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FOLIAΉONS WITH INTEGRABLE TRANSVERSE
G-STRUCTURES

OLE HJORTH RASMUSSEN

Introduction

The existence of integrable G-structures on a smooth manifold Mn has been
examined by Grove and Hansen [7]. An integrable G-structure on Mn means
that we can find an atlas on M" such that the Jacobean of the transition
function in any intersectiion belong to G, when G is a discrete subgroup of
Gl(n, R) (if G is finite or more generally if G belongs to some compact
subgroup we can assume G C 0(«)). Equivalently we could require Mn to have
an affine flat structure or a Riemannian flat structure in the case G C 0(n) and
holonomy group contained in G.

In this paper we want to generalize this. Suppose we have a smooth manifold
M" with a smooth foliation §. An integrable transverse G-structure (for short,
a Γ(G)-foliation) means that we can find an atlas on M" such that the
Jacobean of the transition function transverse to ίF in any intersection belong
to G. Equivalently we could require Mn and *$ to have a basic connection
which is affine flat or Riemannian flat in the case G Cθ(q) and holonomy
group contained in G.

To avoid confusion with other notation, it should be mentioned that a
transverse G-structure as defined by Conlon [4] is a weaker notion (except for
codimension 1). A transverse G-structure is the same as giving a basic connec-
tion with holonomy group contained in G.—So much for notation, and we
want to show

Theorem A (Theorems 1.4 and 2.1). If Mn is open, then Mn has a foliation of

codimension q with an integrable transverse e-structure if and only if Mn has a

trivial q-dimensional subbundle of the tangent-bundle. If Mn is closed, then Mn

has a foliation of codimension q with an integrable transverse e-structure if and

only if Mn is a fiber bundle

with a torus as base.

Communicated by W. P. A. Klingenberg, December 12, 1980.
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Theorem B (Theorem 3.1). // Mn has a foliation with an integrable trans-

verse G-structure, then there is a principal G-bundle π: Mn -» Mn such that Mn

has an integrable transverse e-structure.

Theorem C (Theorems 2.4, 2.5 and 2.6). If Mn is closed and has an

integrable transverse e-structure, then all leaves L are diffeomorphic, and we have

a Serre-fibration

with a torus as base.

Theorem D (Theorem 3.4). // Mn is closed and has an integrable transverse

G-structure with G C 0(g), then the structure can be reduced to an integrable

transverse G''-structure with 6 ' C G and Gf finite.

1. Quantitative theory for Γ(G )-foliations

Let Mn be an w-dimensional smooth manifold with a foliation of dimension
p and codimension q (p •+• q = n). ®j is given by a maximal atlas {If X If}
such that the transition functions

IP X If -> // X //

are of the form

(x, y) ->(ψ(x, y),φ(y))

Suppose we are given a discrete subgroup G C Gl(q, R). Let Tq(G) be the
group of diffeomorphisms of Rq, which has a Jacobean belonging to G. Then
we have a fibration of groups

Rq -* Tq(G) - G.

The last map is the Jacobean, and the first map is the inclusion of the discrete
subgroup of translations in Rq.

Definition 1.1. If a subatlas can be chosen such that φ E Tq(G) or equiva-
lently such that Jac(φ) E G, then ^ i s said to be a Γ#(G)-foliation, which is
just a shorter notation for an integrable transverse G-structure.

Lemma 1.2. <5 is a Tq(e)-foliation *=* ¥ is given by a closed globally decom-

posable q-form Ω.

Remark. This is a special case of volume-preserving foliations, in which
case Ω is only assumed to be locally decomposable.

Proof. Suppose 5" is a Γ#(e)-foliation. Then Ω is given by pull-back of the
standard #-form on Rq.

Suppose <3 is given by Ω = ωx A Λω .̂ Then locally ω, = dfh and
(f\>'-Jq)e Rq defines a chart of the type If X If. But (fl9 ,fq) is uniquely
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defined up to constants, so a different choice would give ωz = dg^ and
(g,, -,gq) G Λ* defines another chart of the type // X //. Since g, = /. + ci9

the transition function
IP X //? -> // X //

is given by

(x, >>) ->(ψ(*, y),y + c) withe = (c,, , c j .

Before stating the next proposition let us define some standard terminology.
Definitions. Let T ( ^ ) be the tangent bundle to the foliation, and γ ( f ) the

normal bundle. Then T(Mn) ss τ(^) Θ y(<$) where Γ(Λf w) denotes the tan-
gent bundle of Mn, and we choose some Riemannian metric to identify γ(^)
as a subbundle of T(Mn).

