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0. Introduction

Let Mn be a complete Riemannian manifold. Then the Laplacian Δ = -δd
on functions is a nonpositive essentially self adjoint operator when restricted to
functions of compact support. Thus functions /(/^Δ~) can be defined by the
spectral theorem for unbounded self adjoint operators, according to the
prescription

(0.1) f(fK)=f"f{λ)dEλ,

where dEλ is the projection valued measure associated with /^Δ".
A natural problem is to study the behavior of the explicit kernel kf(X)(xx, x2)

representing /(/^Δ), in terms of the behavior of various geometric quantities
on Mn. As a particularly important example we have the heat kernel
E(xl9 x2, t) — ke-\2t. By use of the local parametrix and the standard elliptic
estimates, one can show that for / > 0, E(xλ9 JC2, 0 is a positive (symmetric)
C00 function of JC1? x2, t which for fixed t and (say) %2>

 ι s *n the domain of all
positive powers of Δ as a function of xλ; see e.g. [9]. In works of Garding [19]
and Donnelly [16], upper estimates for E(xu x2, t) (and its derivatives) were
given under the assumption that Mn has bounded geometry. They showed that
as x2 -> oo, the behavior of E{xλ, x2, t) is roughly similar to that of the

e-p2(xx,x2)/4

Euclidean heat kernel, — (p(xx, x2) denotes distance). Recall that
(4ττ/)w/

Mn is said to have bounded geometry if the injectivity radius i(x) of the
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exponential map at x stays uniformly bounded from below by some constant
δ > 0, and if (some or all of) the covariant derivatives V'R of the curvature
tensor R stay bounded in norm; see §3.

Recently, Cheng, Li and Yau [10] achieved a significant advance. They gave
an estimate of the same general character as the above, but under a much
weaker hypothesis. In particular, they showed that one need only assume a
bound on the sectional curvature, | KM \ < K, and a lower bound on the
injectivity radius of the exponential map i(p) at some point/?. Their argument
makes use of three highly nontrivial facts which we now recall.

In what follows we will always let | \D denote the sup norm on D C M", and
II || D the L2 norm on D.

1. Moser iteration and the Sobolev constant. The Sobolev inequality
states the existence of a constant SD > 0, such that

(0.2) ί

for any g E HQ(D). Let BR(x) be a metric ball, and let u(x, t) be a solution of
the heat equation (Δ - 3/30" = 0 on [0, T] X BR(x). Then Moser's iteration
argument [30, pp. 115-117] gives the powerful estimate

(0.3) \u(x9T)\<cH\—^ + - i r l 1 / V / 2 N l[0,T]XBAW

Similarly, if u is harmonic on [-A/2, A/2] X BA{x\ ((d2/dt2 + Δ)w = 0),
then

(0.3)' I «(*, 0) I< cnA<»+ Wg-n/i II u II {_A/2, A/2]XBAx).

2. The Sobolev constant equals the isoperimetric constant. In [4], [17],
[28], it is shown that for any domain D in a Riemannian manifold Mn

9 the
constant SD is precisely equal to the optimal constant Φ(D) in the isoperimet-
ric inequality

(0.4) A(dU) > Φ(D)(V(U))(n~l)/\

which relates the area A(dU) and volume V(U) of an arbitrary subdomain
with smooth boundary U C D C Mn.

3. Croke's estimate of the isoperimetric constant. In [13] Croke defines a
constant ώ(D) as follows. Let x E D9 v E TxM

n, \\v\\ = 1. Let yv be the
geodesic with γ'(0) = v9 and let tυ denote the first parameter value t9 for which
yv(t) E 3D. Finally, let μ() denote angular measure on the unit sphere in
TxM

n, normalized so that the total measure is 1. Set

(0.5) ώ(D)= inf μ({υ E TxM
n \ \\υ\\ = land yυ \ [0, ί J is minimal}).
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Croke proves the striking inequality

(0.6) Φ(D) ̂  2<"-!>/" a<"n~li/ (
y ) \ > (α(*) ) ( } /

where a(n) is the volume of the unit n-sphere; this result is sharp. The proof of

(0.6) depends in an essential way on the fundamental work of Berger [2] and

Kazdan [25].

It is apparent that (0.2), the equality SD = φ(D), and (0.6) reduce the

estimation of E(xv x 2 , t) to bounding the ZΛnorm \\E(xι, x2, t)\\B ,x ^ to-

gether with a lower estimate for ω{Br^x2)). In particular, a considerable

portion of the argument of [10] is devoted to obtaining the required ZΛesti-

mate. We enlarge the above circle of ideas by noting that such ZΛestimates are

an almost immediate consequence of the finite propagation speed of the wave

kernel cosyf^s kcosλs. In fact, the statement that COST/^ΔS has unit propaga-

tion speed is itself a sharp estimate on A:cosλj which holds universally. To get

estimates on other kernels we need only to synthesize these kernels out of

^cosλj by means of the Fourier transform; see (1.4). Thus we obtain a

substantial simplification in the derivation of the required ZΛestimates, and

extend their scope to a more general class of kernels kf where/ E ^2

Ψ'A; see §2

for the definition of Φ£ A.

The pointwise estimates which follow from the previous discussion depend

only on knowing a lower bound for the radius of a ball Br(x0) on which we

have a lower bound for ώ(Br(x0)). If we define the injectiυity angle by

(0.7) ώ(r, x) = μ({γ'(0) I γ(0) = x, γ I [0, r] is minimal}),

then clearly

(0.8) ώ(Br(x0))> inf ώ(2r9x).
χ(ΞBr(x0)

If r is less than or equal to half the injectivity radius i(x), for x G Br(x0) we

have

(0.9) ω(Br(x0))= inf ώ ( 2 r , x ) = l .
x(ΞBr(x0)

In [10] a lower bound for i(x) is established, given H<KM<K, a lower

bound on i(p) for some /?, and the distance p = p(/?, x); they show in

particular that even if H < 0, i(x) decreases at most exponentially as a

function of ρ(/?, x). The injectivity angle ώ(2r, x) is then estimated using (0.9).

However, a simple comparison argument (see Lemma 4.2) shows that a lower

bound for ώ(2r, x) follows directly from a lower bound on the Ricci curvature
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and a lower bound on the volume V(Bro(p)) = VrQ(p)> V>0; similar
arguments are given in [13], [36] and [10], §2, Lemma 3, to prove related
statements. From this we obtain (in §2) an upper estimate on the heat kernel,
and, more generally, on kf for a large class of functions / as described in §2,
assuming RicM > (n - l)H, VrQ(p) >V>0.

In fact, it turns out that if a lower bound on the injectivity radius i(x) and a
bound on | KM | is given, then the appeal to the deep machinery (l)-(3) above
can be avoided. In this case, examination of a parametrix for Δ leads to an
elliptic estimate, in which the constant can be bounded by a straightforward
comparison argument. The resulting kernel estimates then apply to an essen-
tially wider class of kernels λy, / E ίF^, N > n/4; see §1. In this connection we
also give an estimate on the decay of /(*), which depends only on assuming
V(Bro(p)) > V> 0, rather than i(p) > iQ > 0; see Theorem 4.3. Our proof is
based on ideas of [21]; unlike the argument of [10], it does not rely on
Toponogov's theorem.

In dimensions 2 and 3, by means of a special argument we obtain estimates
for the more general functions / E ^ assuming only RicM > (n — l)/f,
Vr(p)> V> 0. We do not know if these estimates can ultimately be gener-
alized to higher dimensions.

We now briefly summarize the contents of the remaining sections of the
paper.

In §1 we give the estimates on kernels kj(xl9 x2) for / E <${* assuming a
bound on the sectional curvature, which generalize the results of [10]. In §2 we
give estimates on kernels kf(xl9 x2) for /Gf2

φ ) / I, assuming only a lower
bound on the Ricci tensor. In §3 we make a more detailed study of various
situations involving bounded geometry. In particular we get bounds on
kf(xv x2) for certain classes of functions / holomorphic in a strip about the
real axis, satisfying certain "symbol estimates." These bounds yield, in particu-
lar, some L^-operator norm estimates of the sort investigated by Clerc and
Stein [12] and by Stan ton and Tomas [31] in the special case of certain classes
of symmetric spaces.

