτM^Ί(q+l)XτM)<*tP'

Proof. We choose local coordinates of M at P such that g, / = StJ at P. To

use the same notations as in §6.3, instead of Λ ^ - w e use Ω ^ f t o denote the

curvature tensor of TM. Since Ωα^,~is symmetric in α, s and in β, t9 it follows

that the Hermitian form

factors through the orthogonal projection π: T^2 -> S2TM, where S2TM is the

bundle of symmetric contravariant 2-tensors. At P the Hermitian form

sends ί £ 7]^2 to the square norm of π(θ). Hence at P

(6.4.1) Kβs^^ < XτM\(Saβ8st + δaιδβs)θ<"~θ*

Let ξf and ξaJ be as in §6.3, when E is replace by TM. Let

1 q

μ=\

1

where Jq = (j\,'- Jq). Then

( 6 4 2 ) ^ = Φ^, + Ψ*v

Since φ ŷ is a sum of ^ + 1 tensors each of which is symmetric in two indices

and since \pβJ is skew-symmetric in all of its q + 1 indices, it follows that

(6.4.3) Σ
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By (6.4.1) we have at P

Σ a * * .
a,β,s,t,Jq_x

= ~ Σ Σ ^aβsfβaj, • • <5)μ • -jq
q a,β,s,Jqμ=\

-χτM Σ Σ ̂ ( M ^ + ^ Λ ^ ^ V
* β J = \a,β,s,Jqμ=\

_ q+ 1 y 7—

= S ± i χ 2 \ξj\2

2q M ~ j P v

by (6.4.2) and (6.4.3). We now use Lemma 3.6 to conclude, as in the proof of

Lemma 6.3, that

1

Σ \ ξ β \ 2

6.5. Remarks. 1. By Remark 2 of §4.1 and Lemma 4.3, the conclusion of

Lemma 6.4 is equivalent to the 1-negativity of An~qTM in the dual Nakano

sense which is equivalent to the Nakano 1-positivity of &lj~q.

2. From the V Bochner-Kodaira technique (1.3.5) and Lemma 6.4 it follows

that i P ( M , TM) = 0 for μ < q and H\M, An~qTM) = 0 for v < n if M is a

compact Kahler-Einstein manifold with KTM >• {{q + ^)XτM

 o n M and strict

inequality at some point of M.

3. The /c-negativity of TM in the dual Nakano sense for an appropriate k is

the underlying reason why the vanishing theorems proved in [12] by Calabi-

Vesentini hold.

4. It is unknown whether AkTM is (n — q + 1 — A:)-negative in the dual

Nakano sense if κτ > \(q + l ) χ r .

6.6. We apply the above considerations to the case of bounded symmetric

domains, and compute the negativity of the tangent bundle in the dual Nakano

sense and the strong nondegeneracy of the bisectional curvature. For the
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negativity of the tangent bundle in the dual Nakano sense we use Lemma 6.4

and the computation given in [11], [12] of the eigenvalues of the curvature

operator. For the strong nondegeneracy of the bisectional curvature we use the

computation concerning the classical domains given in [55] and the exceptional

domains given in [66].

Recall that for an w-dimensional Kahler manifold M the Hermitian form

(6-6.1) (Vk)"R,jk$ikV'

factors through the orthogonal projection T^2 -> S2TM. Hence the sum of its

eigenvalues for the subspace of symmetric 2-tensors equals its trace g^g^R^j

on T^2 which, when M is Kahler-Einstein and of complex dimension n, equals

nκTM, where g/y-is the Kahler metric of M. In the following we will denote KTM

a n d χ Γ simply by K and χ.

A. Let D^n be the set of all complex mX N matrices Z such that In — *ZZ is

positive definite, where In is the n X n identity matrix, 'Z is the transpose of Z,

and Z is the complex conjugate of Z. By [12], for the case M — D^n the

Hermitian form (6.6.1) has the following eigenvalues: 2 with multiplicity

\mn(m + \){n + 1), and -2 with multiplicity \mn(m - \)(n - 1). (Note that

our sign convention for Raβγ$is opposite to that of [11], [12].) Hence χ = 2. It

follows from dim c D^n = mn that

K = — ( 2 X \mn{m + \){n + 1) - 2 X \mn{m - \)(n - 1)) = m + n.

Thus fc > \(q + l)χ for q < m — n — 1. The tangent bundle of Dj^n is ((m

— \)(n — 1) + l)-negative in the dual Nakano sense. By [55], the bisectional

curvature of D^n is strongly ((m — l)(n — 1) + \)-nondegenerate.

B. Let Z)π

7/ be the set of all complex skew-symmetric n X n matrices Z such

that In -*ZZ is positive definite. By [12], for the case M = D" the Hermitian

form (6.6.1) has the following eigenvalues: 2 with multiplicity \n2{n2 — 1),

and -4 with multiplicity (1). Hence χ = 2. It follows from dimcZ>/7 =

\n(n - 1) that

Thus κ> \{q + l)χ for q < In - 3. The tangent bundle of D^1 is (\(n - 2)(n

— 3) + \ynegative in the dual Nakano sense. By [55], the bisectional curvature

of D" is strongly (\(n — 2)(n — 3) + X)-nondegenerate.

C. Let D"1 be the set of all complex symmetric n X n matrices Z such that

/„ —ιZZ is positive definite. By [12], for the case M — D"1 the Hermitian form

(6.6.1) has the following eigenvalues: 4 with multiplicity ( n ^ 3 ), and -2 with
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multiplicity i^« 2(« 2 — 1). Hence χ = 4. It follows from dim c D
J

n

u — \n(n + 1)
that

( 4 x

Thus K > {(q + l)χ for q < n. The tangent bundle of D^π is ({n(n - 1) + 1)-

negatiυe in the dual Nakano sense. By [55] the bisectional curvature of D"1 is

strongly (jn(n — 1) + \)~nondegenerate.

D. Let D^ be the set of all complex column ^-vector z with *zz < 1 and

2'zz < 1 + \'zz |2. By [12], for M = DJ

n

v the Hermitian form (6.6.1) has the

following eigenvalues: 2 with multiplicity \{n— 1)(« + 2) and 2 — n with

multiplicity 1. Hence χ = 2. It follows from dim c D^v = n that

κ = 1 ( 2 x i ( π - i)(n + 2) + 2 - Λ) = Λ.

Thus K > \{q + l)χ for # < « — 1. The tangent bundle of ΌΊ

n

v is 2-negative in

the dual Nakano sense. By [55] the bisectional curvature of D^v is strongly

2-nondegenerate.

E. Let Dv be the exceptional bounded symmetric domain £6/Spin(10) X Γ 1 .

By [11], for the case M — Όv the Hermitian form (6.6.1) has the following

eigenvalues: 1 with multiplicity 126, and -3 with mltiplicity 10. Hence χ = 1.

It follows from dimcZ>κ = 16 that K = ^(126 - 3 X 10) = 6. Thus K >

liq + 1)X f°Γ # < ϊ l ^ ^ tangent bundle of Dv is 6-negative in the dual

Nakano sense. By [66] the bisectional curvature of Dv is strongly 6-nondegener-

ate.

F. Let DVI be the exceptional bounded symmetric domain EΊ/E6 X Γ1. By

[11], for the case M — DVI the Hermitian form (6.6.1) has the following

eigenvalues: 1 with multiplicity 351, and -4 with multiplicity 27. Hence χ = 1.

It follows from dimcD
VI = 27 that K = ^(351 - 4 X 27) = 9. Thus K >

\{q + l)χ for q < 17. The tangent bundle of DVI is ll-negative in the dual

Nakano sense. By [66] the bisectional curvature of DVI is strongly 1 l-nondegener-

ate.

6.7. Theorem. Let M be a compact quotient of an irreducible bounded

symmetric domain D, and N a compact Kάhler manifold of complex dimension n.

Let f'.N-^Mbea harmonic map, and r the maximum of the rank of df over R.

Then f is either holomorphic or antiholomorphic if r^ 2p(D) + 1, where p(Df)

= (m- \)(n - 1) + 1, / > ( £ " ) = i(n - 2)(n - 3) + 1, p{D^π) = ±n(n - 1)

+ 1, p{T>lv) - 2, p(Dv) = 6, and p(DVI) - 11. In particular, any compact

quotient of an irreducible bounded symmetric domain of complex dimension > 2 is

strongly rigid.
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This follows from Theorems 5.14 and 5.16, and confirms the conjecture of

[55, §6].

6.8. Remark. Since 2 X 16 > max(4 X 6 - 3, 2 X 6 - 1 ) and 2 X 27 >

max(4 X 11, 2 X 1 1 + 1), to conclude from Theorem 5.16 the strong rigidity

of the compact quotients of the two exceptional domains Dv and DVI one

needs only the ^-negativity of the tangent bundle in the dual Nakano sense for

the appropriate k and does not need to know the strong λ -nondegeneracy of

the bisectional curvature. However, the computation given in [11] of the

eigenvalues of the Hermitian form (6.6.1) of the curvature operator for the two

exceptional cases is by no means simple. The simplest way to get the strong

rigidity of the compact quotients of the bounded symmetric domains is the one

given in [55].

The following theorems are obtained by applying Theorems 5.14, 5.17, and

5.18 to the case of a compact quotient of a bounded symmetric domain. The

number p(D) carries the same meaning as in Theorem 6.7.

6.9. Theorem. Let M be a quotient of an irreducible bounded symmetric

domain D, and N a compact complex submanifold of complex dimension > p(D).

Then the deformation of N as a complex submanifold of M agrees with the

deformation ofN as an abstract complex manifold.

6.10. Theorem. Let M be a quotient of an irreducible bounded symmetric

domain D. Let N be a Kάhler manifold of complex dimension n, and G a

relatively compact subdomain with smooth nonempty boundary in N such that dG

is hyper-(n — \)-convex. Let f: G -> M be a harmonic map smooth up to dG such

that dhf Ξ O on dG. Then f is holomorphic if either

(i) dG is strongly hyper-(n — \)-convex at some point of dG, or

(ii) dG is hyper-(n — p(D))-convex and rankR df> 2p(D) + 1 at some point

ofG.

