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AUTOMORPHISM GROUPS OF SOME
GEOMETRIC STRUCTURES

HSU-TUNG KU

1. Introduction

In this paper we shall investigate the gaps of the dimensions of compact
classical Lie groups and the gaps of the dimensions of the automorphism
groups of some geometric structures.

Let H be a closed subgroup of O(ή). In [12], Montgomery and Samelson
have shown that dim H cannot fall into the following range if n φ 4:

<n - l>so + 0>so <dhnH < (n)so,

where is}so denotes dim SO(s).

We shall generalize this result by proving the following theorems.
Theorem A. Let H c G be a closed subgroup.
(a) If G = O(ή), then dim H cannot fall into any of the following ranges, i.e.,

there exist gaps:

<n - k}so + (k}so < dim H < <κ - k 4- 1>SO,

where 1 < k < Dso(n) if n > 13; or 1 < k < Aso{n) if n > 11.
(b)IfG= SU(n), then there exist gaps:

<n - k)su + (k}u < dim H < <jn - k + 1>SU,

where 1 < k < DSUiri) if n > \\\or\ < A: < ̂ 5ί/(Π) if n > 9.
(c) If G = U{n\ then there exist gaps:

in - k}u + ik}u < dim H < (n - k + \>su,

where 1 < k < DU(n) if n > \\\ or \ <k < AU(n) if n > 9.
(d) 7/ G = Sp(ή), then there exist gaps:

(1) <n - fc>5/, + <A:>5/, < dim if < <n - k + 1)^,

wÂ re <^)5 t / = dim SU(s), isyv = dim U(s), and is}Sp = dim Sp(s), and
DSO{μ), DSUiμy DU{μ) and DSP{n) are the largest values of k for which the above
inequalities in (a), (b), (c) and (d) are meaningful. {For notation Ax, X = SO,
SU9 U and Sp see Theorem C).
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Theorem B. Let H c G be a closed subgroup, and kt{i = 0, 1, , s + 1)
be any sequence of positive integers with k0 = n.

(a) IfG - O(n), ki+ι < Dso(ki) (resp. ki+ι < ASO{kj)), 0 < i <s,andks> 13
(resp. fc, > 11), /Λen ί/zere exists a gap:

5 - 1

< dim H < 2 <
ι = 0

(b) // G = St/(>0, *i + 1 < Z ) S W ) (reψ. ki+l < ASU(ki)), 0 < i < s, and ks

11 {resp. ks > 9), then there exists a gap:

^ \#v, ^/+l/ί/ T \/V,+ i/sx/

5 - 1

dim // <Γ V /A- — it- N 4- /A- — A- + 1 \

(c) // G = ί/(n), fc/+1 < Z ) ^ } (reψ. *^+1 < Am))9 0 < i < s, and k5

(resp. A:5 > 9), then there exists a gap:

5 - 1

dim if < y <

(d)IfG = Sp(n), ki+ι < DSpikd or ASp(ki), 0 < / < s, and ks > 11, then there
exists a gap:

, -o
5 - 1

J > P = dim Sp(s) X
Suppose now that G is a closed subgroup of the isometry group I(M) of a

connected Riemannian m-manifold Mw, and H = G° the identity component
of a prinicipal isotropy subgroup G*. It is well known that H is compact and
H c SO(m), [7], [13]. Moreover

dim/(M) < <w + 1>5O.

If G is a group of automorphism of a Heπnitian manifold M of dimension
2/z, then H c C/(π), and if M is an almost quaternionic 4Λ-manifold with a
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compatible Riemannian structure and G is a closed subgroup of I(M), then

H c Sp(n); cf. [1].