§4 gives estimates on the volume, injectivity radius, and injectivity angle
used in preceding sections. Here we give special emphasis to the role played by
the relative volume estimates which follow from a lower bound on the Ricci
curvature. As an application we consider manifolds for which the condition
Ric^ ^ c/r2 holds outside some ball Bro(p)9 where r — p(p, x). We give sharp
upper and lower bounds on the asymptotic growth of the volume Vr(p) of
Br(p\ in terms of the constant c; the qualitative behavior of Vr(p) is strongly
influenced by the precise value of c. §4 can be read independently of the
preceding sections, and some may wish to read it first.
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1. Finite propagation speed, L2 estimates, and bounded

sectional curvature

In this section we derive estimates on the kernel kf(x{, x2) for /(i/^Δ") in an
elementary fashion, under the assumption that M is a complete Riemannian
manifold with bounded sectional curvature, | KM | ̂  K.

We begin by explaining how the finite propagation speed and L2 operator
norm boundedness of cos syf^E lead to L2 estimates on the kernels of functions
of \/̂ Δ\ These estimates, which are valid for arbitrary complete Riemannian
manifolds, will also be applied in the following two sections.

Recall that u = cos S}f^E 8X satisfies the wave equation

with initial data

(1.2) «(0,*) = β,2, ±u(0,x) = 0.

Thus by general results on hyperbolic equations (see, e.g., [32, Chapter IV]), it

follows that

(1.3) suppcossfKδX2 C Bls[(x2) ,

i.e., cos sJ^Δ has unit propagation speed. This fact can be brought to bear on
the estimation of the kernels of other functions of /^Δ, by employing the
formula, valid for an even function/(λ):

(1.4) flfK) = y- Γ f(s) cos sfKds,
^ " - 0 0

where

(1.5) f(s)= Γ f(λ) cos λsdλ.
•'-oo

This is just the Fourier inversion formula for even functions, granted the
spectral theorem for /^Δ". In case M — S,1, the unit circle, (1.4) is essentially
the Poisson summation formula. This approach to the study of /(/^Δ) has
been used by some of the authors before [32], [33], [8] in contexts more like
those considered in §3 of this paper. The finite propagation speed property
(1.3) has entered also into other qualitative studies of Δ on a complete
Riemannian manifold. We mention particularly Chernoff s elegant proof that
tt is essentially self adjoint on C™(M) for all k, if M is complete; see [11].
Also, Kannai [37] has obtained estimates for the heat kernel on compact
manifolds.
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We now give a class of function /(λ) for which we shall derive L2 kernel

estimates on/(\/^) using (1.3) and (1.4).

Definition 1.1. We say

(1.6) /eff*,

provided that/is even and, for each / = (-ε, ε),

(1.7)

We are now ready for our first general result.

Proposition 1.1. Let Mn be any complete Riemannian manifold, and let

x2 G Mn. Let Br(x2) be the ball of radius R about x2. Iff G %, then

(1.8)

provided

(1.9) suppw CBr{x2), r<R.

Proof. Use the formula, valid for even/,

(1.10)

Now (1.3) and (1.9) imply

(1.11)

Thus the left side of (1.8) is bounded by

Γ f ( ) f K d \ \ < Γ- Γ f(s)cossfKuds\\ < - Γ \\u\\ \f(s) I ds,
ΊTJR-r II KJR-r

since

(1.12) | | C O S J ^ Δ | | < 1 .

This proves (1.8).

Corollary 1.2. Under the hypotheses of Proposition 1.1., /// G < 3 Γ

1

2 A c + 2 / , then

(1.13) \\

Proof. The identity (1.4) shows that

(1.14) Akf(fE)Alu= 4~ Γf

so (1.13) follows exactly as (1.8).
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We now specialize to the case | KM | ̂  K. Choose

(1.15) r, < min(K-]/\ i(xx))9 r2 ̂  πάn(κ~^\ i(x2)).

Then we claim that in a ball of radius η about xj9 the constant in the elliptic
estimate for Δ can be controlled. Thus Corollary 1.2 leads to a pointwise
estimate in this case. To see this, first assume that

(Lie) η=\, \κM\<\,
and that (1.15) holds. Recall that if g(r) is any function of r alone in a normal
ball Bro(xo), we have

(1-17) Ag = g"+^g'.

Here the prime denotes differentiation with respect to r, and, in general,
A{r, θ) denotes the area element in polar coordinates, on the complement of
the cut locus of x0. Thus A/rn~x is the Radon-Nikodym derivative of the
pull-back by exp*o of the volume element of M with respect to Lebesgue
measure on TXQM. A standard comparison (see [7, Chapter 1]) shows that if
I ̂ M | ^ 1, then on Bx(x0)

(1.18) 0<ϊM<*<ϊM.
v ' r A r
Let φ be a smooth function supported on [0,1/2] with φ \ [0,1/4] = 1, | φ' | < 5,
and set φε = φ(r/ε). Let

Finally let Δx(P(xQ, x)) — Q denote Δx applied pointwise to P. Then on

B{(x0),

(1.19) \Q(r)\<Cεr
2~".

If g(x) is a smooth function on Bx(x0)9 then

(1.20) f P(x09 x)Δg{x) dx = g(x0) - f Q(x)g(x) dx.
JB](x0)

 JBι(x0)

By the above mentioned comparison, the metric on Bx(x0) is bounded uni-
formly above and below by a constant times the Euclidean metric in normal
coordinates. Fix ε sufficiently small so that the N2 compositions below are
defined and apply the standard iteration argument (see e.g. [15]) to (1.20).
Thus if we write (1.20) as

(1.21) PΔ = /-ρ,
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and set

(1.22)

then it follows easily that

( 1 . 2 3 ) <$N(ANg) + 9N-ι%(ΔP-ιg) + ••• + < ? £ ( Δ g ) + £ g = g .

The kernels on the left hand are continuous and their sup norms are bounded,

since the metric is boundedly related to the Euclidean metric in normal

coordinates, and (1.19) holds. Thus we get

We can now obtain the corresponding estimate in the general case by multiply-

ing the metric by a suitable constant. This gives

Proposition 1.3. Let \KM\<K.

(1.25) r

Then

(1.26) \g(χo)\<

In Theorem 4.2 we will give a lower estimate for i(x) which will be

incorporated into Theorem 1.4 below. First we introduce some notation.

Let Vr(p) denote the volume of Br(p) in Mn, and Vr

H the volume of

Br(q) C M^, where M^ is the simply connected Ai-dimensional space of curva-

ture H. Thus

(1.27)

where

(1.28)

Vr

H = a{n-\)f&H{s)ds,

\s) =

{ύn{Hs/{H)
n-\

H>0,

H = 0,

a n d α ( n - 1)=
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Theorem 1.4. Let Mn be complete and H^KM^K. Fix /?, χl9 x2 G Mn,

r0 > 0. Set pj = p(p, xj), j — 1,2, and d — p(x l 9 x 2 ) . Le/ 4N > n and assume

f(k) G L ](Λ), 0 ^ k < 4Λ̂ . Fix r, r0, J wiίΛ r0 + 25 < V v̂ fc, r0 ^ π/4y/k.

(i) ΓΛeAί ίΛ^ kernel kf of /(/^Δ) w continuous on {(xx, x2) £ M X M:

xλ ¥" x2] and satisfies

(i.29) I M ^ I . ^ ) ^ 1 ^ ) Σ 00

77 o

w/iere c(«) /5 ίΛe constant in (1.26)

(1.30) r. = min\\H\-^\ §
7 V 2

(ii) If only f G 3?*, ίAe/ι/or ry < rj9j = 1 , 2 , fl/irf η + r2 < J,

\f(2i+2J)(s) \ ds.
d~rχ-r2

Proof of Theorem 1.4. Since the arguments for (1.29), (1.31) are essentially

the same, we consider (1.31). Let u G L 2 be supported on Br^x2). We apply

(1.26) of Proposition 1.3 with g = ΔJ

2kf(x}, x2)(u(x2)), x0 = xλ\ by (1.30) and

the estimate for i(xλ) of Theorem 4.7, the hypothesis (1.25) is satisfied. If we

combine the resulting estimate with (1.13) of Corollary 1.2, we get

w Γ ,.
-= c(n)\\u\\B(X2) Σ rϊ'-n/2( \fi2i+2J)(s) I ds.

