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FOLIATED MANIFOLDS WITH FLAT BASIC
CONNECTION

ROBERT A. BLUMENTHAL

1. Introduction and statement of results

Let f be a smooth codimension-g foliation of a smooth manifold M. Let
T(M) denote the tangent bundle of M, and let E C T(M) be the subbundle
consisting of the vectors tangent to the leaves of §". Let Q = T(M)/E be the
normal bundle of φ, and let F(Q) be its frame bundle, a principal GL(q, R)
bundle. Recall that a connection on F(Q) is said to be basic if the parallel
translation which it defines along paths lying in a leaf of <5 agrees with the
"natural parallelism along the leaves" [3]. Equivalently, if TΓ: T(M) -> Q is the
natural projection, and if Γ(£), Γ(β), and %{M) denote the space of smooth
sections of the vector bundles E, β, and T(M) respectively, then the associated
Koszul operator V: 9C(M) X Γ(β) ^ Γ(β) satisfies the condition that VXY
= π([X, Y]) for all X E T(E) and all Y E Γ(β), where Ϋ is any vector field
on M such that τr(y) = Y, and [X, Y] denotes the usual Lie bracket of vector
fields [2]. In the present work we study foliated manifolds supporting a flat
basic connection, that is, a basic connection with vanishing curvature and
torsion.

To begin, we have the following nonexistence result.
Theorem 1. If M is compact with finite fundamental group, then M does not

support a foliation with flat basic connection.

As a corollary to the proof of Theorem 1, we will obtain
Corollary 1. Let (M, S7) be a foliated manifold with flat basic connection. If

HX{M, Z) = 0, then <$ admits a transverse volume element; that is, ^ is defined
by a nowhere zero closed q-form onM,q — codim^).

It is well-known (see, e.g., [6]) that the universal cover of an ^-dimensional
manifold supporting a complete flat linear connection is Rn where the lifted
connection corresponds to the canonical linear connection on Rn. We gener-
alize this codimension-fl result to foliations of arbitrary codimension.
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Theorem 2. Let (Af, f ) be a foliated manifold with a complete flat basic

connection. Then the universal cover M of M is a product L X Rq, where L is the

{common) universal cover of the leaves ofty, the leaves of the lifted foliation are

identified with the sets L X {JC}, x G Rq, and the lifted connection corresponds to

the basic connection on LX Rq determined by the canonical linear connection

onRq.

Corollary 2. If Mn supports a nonsingular flow with a complete flat basic

connection, then the universal cover of Mn is Rn.

Corollary 3. Let {Mn,(S)be a codimension-{n — 2) foliation with a complete

flat basic connection. Then either

(i) the universal cover of Mn is Rn, or

(ii) the leaves of ^ are spheres and projective planes.

Theorem 3. Let § be a codimension-one foliation of a compact manifold M

with a complete flat basic connection. Then either

(i) all the leaves of ^are dense, or

(ii) all the leaves of 5" have polynomial growth of degree < β\{M), the first

Betti number of M.

In particular, ¥ has no exceptional minimal sets.

2. Proofs of the theorems

Let (M, <3Γ) be a foliated manifold with a flat basic connection. Via a choice
of Riemannian metric on M, we may regard Q as a subbundle of T(M)
complementary to E. Thus T(M) = E θ Q, and the covariant differentiation
operator V corresponding to the basic connection then satisfies

VXY=[X,Y]Q forallΛΓeΓ(£), r e Γ ( Q ) ,

where [X, Y]Q denotes the β-component of the Lie bracket of the vector fields
XandY.

Let p: F(Q) -> M be the bundle projection. The connection on F(Q) gives
rise to a smooth GL(q, Λ)-invariant distribution H on F(Q) such that T(F(Q))
= VΘ H where V C T(F(Q)) is the subbundle consisting of vertical vectors,
i.e., vectors tangent to the fibers of p. Let ω be the corresponding connection
form, a smooth gl(q, Λ)-valued one-form on F(Q). The curvature form is the
gl(q, fl)-valued two-form Ω on F(Q) defined by ΩM(X, Y) = (dQ)u(XH, YH\
u G F(Q),X,Y G TU(F(Q)) where XH and YH are the //-components of X and
Y respectively. For u G F{Q\ X G TU(F(Q)), let θu(X) be the ordered #-tuρle
of real numbers obtained by taking the components of the vector (p*u( X))Q
with respect to the basis u of Qp^uy Then θ is a smooth 7^-valued one-form on
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F(Q). The torsion form of H is the Rq-valued two-form Θ on F(Q) defined by

ΘU(X9 Y) = (dθ)u(XH9 YH)9 u E F(Q), X, Y E TU(F(Q)).