A connection V on y(^) is said to be basic if whenever X is a section of
), and Y is a section of y(^% which is parallel along the leaves, then

An affine flat connection V is one whose curvature tensor and torsion
tensor vanish, i.e.,

V*Vy " VyV* ~ V^, y ] = 0 V*, Y

Proposition 1.3. Le/ G C G/(^, Λ) Z?e a discrete subgroup. Then Mn has a
Γ(G)-foliation if and only if Mn has a foliation ^with a basic connection o« y( f)
which is affine flat {Riemannian flat in the case G C 0(#)) and with holonomy
group contained in G.

Proof. Suppose y(^) has a basic connection V which is affine flat. Since
the curvature is zero, y{^) has a local basis of parallel fields Ea (a = 1, ,q);
since the torsion is zero, we have

V«,/?: VEEβ - VEβEa - [Ea9 Eβ] ̂  - 0,

ί

Vα,0: [EΛ9 Eβ] G r($).

By the usual argument we can find E'a (a= l, ,ςr) such that E'a — Ea

(mod τ ( f ) ) and Vα β: [E'a, E'β] = 0. This means that £,',- ,E'q are local coor-
dinate vector-fields defining a chart

IP X If

such that the connection V is induced from the affine structure in If.
Transition functions between two of these charts

ψ: IP X If ^ If X If
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has to preserve the affine structure on the second factor, hence the holonomy

group is some discrete group G.

On the other hand suppose we have a Γ(G)-foliation with some charts

{(If X If)}iξΞI. Define a connection on these charts induced from the affine

structure on If. We must show that the connections agree on the intersection,

which we do by showing that parallelism is the same in both coordinate

systems.

A vector field X is parallel in If X If if and only if the projection Xt to If is

constant and parallel in If X Iβ if and only if the projection Xj to Iβ is

constant. Now Xj is related to X{ by

XJ = D(φ)Xi.

But D(φ) is a fixed linear map, so Xj is constant if and only if Xt is constant.

Theorem 1.4 (Gromov [6], Haefliger [8], Phillips [11]). Integrable homotopy

classes of Yq(G)-foliations on an open manifold Mn is in 1-1 correspondence with

homotopy classes of mappings (dotted arrow) making the following diagram

commutative:

BΓq(G)

Together with homotopy classes of subbundles of T(Mn) (tangent-bundle classi-

fied by T) given by v.

Proof. This is a general result which is valid for all pseudogroups Tq.

Corollary 1.5. A necessary and sufficient condition for the existence of a

Tq(e)-foliation is that the subbundle defined by v be trivial.

Corollary 1.6. Integrable homotopy classes of Tq(e)-foliations are in 1-1

correspondence with (Hx(Mn, R))q together with homotopy classes of trivial

q-dimensional subbundles of the tangent bundle. The Tq(e)-foliations correspond-

ing to the trivial cohomology class are induced by a submersion to Rq. The others

are not.

The quantitative theory for closed manifolds is rather complicated compared

to that for open manifolds. This is contrary for the qualitative theory as we

shall see in the next section.
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2. Qualitative theory for Γ( e )-foliations on closed manifolds

Theorem 2.1. If M" is closed with Yq(e)-foliation %\ then Mn is a fiberbun-

dle

F ^ Mn ->Tq

which can be chosen such that any leaf L in ®s is a covering of F. Furthermore

L X Rq is a covering ofMn.

Proof. Suppose <$ is given by Ω = c^ Λ Λω^ (compare Lemma 1.2). By

the theory of harmonic 1-forms (see [14]) we can approximate ωi by a closed

nonsingular 1-form Σ j ^ i ^ / ; * (dθ) where fi}\ Mn -> Sx and qiJ G Q. But

then also some 1-form ΣjL\ nijfij * {dθ) is nonsingular {ntj G Z) which means

that Πf= x ΣjL\nijfif- Mn -> Tq is a submersion.

Since Mn is compact, this gives the fiber bundle. Take the covering Mn of

Mn such that ir,(F) = πλ{Mn). Then

Mn = FXR«

The foliation <$ lifts to a foliation ®i transverse to the Λ^-factor, since the

original 1-forms are close to the new (rational) 1-forms. The leaves L in ̂  lifts

to leaves in ̂  which are diffeomorphic, since nothing in 7τ,(L) is killed by the

lifting. This means that L is a covering of F.