/ = 0 Jd-rλ-r2

Since w is arbitrary, for all Λ^ we have

(1.33) v̂

<c(n)2 ' 2 / ~ l l / 2 i |/ ( 2 I ' + 2 »(J) |Λ.
i = 0 Jd-rχ-r2

If we now apply (1.26) on BΓ2(x2), (1.31) follows.

Remark. The estimate for i(xj) incoφorated in Theorem 1.4 can be

sharpened somewhat further, if py is sufficiently large; see Theorem 4.7(ii).

Also, one can easily choose the constants r, r0, s, so that the estimate is

optimal. In particular cases in which Mn is compact, one can make use of

known estimates on the injectivity radius; see e.g. [7].
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We point out that Theorem 1.4 can be extended to the case dMn Ψ 0 , by

use of a suitable generalization of Proposition 4.2.

2. Ricci curvature bounded below

We begin by assuming that Mn is an arbitrary complete Riemannian
manifold with dMn = 0 . Let 9r

2

φ'i4 be the class of even functions {/(λ)}, such
that for some constants A, k0, s0 we have

(2.1) l/^l^c^)^)- k>ko,s>so,

where φ > 0 belongs to L\a, oo) for all a > 0. If we set

(2.2) i(r)=Γφ(s)ds,

then

(2.3)

We are going to estimate kf for / ' 6 ^ . Our first step is to reduce the
problem to estimating solutions to the homogeneous Laplace equation
(harmonic functions) in dimension (n + 1). The device we employ was used by
Taylor [34], and Lions and Magenes [27], in their independently discovered
proof of the Kotake-Narasimhan Theorem. Observe that if p(xλ9 x2) — d —
2 A + r, by Corollary 1.2 we have

(2.4) | | Δ V ( ^ ) Δ ' | | < ( ^

for any u G L2 with suppw C Br(x2). Thus for such «, for \y\<A/2, the
power series

(2.5) *=°

= (coshf^Ay)f(fΛ)u(x), (formally)

converges to an element of L2([-A/2, A/2] X 5r(x,)). Moreover,

(2-6)

and by (2.4),

(2.7)
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As explained in §0, we can now combine the three facts emphasized in [10]
((0.3'), SD = Φ(D\ and (0.6)), to obtain the estimate

(2.8) \kf(u)\BA/2iXι)<kmA-*'*[ω(B^

This implies that for all xl9

(2.9) \\kf{xux2)\\BΛX2)^knA-»^[ώ{BAxλ))]

where kn is a constant depending only on n. Similarly, we obtain

Then for each fixed xλ we can set

(2.11) w(xX9 x29 y) 1

to get a harmonic function on [-A/2, A/2] X BA(x2) whose L2 norm satisfies

(2.12) \\w(χχ, X29 y)\\[.A/2,A/2]XBAx2) ^ CWkf(X\> Λ2)H^(jc2)

Finishing the argument as above gives

(2.13)

for p(xu χ2) = d — 2A + r. The same argument shows that for all JC1? x29

\kf(x],X2)\BA/2(xx)XBA/2(x2)

(2.14)

<c^-»[ώ(^(Λ l))«(^(Λ 2))]-
provided φ E L !(R+). Note that if gkf(^λ) denotes the kernel of f(yf^K) with
respect to the metric g, then gkf{λ) = c~-Ίgkf(λ/c). Thus using (2.13), (2.14) we
can estimate gk^λ) in two different ways. It is straightforward to check that the
estimates so obtained coincide; i.e., (2.13), (2.14) have the correct scaling
property.

As mentioned in §0, in Proposition 4.2 we give a lower estimate for
ώ(A, JC0), if A is sufficiently small. To simplify the statement of Theorem 2.1,
we will use only Proposition 4.2(i) even though (ii) is sharper if ρ(/?, Xj) = pj is
sufficiently large. In §4 we will define a quantity r(H, V) by

y
(2.15) K(H,v) = ~2 »

where Vr

H is given by (1.27).
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Theorem 2.1. Let Mn be a complete Riemannian manifold with dMn = 0 ,

and RicM > (n - \)H. Set Vro = VrQ{p). Iff<Ξ $*>A and A < \r(H, V\ then

the kernel kf{xx, x2) is continuous for xλ φ x2 and satisfies (2.13), (2.14), where

Remark. We point out that just as in [10, §4] (or more or less equivalently,

by the method of "domination of semigroups"), we can in fact obtain point-

wise bounds on the norm of the gradient of kf under the assumptions of

Theorem 2.1. We omit the details.

In the appendix to this section, we describe sufficient conditions for a

function/to be in the class <SΓ

2

φy4. At this point we will illustrate our results and

methods by applying them to the heat kernel.

Example 2.1 {The heat kernel). In this case (2.1)—(2.12) can by bypassed.

We begin by recalling the obvious estimate

/

OO £ ~ 4 λ / ' , -

Γ</λ <<*-*'/';

' (47Γ/)1

see [26] for a detailed result. Let UELL2, supp u C BA(x2). Set ke-\2t —

E(xl9x2, ί)and

(2.18) v(xu t) = JE(xl9 x2, t)u(x2) dx2.

Assume first that p(xx, x2) = d > 2A.By Proposition 1.1 we have for fixed s

(2.19) M*i> J)H*.(,,) < ce-^d-2A^s\\u\l

Using the fact that e~^d~1A) /s is an increasing function of s9 we have an

obvious estimate for || υ(xx, s)\\ BA(Xι)χ[ί,zy τ ^ e n using (0.3) we can apply steps

1-3 of §0 to get

\nίx
(2.20) WXi>

Thus for fixed xu z,

Y ~\(d-2A)2/z

x(2.21) \\HuX2
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and applying steps 1-3 on BA(x2) X [i, t], we have

1

27

(2.22)

This gives, for d> 2 A,

(2.23)

(Λ + 2 ) / 2

I- 1 L-ϊ(<ί-2Ί)!/'

/2 + ̂ j *
X

Similarly, for all xl9 x2, including those for which d < 2A,

(2.24)

If we combine (2.23), (2.24) with the estimate of ώ(BA(x)) in Proposition
4.2, we get a generalization of the estimate of [10]. In this connection we wish
to emphasize that for small time, say 0 < / < 1, the uniform estimate provided
by (2.24) together with Proposition 4.2 is not a consequence of the usual
asymptotic expansion

where τ denotes the scalar curvature. Although we have in fact assumed a
lower bound on RICBA(X), rather than on τ(x), in effect the upper bound on
τ(x) has been replaced "by a lower bound on V(Br(x)) for some r. Scaling the
metric on a flat torus makes it obvious that a lower bound on V(Br(x)) is
really necessary and that (2.25) need not hold uniformly.

As a second example, consider the family of metrics corresponding to a
sharply rounded cone tip x, as in Fig. 2.1 below.

FIG. 2.1
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The curvature is ~ 1/ε2 at the tip and is nonnegative everywhere. The volume
V(Bx(x)) is bounded below independent of ε. Then according to (2.24),
E(x, x, t) is bounded independent of ε, for 0 < t < 1. Again, (2.25) does not
hold uniformly in ε.

We can also derive (2.22) as a consequence of Theorem 2.1. This requires
estimating/,^) and its derivatives, where

(2.26) *

Note that

(2-27)

which implies

(2.28)

We will estimate/(A:)i(.s), since

(2.29) fas) = π^e->\

Then

(2.30) ff(s) = (-l)kHk(s)e-\

where Hk(s) is the fcth Hermite polynomial; see Lebedev [26, p. 60]. In order
to get a good estimate on Hk(s), it is convenient to use the generating function
identity

(2-31)
n = 0

see [26, p. 61]. Pick η fairly small, so that

(2.32) ' " , ' |η

with ε > 0 given. It follows that

(2.33) |/ ( f(*) |^c ί-pr

Consequently,

(2.34)
ι/,'%)i^|τfτ

= c k\
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Thus we can take/, E <5*>A with <p(r) = rV< ( 1 ~ ε ) r 2 / ' , and, by Theorem 2.1,
recover essentially the same estimates (2.24), (2.25) on the heat kernel.

To close this section, we show how, for manifolds of dimension 2 or 3, the
more general class of estimates of §1 can in fact be derived under the weaker
assumption that Ricci curvature is bounded from below.

