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AC 0 0 FLOW ON S3

WΠΉ A DENJOY MINIMAL SET

R. J. KNILL

The Cr Seifert conjecture is that every C flow on S3 without singular
points has a periodic orbit. Schweitzer gave a counterexample to the C 1

conjecture in 1974. The C* conjecture remains open for 2 < r < oo. Recent
work of Michael Handel suggests that a certain property of the Schweitzer
counterexample is typical. Namely, if there is an isolated one-dimensional
exceptional minimal set of a C ! flow on S3, then that minimal set should be a
surface minimal set. The importance of this assertion is that a flow on a
surface which has an exceptional minimal set can be no more than once
differentiable.

We give here an example of a C°° flow on S3 with an exceptional surface
minimal set. Properties of this flow in a neighborhood of the minimal set are
suggestive of properties that any C°° flow on S3 with an exceptional minimal
set should have. These properties include hyperbolicity of the Poincare map
on a cross section to the flow and consequent (in our context) existence of
shift automorphisms and periodic trajectories arbitrarily close to the excep-
tional minimal set.

After describing our flow we will conclude with a discussion of some
problems which it suggests-directions to take in pursuit of an answer to the
Cr Siefert conjecture for high values of r.

The general idea of our construction is as follows. The Denjoy diffeomor-
phism / o f S1 is expansive on countably many subintervals of Sι and
contractive on complementary intervals. After adjusting Denjoy's example so
that the expansive part of the diffeomorphism / expands by a factor of two
(an "eigenvalue" of two), and the contractive part has an eigenvalue of one
half, then the intervals on which / is expansive are embedded in the punc-
tured R2\0, tangent to one direction X, and the intervals on which / is
contractive are embedded tangent to another direction Y. These directions
are given in polar coordinates, i.e., X = xxγr + x2^§ and Y = yxγr + y2^§ so
that one can achieve an embedding of the circle with a sort of Cantor radial
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saw-tooth configuration. After making the embedding,/is conjugate to a map
/ on the Cantor saw-teeth which extends to a C 0 0 map on a neighborhood.
Near the Cantor saw-teeth, the differential of/has matrix M with eigenvalue
two in the X-direction, and eigenvalue one-half in the y-direction. Hence/is
hyperbolic. By standard arguments every neighborhood of a point in the
Cantor saw-teeth contains a shift automorphism. / is extended to an annulus
in a C °° fashion, and then suspended to give a C °° flow in a flow box. This in
turn is used to define the required C°° flow on S3.

We would like to express our appreciation to Paul Schweitzer, Colin
Rourke, and Jenny Harrison for openly sharing their insights into the
problems associated with the Seifert conjecture.

1. Linearization of the Denjoy diffeomorphisms

Let us begin by summarizing some of the properties of the Denjoy
diffeomorphisms of Sι. See [3], [5] and [7].

1.1. Theorem (Denjoy). There is an orientation preserving Cι diffeomor-
phismf: Sλ —» Sλ with the following properties:

1.1.1. There is a Cantor set K in Sx invariant under /.
1.1.2. There are no periodic points off.
1.1.3. The complement of K in Sι is a union of countably many open

intervals In,n E Z, such thatf(In) = In+γfor each « 6 Z .
1.1.4. If μ is Haar measure on S1, then μ(K) = 0.
Let us modify / and /Λ, « G Z to make our job easier. The modified

function / will, however, only be a homeomorphism, and will no longer be
C\

1.2. We assume/and /„, n E Z, satisfy:
1.2.1. μ(In) = 2 V(3 2H), n E Z.
1.2.2. Regarded as a function of arclength, suppose that /|/Λ is a linear

map onto In+ι for each n E Z.
The following theorem will be proven in §2.

2.1. Main theorem. There is a continuous embedding

such that
2.1.1. there exist positive numbers a <b such that

g(Sι)c{(r,θ):a<r<b} =

Here (r, θ) are the polar coordinates of a point.
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2.1.2. there is a C°° diffeomorphism F: &-> & such that

Fg\K = gf\K.

Actually we prefer to lift/ to a map/on R, so that if p: R -> Sι is the map

p(t) = exρ(/0, then pf = jfc. For each n G Z, let JΛ = /Γ^/,,). Then /„ is a

union of intervals whose centers differ by an integer multiple of 2ττ, all of

which have the same length μ(/Λ).

From Properties 1.2 of In and/we obtain

13. Properties of Jn andf:

1.3.1. The length of each component ofJn is 2τr/(3 2 | Λ | ) , / I G Z .

1.3.2. The derivative off\Jn is

(f\Jny = 2forn<0,

{f\Jn)'=yorn>0.

1.3.3. Let λ: R—>R be the measurable junction which has value 0 on

K = p~ι(K), value 2onJn9n > 0 and value \ on Jnfor n > 0. Then

(1) f(x)-f(0)+(Xλ(t)Λ.