There is a general pattern of gaps in the dimensions of the closed sub-

groups of the isometry group /(M), that is, the dimension of G cannot fall

into any of the following ranges if m > 11, [11] (cf. also [8]),

(m - k + 1}SO + (k + \>so < dim G < <m - k + 2}so,

where 1 < k < ΛSO{rny

In [1], Cattani-Mann have proved the existence of gaps for the dimensions

of the closed subgroups of the isometry groups /(Λf) for both Hermitian

manifolds and almost quaternionic manifolds with a compatible Riemannian

structure. We shall establish the most general pattern of gaps which contain

large families of gaps in the dimension of the automorphism groups for the

Riemannian, Hermitian and almost quaternionic categories which extend far

beyond all the existence results.

Throughout this paper, we shall always express a compact connected Lie

group H in the following form:

(•) H = Ή/N = {Tq X S)/N = ( Γ ί X G , X X GΌ)/N,

where Tq is a ^-torus, q > 0, each Gj is a compact connected simply

connected Lie group, S semi-simple and N is a finite normal subgroup of H.

We shall call the G/s the normal factors of H. Let F(H, M) denote the fixed

point set of the action of H on M, L c K, and L be a subgroup of K.

The main results concerning the gaps of the dimension of the automor-

phism groups are the following:

Theorem C. Suppose M is a connected Riemannian m-manifold, and G a

closed subgroup of the isometry group I(M) with Gx a principal isotropy

subgroup. Let H = G?, and w be any nonnegative integer satisfying q > w and

r = dim G{x).

(a) If r < n + w, H c SO(n) c SO(m) and n > 11, then there exist gaps'.

w + O - k + l)so + (k + iyso < dim G <w + (n - k + 2>so,

where 1 < k < ASO(n).

(b)Ifr<2n + w,H<z SU(n) c SO(m) and n > 9, then there exist gaps:

w + (n - k + l)su + (k + iysu - 1 < dim G < w + (n - k + 2}su - 1.

where 1 < k < ASU{n).

(c) // r < 2n + w, H c U(n) c SO(m) and n > 9, ίλeΛ there exist gaps:

w + (n - k + l)su + (k + 1>5C/ < dim G < κ> + </ι - A: + 2> 5 ί / - 1,

where 1 < k < Λ (/(„).
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(d) Ifr<4n + w,Hc Sp(ή) c SO(m) and n > 11, then there exist gaps:

w + <Λ - k + 1>^ + (k + \}Sp - 6 < dim G < w + <Λ - k + 2 > ^ - 3,

1 < fc < ASp(ny where ASO{ny Asu(n), Au{n) and ASp(n) are the largest values of k

for which the above inequalities in (a), (b), (c) and (d) respectively are meaning-

ful

Theorem D. Suppose M is a connected Riemannian m-manifold, and G a

closed subgroup of the isometry group I(M) and Gx a principal isotropy

subgroup. Let H = G?, w be any nonnegative integer satisfying q > w, r =

dim G(x), and kt(i = 0, , s + 1) be any sequence of positive integers with

kΌ = n.

(2L)Ifr<n + w9Hc SO(n) c SO(m), ki+ι < ASOikj), 0 < i <s,andks>

11, then there exists a gap:

w +

(b)

w -+

i = 0

If_r

5

ki-ki+ι +

< dim G <
5 - 1

^ W 4- V /£ —
I-O

# C 5C/(n) c S0(m), ki+1

* 9, then there exists a gap:
0 < ι

• 2>«,.

< s —

5 - 1

< dim G < w + Σ iki ~ ki+i + \}sυ + <&5 - fcJ+1 + 2}su - I - s.
i = 0

(£) Ifr<2n + w,Hc U(ή) c SO(w), fcl+1 < Auw, 0 < i < J - 1, fcJ+1

I Ajj^y and ks > 9, /ΛeΛ Λ̂ere exists a gap:
s

ΛA) Λ. ^ / Jr V - l - 1 \ -X- / ίr 4 - 1 \

i = 0

5 - 1

< dim G < w + Σ <*/ - ^i+i + l > w + <** ~ *5+i + 2λst/ - 1 - J.
i-O

(d) 7/r <4n + w,H <z Sp(n) c SO(m), fc/+1 < ASp(ki), 0 < i < s - 1, fcJ+1

i ^45/,(^, αn /̂ Λj > 11, then there exists a gap:
5

w + V / £ _ £ H - 1 N + / A - + 1 N — 6
i-O

5-1

< dim G < H> + ^ <̂Λ: — A- + 1 \ + Sle — k + 2 ^ — 3ί5 4- 1̂
1 = 0
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where ASU(ks), Au(ks) and ASp(k) are the largest values of ks+x for which the

inequalities in (b), (c) and (d) respectively are meaningful. In other words,

ks+x < AX(JCs) satisfying the following inequalities:

<K - *,+ i + l>su + <ks+ι + l > w " K <K ~ *,+ i + 2>su - 1 - s,

for X = SU,

<K ~ *,+ i + 1>OT + <*,+ i + ι>su < <K - *i+i + 2>su - 1 - s>

forX=U,

<K - K+ι + 1>* + <K+x + 0 * - 6 < </c, - /cJ+1 + 2>^ - 3(s + 1),

/or X = 5p.

Clearly, ^^(Λ,) ^ ^x(ks) for X = SU, U, or Sp. The assumption # > w is
necessary in both Theorem C and Theorem D. For the special case w = 0,
Theorem C (b), (c) and (d) are results in [1], and Theorem D(a) was proved in
[8].

2. Preliminaries

Let K be a compact Lie group acting on a space X. The ineffective kernel
Ko of Â  is the largest normal subgroup of K which acts trivially on X. There is
a naturally induced effective action of the group K/Ko on X. The following
lemma will be used to estimate the dimension of the ineffective kernel KQ.

Lemma 2.1. (Hsiang [6]). Let G X K be a compact Lie group acting almost
effectively on a manifold M, and let H be a principal isotropy subgroup of the
G-action on M. Assume that Ko is the ineffective kernel of the action of K on the
orbit space M/ G. Then

dimϋ: 0 < dim N(H, G)/H

where N(H, G) denotes the normalizer of H in G.
The following lemma is easy to verify.
Lemma 2.2. Let X = SO, SU, U or Sp.

(i) <^>^ + (t>χ < <S + *>χ.
(ii) If t > n/2, then

0>x + <n - Oχ <« + l>χ + in - t - I)*.

Proposition 23. (Hsiang [5], [6], [10, Proposition B]). Let G be a compact
Lie group acting effectively on a homogeneous space G/H and

dim G > r dim G/H, r > 3.

Then G (for notation see (*)) acts almost effectively on G/H such that
G/H1 = G/H, and there is at least one normal factor, say Gx, such that

(a) dim Gx + dim N(HX, Gι)/Hι > r dim Gx/Hx,
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(b) dim Hx > ((r - 2)/(r - 1)) dim Gx > (1/2) dim Gv where Hx = Gλn

H'. If r > 13/4, Gx is a classical group which is isomorphic to one of the

following:

(i) Spin(n), n > 2r,

(ii) SU(n), n>2r-\,

(iii) Sp(n), n > 2r - 2.

Although this proposition combines two results of W. Y. Hsiang in [10,

Proposition B] and [6], it is observed in [9] that the normal factor Gx satisfies

(i), (ii) or (iii) can be chosen to satisfy (a) and (b).

3. Proof of Theorems A and B

Proof of Theorem A. Since the proofs are identical for all four

cases, we shall only give the proof for the case H c Sp{ή). Suppose

dim H falls into the range (1). The assumption k < DSpiμ) implies k <

[(-5 + V32/z + 41 )/4], where [s] denotes the largest integer less than or

equal to s. If n > 11, it is easy to see that

dim H > (n - k}Sp + (k}Sp > n2 + 3n - 1,

so that dim Sp(n)/H < (n - I)2. Since H c Sp(ή), by [4, Theorem 1.20], H

contains a subgroup Sp(t), t > n/2 which is conjugate to a standard imbed-

ding and

(3) H = Sp(ή X K c Sp(t) X Sp(n - t\ K c Sp(n - t).