Let

(2.35) Hg = eiej(g)- VVe,/g)

denote the Hessian of g. We will show that the constant c(r) in the coercive
estimate

(2.36)

can be bounded from above in terms of r, i/, if we assume RicM > H\ compare

[10, §4].
However, the usual proof of the Sobolev inequality which estimates point-

wise norm in terms of Hs, s > AZ/2, norm shows that the constant in that
inequality can be bounded from above if a lower bound for the refined
injectivity angle ώ(i/, ε, r0, x0), (as defined before Proposition 2.3), is known.
If we combine this with (2.36), we find that if dim M — 2,3, we obtain directly
a pointwise estimate on kf9f E ^ only assuming RicM ^ (n — \)H, Vro(p) ^
V. We turn to the proof of (2.36).

Recall that for any 1-form ω we have the Bochner-Weitzenbock formula

(2.37) (dδ + 8d)ω = 2 (- Ve,Ve, + V V e J ω + Ric(ω ),

where

(2.38) Ric(ω*) = (Ric(ω))*,

and ω* is the tangent vector dual to ω. Fix a metric ball B^x)9 smά let ψ(r) be
defined by ψ(r) | [0, r/2] = 1, ψ(r) | [r/2, r] = -2r/r + 2. By Stokes' theo-
rem,

(2 39) f Ψ2 dδdg Λ*dg= f ψ2δ dg A *δdg - f 2ψ dψδdg Λ *dg.
V ' ^ ( J c 0 ) JBτ{xQ) JB7(x0)
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Applying (2.37) to the left-hand side and integrating by parts gives

f ψ2dδdg A *dg

I Ψ 2 Σ (~ VeVe + V v e)dg Λ *dg + ψ2Ric( dg) Λ *dg

(2.40) = j I ψ 2 Σ Ve dg Λ *Vedg + 2ψΣ^/(Ψ)v^ dg Λ *rfg

+ψ2Ric(rfg)Λ*^g}.

If we substitute (2.40) into (2.39) and transpose the middle term we get

/ Ψ2( Σ Vedg Λ *V, dg + Ric(dg) Λ *Jg)

(2.41) = ί ψ2δdg Λ *δdg - [ 2\pdψδdg Λ *Jg
JB7{>

-j.
Note that vdg = Hg. Applying the Schwarz inequality to the last two terms of
the right-hand side of (2.41) gives

/ Ψ2Σ Vβ/</g Λ *Vedg + (n - l)HΠdg\\2

BΛxo)

(2.42) < HΔgll2

δr(Jto) + (llΔgllBr(Λo) + ^Wdg\\2

BF(Xo)

B7(X0) i r I

If we transpose the fourth term on the right-hand side, we obtain
Proposition 2.2. Let Mn be complete, and RicM > (m — \)H. Then for all

JC, r

i F / 2 W r ( ) ^
(2.43) r

-2(n-\)HΠdg\\2

BF(x).

Let A(r, θ\ &H(r) be as in §1; see (1.28). Given ε > 0 and H, we define a
refinement of the injectivity angle by letting ώ(/f, ε, /% x) be the angular
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measure of the set Ω^ε) of initial tangent vectors to geodesies γ from x such

that γ I [0, r] is minimal and

λί _ n\

(2.44)
&H(s)

at y(s). Note that for all H, ώ ( # , 0 , r, x) = ώ(r, x). Let Vyg denote the i-th

covariant derivative of g.

Proposition 2.3. Le/ g be a smooth function on BF(x0) C M". Then for

N > n/2,

(2.45)
lβΓ(x 0)

Proof. Let ψ be essentially as above, but made C°°. Then

7 2
1

(2.46)

ώ(i/, ε, r9x0)

1

ώ(H,ε, r,x0)

•L f-7r

dθ

dN

dθ

εώ(H,ε,r,.
, = 0

and the claim follows.

In Proposition 4.2 we will give a lower estimate for ώ(H, ε, F, x0) for ε, f

sufficiently small. We will now combine this with Propositions 2.2 and 2.3 to

get the following result. As in previous instances, the statement can be

sharpened somewhat; see Proposition 4.2(iv).

Theorem 2.4. Let M" be complete, and Ric M > (n - \)H. Fix p, x e M"

andr0 > 0. Set Vro = V^p), p = p(p, x), Vr

H

(Ή,^ = { Vv

(i) Then for N > n/2,

g2(x)
c3(N)

(2.47)
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(ϋ) In particular, for n — 2,3,

(2.48)

In view of (2.48) the kernels ^ ,/Ef, 1 , can now be treated by the method of

§1.

Appendix to §2. The class ($£>'A, an example

As we saw above, the functions

(A.l) ft(λ) = e-<*

are dements of ̂  A with

(A.2) φ(r) = r'e-y/'', t'X.

Here we want to give another example of a large class of functions which
belong to ̂ 'A with

(A.3) φ(r) = «-"*.

Consider a region in the complex domain of the form

(A.4) Ω = ( z ( Ξ C : | I m z | < W) U (z E C: | Im z |< £ | Rez |}.

Suppose/is holomoφhic in Ω and satisfies the estimate

(A.5) | / ( * ) | < c ( l + | z | ) m , z e Ω .

If W and B are decreased slightly, it follows from Cauchy's integral formula
that

(A.6) | / W ( z ) | < φ A : f ( l + | z | ) m - f c ,

and in particular,

(A.7) \zkf(k+m\z)\<c{ck)k.

Now if g(r) is holomoφhic on | Im z |< W. then

(A.8) Γ\g(x + iy)\dx<G, \y\<W,
J-O0

implies

(A.9) \g(s)\^Ge-^9 ίGR.
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Thus from (A.7) it follows that

so

(A.ll) \f^(s)\^φk)ke-^, \s\>l.

Thus/ G <$*>Λ with φ(r) given by (A.3).

3. Manifolds with bounded geometry

We say a Riemannian manifold M has C^-bounded geometry provided that
about each x E M there is a geodesic ball Ba(x) of radius a (independent of x)
such that

(3.1) expx: TXM-*M

is a diffeomorphism of Ba(0) C 7̂ .M onto Ba{x) with the following property:
the metric tensor gtJ on Ba(x), pulled back to Ba(0) by (3.1), is bounded in the
Ck topology for TXM9 and the inverse matrix gij is bounded in sup norm. We
include the case k = oo and also k = co; Cω(2?α(0)) is the space of real analytic
functions on Ba(0). Note that {ŵ } is bounded in Cω(Ba(0)) if, for any compact
K C Ba(0), there is a complex neighborhood K of # in CTX(M), on which {ŵ }
extends as a uniformly bounded set of holomorphic functions.

Another common notion of "bounded geometry" involves bounds on (say
the first k) covarjant derivatives of the curvature tensor, plus a lower bound on
the injectivity radius. For k — oo or ω, this concept coincides with C^-bounded
geometry defined above, but not for finite k. For example, a lower bound on
i(x) and bounded curvature together form a condition which is stronger than
C°-bounded geometry as defined above. Of course, if M has C00-bounded, or
even C2-bounded, geometry, then it has bounded curvature, so the results of §1
apply. But we will obtain further results on the operators / ( ^ Δ ) in this case.

First we consider weak boundedness assumptions on the geometry of M. An
assumption even weaker than C°-bounded geometry is the hypothesis that the
injectivity radius is bounded from below:

(3.2) i(x)>a>09

with no further assumptions. In this case, as remarked in the introduction, we

have

(3.3) *(Ba/2(x)) = 1.
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The estimate (2.13) on kf(xv x2) for / G <5*>Λ holds with A = a/2, and we
have

(3.4) lM*i^2)l<

if

(3.5) p(xl9x2) = a + r.

If we do not assume a lower bound on the Ricci curvature, methods of
estimating the gradient of kf(xl9 x2) do not apply. We note that the assump-
tion of C°-bounded geometry implies a Holder bound on kf(xu x2) which
improves the pointwise bound (3.4) for/ E $£tA.