1.3.4. / ( * + 2kπ) = /(x) + 2km for each integer k.

Now choose vectors X = (1, 0), and 7 = (-2, 3) in R2, so that X and Y are

linearly independent and \X + } y = (0, 1).

What we shall now do is to define an embedding

γ: R->R 2

such that the following two properties will hold.

1.4. Desired properties of γ:

1.4.1. γ is JJ equivariant in the sense that for any integer k,

y(x + 2kπ) = y(x) + (0, 2kπ), x E R1.

1.4.2. Let f = γ/T1. Then f\y(K): y(K) -+ y(K) has differential M where

M is the linear transformation of R2 which has eigenvalues 2 and \, with

corresponding eigenvectors X and Y, respectively.

We take our cue for defining γ from Property 1.3.3. Namely let γ(x) be

defined as

(2) γ(x) = γ(0) + Γφ{t) dU
Jo

where φ is the measurable vector valued function

φ: R->R 2

defined by: φ has value 0 on K = p~ι(K), it has the value X onjn if n < 0, and

it has the value Y on Jn for n > 0. (γ(0) will be specified in §2.)
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Proof of 1.4.1. Since K + 2kπ = K and Jn + 2kπ = Jn for any integers k
and n, φ is periodic of period 2ττ. Thus for any Λ:

(3) γ(* + 2tr) - y(x) = Γ^φ{t) dt -

At this point we make the assumption, whose motivation would not have
been clear earlier, that 0 is the left endpoint of a component of Jo. Thus
0 E K. It follows that each Jn has exactly one component in [0, 2π], called ϊn,
of length 2ττ/(3 2W). Since φ(0 is zero on K, is X on 7Λ for Λ < 0, and is Y
on 7n for n > 0, we have

f = Σ μ

n = 0

which together with (3) proves 1.4.1.
Proof of 1.4.2. We shall prove the stronger statement that/lγίR1 — /0) has

derivative M. In fact we shall show local affineness of /IγίR1 — / 0 ) :
1.4.2'. If x and y are in a common component ofR1 — Jo, then

f(y(y)) -ΛrW) = MrOO - r(*))
. Let A = j - Λ:. Then

- γ/(^ + A) - γ/(*>

= (k*+>>)φ(t) dt.

Making the substitution

we find that since

f'{s) = λ(^) (almost everywhere),

then

dt = λ(s) ds.

Hence we obtain

β
f(x)

x + H(4) = fx+ φ(s)λ(s) ds,
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since Φ(f(s)) = φθ), s £ Jo. Furthermore for s & Jo, φ(s)λ(s) = M(φ(s)) since

the eigenvalues of M corresponding to the vectors φ(s) = 0, X, Y are λ(s) =

0, 2 \, respectively. Thus we have

fX+hφ(s)λ(s)ds= Γ+hM(φ(s))ds
JX JX

(5) =M[X+"φ(s)ds
JX

= M(y(x + h) - y

which together with (4) and y = x + h proves 1.4.2'.

2. Imbedding of S1 into E2 with polar coordinates

A point of E2 with polar coordinates (r, θ) has rectangular coordinates (")

where

(6) u = r cos θ, v = r sin θ.

Let p: R2 -» E2 be the map p(r, θ) = Q , defined by (6). It maps γCR1) onto a

topological circle pγ(R*) in E2, provided γ(0) is chosen so that y(x) = (rχ9 θx)

always has a positive radial coordinate rx. Evidently this may be accom-

plished if we let

(7) A"-(1,0), r = ( - 2 , 3 ) , γ(0) = ( f ,r, 0).

Indeed the radial coordinate of y(x) is at least the radial coordinate of Y

times the measure, 2ττ/3, of the sums of the lengths of the intervals ϊn where <f>

has value Y, plus the radial coordinate of γ(0). In short

(8) rx>-U+fπ = 2π.

Likewise rx is at most the radial coordinate of X times the measure, 4ττ/3, of

the sums of the lengths of the intervals ϊn where φ has value X, plus lOτr/3, so

the image pγίR1) lies in an annular region in the plane between the two

circles, centered at the origin, or radii 2π and 14ττ/3.

Let F: pγ(R! - Jo) -> E2 be defined by

(9) F(py(x)) = pγ(/(*)) = p/γ(x).

Since / is locally affine on γfR1 - / 0 ), F is C 0 0, i.e., has a natural C 0 0

extension to a neighborhood of pγίR1 - /0) i n ^ 2 Th e differential of F is

readily computed from (9) and 1.4.2' as

(10) DF = Dp o M o Dp'1.
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We would like to extend F\py(Rι — Jo) to a diffeomorphism of an open
neighborhood of pγ(R!) onto the same open neighborhood. We would like to
choose the neighborhood to be a topological annulus. It is easier to work with
/first, then apply definition (9) again. We have been careful to restrict/to
γ(R! — / 0 ), because its differential there takes X to 2X, while on Y(/Q), / is
also affine but its directional derivative along γ(/0) takes X to \ Y. Thus there
can be no continuous differentiability of/at the endpoints of γ(/0), although
its "left" and "right" derivatives exist at the endpoints of y(J0).