In particular, a smooth map φ: dG -> M with dhφ = 0 on dG can be extended to

a smooth map from G to M which is holomorphic on G if φ can be extended to a

continuous map Φ: G -> M and if one of the following two conditions holds:

(i) dG is strongly hyper-(n — \)-convex at some point ofdG.

(ii) dG is hyper-(n — p(D))-convex and either rankR dψ ^2p(D) + 1 at

some point of dG or Φ^: Hq(G, dG, R) -> Hq(M, φ(3G), R) is nonzero for some

6.11. Besides using the eigenvalues and the dimensions of the eigenspaces

of the Hermitian curvature operator, at least in the case of classical bounded

symmetric domains one can also straightforwardly use the explicit form of the

curvature tensor and direct computation to get the numbers q so that the

tangent bundles are ^-negative in the dual Nakano sense. To illustrate this

method we do the cases DLM and Dίv.
mn
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The Case ofD^n. For every double index α, we denote its first component by

α', and its second component by a" so that a — (a\ a"). The double index α

with first component α' is said to be on the α'th row. At Z = 0 the curvature

tensor of the invariant metric with potential logdet(/n —'ZZ)1 satisfies

= Σ

It follows that

Σ λ^δγλ. λ,

«',/
Σ f ^ «"><*'•«">

• Σ
/ Qf \ \

Ct , p , Λ j , , /

a', a")(a', β")Xx •Xi

2jζ(a',a")(β',a")λr λ(

To prove that the tangent bundle of D^n is ((m — \)(n — 1) + l)-negative in

the dual Nakano sense, it suffices to show that for q^ mn — m — n + 1 the

equations

α/

fα"Xα/,0")λ,- λ ί 0,

(6.11.1)

imply the vanishing ζaβλ[...χ when it is skew-symmetric in /?, λ l 5 ,λ^. We

are going to prove this by induction on m + n > 3.

We observe that, if either τ(a\ a") — (α", a') for all double indices a —

(a\ a") or τ(α', αr/) = (σ(α')> α 0 f°Γ a ^ double indices a — {a\ α"), where σ is

a permutation of (1, ,m}, then the transformation

' ζ<xβλx λ , ?τ(o)τ(i8)τ(λ1) τ(λ,)

leaves the set of equations (6.11.1) invariant. We further observe that the

component ζaβ\r..\ vanishes if every double index on the same row as the

index β is one of λ1? ,λ<?, as one can easily see from the second equation of

(6.11.1) and the skew-symmetry of ζaβχr..\ in /}, λ l 5 ,λ^. That is, the

component fαygλi . λ vanishes if there is some row such that all indices on that

row belong to the set {/?, λj, ,λ^}.

Consider the initial step of the induction where m + n — 3. We can assume

without loss of generality that m — 2 and n = 1. Every component ζaβχr..λ

vanishes for q >• mn — m — n + 1 = 0 , because /? is the only index on its row.
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Assume now m + n > 3. Without loss of generality we can assume that

m> n. It follows from q> mn — m — n + 1 > mn — 2m + 1 that, for any

given set of indices λ 0 , ,λ^, either

(i) there exists a row such that every index on that row belongs to

{λ0, λx,-',λq}yoτ
(ii) there exist 1 < β[ < β'2 < m such that, for v — 1,2, exactly one index on

the /^'th row does not belong to {λ0, λ l 5 ,λ^}.

According to our earlier observation, ? γ λ o . . . λ vanishes in Case (i). Because

of the transformation T*, for the proof of the vanishing of ξyXo.. λ , it suffices

to consider Case (ϋ) with the additional assumption that β[ = m, γ is not on

the mth row, and λt = (w, i + 1) for 0 ̂  / < n — 2. Define

(Paμn^ι μq ~ *aλo λπ_2μn_, μq

for indices α, ftn_1? * ,μg not on the mth row. We claim that ψaμn_r..μ

satisfies the following set of equations corresponding to (6.11.1):

m-\

Σ Φ(«',«-)(«',β»)μn.. μq = 0 for all fixed Ka»9β"<n9

(6.11.2) ^

Σ Φ(α', «")(£', «")μ μ = 0 f θ Γ S l 1 f ί X e d *<<*', β'<m.
α " = l

The second equation is clearly satisfied. To verify the first equation, it suffices

to show the vanishing of

Ψ(m,a")(m,β")μn μq

 = f (m, α " ) λ o λ M _ 2 (m, β")μn- • μq

This is clear, because by skew-symmetry it suffices to consider the case

(m, β") = (m, n) and in this case every index on the mth row belongs to the

set (λ o , ,λM_ 2,(w, /?"), μn- - μq). Since the equations in (6.11.2) are satis-

fied, by induction hypothesis ψafln_ι.. .μ vanishes. Hence fγλo.. . λ vanishes.

The Case of ΌΊ

n

v. At z — 0 the curvature tensor of the invariant metric with

potential -log(l - 2Σa \za\
2 + \Σa z\ | 2 ) satisfies

= 4 + 2 Σ I sa* -
a¥=β

It follows that

aφβ

2

•• λ β
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To prove that the tangent bundle of D^v is 2-negative in the dual Nakano
sense, it suffices to show that, for q 7* 1, the equations

imply the vanishing of ζaβ\r..\ when it is skew-symmetric in /?, λ l9 ,λ .
This follows from the fact that ζaβ\r..\ is skew-symmetric in β, λx and
symmetric in α, β. For

*aβλx \q

 = *aλφλ2-λq S\]aβλ2"λq

~ *λφaλ2 λq ~ *βλxaλ2 λq

 = ~ζβaλr λq ~ ~^aβ\v \q'

7. Curvature characterization of compact symmetric Kahler manifolds

7.1. Besides the strong rigidity of suitably negatively curved compact
Kahler manifolds, another major application of the complex-analyticity of
harmonic maps is the curvature characterizations of the complex projective
space and the complex hyperquadric [56], [19], [54]. (For the projective space
Mori [39] obtained the stronger result of characterization by the ampleness of
the tangent bundle by methods of algebraic geometry.) The strong rigidity is a
result of the Bochner-Kodaira technique for vanishing theorems applied to the
3 differential of a harmonic map. For this the target manifold has to be
suitably negatively curved. We know that strong rigidity holds for a compact
quotient of any irreducible bounded symmetric domain of complex dimension
> 2, [53], [55]. On the other hand, the curvature characterizations of the
complex projective space and the complex hyperquadric [56], [19], [54] are
proved by using the second variation formula for energy-mininizing harmonic
maps. For this the target manifold has to be suitably positively curved. So far
the curvature characterization of general compact Kahler manifolds has not
been found. In this section we will deal with this question of curvature
characterization. We will not use the method of energy-minimizing harmonic
maps. Instead, we will use the Bochner-Kodaira technique and holonomy
groups. The result we get is only a partial answer to the question of curvature
characterization. First we give a definition.

Definition. The bisectional curvature of a Kahler manifold M is said to be
irreducible at a point P of M if it is not possible to decompose the holomorphic
tangent space TM P of M_dXP into two nonzero orthogonal direct summands Ξ
and H such that Rj^ξ^η1 = 0 for all ξ E Ξ and all η G H.
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Clearly if the complex dimension of M is n, and the bisectional curvature of

M is strongly (n — l)-nondegenerate at i\ then the bisectional curvature of M

is irreducible at P.

7.2. Theorem. Let M be a compact Kάhler manifold whose holomorphic

tangent bundle TM is \-semipositive in the dual Nakano sense. Suppose the

bisectional curvature of M is irreducible at some point P of M. Then either M is

an irreducible Hermitian symmetric manifold with respect to the given Kάhler

metric or the cohomology ring of M with coefficients in R is isomorphic to that of

the complex projective space of the same dimension.

7.3. Corollary. Let M be an irreducible compact Hermitian symmetric space

0/rank > 1. Then any Kάhler metric on M with respect to which the holomorphic

tangent bundle of M is \-semipositive in the dual Nakano sense must be a

constant multiple of the standard invariant Kάhler metric on M.

The rest of this section is devoted to the proof of Theorem 7.2 and Corollary

7.3.

7.4. Proposition. Let M be a compact Kάhler manifold whose holomorphic

tangent bundle is \-semipositive in the dual Nakano sense. Then every harmonic

(/?, q)-form is parallel {i.e., has zero covariant derivative).

Proof. Let g,/be the Kahler metric of M9 and let φf j be a harmonic (/?, q)

form on M. Let

p q

^kΓipfq - Σ Φ, , -(k)μ- • ipfqSiμί~ Σ Ψrpfr- •(/-),. iq8ki,>
μ=\ v=\

w h e r e Ip = (il9- -,ip) a n d / ^ = (j\,... Jq). L e t

Then

where

p p p q q P q q

2 Σ /,σ - Σ Σ^r-1 Σ nin + Π
μ=l σ = l μ=\ τ= 1 v=\ σ—1 v—\ τ= 1

ho

= RΓk -w
— r r r i (U \

— xv -CD'T ~ /ΐ\
v' ' 'Jq K-Jv r

• Wτ γ Λ

F)'""'ΛgΓ''

IVrτ =
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To calculate Iμσ we first consider the case μ — σ.

For μ ψ σ,

vanishes, because Rff is symmetric in k, s whereas φ,-,...^) . . . ( 5 ) σ . . . , / is

skew-symmetric in k, s.

_ n kr _ _ ςJx • -(/)μ 'ipjχ • • -(s)τ- • j q

- rJ\ -(r)a -ipjλ • Wv Ίq

To calculate / F L we first consider the case V — Ί.

For v ψ T

vanishes, because i ί ' / j is symmetric in /, r, whereas Ψrfr (Γ) ••(F) •• •/

skew-symmetric in /, r.

Combining these calculations together, we obtain

2 ί £ ^ ^ . . . (
μ = 1 v=1
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By (1.3.3) for the case of the trivial line bundle, we have

Bφ\\2

M+ U*φ\\2

M= \\Vφ\\2

M- y ^ y

Since the holomoφhic tangent bundle of M is 1-semipositive in the dual
Nakano sense, it follows that F < 0. Since θφ and 8*φ both vanish identically,
we have

2{p-\)\q

Applying the same argument to φ instead of φ we obtain

Adding the two inequalities together, we obtain 11 Vφ II2

M + II Vφ II2

M < 0. Thus
φ is parallel, q.e.d.