Indeed, according to Corollary 1.2 if u is supported on Ba(x2% then

(3.6)

Thus if ρ(xly x2) = r + 2α, then

(3.7)

We now argue similarly to the proof of Theorem 2.1. Given u supported in
Ba(x2\ 'ύ\y\<B = ^c~\ the power series

(3.8) v(y,x)= 2

converges to an element of L2([-B, B] X Ba{xx)), and we have

(3.9,

( 3 1 0 )

Now in normal coordinates on Ba(xx) we have

and our hypothesis that M has C°-bounded geometry precisely gives uniform
ellipticity of (3.11), and hence of (3.9), with C° bounds on the coefficients.
Thus the di Georgi-Nash-Moser theorems on such elliptic equations in diver-
gence form (see Gilbarg and Trudinger [20]) imply the pointwise estimate

(3.12) | t>(x,) |<Qψ(r) | | i ι | |
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for u supported in Ba(x2). Now (3.12) is equivalent to the assertion that

/(i/=Δ)«Xl i sL 2 onB a (x 2 ) and

(3.13)

Similarly, we obtain

(3.14)

So we can set, for | y | < B,

(3.15) vXι(y,χ)= 2 -^Δ!f(fK)δXi

1=0

to obtain

}2
(3-16)

dy2

(3.Π) K,ll

Again the di Georgi-Nash-Moser results yield a bound on vx (x2), ie.,

(3.18) kf(xl9x2)<c4^(r).

But in fact the theory yields a Holder bound

(3.19) \\k (x , )ll « <^C\l(r),

for a certain a > 0 which depends only on the C°-bound and ellipticity

constant in (3.11). To summarize, we have proved the following.

Theorem 3.1. If M has C®-bounded geometry and f G ̂ i A

9 ^ e n ̂ e kernel

k/(X\> xi) satisfies the estimate (3.19) and also

(3.20) Wkf( >X2)Wc"(Ba/2(X]))^ CsΨ(r)'

The fact that (3.20) holds follows from the symmetry of kf(x]9 x2).

In particular, recall from the appendix to §2 that if /(λ) is the restriction to

λ G R of a function/(z) holomorphic on a region

(3.21) Ω = {z G C : | I m z | < W + ε} U (z G C: | Im z | < B \ Rez |},

then/ G ̂ A with ψ(s) = Ce'^ , provided

(3.22) | / ( z ) | ^ C(l + | z | ) w , zEίl.

This gives

Corollary 3.2. // M Λαs C°-bounded geometry, and f(z) is holomorphic on

(3.21), satisfying (3.22), then

(3.23) | * / ( * 1 , * 2 ) | < C e - w ' ' ,
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provided

(3.24) 9(xλ,x2) = r + 2a.

We will not pursue the implication of (^-bounded geometry for finite
positive k, but will devote the rest of this section to obtaining refined global
results for manifolds with C00 or Cω bounded geometry.

We now consider the case when M has C00-bounded geometry. Examples
include all homogeneous spaces, i.e., manifolds with a transitive group of
isometries, as well as more general sorts of manifolds such as leaves of C°°
foliations of compact manifolds. Since such M has bounded curvature, the
estimates of §1 apply to the estimate of the kernel kf(xu x2) for ρ(xv x2) ^ a.
We complement this with a precise analysis of the behavior of the kernel of
/(v^Δ for p(xl9 x2) < a. Assume/(λ) G Sp

m

0(R), i.e.,

(3.25) y

We use here and below the notation for symbol classes and pseudodifferential
operators of Hόrmander; see [32, Chapter II]. From the representation

(3.26)

use a partition of unity 1 = ψ^s) 4- φ2(s), φx(s) E Q°(-α, a), even, φ^s) = 1
for \s\< a/2, to get

/(/^Δ)i/= -^ f*φ x(s)f(s) cos sfAuds

(3.27) +± Γψ2(s)f(s)cossf(fK)uds
— oo

= Fλu + F2u.

Note that

(3.28) F2n = ( l - Δ ) - * Γ ( l - - j i ) (Ψ2(s)f(s))cossfKuds
•'-ool dsι I

= (1 - Δ)-kGku,

with HG îill ̂  Ck\\u\\. Thus the standard elliptic estimates and the Sobolev
embedding theorem give

(3.29)

Furthermore, if u is supported in Ba(xx\

(3.30) ll̂ 2

where the norm on the right is a Sobolev norm.
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Now consider

(3.31) Fλu = 4~ Γφx(s)f(s)coss{^Kuds9

with u supported in Ba(xλ). We will analyze (3.31) by replacing the operator
cos s/-Δ\ for I .y | < a, by its geometrical optics approximation. This approach
to the study of f(^K) on compact manifolds is emphasized in Chapter XII of
[32], and in [33], and also plays a role in the work of [8] on the wave equation
on a cone.

By shrinking a if necessary, we can assume the parametrix for cos sJ^Δ is of
the following form, in a normal coordinate system centered at xλ:

2

(3.32) cossfKu(x)= 2

Here φy solves the eikonal equation

(3.33) ysψj = (-lyX^x, dΨj) = (-l)J(dφj9 dΨjγ9

(3.34) φ j ( 0 9 x 9 ξ ) = x ξ

for | j | < β , x E B2a(xλ)\ aj(s,x,ξ) is determined by the usual transport
equations of geometrical optics (see for example, [32, Chapter VIII]), with
αy (0, x,ζ) = i Now if u is supported in Ba(x}), then, for | s \ < a, cos syΓAu is
supported in B2a(xι). If we set g(s) = φ2(s)f(s), then g(λ) G 5p

m

0 differs from
/(λ) by an element of the Schwartz space S(R) of rapidly decreasing functions.
Thus we have

χu= Σ

(3.35)

where Sλ: &'(Ba(xλ)) -> C 0 0 ^ ^ * ! ) ) , and Z?(JC, | ) is given by the fundamental
asymptotic expansion lemma for pseudodifferential operators. Thus

2

(3.36) b(x9ξ)= Σbj(Q>*>i)>

where

(3.37) bj(s9 x9 ξ) = e-W>x'»g(Ds)(aj(s9 x9 ξ)eW-x>
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belongs to S£\_p if p > \ with

(3.38) bj(s, x9 0 - *,•(*, * ,

Hence using (3.33) and (3.34) we obtain

(3.39) b(x,ξ)~g(λι(x9 £)) + •-.

The remainder terms in (3.38) and (3.39) sum to elements of S^S2

p

p~1} for p > £

and we have a complete asymptotic expansion for p > {.

Denoting by OPSp

m

δ the set of pseudodifferential operators with symbols in

the class Sp

m

δ, we have the following conclusion.

Theorem 3.3. Assume M has C°°-bounded geometry. Let /(λ) G S™0(R), p

^ j be even. If u is supported in Ba(p) in normal coordinates centered at p, then

we have

(3.40) f(f*)u = Bp(x9 D)u; x G 2?β(0),

where Bp(x, D) G OPSp

m

x_p, and in fact

(3.41) {jϊ^jc, D):p G M) isboundedin OPSp

m

λ_p.

If p > j,the symbol ofBp(x, D) has a complete asymptotic expansion of the form

(3.39), valid uniformly for p G M.

We remark that it would be quite natural to use a Hadamard type parame-

trix written invariantly in terms of the Riemannian distance instead of the

Fourier integral representation (3.32), but we will not pursue this approach.

We can use Theorem 3.3 together with the estimates on the kernel kf(x{, x2)

for p(xj, x2) > a which follow as a special case of the results of §1, to obtain

L^-norm estimates on f(y[^E) for the following class of function/.

Definition 3.1. We say/ G SJJ, iff(z) is holomorphic on the strip

(3.42) Ώw= { z G C : | I m z | < W),

and satisfies the S™0 symbol estimates on Ω^:

(3.43) \fM(z)\<Cj(l + \z\)m-j, z G V

We have, according to (3.27),

(3.44) f(fK) =Φλ+Φ29

where the kernel of Φx is supported in the neighborhood {(xl9 x2): ρ(x{, x2)

< 2 a) of the diagonal i n M X M and is given in local normal coordinates as a

bounded family of pseudodifferential operators. The kernel Φ2(x\, x2) is

smooth on M X M and satisfies the estimate

(3.45) | Φ 2 ( ^ i ^ 2 ) l < ^ " ^ r = p(xl9x2).
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From this we can deduce Lp continuity results for/(\/^ϊ), as follows. First we

show Φ,: LP(M) -> LP(M\ 1 <p < oo. Let u E LP(M). We can write

00

(3.46) i ι = Σ i * y ,
7 = 0

where each Uj is supported in a ball Ba(pj) of radius α in M, and, because we

are assuming M has bounded geometry, we can suppose there is a constant K

such that, for any 7, B2a{pj) intersects no more than K other balls B2a(pk),

Pk ̂  Pj- Thus we can arrange that

(3.47) C-^WUJW^^WUW^^C^WUJW^.

j j

Now ΦjW = ΣjΦ\Uj9 and operators b{x, D) with symbols in S,°j0 are con-

tinuous on Lp, 1 </? < 00, and bounded families of such operators have

uniformly bounded operator norm on Lp, 1 <p < oo; see [32, Chapter XI].