If we are to extend/(and hence F) to an ε neighborhood of γ(R* - /0) in a
C °° fashion it makes sense to do so with the same derivative M as indicated
by 1.4.2'. This we do, being careful to choose ε to be less than j the minimal
distance between distinct components of γ(R* - Jo). We sketch γ(/0) together
with its endpoints A and B in Illustration 1. From the definition of γ in terms
of φ and the fact that γ(27r) = γ(0) + (0, 2π) we see that between B =
γ(2ττ/3) and γ(2π), the curve γ[2τr/3, 2τr] lies in the region outlined with
dotted lines (Illustration 1).

\ \

v aX + bY \ h e r e 0<a<~ , 0 < b < —

\ N

V \

\ \

\ \

γ(ϊn) v N

- x A 2 >f Λ

ILLUSTRATION 1

The reason the curve γ(R ! — /0) never leaves the regions enclosed by the
dotted lines is that for 2π/3 < x < 2ττ, γ( c) - γ(2π/3) = aX + bY where
0 < a < 2ττ/3 = Σ!°Λ=1 /*(/„), 0 < b < 2τr/3 = Σ ^ = 1 μ(ϊn).

Now connect A and B with a C0 0 curve S which leaves A in the direction
of Y, crosses the center of γ(/0) in the direction of -Y and reaches B coming
in the direction of Y. This is sketched in Illustration 2 together with a dotted
neighborhood formed from the union of the dotted region in Illustration 1
together with ε neighborhoods of γ(/0) and U kξΞZ[S + (0, 2kπ)].
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Now extend/ so that it takes S onto γ(/i), and γ(/0) onto aC°° curve S"
which leaves C in the direction of X, crosses y(Ix) at the midpoint in the
direction of -X, and ends at 0, directed in the same direction as X. As
indicated in Illustration 3, C and D are the lower and upper endpoints of
γ(/i). We have sketched 5" along with a neighborhood of γίR1) U Sf below
(Illustration 3).

vv^x

•> X

ILLUSTRATION 3

Since the two shaded regions (Illustration 3) are simply connected domains
in R2, with C°° diffeomorphic boundaries, then f\ S U γ(Ri) extends to a C°°
function of the sketched neighborhood, together with the shaded region, into
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R2. Likewise / extends across the other bounded component of the comple-
ment of S u γ(/0)>

 s o ti^t n o w / i s defined on a simply connected neighbor-
hood of γίR1). Further / as extended can be required to be Z equivariant in
the sense that/(z + (0, 2kπ)) = f(z) + (0, 2kπ) for every integer k and every
z in the domain of/.

This shows that F may be defined on a region in E2 containing pγίR1) and
C 0 0 diffeomorphic to an annulus. Finally we extend F t o a C 0 0 diffeomor-
phism of an annular region of the form {(r, θ): a < r < b} onto itself.

In summary we have
2.1. Theorem. There is a continuous embedding

such that

2.1.1. there exist positive numbers a < b such that

g(Sι)d{(r,θ):a<r<b} = &,

2.1.2. there is a C°° diffeomorphism F: & -» & such that

Fg\K = gf\K.

3. Concluding discussion

By suspending F we obtain a flow G: T2 X[a, i ] x R U Γ 2 X [a, b]
which has a minimal set ΣG topologically conjugate to the minimal set Σ of
the suspension of the Denjoy diffeomorphism /. Using the techniques of [7],
one may use G to define a C°° flow on S3 which contains ΣG as a minimal
set. Unfortunately this does not provide us with a counterexample to the
Seifert conjecture, nor would any C 0 0 nearby modification of G do it, for
since M has eigenvalues 2 and \, F is hyperbolic near ρy(K). Since F\py(K)
has chain recurrent points, this implies by standard techniques [1] that near
each point x of ρy(K), there is an arbitrarily small neighborhood N of x, and
an integer k such that Fk\N contains a shift automorphism analogous to that
found in the Smale horseshoe [9]. Thus F\N contains infinitely many periodic
points. This analysis suggests two questions.

Question 1. In order to smooth Denjoy diffeomorphisms, is it necessary to
introduce hyperbolicity of the diffeomorphism on a neighborhood of a
minimal set?

"To smooth" is taken to mean to define a C° homeomorphism h of the
circle into R2 and a C 0 0 diffeomorphism H of R2 to R2 such that Hh(x) =
hf(x) for x G K, where/ and K are as in Theorem 1.1.
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Question 2. In view of the work of Michael Handel [4], is it true that a
nonsingular flow on S3 having an isolated minimal set which is one-dimen-
sional and not a closed orbit, cannot be C °°?

Of course one could pose these questions for C (r > 2) diffeomorphisms
rather than C00 diffeomorphisms.
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