Then take the covering Mn of Mn such that π,(L) s πx(Mn). Thus

Mn = LXRq

is similar to the above. But we can do more, and will see that we have a Serre

fibration

L-^M" -> Γ.

This is no longer a locally trivial fibration as in Theorem 2.1, and we have

s > q.

To start let us recall the definition of a simplicial set (see Kan [9]).

Definition 2.2. A simplicial set K is a sequence of sets

together with functions (called face and degeneracy operators respectively) for

each 0 < / < n:

</,.: Kn -* Kn_l9

s(: Kn-> Kn+ι.

The functions are required to satisfy certain identities. A simplicial map

/: K -> L is a family of functions fn; Kn^> Ln commuting with d( and j / e

Elements x G ^ are called w-simplices, and elements x E Ko are also called

vertices.
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Let Δ[«] be the standard π-simplex, which is the simplicial set with vertices
0,1, ,Λ and ^-simplices

Δ[«] is generated by the w-simplex

in = (09\, '9n)e&[n]n.

Let Ak[n] be the sub-simplicial set generated by all */,•(/„) for i φ k.
Remark. Let K be any simplicial set, and x € Kn any w-simplex. Then

there is a unique simplicial map (the representative map for x) fx: Δ[n] -* K
such that fx(in) = x.

Definition 2.3. A surjective simplicial map p: E -* B is called a Kan
fibration if whenever /: Ak[n] -» £ and g: Δ[w] -».5 with p ° / = g | Λ*[/i],
then there is an extension of / to a map /': Δ[«] -» E with p ° f — g The
picture for this is the diagram

Call/' an extension of/which covers g, and/? *(*) the fiber.
Now consider a closed manifold Mn with a Γ^r(e)-foliation. Let S(M) be the

simplicial set with 5(M) r = (smooth maps Δr -> Mw} with Δr denoting the
geometric r-simplex. Let 5(5) be the simplicial set with

where two simplices are equivalent if one can be translated onto the other by
holonomy projection along leaves. This is the equivalence relation generated by
the following relation:

Take one of the charts If X If. Then any two smooth maps Δr -> If X If
are said to be equivalent if they agree on the second factor.

In general two simplices are said to be equivalent if they are equivalent on
some subdivision.

Suppose now that we have a simplex /: Δr -» Mn with f(vo) = x. Then for
any x' belonging to the same leaf as x we can choose a simplex /': Δr -* Mn

equivalent to/such that/'(υ0) = x\ and this is unique in the sense that if two
simplices belong to the same chart If X If, then they agree on the second
factor if they agree on one point.
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This is done by taking an appropriate subdivision of a path from x to xf on
the leaf, and a subdivision of/: Δr -> Mn. Then we can extend over each little
path-segment and each little simplex at a time. Using the compactness of Mn

and the usual argument with Lebesgue numbers, this process will never stop.
In fact we can find a cover by charts {IP X I/1} such that any little path-seg-
ment of length less than ε and any simplex can be extended such that the
length of all the new paths on leaves have a length less than ε. Furthermore
look at simplices in a chart IP X If. Then we can take the composite

Δr -> If X I? -»I? C Rq,

and the image in Rq is well defined up to translation, which gives the
uniqueness.

Now find a vertex * in S(B)0. Then we have a natural surjective map

p: S(M) -^ S(B)

with fiber p~\*) = S(L), where L is the leaf corresponding to *, and S(L) is
the simplicial set with

S(L)r — {smooth maps Δr -» L).

Theorem 2.4 (see also Godbillon [5]).

S(L)-» S(M) -> S{B)

is a Kan-fibration.
Proof. We are given the following diagram

y
Δ[n]

and we want to find/'. This means that we have two smooth maps

where Ar is the boundary less one face of the geometric r-simplex Δr, and they
agree on Ar up to equivalence. Then use this equivalence on Λr to translate all
of Δr (by holonomy projection) to a smooth map

which agree with/on Λr.
In the process we are of course using the existence and uniqueness property

for holonomy projections established above.
It follows from the general theory of Kan-fibrations (Zisman [17]) (or from a

similar result for Serre fibrations (Steenrod [13])) that two leaves Lx and L2
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have the same weak homotopy type, in particular that they are both compact
or both noncompact, but in this particular case we further have