The proof of Proposition 7.4 is a generalization of the method of Bishop-
Goldberg [8] and Goldberg-Kobayashi [21], because when p = q — 1 and
Ψif= λfiij and gij— δij9 we have F — ̂ kJRkγij^\k — λ7)

2. This method of
generalization was introduced by Meyer [37] who used it in the case of real
Riemannian manifolds. Later Ogiue-Tachibana [43] applied Meyer's method
[37] to the case of effective harmonic forms on Kahler manifolds. (In conjunc-
tion with the paper of Ogiue-Tachibana [43] we would like to point out that
there exists no compact Kahler manifold M of positive pure curvature operator
in the sense of [43], because in such a case TM is Nakano 1-positive and
Hι(M,ίlx

M) vanishes by the Nakano vanishing theorem and Serre duality,
contradicting the existence of a Kahler form.) Proposition 7.4 can also be
proved by considering only the effective harmonic forms. The reason for using
the present method of proof is that this method of proof of Proposition 7.4 can
readily yield the following proposition which can be used to complete
Schneider's scheme [49] of proving Barth-Lefschetz type theorems for compact
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symmetric Kahler manifolds, though we will not pursue it further in this paper

because of the stronger results obtained by Morse theory (see §8).

7.5. Proposition. Let M be a Kahler manifold whose holomorphic tangent

bundle is \-semipositive in the dual Nakano sense. Let λ be a positive number >

the ratio of any two eigenvalues of the Rίcci tensor of M at any point. Let G be a

relatively compact subdomain of M with smooth boundary dG such that dG is

hyper-k-convex. Let E be a Hermitian holomorphic vector bundle over M which is

Nakano \-semipositive. Then Hq(G, E ® Ω^) vanishes if one of the following

conditions is satisfied:

(a) q^k, and q > λp.

(b) q > k, q > λp9 and dG is strongly hyper-q-convex at some point ofdG.

(c) q > k, q > λp9 and E is Nakano l-positive at some point of G.

The proof of Proposition 7.5 differs from that of Proposition 7.4 only in the

following. From the £-valued harmonic (/?, #)-form φ ^ - we form η%rrj in the

same way, but in defining F we have to contract the index a of η%fr j with the

corresponding index from η. On the right-hand side of the equation corre-

sponding to (7.4.1) we have an additional boundary term and another addi-

tional term involving the curvature form of E. The conclusions of Proposition

7.5 result from this equation. The conditioin q > λp or q > λp is used to

compare the two terms involving the Ricci tensor. The strong hyper-^-convex-

ity of 3 G at some point of 3 G is used in the same way as in the proof of

Lemma 5.11.

We now continue with the proof of Theorem 7.2. For the rest of this section

M denotes the Kahler manifold of Theorem 7.2.

7.6. The 1-semipositivity of TM in the dual Nakano sense implies that the

bisectional curvature of M is nonnegative. Since the bisectional curvature of M

is irreducible at P, it follows from the method of proof of [54, p. 647, Theorem

3] that the second Betti number b2(M) of M is 1.

For the rest of this section, for Q E Λf, TM Q means the real tangent space of

M when M is regarded as a real manifold. It is given the complex structure /

from the complex manifold M so that it is a C-vector space. Let HQ be the

holonomy group of M at Q. Clearly HQ is a subgroup of the unitary group of

the C-vector space TMQ.

The Ricci tensor of M is positive definite at P, because the bisectional

curvature of M is irreducible at P, otherwise some decomposition of the

complex vector space TM P into a 1-dimensional complex linear subspace and

its orthogonal complement leads to a contradiction. According to [31], this

together with b2(M) = 1 implies that M is simply connected and irreducible in

the sense of the de Rham decomposition theorem [16]. Hence for Q G M, HQ

is connected and acts irreducibly on TM Q.
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7.7. Suppose M is not Hermitian symmetric (and therefore not Rieman-

nian symmetric) with respect to the given Kahler metric. We want to prove

that the cohomology ring of M over R is isomorphic to that of the complex

protective space of the same dimension. The case d i m c M — 1 is clear. So we

assume d im c M> 2.

For Q E M let RQ denote the Riemannian curvature tensor of M at Q, i.e.,

let R^γ — VχVγ — VγVx — V[Xtγ] for X,Y E TMQ, where V* denotes the

covariant differentiation in the direction X with respect to the Levi-Civita

connection. Since M is not Riemannian symmetric, it follows from [51, p. 233,

Theorem 8] that for some Q E M the holonomy system {TM Q, RQ, HQ} is not

symmetric in the sense of [51, p. 215]. By [51, p. 221, Theorem 4], the action of

HQ on the unit sphere of TM Q must be transitive. Hence the action of HP on

the unit sphere of TM P is transitive.

7.8. Define R' by

R'=(

where h(Rp) is the tensor obtained by the natural action of h on Rp. Let f) be

the Lie algebra of HP. Define as follows a Lie algebra g whose underlying

vector space is ί) θ TM P:

(7.8.1) [A, B] = [A, B] in ί) forΛ, B E ί),

(7.8.2) [X, Y] = R'XtYfσrX9 Y E TMtP,

(7.8.3) [A,X] =A(X)foτA E ί) and X E TMP.

Because of [51, p. 213, Theorem 1], (h(Rp))χγ belongs to ί) for X,Y E TMP

and Λ E Hp. Hence R'xγ belongs to ί) for X,Y E TM P. The Jacobi identity for

Q is satisfied because

(7 8 4) [A, R'xγ] = R'XA(γ) - R'γ<A(X)

for A E ί), and I J G TM P due to the in variance of R' under the action of

HP. So g is well-defined and is indeed a Lie algebra.

In the same way as one forms the Ricci tensor from a curvature tensor, one

forms the symmetric quadratic form r(X, Y) on TM p from R'. That is, r(X, Y)

is the trace of the endomorphism

Being equal to the Ricci tensor of M at P averaged over the action of HP, the

quadratic form r is positive definite.

Since Hp is compact, the Killing form B^-,) of ί) is negative semidefinite

[30, p. 122, Prop. 6.6]. The Killing form B (-,-) of g is strictly negative definite.



COMPLEX-ANALYTICITY OF HARMONIC MAPS 111

For, whenΛ G HP, it follows from (7.8.1) and (7.8.3) that

due to the skew-symmetry of A — {Atj) with respect to an orthonormal basis

over R of the R-vector space TM P. Moreover, when X G TM P, we have
R'x,A(X) = ° by ( 7 8 4 ) ' a n d i ι Allows from (7.8.2) and (7.8.3) that

(7.8.5) BQ(X,X) = -r(X,X).

Let G be the adjoint group Int(g) of g [30, p. 116]. Since BQ is strictly

negative definite, G is a compact subgroup of the automorphism group Aut( g )

of g [30, p. 122, Prop. 6.6]. Let H be the analytic subgroup of G which

corresponds to the subalgebra adg(f)) of ad g (g). The adjoint representation

Ad^ of HP on ί) together with the action of HP on TM P defines a monomor-

phism from HP to Aut(g) whose image clearly equals H. This monomorphism

is compatible with the actions of H and HP on TM P.

The self-map of g which sends X to -X for TM P and leaves every element of

ί) fixed defines an involutive automorphism s of g. The automorphism s of g

induces an involutive analytic automorphism σ of G such that the identity

component of the set of fixed points of σ is H. Since H is compact, the pair

(G, H) of Lie groups is a Riemannian symmetric pair. Since the tangent space

of G/H at the point H is naturally isomorphic to TM P , and H acts effectively

on TM P , it follows that G acts effectively on G/H.

The restriction of -BQ to TM P defines a G-invariant Riemannian structure on

G/H, which is clearly invariant under the complex structure operator / of TM P

because of (7.8.5). Hence G/H is a Hermitian symmetric space [30, p. 302,

Prop. 4.2]. By [51, p. 213, Theorem 1] and [30, p. 207, Theorem 4.1] the

holonomy group of G/H at the point H is equal to H. Since the action of HP

on the unit sphere of TM P (and therefore the action of H on the unit sphere of

the tangent space of G/H at H) is transitive, it follows that the Hermitian

symmetric space G/H is irreducible and of rank one. So H is the full unitary

group of the tangent space of G/H at H. Hence HP is the full unitary group of

TM,P-

7.9. Let φ be a harmonic (/?, #)-form on M. By Proposition 7.4, φ is

parallel. Since HP is the full unitary group of TM P by §7.8, it follows that at P

the form φ is invariant under the full unitary group of TM P. We can regard φ

as a linear function on the set of all contravariant tensors ξ = (ξiι" 'ipjχ"'**) of

type (/?, q) at P. This linear function is invariant under the full unitary group

of TM P. By WeyΓs theory [64] of invariants of the unitary group (see [3, p. 291,
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Theorem (3.12)]), such linear invariants are zero when p Φ q and are of the
form

when/? = q, where cr E C, and the sum is over all permutations τ of {1, ,/?}.
Sinceφh...ipfr../ is skew-symmetric in il9 ,ip and inyΊ, Jq9 it follows that
at P, φ vanishes when p φ q and φ / V . .z ^ ./£ / V ' '*pJ]" 'jp is of the form (7.9.1)
with cτ = (sgn τ)c for some c and for all T when p — q. Hence φ is a constant
multiple of ωp at P when p = q, where ω is the Kahler form of M. Since φ is
parallel, φ is a constant multiple of ωp on all of M. Thus the cohomology ring
of M over R is isomorphic to that of the complex protective space of the same
dimension. This concludes the proof of Theorem 7.2.

Observe that in the proof of Theorem 7.2 the irreducibility of the bisectional
curvature of M at one point is used only to show that b2(m) = 1 and the Ricci
tensor is positive definite at some point. For the proof of Corollary 7.3 the
assumption of the irreducibility of the bisectional curvature at some point is
not needed because the second Betti number is clearly 1, and the Ricci tensor
must be positive definite at some point due to the nonnegativity of the
bisectional curvature and the simple connectedness of the manifold [31].