Thus from (3.40) and (3.41) it follows that

(3.48) IIΦIM I I ^ C J I M I I ^ ,

provided/ E iS°0(R). Furthermore, Φ}Uj is supported in B2a(pj). It follows that

(3.49) | . | Φ l W | | L ^ C 2 ( / > ) | | W | | L , , i f/ES£ 0 (R).

As for the Lp continuity of Φ2, we use the estimate (3.45) together with the

elementary fact that the Lp operator norm of Φ2 is bounded by

(3.50) s u p ί |Φ 2(/>,?) |έ/vol(?)+ sup/* | Φ2(p9 q) \dvo\ p.
q JM q

 JM

See [32, Chapter XIII]. Now if M has C00-bounded geometry, or more

generally if M has Ricci curvature bounded below, we have

(3.51) VO1{JC E M: p(x, p) < r) < ceKr

for some K independent of p. Consequently, if (3.45) holds with W> K, we

have a uniform bound on (3.50) and hence an L^-operator bound on Φ2,

1 < p < oo. Thus we have proved the following result.

Theorem 3.4. Assume M has C°° bounded geometry. If

(3.52) /£§;, W>K,

where (3.51) holds for K, then

(3.53) f(f4): Lp(M) -* LP(M), \<p<oo.

At this point we make the following remark. Sometimes one knows that the

spectrum of -Δ on M is contained in [ α0, oo) for some α 0 > 0. In such a case,

the same considerations as above, or indeed elsewhere in this paper, apply to
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/(/-Δ - α 0 ) . In particular we have, in the context of Theorem 3.4,

(3.54) / ( / - Δ - α o ) : L ' ( M ) - L ' ( M ) , Kp< oo,

for / E Ŝ . Some results a bit weaker than Theorem 3.4 were announced in
[33].

We pass now to a still more rigid class of manifolds, those with Cω-bounded
geometry. This class still includes homogeneous spaces. In this case, if/ G Ψ2

φ'A9

the construction (3.8) yields a harmonic function on (-2?, B) X Ba(xx\ and
also (3.15) yields a harmonic function on (-2?, B) X Ba(x2\ i.e., these func-
tions are annihilated by the operator d2/dy2 + Δ, and in normal coordinates
we have Δ of the form (3.11). This time the coeffcients of 32/3j>2 + Δ form a
bounded family of analytic functions on Ba(0) with a uniform ellipticity
constant, so the analyticity estimates for solutions to (d2/dy2 + Δ)w = 0
imply the estimates on the kernel kf{xλ,x2):

(3.55) sup | / ) 2 ^ / ( x 1 , x 2 ) | H

if p(x{, x2) — r + 2a, where one uses normal coordinates centered at xx to
express D". In particular, if /(z) is holomorphic in the region

(3.56) Ω = (z E C : | I m z | < W+ ε} U {z E C: | Im z |< B | Rez |}

and satisfies

(3.57) | / ( z ) | < C ( l + | z | ) m , : E Ω ,

then, as discussed in the appendix to §2, the estimate (3.55) becomes

(3.58) sup \Dζkf{xx,x2)\<C{C\a\)He-'w.
e B ( )

Since the function ft(λ) = e~tχl belongs to ¥2

φ>A with φ(r) = e-
(l~ε)r2/4t, we

also obtain from (3.55) estimates on the heat kernel proved by Garding [19],
for the case where M is a Lie group with left invariant metric.

Finally, we note a dampening of the kernel kf(x{, x2) when M is a rank 1
symmetric space, i.e., when the isotropy group of M fixing a point x acts
transitively on the unit sphere in TXM. We suppose M is of noncompact type
with negative curvature. In such a case, the estimate (3.51) can be refined to
the following sharper result on the volume of a spherical shell

(3.59) Ar(q) = {x E M: a + r < p(q, x) < 3a + r}.

Namely,

(3.60) ™lAr(q) ~ C(a)eKr,
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which implies

(3.61) vol{x G M: p(;c, q) < r + 2a) ~ O?*r.

Now /(V^Δ) is invariant under rotations of Λf about #. This fact together
with (3.60) and the usual elliptic estimates yields

(3.62) I kf(x, q) |< Ce~^2 sup Γ \f™(s) | Λ,

0<Λ<[f]+li/'

if

(3.63) p(x,q) = r+2a.

In particular, by (3.60) the function ug(x) = kf{x, q) is integrable on {x E M:
p(x, q) > 1} with L1 norm independent of q, provided

(3.64)

It follows that, for a rank-one symmetric space M, if (3.66) holds,

(3.65) f(fA):Lp(M)-*Lp(M)9 \<p<oo.

More generally, if the spectrum of -Δ is contained in [ α0, oo), and

(3.66) /eS°, w>\κ,

then

(3.67) / ( / - Δ - α 0 ) : L^(M) -> i ' ( M ) , \<p < oo.

This result was proved by Stanton and Tomas [31] by a different method,
following the work of Clerc and Stein [12] on complex symmetric spaces. As
these authors point out, one can make use of the Kunze-Stein phenomenon
which implies that the operator Φ2 of (3.44) is continuous on LP(M\ 1 <p <
oo, provided that, for some b > 1,

(3.68) Φ2(xx,.)qL<(M)9 ? ε ( l , 6 ) .

which is slightly weaker than the requirement

(3.69) Φ2(xl9 )GL\M),

we sought above. Indeed, this allows us to replace W > jKby

(3.70) W = \ K

in (3.66).
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4. Volume, injectivity radius and injectivity angle

In this section we prove the geometric estimates used in the previous
sections.

We begin by discussing the volume. Let x G ΛP, and A{r, 0), &H(r\ Vr

H be
as defined after (1.7) and in (1.16), (1.17). Suppose R i c M ^ ( « - \)H and
regard A(r,θ) as a function on the tangent space TXM. If H > 0, we restrict
attention to B^^φ) C TXM. Let U C TXM denote the interior of the cut
locus in the tangent space. The proof of the standard volume comparison (see
[3, pp. 253-257]) shows that on U,

(4 1) 4^*1 i

where I indicates a decreasing function. If Sr(0) C TXM denotes the sphere of
radius r about the origin, (4.1) implies

A(r,θ)

(4.2) - ^ ^ i;

Sr(0)

the possible existence of the cut points only helps matters. In general, if /(r),
g(r) are positive functions such that jl, then it follows that

/7ω
(4.3) f-i.

ί8is)

To see this, set f/g — h. Then h I and

(4.4) ffj\ = fghjR

S>\fgUr)jR

g>\fg\jR

gh = fgj
Rf.

Thus, equivalently,
r*" rR /-r rr rr rR rr rr rr rR rr rR

(4.5) (fί g=(f(g+[ff g>fffg+fgf f=fgf f,
which gives (4.3). From (4.2) and (4.3) we obtain the following relative volume
estimates which were emphasized in [21], [23].

Proposition 4.1. Let Mn be complete and RicM > (n — l)H. Let p, x G Mn

andρ(p, x) — p. Then

n K { p ) i
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or equiυalently.for rλ < r2 < r3,

K3(P) ~ Kjp) < vrι(p)
Vξ - Vξ KH •

Moreover,

(iii) 1

Proof, (i) and (ii). Let

(4.10) /=/ ^ ( r , f f ) , g = /

Then (i) and (ii) follow from (4.2), (4.3).

(iii) We have

(iv) Using (ii) we obtain

(4.12) Vr2{p) < Vp+r2(x) - Vp_ri{x) < (Vp«+r2 - Vp_rH)^.

Relative volume estimates are implicit in the proof of the more familiar

volume comparison Vr(p)< Vr

H, and have, in fact, been used previously

(compare e.g. [5]). However, recent applications in [22], [23] indicate that their

significance was not fully appreciated.