Theorem 2.5. Two leaves L, and L2 are diffeomorphic.
Proof. We use the Kan-fibration property for 1-simplices. In this case Δ1 is

a geometric 1-simplex, and Λ1 is an endpoint. So we choose a smooth map
/: [0,1] -* Mn with /(0) G Lλ and /(I) G L2. We are also given another point
x E: Lλ. Then by the Kan-fibration property there is a smooth map /': [0,1] ->
Mn with /'(0) = JC, and W G [0,1], /'(*) belongs to the same leaf as /(/). In
particular we have/'(I) G L2. Now we can choose/' uniquely by demanding
that / ' is tangent to some fixed normal bundle to the foliation (5. The map
x -»/'(*) gives the desired diffeomorphism. Again by the general theory of
Kan-fibrations we have a long-exact homotopy sequence

. . . - π,(L) - *i(M") - π,(B) - *,.,( !,)

and a spectral sequence (E^q9 d
r) with

Elq = Hp(B; Hq{L)) (local coefficients)

and converging to H^(Mn). There is an analogous for cohomology. If the local
coefficient system is constant we have from Serre [12] that B is of finite type in
homology, but in this particular case we further have

Theorem 2.6. B —\S(B)\is homotopy equivalent to a torus.
Proof. Suppose the foliation ^is given by Ω = ωλ Λ Λω9, then there is

a smooth map t: Rq -> Mn such that

ί*(ω, Λ Λωqk) = dxx Λ - Λdxq.

The set where t is defined is both open and closed since Mn is compact, hence t
is defined on all of Rq. By the same type of argument / intersects all leaves in
§. There is an induced equivalence relation on S(Rq)9 and it is clear that

S(Rq)/~=S(M»)/~=S(B),

where S(Rq) is the simplicial set with

S(Rq)r = {smooth maps Δr -» Rq].

Furthermore as we had already seen when we studied uniqueness of holonomy
projections, equivalent simplices

Δr ^Rq

have a well-defined image in Rq up to translation. Thus the equivalence
relation ~ on S(Rq) is induced by a subgroup Zs C Rq of translations, and
hence

B=\S(R«)/~\= Ts.



INTEGRABLE TRANSVERSE G-STRUCTURES 707

Example. Suppose we have a foliation § on Mn such that for all leaves L

we have

Then using the long-exact homotopy sequence we get immediately that

^πm(S2kX Tn~2k).

Or assuming that the local coefficient system is constant, from the spectral

sequence we get a Gysin-sequence (see Serre [12]):

Hi+2k(M") -> H\B) ̂ Hi+2k+ι(B) -> Hi+2k+\Mn)

The middle map is multiplication by the characteristic class χ E H2k+ι(B),

which is 2-torsion and hence zero since B = T"~2k. So we get

H*{Mn) = H*(S2k X Γ"- 2*).

3. Qualitative theory for Γ( G)-foliations and concluding remarks

about reduction to finite structures

Theorem 3.1. Suppose Mn has a Yq{G)-foliation. Then there exists a prin-

cipal G-bundle π: M" -» Mn such that Mn has a Tq(e) foliation.

Proof. Let {If X 19} be an atlas on Mn giving the Γ^r(G)-foliation. Now

we want to construct a manifold Mn such that {If X If X G} is an atlas on

Mn giving a Γ^(e)-foliation. Define

Mn = u(lfXIfX

where the relation ~ is defined as follows:

(χ> y> g) - (Ψ(^» y)> φ(y)>

Here we assume that

M" = iiί//7 X

with the relation ~ defined as follows:

(χ,y)~(φ(χ,y),φ(y)).

Give Mn the quotient topology, and it is not difficult to see that the natural

projection π: Mn -> Mn is a principal G-bundle. Now define new charts by

(χ,y>g) -+(χ>g~ι(y))'

From which it follows that there is a new chart

, y), ψ(y), Jac(φ) g) ̂  (ψ(x, y),
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In those new charts, the transition function is the following on second factor: 

So this map is g-'Jac(cp-')cpg, and the Jacobean is the identity. 

Corollary 3.2. Suppose M n  is closed and has a rq(G)-foliation with G finite. 
Then there is a principal G-bundle m: M" -, M n  such that M" is a fiber bundle 
over the torus T4. 

Proof. An immediate consequence of Theorems 2.1 and 3.1. 
From the above it follows that one can construct manifolds with a I'q(G)- 

foliation in the following way: 
Take a manifold Mn with a rq(e)-foliation. Then this foliation is given by 

!2 = w,  A - A w, (see Lemma 1.2). Now assume that we have a free G-action 
with the extra property that for any g E G we have 

where w = (w ,, - 0 ,  an). Then there is a I'q(G)-foliation on Mn/G. 
If the orbit-manifold Mn/G is open, then the foliation is integrably homo- 

topic to one such that the G-action satisfies the extra property by Theorem 1.4. 
However if Mn/G is closed, this is no longer true. 