7.10. Remarks. 1. In the last step of the proof of Theorem 7.2 one can
avoid using Weyl's theory of invariants by using the following observation. The
cohomology ring of Pn is isomorphic to the ring of all exterior forms at one
point which are invariant under its holonomy group, because any such an
exterior form at one point yields a harmonic form by parallel transport.

2. There is a Riemannian analog of Theorem 7.2 which can be proved in the
same way. In the Riemannian case the 1-semipositivity of the tangent bundle
in the dual Nakano sense is replaced by the nonnegativity of the curvature
operator of [37]. The irreducibility of the bisectional curvature at one point is
replaced by simple connectedness and irreducibility of the manifold in the
sense of de Rham and the positive definiteness of the Ricci curvature at one
point. The conclusion is that either the manifold is an irreducible symmetric
Riemannian manifold with respect to the given Riemannian metric or its
cohomology ring with coefficients in R is isomorphic to that of one of the
compact symmetric Riemannian manifolds of rank 1.

3. It is unknown whether the assumption in Theorem 7.2 of the 1-semiposi-
tivity of TM in the dual Nakano sense can be weakened to the nonnegativity of
the bisectional curvature, and whether one can conclude that M is biholomor-
phic to an irreducible compact Hermitian symmetric manifold in all cases.
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8. Barth-Lefschetz type theorems

8.1. Schneider [49] introduced a scheme of using the vanishing theorem of
Grauert-Riemenschneider [22] for strongly hyper-^-convex domains to gener-
alize theorems of Barth-Lefschetz type [4], [5], [6], [29], [36] for submanifolds of
low codimension in the complex projective space (and submanifolds of codi-
mension 2 in the Grassmannian [7]) to the more general case of compact
symmetric Kahler manifolds. He encountered difficulties because the holomor-
phic tangent bundle of a compact symmetric Kahler manifold is not Nakano
semipositive except in the case of the complex projective space. By using the
method of proof of Proposition 7.5, it is possible to overcome his difficulty.
However, Schneider's proof of the strong hyper-#-convexity of the complement
of a complex submanifold in a compact symmetric Kahler manifold seems to
be invalid, even for the special case of the complex projective space, except in
the obvious case of codimension one. For this and two other reasons given
below we do not complete Schneider's scheme here. In the meantime Sommese
[58] announced some generalizations of the Barth-Lefschetz type theorems to
homogeneous compact complex manifolds with details to be given in a series
of papers quite a number of which have already appeared [59], [60], [61].
Moreover, if the complement of a complex submanifold of a compact Kahler
manifold is strongly hyper- r̂-convex, then one can easily get Barth-Lefschetz
theorems at the homotopy level by means of Morse theory under the very weak
assumption that the bisectional curvature of the compact Kahler manifold is
nonnegative. This can be achieved by using the second variation formula for
arc-length and by introducing an appropriate class of functions lying between
the classes of subharmonic and plurisubharmonic functions. We will devote the
rest of this section to this method of getting Barth-Lefschetz type theorems.

First we introduce the new class of functions which we need.

Definition. Let/be a real-valued C 2 function on a Kahler manifold M of
complex dimension n. Let 1 < q^n. The function / is said to be {strongly)
q-plurisubharmonic at a point P of M if for every local complex submanifold N
of M at P of complex dimension q the restriction of / to N is (strongly)
subharmonic at P when N is given the induced Kahler metric. In other words, /
is strongly ^-plurisubharmonic (respectively ^-plurisubharmonic) at P if for
any unitary #-frame Σ"=1 a

ι

v(d/dzι) ΆtP(\<v<q) the expression

Σ Σ
v—\ 1 , 7 = 1

is positive (respectively nonnegative) at P.
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For K > 0 the g-plurisubharmonicity of /is said to be > K at P if / — κ(dP)
2

is g-plurisubharmonic at P where dP is the distance function measured from P.

If g is a real-valued C2 function such that g = / at P, and g > / on some

neighborhood of P, then the ^r-plurisubharmonicity of g at P is > the g-pluri-

subharmonicity of/at P.

Clearly (strong) n-plurisubharmonicity coincides with (strong) subharmonic-

ity and (strong) 1-plurisubharmonicity coincides with (strong) plurisubhar-

monicity. Except for the case q = 1, (strong) g-plurisubharmonicity depends

on the Kahler metric.

8.2. Let M be a Kahler manifold with nonnegatiυe holomorphic bisectional

curvature, and G a relatively compact subdomain of M with smooth boundary dG.

Assume that dG is strongly hyper-q-convex. Then there exists a smooth exhaus-

tion function on G which is strongly q-plurisubharmonic, where an exhaustion

function on G means a function approaching oo on dG.

The proof of this theorem and its immediate consequences will occupy the

rest of this section. Let dG be the distance function from dG. The exhaustion

function will be obtained by smoothing out τ ° {-dG), where T is a sufficiently

convex increasing smooth function. To apply this theorem to obtain Barth-

Lefschetz type theorems by means of Morse theory, it suffices to conclude the

existence of a smooth strongly g-pseudoconvex exhaustion function on G. (A

strongly #-pseudoconvex function means a function whose Levi form at every

point has no more than q — 1 nonpositive eigenvalues.) However, for this

method it is essential to assume that dG is strongly hyper-#-convex instead of

merely strongly g-pseudoconvex, even if one only wants to conclude the

existence of a smooth strongly g-pseudoconvex exhaustion function on G. (The

strong <7-pseudoconvexity of dG means that the Levi form of the function

defining dG has no more than q — 1 nonpositive eigenvalues on the complex

tangent space of 3 G at every point.) The difficulty is with the smoothing

process. If 3 G is strongly g-pseudoconvex, then the continuous exhaustion

function τ ° (-dG) is strongly g-pseudoconvex in the sense that for any point

there is a local complex submanifold of complex codimension q — 1 so that the

restriction of T O (-dG) to this submanifold is strongly plurisubharmonic. In

general one cannot smooth out such a continuous strongly g-pseudoconvex

function to get a smooth strongly #-pseudoconvex function. The problem is

that the sum of two continuous strongly g-pseudoconvex functions may fail to

be strongly g-pseudoconvex, because at a given point the local complex

submanifolds of complex codimension q — 1 on which the restrictions of the

two functions are strongly plurisubharmonic respectively may have tangent

spaces whose intersection is of complex codimension 2(q — 1). Moreover, one

cannot modify Morse theory to make it applicable to the case of a continuous
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strongly #-pseudoconvex exhaustion function, as is seen from the following

counter-example. For q > 2 consider the Segre embedding. Let M — P 2 < 7 + 1 and

G — the set of points of M of distance > η from Pj X P^ with η being a

sufficiently small positive number. Then dG is strongly #-pseudoconvex. By the

argument of the second variation of the arc-length given later in this section,

one can easily see that T ° (-dG) is a continuous strongly g-pseudoconvex

exhaustion function on G for some smooth sufficiently convex increasing

function T. However, G admits no smooth strongly g-pseudoconvex exhaustion

function, otherwise 4q — \ > (2q + \) + q implies the vanishing of

HΛq-\GX)~Hz

c(GX) and the surjectivity of H2(P2q+l9C) -> H2(PX X

P^, C), where Hc denotes cohomology with compact support. The nonvanishing

of H4q~\G,C) shows also that one cannot modify Morse theory to make it

applicable to the case of a continuous strongly #-pseudoconvex exhaustion

function. The introduction of strongly g-plurisubharmonic functions is to

overcome the difficulty of smoothing. We will not follow the path of introduc-

ing a continuous strongly g-plurisubharmonic function, proving that τ o (-dG)

is such a function, and then smoothing it out. Instead we will construct, for

each P E G, a smooth function δP defined on a geodesic ball of radius rP

centered at P so that

(i) 8P = dG at P and δP > dG on the geodesic ball,

(ii) the g-plurisubharmonicity of τ ° (-δP) is > κP > 0 at every point of the

geodesic ball,

(iii) the partial derivatives of δP up to the third order are bounded by Ep on

the geodesic ball,

(iv) as functions of P E G both functions rP and κP are locally bounded

away from zero, and the function EP is locally bounded from above.

We will cover G by a locally finite countable family of coordinate charts,

and smooth out τ ° (-dG) successively on a sufficiently large compact subset of

each chart so that these compact subsets still cover G. The smoothing will be

done by using diffeomorphisms of G which fix each point outside the coordi-

nate chart and which on the compact subset are translations with respect to the

coordinates of the chart. In each step of the smoothing process we will obtain

in a natural way from the family of functions r © (-δ p), P G G, another family

of functions which have the same properties and stand in the same relation to

the partially smoothed-out T ° (-dG) as the family τ ° (-δP), P E G, to T °

(-dG). Thus at the end of the smoothing process the smooth function obtained

from T © (-dG) will be strongly g-plurisubharmonic.

8.3. Let M and G be as in the assumptions of Theorem 8.2. We first fix our

notations. Let n be the complex dimension of M. For P E M and r > 0 let

B(P, r) be the set of all points of M whose distances fromP are < r. For a
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curve γ in M we denote the length of γ by L(γ). For the rest of this section, for
P E M, TM p means the real tangent space of M when M is regarded as a real
manifold. As before, we denote by ( , ) the inner product on TM P defined by
the Kahler metric; for X E TM P we let Vx denote covariant differentiation in
the direction X with respect to the Levi-Civita connection; and for X,Y E TM p

we let Rxγ = V^Vy — VYVX — V^yj. Let / be the complex structure of M.
We use Bisect( X, 7) to denote the holomorphic bisectional curvature

For a function / we use the following notation for the real Hessian and the
Levi form of /respectively:

H(X,Y)f=XYf-(vxY)f9

t(X9 Y)f= H(X9 7)/+ H(JX9 JY)f.

The strongly hyper-g-convexity of dG means that there exists a positive
number η such that if F,, , Vq, JVl9- -9JVq are orthonormal vectors tangent
to dG at a point Q of dG and if Vo is the unit outward normal of dG at Q9 then

v=\

This one can easily see by using the formula, which defines the exterior
derivative of a 1-form in terms of the Lie bracket, and using the relation
between Vo and the gradient of a defining function of dG.