Hence

dim Sp(t) = (t)Sp < dim H < (n - k + \>Sp,

by (1), whence t < n — k. By (3) and Lemma 2.2, we have

dim H < (t)Sp + (n - t}Sp < ( n - k)Sp + (k}Sp.

which is a contradiction to (1). A similar proof will show the theorem for

It is easy to show the following:

Lemma 3.1. Let X = SO, SU, U or Sp.

(ii) Suppose kι < DX(ko) and k2 < Dx(ki). Then

(k0 - k λ - \yx + </:, + l ) ^

ifkx > 11, 9, 9 or 8 according to X = SO, SU, U or Sp respectively.

Proof of Theorem B. Again we shall only give the proof of (d). The proof

will be by induction on s. The assertion is certainly true when s = 0 by
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Theorem A. If, on the contrary, the dimension of H falls into the range (2),
then

dim H>(k0- kλyp + <*, - k2ySp > (n/4 + l)(4π - 1),

because DSp{kώ > kλ > 11, hence k0 > 74. By Proposition 2.3, H contains a
normal factor Gι which is a classical group. Since H c £/?(«), we conclude
that Gλ = 5/?(/), / > n/2. Since dim Sp(n)/H < (n - I)2, by [4, Theorem
1,20] we can assume that (3) holds, i.e., H = Sp(t) X K c S/>(0 x

 «SKΛ — 0>
and A' c Sρ(n - t).

We proceed to show that t = k0 - kv Suppose t > k0 — kλ + 1. Then
dim Sp(t) > (k0 - kx + l)Sp. It follows from (2) and Lemma 2.2 that

dim H<(k0- k{)Sp

< <*o - î>5p + <kι>sP < <ko " *i + 1>* (since /^ < ^

< dim Sp(t) < dim //,

which is clearly impossible. Hence t < k0 — kx. If t < A:o — kx — 1, by
Lemma 2.2, Lemma 3.1 and (3) we have

dim H < (ί}Sp + <n - t}Sp < <*0 - *i - l>5 p + <Λ, + 1>*

< <^o " î>5p + <*i - ^2>5/, < dim if,

which is an obvious contradiction. Thus we have shown that t = k0 — kv

Now let Ή = Sp(k0 - kλ) X K, where A: C ^(A:!). Then

Σ <*ι ~ **+!>* + <*, ~ ^ + 1 > ^ + <ks+ι}Sp

<dimK< 2 <*i - W * + <*i " K+i + I V

contradicts the inductive hypothesis. This completes the proof of Theorem B.

4. Gaps in the dimensions of the automorphism groups

In this section, we shall proceed to prove Theorems C and D. We shall
consider only the case H c Sp(n). The proofs of other cases follow the same
line of arguments. Note that in the proofs of Theorems C and D we only use
the fact that a Lie group G acts on a locally compact Hausdorff space M such
that G acts effectively on an orbit G(x) of dimension r with Gx compact. Thus
the results are true in more general category of G-spaces, for instance, the
topological Cartan G-manifolds (for the definition see [14]).
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Proof of Theorem C(d). Suppose that dim G fall into the following range:

w + (n - k + l}Sp + (k + \}Sp - 6 < dim G

<w + (n- k + 2}Sp - 3.

Then k < DSp{n) by Lemma 3.1(i). Since r = dim G(x) < 4n + w, we have
dim H = dim G - r, and

<* " k}Sp + <fc>5/, = w + in - * + 1>^ + <k + 1>^ - 6 - (4n + w)

< w + <n - k + 1># + <k + 1>5/, - 6 - r

< dim G - r = dim if (by (**)).

It follows from Theorem A(d) that

(4) in - k)Sp + <Λ> ,̂ < in - Λ + 1>^ < dim H.