Since H is flat, we have Ω = Θ = 0.

Let (o)j)fj=x and (Qi

ι

j)
q

ij=x be the components of ω, respectively Ω, with

respect to the standard basis of gl(q, R). Let (0'")?=i and (Θ')?=i be the

components of 0, respectively Θ, with respect to the standard basis of Rq. Since

θ 1 = 0 for / = 1, ,q and Ωj = 0 for ij = 1, ,#, the structure equations of

the connection take the form

dθ'^-Σω'ΛΘ^ i=l9- ,q

j j
k

Let h E Rq. For each u E F(Q), let B(h)u be the unique horizontal vector in

TU(F(Q)) such that p*u(B(h)u) = hλuλ + + Λ Λ where A = (*„• 9hq)9

u — («„• ,w^) This defines the basic vector field B(h) on .F(β) correspond-

ing to h. Clearly θ(B(h)) = h for all h E #«. Let {e,, ,eq] be the standard

basis of Rq, and ^ e ^ , ,B{eq) the corresponding basic vector fields.

Let x E M and w G p~ι(x). Since Ω = 0, the distribution H is integrable,

and hence we can find a neighborhood U of Λ: in M and a smooth section

s: U ̂  F(Q) such that s(U) is an integral manifold of H. For j> E (/, set

-*/„ ~ /7*(^(e/)5(>'))» * ~ 1> * »9 Then Xλ, , ^ are smooth independent nor-

mal vector fields on U. We have

0 = φ(ei),B{ej))=dθ{B{e,),B{ej))

= B{ei)e{B{ej)) - B(ej)θ(B(et)) -

and so [Xj, Xj]Q = 0. Since Xx,- -,Xq are parallel with respect to the connec-

tion H, and hence parallel along the leaves of f, there exists (shrinking U if

necessary) a smooth submersion/: U -> Rq such that kernel (f*y) = Ey and

, / = 1, ,q for alljv E [/.

Let F(Rq) be the frame bundle of Rq, and ω' be the connection form on

F(Rq) corresponding to the canonical linear connection on Rq. Let/*: p~\U)

-> F(Rq) be the map induced by /. Since H is a basic connection for ̂  it

follows that the foliation of p~x(U) whose leaves are the level sets of /* is

horizontal. Thus we have decompositions

(1) H = kernel(/„)* Θ s p a n ^ ^ ) , - -9B(eq)}9
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(2) T(F(Q)) = F θ kemeK/Λ θ s p a n ^ V ;B(eq)}.

Since ω and (/*)*<«/ agree on each of the subbundles occurring in (2), we

have that ω = (/*)*<*/ on p~ι(U). Thus we can choose an Λ^-cocycle
0 Π

(i) {Ua}aGA is an open cover of M;

(ii)/α: Ua -* Rq isa. smooth submersion constant along the leaves of

(iii) gaβ: fβ(Ua Π Uβ) -»fa(Ua Π Uβ) is a diffeomorphism satisfying fa =

ft* ° //> on t/α Π Uβ

such that (/α )*ω' = ω on p~ι(Ua) for each « G i

If UaΠ*Uβ* 0, then we have (fpj*(gaβm)*ω' = (gα/? o £)•«' =

(/«,)*«' = « = (//>,)*«'• Hence ( g α ^ ) * ω ' = ω' on F(Λ^) \fβ(uanyβ)> and so gα)8

is the restriction of an affine transformation of Rq. Let π: M ^ M b e the

universal cover of M. There exists a submersion/: M -* Rq constant along the

leaves of &= π~\^) [1]. This is clearly impossible if M is compact with finite

fundamental group thus proving Theorem 1.