Fix PEG. Then the distance dG(P) of P from dG is realized by a geodesic
y(t): [0, /] -* M in M parametrized by its arc-length with γ(0) = 0 and γ(/) E
dG. Let Q = γ(/). We observe that, since the geodesic γ(/), 0 < t < /, is
perpendicular to dG at Q, the point P is determined by the point Q of dG and
the positive number /. We lengthen the geodesic γ(r), 0 < t < /, at both ends so
that we can assume that y(t) is defined for -ε < t < I + ε, where ε is some
positive number. In the following we denote by γ the lengthened geodesic y(t)9

-ε < t < I + ε. Choose In parallel vector fields Xλ9 ,X2n along γ such that at
every point of γ

(i) Xx, - ,Xln are orthonormal,
(ii) Xx is the unit tangent vector of γ,

(ϊύ)JXlv_λ = X2v for 1 < v < n.
Define a coordinate system^,- -,y2n on an open neighborhood of γ by the

map

2 yv

χ

v{y(y\))\
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The set Φ~\dG) near yλ -Uy2- - =y2n = 0is defined by

y\ = / + f(y2>- ,y2n)

with/and its gradient vanishing at j>2

 = * * * — y2n

 = 0
Let 0 < ρ(y\) < 1 be a smooth function on R which is identically zero on

some neighborhood of yλ = 0, and identically 1 on some open neighborhood of
yx = I. We introduce another coordinate system (x,, -9x2n) on some open
neighborhood U of γ which is related to the coordinate system (yλ9- -9y2n) by

The coordinate system (x\9'"9x2n) satisfies the following conditions,
(i) γ is given by x2 = = x2n = 0, -ε < xλ < I + ε,
(ϋ) dG is defined by xx — I near γ(/),

(ϋi) £-v = Xv(\ <v < In) at every point of γ,
(iv) Vχ£r9 - 0 at P for 2 < μ, ^ < 2«.
Choose a positive numbers such that the set F defined by - ^ε < ^! </-f ^ε,

I xv |< a, 2 < v < In, is relatively compact in J7, and .F Π ΘG = F Π {x, = /}.
For the rest of this section a 2«-tuple (bλ9-—9b2n)oi real numbers denotes the
point whose coordinates are (bλ9- - ',b2n) with respect to the coordinate system

(X\>' ' mix2n)'

8.4. For any point (JC?,->,x%n)inF let δ(x?, ,*!?„) be the length of the
curve

with respect to the Kahler metric of M. Between 8 and the distance function dG

from dG we have the following relation.

(8.4.1) δ(P) = dG(P)9 8>dGonF.

The derivative of δ along γ is clearly - 1 . Consider the hypersurface {δ = /}.
We want to computge the Levi form of δ restricted to the complex tangent
space of (δ = /} at P.

First we use the first variation formula of arc-length to verify that XV(P) is
tangential to {δ = /} for 2 < v < In. Fix 2 < v < In. Let Cs be the curve

jcj = / , 0 < t < l 9

xv~ s9

xμ = 0, μφ\9v.

By the first variation formula of arc-length [13, p. 5, (1.3)], we obtain

\s=0
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which vanishes, where Xv, Xx are regarded as functions of / through γ(/). Since

clearly (d/dxv)8 \P equals (d/ds)L(Cs) \S=Q9 it follows that Xv(δ - /) = XV8 =

0 at P. Hence Xv is tangential to {8 = /} at P.

8.5. We now compute the Levi form of 8 restricted to the complex tangent

space of {8 = 1} at P. Let Xv = d/dxv (1 ^ v < In) at every point of F. Fix

real numbers λv(3<v<2n) and let K = 2£=3 λ, A,. Let Γ, be the curve

xj = t, 0 ^ r < / ,

χ 2 = 0,

xy = λvv9 3 < p ^ In.

By the second variation formula of arc-length [13, p. 20, §6], we obtain

where V9 Xx are regarded as functions of t through y(t). Since clearly VV8 \P

equals (d2/dv2)L(Tv) \Ό=0, it follows from (8.5.1) and VVV\P = 0 that

(8.5.2) VV8 \p = <VFF, Xx)\t=l - [' (Rv XV, Xx) dt.

Since M is Kahler, for any real tangent vector field X one has

VXX+ VJXJX— VXX H-

It follows from (8.5.2) that

(8.5.3) e(F, V)8 \p = <[F, / F ] , /Jf,>l . - Γ Bisect(F, Xx)dt.
u~ι Jt=o

Since for any orthonormal vectors Vl9- — ,Vg, JVU— -,JVq tangential to 3G at

Q one has

and since the holomoφhic bisectional curvature of M is nonnegative, it follows

from (8.5.3) that

(8.5.4) 2 £(K,K)δ^-η at P.
v=\

8.6. To take care of the Levi form for the normal direction of {xx = δ}, we

have to compose -8 with a convex increasing function. Take b > 0 such that

B(P, b) is relatively compact in F. Take a real-valued smooth function defined
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on some open neighborhood of [-/ — b,-l + b] in R such that both the first
and second derivatives τ\ T" of r are positive at -/.

Take orthonormal vectors Wλ9- , Wq9 JWλ9- — 9JWq in TM P. We want to
compute 2£= 1 £ ( ^ , ^ ) ( τ ° (-δ)) This expression remains unchanged when
the set Wλ9-—9Wq9 JWl9— -9JWq is replaced by another orthonormal set
spanning the same R-vector subspace of TM P. Hence without loss of generality
we can choose an orthonormal set of vectors VQ9- — 9Vq9 JVθ9— -9JVq in TM P

such that
(i) Vλ9 , Vq9 JVl9 - ,JVq are tangential to dG at P,
(ii) Vo is normal to dG,

(iii) Wv = K, 1 < ? < ? - 1,
(iv) fl/ = y/l - a2 Vq + aV0 for some 0 < α < 1.

Let A be the length of the second-order covariant derivative of δ at P. Simple
direct computations yield at P

i t{Wr, W,)(r ° (S)) = «V'(-/) - τ'(-/) 2 t(Vv, Vv)δ
v=\ v=\

which is ^ τ'(-/)(τj/2) if a < η/(\6A\ and which is > 8τ'(-/)Λ if α ̂  τ)/(16Λ)
and τ"(-/)/τ'(-/) ̂  (16^)3/η2 Let c be the minimum of τ'(-/)(τ]/2) and
&τ'(-l)A. Then

/ o , v the ̂ r-plurisubharmonicity of τ ° (-δ) > c at P

8.7. We now want to deal with the Levi form of the smoothing of τ ° (-dG)
for a suitable smooth convex increasing function T. We let the point vary inside
G. Since δ, b, A depend on P9 we denote then by δP, bP, AP. Since the point P
is determined by Q and /, letting P vary is the same as letting Q and / vary. By
considering the varying of Q and /, we readily see that we can assume without
loss of generality that, as functions of P E G, bP is locally bounded away from
zero, and both AP and bP are locally bounded from above.

Let /* be the diameter of G. Choose a smooth convex increasing function
T: (-/*,()) -> R such that τ(λ) goes to oo as λ approaches 0 and τ"/τ ' ^
(\6AP)

3/η2 at -rfG(P) for all P E G . Let cP be the minimum of iτ ' (-
and Sτ'(-dG(P))AP. It follows from (8.6.1) that

(8.7.1) the g-plurisubharmonicity of τ ° (-δP) > cPatP.
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Let Ep be the supremum on B(P, bP) of the lengths of the covariant deriva-

tives of TO (SP) up to order 3. By the reasoning given above we can also

assume without loss of generality that EP as a function of P E G is locally

bounded from above. It follows from (8.7.1) and the local boundedness of EP

from above that there exists a function uPoίP E G with 0 < uP < bP, which is

locally bounded away from zero such that for P E G

the ^-plurisubharmonicity of T ° (SP) > jcP

at every point of B(P, up).

We now describe the smoothing process for T O (-dG). Take a coordinate

chart U of M, which is relatively compact in G. Let Yu- , Y2n be the vector

fields on U defined by partial differentiation with respect to the coordinate

functions of U. Take a compact subset K of U and a smooth function

0 < p < 1 with compact support in U such that p Ξ l o n some open neighbor-

hood D of K. For 1 ̂  / < 2« let ?]•(/), t E R, be the 1-parameter subgroup of

the diffeomorphism group of G obtained by integrating the vector field pYt.

For s = (sx,- - ,s2n) E R2w let T(s) = T^s^ T2n(s2n). Take e > 0 such

that T(s)K C D when the distance | s | of s from the origin of R2w is < e. Let ξ

be a nonnegative smooth function on R2w, whose support is contained in the

ball of radius e centered at 0, and whose 1) norm is 1. For any continuous

function/on G define for P E G

(Sf)(P)=f J(s)f(T(s)P),

where integration is with respect to the Euclidean measure of R2n. Then Sf is

smooth on K and agrees with / outside the support of p. Let h be the

supremum of the distance between P and T(s)P ίoτ \s\< e and PEG. The

supremum h is finite because every T(s) fixes every point of G outside the

support of p. If for some given point P of G the function / is smooth on

B(P9 h\ then Sf is smooth at P.

Because of (8.7.1) and (8.7.2), for any given 0 < λ < 1 we can choose e

sufficiently small so that for P E G

the ^-plurisubharmonicity of T O (-δP) ° T(s) is > \λcP(o.7.3j
at every point of B(P, λuP) for | j | < e.

By (8.4.1) we have for every s and every P E G

(8 7 4) ro(-dc)oτ(s) = ro(-8ns)p)oτ(s) atP,

TO (-dG) o T{s) s* T o (ST(S)P) o Γ(ί) on *(/>, ft, - 2Λ).
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For a family of functions ξf= {fP} indexed by P G G, we define another
family of functions SP(^) also indexed by P G G as follows (when the
definition makes sense):

where integration is with respect to the Euclidean measure. By an abuse of
notation we denote SP(^) by S'(fP). We apply this definition to the family

τ o (-δp), P E G , and obtain for every P G G a smooth function 5'(τ ° (-δP))
on #(/*, bP — 2Λ). We observe that when the distance of P from U is > ftp, the
function agrees with T O (-δp), and we can use in such a case B(P, bP) as the
domain of definition of S'(r © (-δ/>)). For any given 0 < λ < 1 we can choose
e sufficiently small so that for P G G

, v the lengths of the covariant derivatives of S'(τ o (-8P))
{ ' ' ' up to order 2 are bounded by EP/λ on B(P,λbP-2h).