We can repeat the argument of the proof of Theorem A(d) to obtain a
subgroup 5/?(0 c H, t > n/2 and H = Sp(t) X K c Sp(t) X Sp(n - t).
Now n — k + 1 < t. If not, t < n — k. This implies, in consequence of
Lemma 2.2, that

d i m i f < (t>Sp + in- t}Sp <in- k}Sp + ik}Sp,

which is a contradiction to (4). Since w < q by hypothesis, we obtain

w + </ι - k + 1>5/, < ? + dim S/>(0 < dim H,

r + w + <Λ-A:+ 1)^ < r + dim i/

= dim G<w + in-k + 2 ) ^ - 3

= w + <AZ - k + 1>S/, + 4(π - A: + 1).

It follows that r < 4(Λ - A: + 1). On the other hand, Sp(n - k + 1) c H c
SO(r). Since F(/ί, G(x)) is not empty, 4(π - k + 1) < r from the local
representation of Sp(n — k + 1) and if in the neighborhood of a fixed point.
This is an obvious contradiction.

Proof of Theorem D(d). Suppose dim G fall into the following range:

w + Σ <kt ~ ki+ι + \}Sp + iks+ι + 1>^ - 6

(5) < dim G
5 - 1

< w + Σ <*ι " ki+* + X>sp + <*i - *i+i + 2>S/, - 3(J + 1).
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We shall proceed to get a contradiction. From (5) we have

s-l

Σ <*i - *ι+i>p + <ks - * ,+i>* + <ks+i>sP
i = 0

< w + Σ <kt ~ ki+ι + \}Sp + <*,+ 1 + 1>^ - 6 - r

< dim/f.

According to Lemma 3.1, we have ki+ι < Dspifqy 0 < i < s. Hence it follows
from Theorem B(d) that

(6) Σ <ki ~ ki+ι)Sp + <Λ, - ks+ι + 1>^ < dim H.
ι = 0

We shall prove by induction on s that under the hypothesis (6) the following

holds:

(7) Sp(k0 - kx) X - *Sp{ks_λ - ks) X Sjpte - ks+ι + \)GH.

This is true for s = 0 from the proof of Theorem C(d). We may assume by

induction that the assertion is true for closed subgroups of Sp(kx) and

ktf - 1, 2, , J + 1).

Let L be a principal isotropy subgroup of the action of Sp(t) on the

manifold G(x). We proceed to show that L is conjugate to a standard

imbedded Sp(t — 1), hence the principal orbits of the Sp(t) action will be of

type S4t~ι. From Proposition 2.3 we see easily that

dim Sp(ή/L < (1/ ( Λ / 4 ) ) dim Sp(ή < (1/3) dim Sp(ή < (t - I)2.

Again by [4, Theorem 1.20], L = S/?(ί - s) X V c 5/?(0 for some s < t/29

and V C 5/?(̂ ). Notice that

4/i — 1 > dim Sp{t)/L > dim Sp(t)/Sp{t - s) X S^(^) = 4te - 4^2,

hence n > ts — s2. It follows from (a) in Proposition 2.3 that

dim Sp(ή + dim Sp(s) + 3 > dim S/?(ί) + dim N(L, Sp(ή)/L

> (n/4 + 1) dim Sp(ή/Sp(t - s) X

> ((fc - s2)/4 + l)(4/5 - 4s2).

Hence

4 - 2/s3 + s\t2 - 6) + 5(4/ - 1) - 2ί2
J 4 - + s\t2 - 6) + 5(4/ - 1) - 2ί 2 - / - 3 < 0.

This is possible only if s = 1. Since F(Sp(t), G(x)) is not empty, Sp(t) acts

orthogonal on a neighborhood of a fixed point, and so L conjugate to a

standard imbedded Sp(t - 1). Moreover

(8) H = Sp{t) X K c £/?(/) X Sp(n - t), K c S/>(n - 0-
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By assumption Tq c H, and Tq acts on G(x) with identity element as the

connected principal isotropy subgroup, hence the dimension of the principal

orbits of H is at least At - 1 + q. Since q > w, it follows that

(9) r > At - 1 + w.