Let G be the group of affine transformations of Rq, that is, the semi-direct

product of Rq and GL(q, R). By [1], there is a homomorphism Φ: πx(M) -» G

such that for each covering transformation T G 7Γ,(M) the diagram

is commutative. Let p: π}(M) -» Λ be the composition

. Φ α , . det

^(M)^G-^GL(q, R)->R

where α is projection onto the GL(q9 R) factor, and det denotes the determi-

nant function. If HX(M, Z) = 0, then p is the trivial homomorphism, and

hence the image of Φ is contained in the subgroup of G given by the

semi-direct product of Rq and SL(q, R). Thus we can find an Λ^-cocycle

{(££> fά> 8aβ)}a,β(ΞA' defining ^such that each g'aβ preserves the natural volume

element on Rq. This induces a nowhere zero closed #-form on M defining <&.

Suppose now that H is complete. Then H lifts to a complete flat basic

connection H on the bundle of normal frames of &. Since M is simply

connected, the holonomy group of H is trivial and hence ^ is a transversely

complete ^-foliation [3]. Thus the leaf space M/§" is a smooth Hausdorff

^-dimensional manifold, and the natural projection M -> M/®} is a smooth

fiber bundle whose fibers are the leaves of §" [3], [4]. Let V be the covariant
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differentiation operator arising from the connection H. Let X and Y be smooth
vector fields on M/$. Let X and Ϋ be smooth normal vector fields on M which
are parallel along the leaves of ^and project to X and Y respectively. Then if Z
is a smooth vector field on M tangent to the leaves of &, the vanishing of the
curvature of H gives VfVfΫ = VfVfΫ + V{£tx]^ B u t [Z, ^ 1 i s tangent to §"
since X is parallel along the leaves. Hence, since Ϋ is parallel along the leaves,
we have Vf Ϋ = V ( f ^ Ϋ = 0. Thus Vff is parallel along the leaves of #", and
hence projects to a vector field V^Γ on M/§". Clearly v defines a complete
flat linear connection on M / ^ which pulls back to H on M. Since M is simply
connected, the exact homotopy sequence of the fibration shows that M/& is
simply connected. Hence M/^is affinely isomorphic to Rq with its canonical
linear connection [6]. Since Rq is contractible, the leaves of ?F are simply
connected and §" is a product foliation thus completing the proof of Theorem
2.

Suppose that M is compact, and let <$ be a codimension-one foliation of M
supporting a complete flat basic connection. Let π\ M -> M be the universal
cover of M, and /: M -> Λ be a fibration whose fibers are the leaves of §". Let
G = {(of): fl^O) be the two-dimensional affine group. Let Γ = image Φ.
Then Γ is a finitely generated subgroup of G which acts in a natural way on R.
For x G R, let T(x) denote the orbit of x under Γ. Let L G f . Choose a leaf
L G fsuch that ττ(Z) = L, and let x = /(L). Then T(x) depends only on the
leaf L, and we denote this orbit by ΓL. Clearly L is dense in M if and only if
ΓL is dense in R. Suppose Γ is abelian. Then Φ induces a surjection Hλ{M, Z)
-> Γ, and hence Γ has polynomial growth of degree < β\(M). Thus all the
leaves of ^have polynomial growth of degree < β\(M), [1]. If Γ is not abelian,
then all the orbits of Γ are dense in R, and so all the leaves of ?F are dense.
Since a leaf in an exceptional minimal set of a C2 codimension-one foliation
has exponential growth [5], it follows that ^has no exceptional minimal sets.

The following example shows that completeness is an essential hypothesis in
Theorem 2. Define f:R3^R by f(x, y, z) = e^sπ^πΛ;. Then / is a smooth
submersion, and defines a codimension-one foliation Ifof R3. This foliation is
invariant under the action of Z 3 on R3, and hence passes to a foliation ffof the
three-dimensional torus. Let G be the two-dimensional affine group, and define
Φ: Z 3 - G by Φ(π, m, p) = (f ?). Then/o T ( w } = Φ(Λ, m, p) o f for all
(n, m, p) G Z 3 where T(nmp) denotes the translation of R3 determined by
(/i, m, p). Hence there is a Haefliger cocycle {(ί/α, /α, g ^ ) } ^ ^ defining ^
such that each gaβ is the restriction of some Φ(«, m, p). The canonical linear
connection on R is preserved by the maps Φ(«, m, /?), and hence induces a flat
basic connection for f. This connection however is not complete. Indeed, the
leaf space of §" is a non-Hausdorff one-manifold.
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