It follows from (8.7.3) that

, 7 £\ the ^-plurisubharmonicity of S"(τ © (-δP)) is > i λ c P at
{ ' ' ' every point of B{P, λbP - 2h).

Moreover, it follows from (8.7.4) that

) = S ' ( τ o μ ? ) ) a tP,
1 ' ' j 5(τo ( r f ) ) > Sir o (-δP)) on B(P, bP - 2h).

In the case where the distance of P from U is > bP, S(τ © (-dG)) — r © (-rfG)
and S'(τ o (-δp)) = τ o (-δ^), so that (8.7.5), (8.7.6), (8.7.7) all hold with
£(P, λfcp - 2A) or B(P, bP - 2Λ) replaced by £(P, fcp).

8.8. Now instead of a single coordinate chart U we take a locally finite
family of coordinate charts Uμ9 1 < μ < oo, with a compact subset Kμ in each
L̂  so that the family Kμ9 1 < μ < oo, covers G. Corresponding to e, Λ, 5, S" we
have eμ9 hμ9 Sμ9 Sμ. Since the family Uμ9 1 < μ < oo, is locally finite, we can
successively choose eμ9 1 < /A < oo, sufficiently small so that the family Kμ9

1 < μ < oo, still covers G, where Λ^ is the set of all points of Kμ whose
distances from G — Kμ are less than the sum of all hv with Uv Π Uμ ¥= 0 . Let ψ
be the resulting function obtained by applying successively the operators Sμ9

1 < μ < oo, to T © (-dG). Since Sμf = f on G — Uμ and the family L̂ , 1 < μ <
oo, is locally finite, the function φ is well-defined. Moreover, the function φ is
smooth, because Kμ9\<μ<oo9 covers G. For PEG, let ψp be the resulting
function obtained by applying successively the operators Sμ9 1 < μ < oo, to the
family of functions T O (SP% PEG. Since the family Uμ9 1 < μ < oo, is
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locally finite, we can successively choose eμ9 1 < μ < oo, sufficiently small so

that

(i) φ is an exhaustion function of G,

(ii) ψp is smooth on B{P,\uP\ and the #-plurisubharmonicity of \pP

is > \cP at every point of B(P, \uP),

(iii) φ = \pP at P and φ > ψP on B(P, \uP).

It is possible to make the choice so that (ii) and (iii) hold because of the
statements corresponding to (8.7.5), (8.7.6), (8.7.7) at each stage of the applica-
tion of the operators Sμ and Sμ. It follows that the #-plurisubharmonicity of φ
is > \cP at P. Thus φ is a strongly ^-plurisubharmonic exhaustion function on
G. This smoothing process is essentially the same as the one given by Richberg
[45] for strongly plurisubharmonic functions (cf. [24]).

8.9. Theorem. Let M be a Kάhler manifold of complex dimension n with

nonnegative holomorphic bisectional curvature. Let G be a relatively compact

subdomain of M with smooth boundary dG. Let 1 < q < n and assume that dG is

strongly hyper-q-convex. Then πv(M, M — G) vanishes for v < n — q.

Proof. Choose a relatively compact open neighborhood D of G in M such
that dD is smooth and strongly hyper-^-convex. by Theorem 8.2 there exists a
smooth exhaustion function φ on D which is strongly #-plurisubharmonic. Let
α b e a real number such that φ < a on G. We can approximate φ on (φ < a}
in the C2 topology uniformly by Morse functions [38, p. 37, Cor. 6.8], i.e.,
smooth functions whose critical points are all nondegenerate and hence
isolated. Choose a Morse function / o n (φ < a} which approximates φ so
closely in the C2 topology that / is strongly gr-plurisubharmonic on (φ < a},
and for some b < a one has G C {/ < b} and {/< b] C (φ < a}.

By the strong g-plurisubharmonicity of / the Levi form of / must have at
least n — q + 1 positive eigenvalues at every point. So the real Hessian of /
must have at least n — q + I positive eigenvalues at every point. It follows that
the index of -/, which is the number of negative eigenvalues of the real Hessian
of -/, is > n — q + 1 at every critical point of -/.

Let c be the minimum of/on (φ < a). Since/is a Morse function, the set
{/ = c) consists of only a finite number of points. Fix v < « — q. Let B be the
closed unit ball of real dimension v. Let σ: B -> M be a continuous map with
σ(dB) CM— G. Since {/= c] is a finite set, we can continuously deform σ
without changing σ\dB such that σ(2?) is disjoint from {/= c) and hence
from {/< d) for some d > c. Since the index of -/ is > n — q + 1 at every
critical point of -/, M — {-/> -d] has the same homotopy type as M —
{-/> -b) with finitely many cells of dimension > n — q + 1 attached [38, p.
19, Remark 3.3]. It follows from v < n — q + 1 that the continuous map
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σ: B -> M can be continuously deformed into M — {-/> -b) and hence into

M — G without changing σ | dB. q.e.d.

An immediate consequence of Theorem 8.9 is the following.

8.10. Theorem. Let M be a compact Kάhler manifold of complex dimension n

with nonnegative holomorphic bisectional curvature. Let 1 ^ q < n. Let V be a

complex submanifold of M admitting a tubular neighborhood U with smooth

boundary such that M — U has strongly hyper-q-convex boundary. Then πv(M9 V)

vanishes for v < n — q.

8.11. Remark. For Theorem 8.2 to hold, instead of assuming that dG is

strongly hyper-^-convex, we can assume that dG is hyper-g-convex and the

bisectional curvature of M is (q + l)-nondegenerate. The same proof works

with some obvious modifications. Theorems 8.9 and 8.10 remain true with a

similar change of assumptions.

9. A generalization of the strong Lefschetz theorem

9.1. In the last section we proved a Barth-Lefschetz type theorem for

compact Kahler manifolds of nonnegative holomorphic bisectional curvature.

Unfortunately it works only for complex submanifolds admitting tubular

neighborhoods whose complements have strongly hyper-#-convex boundaries.

So far there is no way to verify which complex submanifolds admit such

tubular neighborhoods except in the obvious case of codimension one. Out of

the desire to get Barth-Lefschetz type theorems with only bisectional curvature

conditions, in this section we will prove a generalized strong Lefschetz theorem

for Hermitian holomorphic vector bundles over compact Kahler manifolds

which are 1-semipositive and /c-positive in the sense of Griffiths. This gener-

alized strong Lefschetz theorem will be used to give the surjectivity portion of a

Barth-Lefschtz type theorem at the homology level for compact Kahler mani-

folds whose bisectional curvature is nonnegative and fc-nondegenerate.

In [59] Sommese proved a generalization of the strong Lefschetz theorem for

a class of bundles over algebraic manifolds called λ -ample bundles which he

introduced. These bundles are characterized by the property that high powers

of the associated line bundles over the projectivizations of their duals have

enough sections to give a holomorphic map of fiber dimension ^ k. His

generalized strong Lefschetz theorem follows from the usual strong Lefschetz

theorem by slicing by ample divisors to reduce the fiber dimension of the

holomorphic map to zero to get positive bundles. He used his generalized

strong Lefschetz theorem to prove the surjectivity portion of a Barth-Lefschetz

type theorem at the homology level for compact algebraic manifolds with
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λ>ample tangent bundles and, in particular, for certain compact homogeneous

algebraic manifolds. However, the nonnegativity and the λ -nondegeneracy of

the bisectional curvature are locally given conditions in nature, whereas the

fc-ampleness of the tangent bundle involves the existence of global sections of

certain associated line bundles. For Barth-Lefschetz type theorems for mani-

folds with bisectional curvature conditions, we need the generalized strong

Lefschetz theorem given in this section. This generalization cannot be derived

from the usual strong Lefschetz theorem and requires a completely different

approach.

9.2. Theorem (the generalized strong Lefschetz theorem). Let M be a com-

pact Kάhler manifold of complex dimension n. Let E be a Hermitian holomorphic

vector bundle of rank r over M, which is Griffiths l-semipositive and Griffiths

k-positive. Let cr(E) be the rth Chern class of E. Then the map /•: H\M, C) ->

Hι+2r(M, C) defined by cupping with cr(E) is injective for i <n — k + 1 — r

and surjective for i > n + k — 1 — r.

Most of the rest of this section will be devoted to the proof of this theorem.

9.3. Let M be a compact Kahler manifold of complex dimension n with

Kahler form ω and local coordinates zα(l < a < n). Let u = {-Vuaβdza Λ dzβ

be a closed (1, l)-form on M, which is positive semidefinite and has at least

n — k + 1 positive eigenvalues at every point of M. For ε > 0 let ωε = u + εω.

According to Lemma 4.6, after replacing ω by ωε for some sufficiently small ε,

we can assume without loss of generality that at every point of M the

eigenvalues λ,, ,λw of u with respect to ω satisfies the condition that

n

Σ λα ~ Σ λ« ~ Σ λβ
a=\

is positive for any subset A of p elements and any subset B of q elements in

{1, ,w} with/? + q<n - k+ I.

Fix a point P of Λf, and choose a local coordinate system z1,- ,zw at P so

that ω = I H " Σ ; = 1 dza A dz~a and u = fΛΣl=ι λadza Λ dz~a at P. For subsets

A = {α,, ,αβ} and B = {βl9- -9βb} of (1, ,/ι} with aλ < < o^ and

β\ < ' < βb

 w e l e t dzA =dza> Λ - ί\dza° and dzB = dzβ* Λ f\dzβh. For

a subset C = {γ,, ,γc} of {1, ,Λ} let

( ώ Λ rfz)C = (ί/zγi Λ rfz^) Λ Λ (dzΎ< Λ

Moreover, let

~ Σ λ α —
α = l
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For (p, #)-forms

Ψ= Σ φABCdzA ΛdzB Λ(dzΛdz)C,
A,B,C

ψ = 2 ^ABcdz* A dzB A (dz A
A,B,C

at P with/? + q < n — k + \ define

A,B,C

By the assumption on M, ( , )' is a positive definite Hermitian form.
The notations ( , >, L, and Λ used below carry the same meanings as in

§3.3.
9.4. Lemma. For (/?, q)-forms φ, ψ on M with p + q<n — k+ 1,

<Λ(« Λ φ), ψ ) - ( w Λ Λφ, ψ>= (φ, ψ>\

Proof. We prove it at the point P of M with the local coordinates described
above. Since both sides are linear in φ, it suffices to prove the special case
where

ψ = dzA AdzB A(dzAdz)C.