Note that it follows immediately from Proposition 4.1(iv) that if RicM > 0,

d>2r, then

(4 13) r%
Thus we recover the result of Calabi and Yau [35] that Vd{p) grows linearly as

d -> oo. At the end of this section we will give a sharp generalization of (4.13)

to manifolds whose Ricci curvature decays no slower than c/[ρ(p, x)2] outside

some Bro(p).

Remark 4.1. Let S C Mn be any set with the property that if q G S is not

on the cut locus of /?, then the unique minimal geodesic from p to q is



44 J. CHEEGER, M. GROMOV & M. TAYLOR

contained in S. Clearly, Proposition 4.1(i) and (ϋ) continue to hold with Vr(p)
replaced by V(S Π Br(p))9 as do the corresponding generalizations of (iϋ) and
(iv).

Remark 4.2. Let Mn be a Ricci model in the sense of [9]. Thus Mn is a
metric ball (possibly of infinite radius), with metric dr2 + f2(r)g, where
f(r)~r — Kr3/6 + for some K. If at distance r from /?, then we have
Ric^* > -(n- \)f"{r)/f{r\ Remark 4.1 still applies with Vr

H replaced by

Remarks 4.1 and 4.2 will be used without further comment below.
We now consider the refined injectivity angle ώ(H, ε, r, x) introduced in §2

just before Proposition 2.3. We retain the assumptions of Proposition 4.1.
Proposition 4.2. (i) Given ε, r2, r, we have

l K(p)~KH

(4.14) ( / ί ) - 1 - ε V" - V" — ε

where the right-hand side is > 0, //ε, r are sufficient small.
(ii) If moreover r2 < p,

(4.15) ΐ,ε,p-r2,x)
1

1 -ε — ε

(iii) Thus ifr(H, V) is defined by f = VrfHV), then

Kip)
S>\H,

(4.16)

(iv) If moreover r2< p,

Proo/. (i) Since Vr(x) < F r

H and Br£p) C 5p + r 2(x), we have

.Π) Vri(p) - V" < Fp +,2(x) - Vr{x).

Using (4.2) and integrating in polar coordinates, we easily get

(4-18) P-\

from which (i) follows.

, ε, r, - ω(H, ε, r, x))],
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(ii) This follows as in (i), by noting that

(4-19)

(ϋi) and (iv) follow immediately from (i) and (ii).
We now discuss the injectivity radius. Let Mn be a complete Riemannian

manifold and p E Mn. Let γ be a geodesic loop on p of shortest length
L[γ] = 21. Let KM < K on Bt{p). Then by a result of Klingenberg (see e.g.
[7]), the injectivity radius of the exponential map at p is bounded below by
min(/, 7r/ 4K)\ if K < 0, we interpret ir/ yfK as oo.

In [6] it was shown that there exists a constant cn(d, V, H) > 0 with the
following properties. Let Mn be compact. Suppose the diameter d{Mn) and the
volume V(Mn) satisfy d(Mn) < d, V(Mn) > F, and that KM ^ H. Then every
smooth closed geodesic on Λfn has length > <:„(</, V, H). For compact mani-
folds Klingenberg showed in addition that the injectivity radius at all points is
bounded below by the minimum of m/ {K (where KM < K) and one half the
length of a smooth closed geodesic. Thus it follows that for all/? e Mn,

(4.20) i(p) > min(±cn(d9 F, H), v/Jκ).

The method of [6] depends on Toponogov's theorem. It leads to a sharp
constant in certain situations, and no part of the hypothesis can be removed
unless something further is added; see e.g. [7] for further results of various
authors in more special situations. However, in [24] Heintze and Karcher gave
a new derivation. Their method was to estimate the volume of a tube around a
smooth closed geodesic. This led to a better constant in most cases and did not
require the use of Toponogov's Theorem. Whether the lower bound KM > H
can be replaced by RicM ^ (n — \)H in the above estimates, is still an open
question.

As mentioned in the introduction, in [10] a relative bound on the behavior of
the injectivity radius i(x) was derived, which did not require the global
hypothesis of compactness. In particular, the authors worked with geodesic
loops which were not necessarily smooth, but they assumed a lower bound on
i(p) for some/?. The estimate which we now give replaces this assumption by a
lower bound on the volume Vr(p) for some r, p. Thus we get a purely local
generalization of the results of [6], [24], in so far as they pertain to the
injectivity radius. However, the method by its very nature depends on knowing
a lower bound for the distance to the conjugate locus. Without this assump-
tion, no information on the length of a closed geodesic γ is obtained, even if γ
is smooth.

To emphasize the local nature of our result, we now let Br(p) be a metric
ball in a Riemannian manifold such that for r' < r, Br,{p) is compact. Assume
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that on Br(p), KM<Kandr< π/ {K, (r arbitrary if K < 0). We let Vr°(p)
denote the volume of Br(0) C TpM with respect to the pulled back metric.

Theorem 4.3. Let Br(p) be as above. Ify is a geodesic loop on p of length 21,

and r0 + 2s < r, r0 < r/4, then

(4-21) '>T7T-^o

If in addition H<KM<K, then

(4.22) / > ^
2 1 + Vξ+S{p)/Vs{p)

To prepare for the proof of Theorem 4.3, we begin with some elementary

observations.

(i) By the Gauss Lemma, every curve c of length L[c]<r with c(0) = p has

a unique lift to a curve c C Br(0) C Mp with c(0) = 0. In particular, a geodesic

segment γ of length < r with γ(0) = p has a unique radial lift. Thus points of

Br(0) can be identified uniquely with such γ. With this identification, the

projection exp^: Br(0) -* Br(p) is given by γ -> e(γ), where e(y) denotes the

endpoint of γ.

(ii) Let Cj, c2 be piecewise smooth curves, and write cλ ~c2 if ĉ  and c2 are

homotopic over curves of length < A keeping endpoints fixed. If L[c] = / < r,

clearly c ^ γ with γ the unique radial geodesic such that e(c) = e(y). Hence

(iii) Since exp^ | ^ r(0) is nonsingular, if γ1? γ2 are distinct radial geodesies with

L[γJ < r, then by a standard argument on lifting homotopies, γ l 9 γ2 do «0/

satisfy γ ! ^ γ 2 . In particular, the geodesic segment γ in (ii) is the unique

geodesic segment with c ~ γ. We write [c] for γ, and [p] for the constant loop

on p.

Let θλ9 θ2 be closed curves on /?, and let c be an arc from p with L[0J < 2/,

L[c] = 5 and 2(1 + s) < r. Let ^ U c denote the arc from/? which is equal to θi

followed by c.

Lemma4.4. If 2(1 + s) <rand[θx Uc] = [θ2 U c], fΛe/i [ β j = [θ2].

Proof. If [^ U c] = [θ2 U c], then θx U c 2 ~ ^ 2 U c. Thus

β, - ί , U c U - c - ί , U c U - c - ff2.
2(/+J)

By (iii) above [θλ] = [Θ2]
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Let #(#, a) denote the number of distinct inverse images of q E Br(p) in

Ba(0), a<r.

Lemma 4.5 (Even covering lemma). If r0 + 2s < r/4 and q E Bs(p), then

# ( ? , 3 r o ) > # ( / > , r o ) .

Proof. By (i) above, #(/?, r0) = m, where γ, γm are the distinct geo-

desic loops on p of length < r0. Let σ be a minimal geodesic from p to q. By

Lemma 4.4, [γ, U σ], / = 1, ,m, represent distinct inverse images of q in

o

Let 0 be a loop on /?, and σ a geodesic arc from p with L(0) = 2/, L(σ) = 5

and 2(1 + s) < r. The correspondence σ -* [0 U σ] defines a map ττ[β]: 2?5(0) ->

B2l+s(0) which clearly depends only on [θ]. It is also obvious that exp^ ir[θ](x)

= expp JC for x E 5/0). Hence TΓ^ is an isometry from Bs(0) to w[tf](J85(0)) with

respect to the pulled back metric on B2l+s(0). It follows immediately from

Lemma 4.4 that π[θ] has no fixed points unless [θ] = p.

Set iγ = γ U γ and L(γ) = 21.

Lemma 4.6. Let y be a geodesic loop on p with 2/ N < jr. Then [γ],

[2γ], ,[Ny] are all distinct.