Proposition 3.3. There is a manifold Mn with a I'q(e)-foliation and a free 
G-action such that Mn/G is closed and does not have a rq(G)-foliation. 

Proof. For simplicity let q = n, and let Zn be a homotopy sphere of 
dimension n. Consider the connected sum Mn = Tn#Zn. When Zn is not the 
standard sphere, Mn is P.L.-homeomorphic but not diffeomorphic to Tn; cf. 
Wall [15]. On the other hand any closed flat Riemannian manifold whlch is 
homotopy equivalent to T n  is actually affinely diffeomorphic to Tn (see Wolf 
[16]). So from Proposition 1.3 we know that M n  does not admit an integrable 
finite G-structure, when 2"  is exotic. Nevertheless we can find as principal 
Z,-bundle m: Tn -+ Mn. First note that the group of homotopy spheres 8, in 
dimension n > 4 is a finite group by Kervaire-Milnor [lo]. Choose an element 
Zn E On of order k. Then we can construct the principal Z,-bundle as follows: 

Let T n  = Tn#Zn# . . - #Zn (k  copies of Zn), and define the free 2,-action 
on Tn#(Zn),: 

On T" it is a standard Z,-action induced from a 2,-action on the circle S', 
and on (En), it is a cyclic permutation. 

Theorem 3.4. If Mn is closed and has a rq(G)-foliation with G C O(q), 
then the holonomy group G' is finite. In particular Corollary 3.2 is still true. 

Proof. The theorem says that '3is actually a rq(Gf)-foliation with G' C G, 
and G' finite. The proof follows from the ideas in Bieberbach's structure 
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theorem for crystallographic groups (see Wolf [16]). According to Theorem 3.1
we can find a principal G-bundle π: Mn -> Mn such that Mn has a Γ#(e)-folia-
tion. Following the proof of Theorem 2.1, Mn is a fiber bundle F -* Mn -» Tr

X Λ«-Γ.

Then G acts on Γ r X Rq~r as isometries, hence G C Tq(0(q)). As in the
proof of Bieberbach's structure theorem we consider Zι — G Π (Tr X /^~ r)
(intersection with the subgroup of translations). Since G preserves this lattice
and 0(<7) is compact, the projection G -> 0(q) has a finite image.

In the special case with q — «, only finitely many groups appear as holon-
omy groups in each dimension n, but any finite group appear for n > n0 for
some n0 (see Auslander-Kuranishi [2]). q.e.d.

If we drop the condition G Cθ(q), Theorem 3.4 is no longer true.

Lemma 3.5. There exists closed manifolds Mn with a Tq(G)-foliation but no
YqXG'yfoliation for finite G \

Proof. It clearly suffices to put q — n. From the work of Auslander [1] and
Auslander-Markus [3] we know that there are infinitely many different homo-
topy types of closed affine flat manifolds in dimension 3. On the other hand
we also know from the work of Bieberbach (see Wolf [16]) that homotopy
equivalent closed Riemannian flat manifolds are affinely equivalent, and there
are only finitely many in each dimension up to affine equivalence, q.e.d.

If we drop the condition Mn being closed, then Theorem 3.4 is also no
longer true.

Lemma 3.6. (a) There exist open manifolds Mn with a Tq(G)-foliation with
G Cθ(q) (even transversely complete) with infinite holonomy group.

(b) There exist open manifolds Mn with a Tq(G) foliation with G C 0(#) but
no Tq(Gf)-foliation for finite G'.

Proof, (a) This is essentially answered in Wolf [16] together with arguments
as in §2 (since the transverse Riemannian metric is complete, the arguments
leading to Theorem 2.4, 2.5 and 2.6 apply). It follows that these manifolds Mn

are vector bundles over a manifold with a Γ(G')-foliation and G' finite.
Topologically these vector bundles are trivial, but the induced structure group
is a discrete subgroup of Γg'(G') for some qf < q, and hence the holonomy
group is not finite in general.

(b) By Theorem 1.4 we know that Mn has a Γ#(G)-foliation if and only if
Mn has a ^-dimensional subbundle of the tangent bundle with a G-structure,
and this can be chosen such that it cannot be reduced to a finite structure. In
fact, it can be chosen such that it does not have any finite structure at all (by
the recent work of Sullivan-Deligne this requires a manifold Mn not of finite
type).
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