We have

Λφ = -γ=r 2 dzA A dzB A (dz A dz)C~{σ\
y-1 σec

u A Λφ = 2 λσdzA A dzB A (dz A dzf
σec

+ 2 \dzA Λ dz* Λ {dz A ̂ )<C-{"»UW.
τ&AUBUC

On the other hand,

u A φ = p[ 2 λ τ ^ A ί/z5 Λ (dz A dz)CU{τ\
τ&AUBUC

Λ(w Λ φ) = 2 λrdzA A dzB A (dz A dz)(C { σ } ) U { τ

σec
2 λTdzA AdzB A(dz Adzf.

τ&AUBUC



126 YUM-TONG SIU

It follows that

Λ(«Λφ)-«ΛΛφ= 2 λτ - ^ λrdzA A dzB A(dz A dz)C

A dzB A (dz A dzf,

which yields the wanted formula upon taking the inner product with ψ. q.e.d.

For Lemma 9.4 the condition p + q < n — Λ + l i s not needed if we define

( ,•)' also for other forms. Moreover, the lemma holds for any (1, l)-form

without any eigenvalue condition.

Let Pι be the set of all primitive /-forms with respect to the Kahler metric of

M.

9.5. Lemma. For any υt E P z , u Λ vt — wι+2 4- Lwι + L2w/_2, where wv G

P\v = I + 2, /, / - 2).

Proo/. We have the decomposition

« Λ « / = Σ L^/-2,-H2?

where W ^ J ^ + J E P 7 " 2 ^ 2 for ^ ̂  0. We know that ZΛ P p -^ L»PV is an

isomoφhism for μ < « — ̂  and LμPv — 0 for μ > « — ̂ . It follows that

0 = u Λ L«-/+1ι;, = L"-ι+\u Λ t;,)

v-l+\

Since n + v — I + 1 < n — (/ — 2v + 2) for v > 3, we have w/_2 ϊ / + 2

 = 0 ^OΓ

Lemma 9.5 holds when w is replace by any 2-form.

9.6. L e m m a . Let υh wt be primitive l-forms. Then for 0 < J U < n — I — 1 with

Λ

Proo/. By (3.3.1), for 0 < v < n - / we have

- / - v
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where L~λυι is taken to mean zero. By Lemma 9.4 we obtain

(u Λ Lμvh Lμ+ιW!) = <Λ(M Λ Lμvt), Lμw{)

= (Lμvh Lμwtγ + (u A Lμvh LμWt)

' + μ(/i - / - μ + l)(w Λ

Λ

The assertion follows from solving for {u/\ Lμυh Lμ+λwι) in the above
equation, q.e.d.

In Lemma 9.6, when μ = \{n — /), the proof gives (Lμυh Lμwty — 0. We
will use only the case μ < {{n — I).

9.7. Lemma. Let vh wι+2 be respectively a primitive l-form and (I + 2)-form.
Then for 1 < μ < n - I - 2,

(u A Lμvh Lμwι+2)= - i ( * - l - μ - \)(Lμvh Lμ~]wι+2y.

Proof.

(u A Lμvh Lμwι+2)= <A(iι Λ L%)9 Lμ~ιwι+2)

= (Lμvl9 Lμ~ιwι+2γ + (u A KLμvh Lμ~ιwι+2) (by Lemma 9.4)

= (Lμvh Lμ~ιwι+2y + μ(n-l-μ+ \)(u A Lμ~λvh Lμ~λwι+2)

= (Lμvh L μ - \ + 2 γ + H l { l ^ } < u Λ L μ ~ \ , ALμwι+2)

Λ

The assertion follows from solving form (u A Lμvh Lμwι+2) in the above
equation.

9.8. Lemma. Let vh w{_2 be respectively a primitive l-form and (/ — Ί)-form.
ThenforO^μ^n - /,

(u A Lμvh Z / + 2

W / _ 2 > = \{μ + 2)(Lμvh
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Proof.

(u A L%, L*+2w,_2)= <Λ(« Λ

= <//«„ L ^ ' w / . j / + (u Λ ΛPϋ,, L'ι+ιw/_2> (by Lemma 9.4)

= (L%, L*+Iw,_2>' + μ(n-l-μ+ 1)<« Λ L ' - c,, Z/+Iw,_2>

L " + V 2 > ' + -^r(u Λ L " " ^ , AL"+2w,_2>

Λ

The assertion follows from solving for (u A Lμvh Lμ+2wι_2) in the above
equation.

9.9. Lemma. For p + 4 < n - k + 1 ίΛ<? map i f (M, Ω*) -*
/ί 7 '^ ](M, Ω< 7 + !) defined by multiplication by u is injectiυe.

Proof. Fix p and q with p + q<n — k+ 1. Any element of HP(M, ίlq) is
represented by a harmonic (/?, #)-form φ on M. Assume that wΛφis 3-exact.
We have to show that φ is identically zero. Let l — p-\-q. Uniquely φ can be
written in the form

φ =

where vι_2μ is a primitive harmonic (/ — 2μ)-form on M. Let cμ, 0 < μ < \l, be
positive numbers whose values are to be chosen later in the proof. Let

Ψ = Σ cμL%_2μ.

Then ψ is a harmonic /-form on M. As before, * denotes the Hodge star
operator with respect to the Kahler metric of M, and * denotes the composite
of * and the complex conjugation. Since *Lψ is a harmonic form on M, it
follows that

ί (u Λ φ, Lψ) = ί u Λ φ Λ ΐLψ = 0.
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On the other hand, by Lemmas 9.5, 9.6, 9.7, and 9.8, we have

< M Λφ,Lψ>= 2 {c/M

+ cμ(uΛL»v,_2μ,L»+2vl_2μ_2)

+ cμ+ι(u Λ L*+ ιυ,_2μ_2, L*+\

(μ+l)(nl + μ)
Cμ i \ L Όl-2μ>L Όl-2μ)

_ n- / + μ

We now choose c0 = 1 and inductively c so that

> + i n - i .

Then

From the positive definiteness of ( ,•>' and the vanishing of the integral of
(u Λ φ, Lψ) over M it follows that each Lμvι_2μ is identically zero on M.
Hence φ is identically zero on M.

9.10. We now proceed to prove Theorem 9.2. Let M and £ be as in the
assumptions of Theorem 9.2. Let F be the tautological line bundle over the
projective bundle P(£*) associated to the dual bundle E* of E. The curvature
form of the dual bundle F* of F with the metric induced from that of E is a
(1, l)-form on P(£*), which is positive semidefinite and has n — k + r positive
eigenvalues at every point of P(£*) (see Lemma 4.5). Denote this curvature
form by u. By Lemma 9.9, the map Φz: #'(?(£*), C) ̂  i/ / + 2(P(£*),C) de-
fined by cupping with u is injective for / < n — k -h r.

We now use the argument of Bloch-Gieseker [9, p. 113, Prop. 1.1] to get the
injectivity of ft^ for i < n — k + 1 — r. By [27, p. 144], we have the following
ring-isomorphism:

Here / is the ideal generated by

Tr - cλT
r~λ + + ( - l ) ' - V i Γ + (-l
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where c, E H2i(M9 C) is the ith Chern class of E. Moreover, this ring-isomor-
phism sends T to the Chern class of T7*.

Fix / < n — k + 1 — r. Assume that some nonzero element £ of H\M, C) is
in the kernel of /.. We want to derive a contradiction. Since ξcr(E) = 0, it
follows that the nonzero element

η := ψ(ξ(τ'~* - c , Γ - 2 + + (-l) r~ 2c r_ 2Γ + ( - l ) Γ " V i ) )

of 7/'+ 2 r~2(P(£*),C) satisfies Φl +2r-2(1ϊ) = ° τ h i s i s a contradiction because
i" + 2r - 2 < A7 - k + r.

We now use Poincare duality to get the surjectivity oΐfifoτ i> n + k — 1 —
r. Let t) be the real harmonic 2r-form on M representing cr. Suppose/ is not
surjective for some i>n + k—I— r, and we want to derive a contradiction.
Since/ is not surjective, there exists some nonzero harmonic (/ + 2r)-form φ
on M which is orthogonal to v Λ ψ for all harmonic /-forms ψ on M. That is,

or equivalently

ί υ Λ ψ Λ ϊφ = 0,
JM

ί v Λ (*φ) Λ *(*ψ) = 0.
JM

Hence the closed (In — ι)-form v Λ *φ is orthogonal to *ψ for all harmonic
/-forms ψ on M. That is, v Λ *φ is orthogonal to all harmonic (2n — /)-forms.
It follows that ϋ Λ *φ is rf-exact. The cohomology class represented by *φ is
mapped to zero by/2π_/_2r. This contradicts the injectivity of/2lI_J _ 2 r.

9.11. Theorem. Le/ M be a compact Kάhler manifold of complex dimension
n, whose holomorphic bisectional curvature is nonnegative and k-nondegenerate.
Let V be a complex submanifold of complex dimension d. Then the restriction
map Φz: #'(M, C) -» #'(F, C) is surjective for l> In - k - 1 - d.