Proof. Since (/ + ; ) γ = iγ Uyγ, if [(/ +y)γ] = [iγ \J jy] = [jy] = [jy U

/?], then [iy] = p by Lemma 4.1. Regard [/?], [γ], -,[(/ — l)γ] as points in the

strictly convex ball B2il(0). Then ττ[γ]: B2il(0) -> B2(i+l)l(0) preserving distance.

Hence ττ[γ] preserves the unique center of gravity of the set {[/?], [γ], [(/ —

1)Y]} % definition the center of gravity is the unique minimum of the

functiony -* ΣjP2([jy], y). It exists because HI < {π/ JK implies that B2il(0)

is convex. This contradicts the fact that πy has no fixed points.

Proof of Theorem 4.3. Consider a geodesic loop γ with L(γ) — 21 < r0. Let

N = [ro/2l]. By Lemma 4.6, p has at least iV inverse images in Bro(0). By

Lemma 4.5, every point in Bs(p) has at least N inverse images in Bro+S(0).

Since exp^ is nonsingular and orientation preserving, N Vs(p) < ϊ^0+5(/?).

Hence l/[ro/2/] < K(B,(p))/K(J?Γo+J(O)), and (4.20) follows. Then° (4.21)

follows from the standard volume comparison.

If we combine Theorem 4.3 with Proposition 4.1, we immediately obtain the

following lower bound for the injectivity radius.

Theorem 4.7. Let Mn be complete with H <KM^K. Let ρ = p(p, x% and

fix r, r0, S, with rQ + 2s < π/ yfίc, r0 < π/4}[k. Then

(i)

(4.23) i(χ) > $ l—— .
2 1 + (V&t/Vr(p))(vμ»r/Va»)
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(ϋ) Moreover, ifr + s<p, then

(4.24) '"(*)> 7 — *

As an application of the relative volume estimates proved at the beginning of
this section, we now consider complete manifolds whose Ricci curvature at
infinity is "almost nonnegative" in the following sense. Fix p E Mn and set
r — p(/?, x). We assume that for some r0 > 0 and all r > r0,

(4.25) RicM(x)M«-l)J~.

(For Theorem 4.8 and Theorem 4.9 (in) it suffices to assume that (4.25) holds
only for radial directions from/7; however for Theorem 4.9(i) and (ϋ) this does
not suffice.) By convention we take v > 0. Observe that the Jacobi equation

(4.26) f = ^ ^

corresponding to sectional curvature (i — v2)r2 admits the pair of solutions

(4.27) g±v(r) = /•-*,

and the particular solution

(4.28) 4,«=£(-r*+ r + *2 rr*-'),

satisfying JvR(R) = 0, J^R(R) = - 1 . For the case \ + v2, we replace v by iv in
(4.27), and obtain the solutions

(4.29) λ cos( flog r), r sin( v log r ).

Corresponding to (4.28) we have

(4.30) ^ f Λ ( r ) = jr*sin(Flogr/il).

Note that

(4.31) hvJ^π/v) = hUR) = °
This gives the following extension of Myer's theorem.

Theorem 4.8. Let Mn be a complete Riemannian manifold such that for some
p E Mπ, r0 > 0, and v > Owe have

(4.32) ίi^!l

for all r>r0. Then Mn is compact and the diameter dp from p satisfies

(4.33)
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A weaker result of this type is derived in [1]. In [19] the compactness of Mn

is derived from (4.32), but no explicit bound on the diameter is given.
Proof of Theorem 4.8. We use the field fyiv e*/vr, and argue by index

comparison as in the standard proof of Myers theorem. If γ | [0, eπ/pr0] is
minimal, (4.31) and (4.32) lead to the conclusion that γ | [r0, e

v/vr0] contains a
pair of conjugate points.

Remark 4.3. By considering a metric on R" which is of the form

(4.34) dr2 + rg(θ)

outside some compact set, where g(θ) is the standard metric on Sn~\ we see
that Mn need not be compact if v — 0. However, further refinements are
possible. For example, a similar argument shows that if

(4.35)
1 r 2 logr

then Mn is compact; see also [14] for a sharp result of this type.
We now consider the case (\ — v2)/r2. Observe that for v > 0, the condi-

tions

( 4 3 6 )

are equivalent to one another. Also recall that if Mn is not compact, a normal
geodesic γ: [0, oo] -> Mn is called a ray if each segment of γ is minimal. Parts
(i) and (ii) of the following theorem give a lower bound on the rate of growth
of the volume of a ball, which generalizes the previously mentioned result of
Yau and Calabi for the case RicM > 0. A novel feature of the argument, as
distinct from the case RicM > (n — \)H, will be the use of a family of model
spaces with metric

Here the metric is expressed in polar coordinates, but the origin is at R. For
v < \, the metric is singular at the boundary r = 0, while for v > \ there is a
conjugate point at the boundary. For v — \ we have the usual flat metric on a
ball of radius R.

Theorem 4.9. Let Mn be a complete noncompact Riemannian manifold, and
let γ: [ 0, oo) -> Mn be a ray from somep E Mn.

(i) Fix 0 < v < \{n + \)/{n — 1). If v^ \, assume that for some r0 > 0 and
all r>rowe have

(4.37) ^ ^
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I/O < v < j, assume that for some r, such that r0 < r, < | / 0 and for all r>r0,

( * ) > ( H l ) ^ ^(4.38) R i c w ( * ) > ( H l ) .
(r - 2(r, - r0))

IfO<v<j(n+ l)/(« - 1), ί/ien i/iere ex/sίί CΓ| independent of M" such that

for r>1rχ- r0

(4.39) cjr^Jγirjy-rt-'W < Fr+(r,_ro)(/>)

(ii) lfv = i(n + l)/(n - 1), αnrf(4.37) Ao/ίfc, ίΛen/or r > 2r, - r0

(4.40) c ^ r | _ r o ) ( γ ( / ,))logr< K r + ( r i _ r o ) (^).

(iii) i^r #// ^ > 0, //'(4.37) A /̂ώ1 (/Λ rαJ/α/ directions), then

(4.41) F r ( / ? ) < c Λ / r ^ - 1 ^ + ϊ ' ) + 1 .

Proof, (i) We first consider the case v >• \. Fix x with p(p, x) = r. Let σ(ί)

be a normal geodesic emanating from/?, and set ρ(y(r), σ(t)) = 5. We consider

ί < r — r0 and note that s > r — t by the triangle inequality. Since v >• \,

(4.42)
5

The argument can now be completed as in Proposition 4.1 (iv) except that we

use J"~' in place of &H. This gives

„ ( AI— 1 )ΔV

(4.43) - "'. . - < ^ r-

and (4.39) follows easily.

Now consider the case 0 < v < \. It will suffice to obtain the analog of

(4.42). Moreover, clearly we can restrict attention to those σ which are minimal

from γ(r) to some σ(t) E Brχ_r^y(rλ)\ and to 0 < / < t. Let a = ρ(p, σ(t)).

Then by the triangle inequality,

(4.44) rλ + {rλ-r0)^a,

(4.45) (r - rλ) +' (rλ - r0) > t = (/ - / ) + /,

(4.46) a + (t-t)>s.
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o(t)

σ(0

7(0) Ί(r0) y(rχ)

FIG. 4.1

Adding these and cancelling terms give

(4.47) r + 2(rx -rQ)>t + s.

But r — t> r0 and so, by the triangle inequality,

(4.48) s>r0.

Combining (4.47), (4.48) and the assumption 3r0 > 2rλ, we obtain

(4.49) r- t>s- 2(r, - ro)>s - ro>0.

Thus, since v < {, we get

(4.50) * ( ) ( ) 7 , , 2 ( ) 7 4
( j - 2 ( r , - r 0 ) ) ('•-O

As above, this implies (4.39) for p < ^.
(ii) The argument is as in (i).
(iii) The estimate (4.41) follows from the proof of the Heintze-Karcher

comparison theorem [24] applied to dBrχ\Cu where rx > r0 and C is the cut
locus of p.

Remark 4.4. By considering a metric on R" which is of the form

(4.51) dr2 + rι±2pg

outside some compact set, we see that the estimates of Theorem 4.9 are sharp.
Also as in Proposition 4.2 we see that the injectivity angle ώ decays at most like

i
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