Proof. Let [V] denote the closed (n — d, n — ί/)-current defined by in-
tegration over V. This current [V] defines an element v E H2{n~d\M,C). Let
j:V**M be the inclusion map. Then j*v E H2{n~d\VX) is equal to the
(n — d)th Chern class cn_d(Nv) of the normal bundle Nv of V in M. Fix
l^2n-k-\-d and take a E Hι(V, C). By the assumption on the holo-
moφhic bisectional curvature of M9 the tangent bundle TM of M is Griffiths
1-semipositive and Griffiths ^-positive. Being a quotient bundle of TM, Nv is
also Griffiths 1-semipositive and /c-positive. By Theorem 9.2, there exists
β E Hι~2^n~d\V, C) such that a equals the cup product β U cn_d(Nv). Let G
be an open tubular neighborhood of V in M such that V is differentiably a
deformation retract of G. Then /? can be extended to an element γ of
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Hι~2(n~d\GX). Let φ be a closed (/ - 2(/ι - d))-ίoτm on G representing γ.

Then φ Λ [V] is a closed /-current on M which defines an element a G Hι(M, C)

with Φ/(α) = α.

10. A vanishing theorem for semipositive line bundles

10.1. We conclude this paper by giving a vanishing theorem for semiposi-

tive line bundles over non-Kahler manifolds. It is obtained by combining the

V and ~V Bochner-Kodaira techniques described in §1 and using some simple

estimates from elementary real analysis. This vanishing theorem is motivated

by the conjecture of Grauert-Riemenschneider [23, p. 277], [47, Conjecture I]

which is still an open problem. The difficulty with the conjecture is how to

prove the following special case.

Conjecture of Grauert-Riemenschneider. Let M be a compact complex mani-

fold which admits a Hermitian holomorphic line bundle L whose curvature form is

positive definite on a dense open subset G of M. Then M is Moishezon.

An equivalent form is that if L is a Hermitian holomorphic line bundle over

a compact complex manifold M whose curvature form is positive definite on a

dense open subset G of M, then H\M, U ® KM) — 0 for v sufficiently large.

Here KM is the canonical line bundle of M. (See [47, Conjecture II]).

When M is Kahler, the above equivalent form follows from the v̂  Bochner-

Kodaira technique and the identity theorem for solutions of second-order

elliptic partial differential equations. It holds with v > 1, [47]. However, when

M is not assumed to be Kahler, no proof is known even for the special case

where M — G is a subvariety except when it is a subvariety of dimension zero

[46] or one [52].

The conjecture of Grauert-Riemenschneider was originally introduced for

the purpose of characterizing Moishezon spaces by quasi-positive torsion-free

sheaves. Since then a number of other characterizations of Moishezon spaces

have been obtained [20], [44], [57], [63] which circumvent the difficulty of

proving the Grauert-Riemenschneider conjecture by stating the characteriza-

tions in such a way that a proof can be obtained by using blow-ups, Kodaira's

vanishing and embedding theorems, or L2 estimates of 3 for complete Kahler

manifolds.

We now state our vanishing theorem for semipositive line bundles over

non-Kahler manifolds.

10.2. Theorem. Let M be a compact complex manifold of complex dimension

n with a Hermitian metric, and L be a Hermitian holomorphic line bundle over M

whose curvature form u is positive definite on an open subset G of M. Suppose
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there exists a positive number A such that at every point P of M the eigenvalues

\λ{P)^ -• <λn{P)ofuatP with respect to the Hermitian metric of M satisfy

the condition λn{P) < Aλλ{P). Suppose M— G can be covered by a finite

number of differentiable coordinate charts Uκ9 xλ

κ>- 9x%n (1 < K < k) such that

(M — G) Π [x[ = constant, 1 < i < 2n — 1} is always a finite set. Then for

any holomorphic line bundle F over M, H\M, U ® F) vanishes for v sufficiently

large.

The rest of this section will be used for the proof of this theorem. _
10.3. We use the notations of Theorem 10.2. Let u = fAUijdz* Λ dzj. Let

{^Λzι Λ dzj be the curvature form of the canonical line bundle KM of M with
the Hermitian metric induced from that of M. The raising and lowering of
indices will be done with respect to the Hermitian metric of M. Choose a
Hermitian metric for F, and letv^Tϋ^z1 Λ dzj be its curvature form. Though
M is in general not Kahler, for U ® F and M one can derive formulas
analogous to (1.3.3) and (1.3.5). The only difference is the presence of an
additional term coming from the torsion tensor of the Hermitian metric of M
(cf. [25, p. 429, Theorem 7.2]). Take a positive integer v and an //-valued
harmonic form φ on M. We have the following two formulas corresponding to
(1.3.3) and (1.3.5).

\

(10.3.2) M

(10.3.1) 0 = \\Vφ\\2

M + r ( u%-φΓ + ί (vf'- RΓj)φrφf + Γ,,
JM JM

_ M J M J M

~ ί v*i<Pf<PJ + T2,

where Tl9 T2 are terms from the torsion tensor of the Hermitian metric of M,
and can be estimated by

l ^ l ^ c j i φ i u ί i i φ i u + i i v φ i u + l l v φ i u ) (/= 1,2),

Cλ being a constant independent of v. Multiplying (10.3.1) by nA and adding
the resulting equation to (10.3.2) we obtain

0 = IIVφllJ, + HVφllJS, + vf {nA + l)uΓjφrψf ~ v \ 4 φ j

JM JM

+ f {{nA + 1 ) ^ - nARΓj)φf~ψ^ - f 4 ^ + nAT\ + τi
JM JM
f {{ ) ) φ f ^ f
M JM

+ \\Vφ\\2

M

M
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where

\S\^C2\\φ\\M(\\φ\\M+\\Vφ\\M+\\Vφ\\M),

with C2 independent of v. Since

IIΦIIM(II V φ l U + II V9l l M )<C 2 11911^ + ^ ( 1 1 ^ 9 1 1 ^ + II Vφll2

M),

it follows that

I S | < C 2 ( 1 + C2)||<p||2Λ/ + \\\ Vφll^ + ^ l l v φ l l i ,

(10.3.3) _ , _
II V φ l l i + IIVφll2, + 2vf^ψrΨf < 2C2(1 + C2)\\φ\\2

M.

10.4. By replacing the family of charts {Uκ} by another family if necessary,

we can assume without loss of generality that in addition

(i) £/; : = = {| jci | < 1, ,| x2n | < 1} is relatively compact in Uκ, 1 < K < k,

and

(ϋ)M-Gc uk

κ=λu;.
Take any ε > 0. Since (M - G) Π {*£ = constant, 1 ̂  i < In - 1} is al-

ways a finite set, we can cover U'κ by a finite number of open subsets Wκλ of Uκ

such that

(i) each Wκλ is of the form Dκλ X / κ λ with respect to the coordinate system

xj, -,x2n with/)κ λ C R2n~ι a n d / κ λ C R,

(ii) / κ λ is a finite union of open intervals Iκλμ with center cκλμ and

length < ε,

(iii) the interval ϊκλμ with center cκλμ and length twice that of Iκλμ lies in

(I x2n I< 1}, and for fixed /c, λ the intervals ϊκλμ are pairwise disjoint.

(iv) M - G is disjoint from Dκλ X (ϊκλμ - Iκλμ).

Let / . λ = Uμϊκλμ and Wκλ = Z)κλ X / κ λ .

Wheny is sufficiently large, for each {In — l)-tuple of integers (p λ, ,p2n-1)

with 1 < pt < 2Jr — 1, the cube

is contained in some Dκλ. By replacing the sets Dκλ by these cubes, we can

assume without loss of generality that

(10.4.1) the intersection of 2k 4- 1 distinct members of { Wκλ}κ λ is empty.

Choose a smooth function -ε < Pκ\μ(x2n) < ε with compact support in ϊκλμ

so that Pκλμ = X 2 M - c κ λ μ on / κ λ μ and | (d/dx2n)pκλμ \< 2 on ϊκλμ. We can
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naturally regard pκKμ as a function on Dκλ X ϊκλμ. Write

(10.4.2)

where

ωκ = dx\/\ Λdx2n,

v\ =

Integration by parts yields

V =-ί

We can find constants Eκ depending only on K and independent of ε and v such
that

(10.4.3) / |

(10.4.4) | F κ λ / i | < ε ^ / _ | φ | (| Vφ| + | Vφ|),
JDxr

(10.4.5) Kx,l<

where the integration of a function means with respect to the volume form of
M. Let

Qe = ( u κ , λ ^ λ ) - ( u κ λ ^ D κ λ x (ϊκλμ - iκλμ)y,

and E = suρκ(Eκ)
2. From (10.4.1)-(10.4.5) it follows that

/ \φ\2<2kEe[ \ φ \ (| Vφ | + | Vφ |) + 2kE [ \φ\2.
JQt

 JM M-Q,

Choose e so small that kEε < j . Then

(10.4.6) ^ f Iφ |2 < kE(2 + ε) f \ φ\2 + 2kEε{\\Vφ\\2

M + II Vψ\\2

M).
2 JQ JM-Q
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Combining this with (10.3.3), we obtain

uΓjψΓψr

M

(10.4.7) < 2 C 2 ( l + ^ C 2 ) ( l + 2 / c £ ( 2 + ε))/ | φ f

+ 8C2(l +^

We choose ε so small that 8C2(1 + {C2)kEε < 1, and P SO large that

2vu%^ >2C 2 ί l + | c 2 ) ( l + 2fc£(2 + ε)) | φ | 2

on M - g ε. It follows from (10.4.7) that φ Ξ θ o n M - g £ and || Vφll M =
II Vφ II M - °> a n d ^ follows from (10.4.6) that φ = 0 on M. This concludes the
proof of Theorem 10.2.

10.5. Remarks. 1. To get the vanishing of H\M, U 0 F) for v sufficiently
large, the assumptions of Theorem 10.2 concerning the positivity of u and its
eigenvalues can be weakened to Σf=1 X^P) > 0 for P E G and 2"=n_q+ι λ,.(P)
^ Λ Σ ^ λ ^ P ) for PELM. The proof is completely analogous to that of
Theorem 10.2.

2. A corollary to Theorem 10.2 is that M is Moishezon. For, one can use
Kodaira's method [34, §3] of blowing up points to show that for v sufficiently
large Γ(M, U) separates points of G and gives local coordinates at points of
G.

3. Theorem 10.2 cannot be used to characterize Moishezon manifolds
because the pullback of L to a blow-up of M in general fails to satisfy the
assumption on the eigenvalues of the curvature form. In this regard Theorem
10.2 is highly unsatisfactory.
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