Since kx < ASp^ko)9 we have

w + <*o - kx + 1>5/, + < ^ + 1>^ - 6 < >v + (k0 - kx + 2)Sp - 3,

or

(10) < k 0 - k x y S p + ^ ^ ^ < ( k Q - k x + \ } S p - 4 k x + 3 .

We will proceed to show that t = k0 - kv If t < k0 - kx - 1, then

dim H <(k0- kx- l)Sp + <*! + 1>^ < (kQ - ^ > ^ + (kx - Λ2>5/,

< dim H,

by (8), Lemma 2.2 and Lemma 3.1 which contradicts (6). Hence k0 — kx < /.

Suppose now that t > k0 — kx + 1. Then by (9) we have

(11) r > 4(A:0- kx) 4- 3 + H\

It is easy to see from (5) that

s-\

dim H < Σ <kt ~ ki+x)Sp + <fc, - ks+x + 1>^

(12)
4 ( ^ A 1) w-r.

It follows from (11), (12) and Lemma 2.2 that

dim H<(k0- kx}Sp + ( ' 2 (*i " *i+i)

- 3 - w

x - ks+x) + 1

< <^0 - kx + 1>^ - 4 ^ + 3 + 4(fc, - ks+x) + 1 (by (10))

< < * 6 - * i + l > * + 4 ( 1 - * i + 1 )

< <A:0 - ^! + 1>^ < dim Sp(t) < dim H,

which is an obvious contradiction. Hence t = k0 — kx.

Now the group K acts on G(x)/Sp(t), and hence on F(Sp(t), G(x)) with

dim F(Sp(t), G(x)) < 4(k0 - i) + w = 4kx + w,

and ineffective kernel ΛΓ0 satisfying

dim Ko < dim ΛΓ(5/?(ί - 1), Sp(t))/Sp(t - 1) = 3.
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Furthermore, K/Ko c Sp(n - t) = Sp(kx). It follows from Theorem B(d)
that there exists a gap:

s-l

ZJ \K — ki+ι/P + \ks — ks+ιySp + \ks+ιySp

(13)
< dim κ/κ0 < Σ <*,• - kt+ιySp + (ks - ks+ι + l )^.

ι = l

As t = k0 - kl9 by (6) we have

dim K/Ko = dim H - <A:0 - kx}Sp - dim ^ 0

s-l

(14) > Σ <*i - K+x>sP + <*, " *,+i + 1>5/, - dim Ko.

From the hypothesis fc5+1 < i 4 ^ y we can easily obtain the following in-

equality:

0 5 ) <K - Λ ί+1>Sp + <Ai+ 1>* < <Λ, - ks+ι + 1>^ - 4Λ ί + 1 + 3(1 - s).

Hence it follows from (13), (14), and (15) that

'IS <k, ~ *, + i>* + <*, - K+x + 1>* < dim K/Ko.
1 = 1

Therefore we can apply the inductive hypothesis of (6) to the action of K/Ko

on F(Sp(t), G(x)) to obtain

Sp{kλ - k2) X x * ^ . , - ks) X Sp(ks - ks+ι + 1) c JSΓ/J!̂

This proves (7). Since H c SO(r), it follows from (7) that

4(k0 -kJ+ - + 4 ( ^ _ , - ks) + 4 ( ^ - ΛJ+1 + 1) < r,

or

(16) 4( fc o -Λ J + 1 + l ) < r .

On the other hand, w < q, so by (7) and (12) we have

5 - 1

i-O

< dim if
5 - 1

< Σ <ki ~ ki+ι}Sp + <ΛS - A:J+1 + 1>5/, + 4(*o " *5+i + 1) + w - r.
ι = 0

This leads to r < 4(Λ0 - ks+ι + 1) which contradicts (16)
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In Theorems C and D, the assumption q > w is necessary. For example, we
can consider the action of G = Sp(n) on M = Tw X S4n by letting G acting
trivially on Tw, and orthogonally on S4n. If 3 < w < 4n - 16, then

Sp - 6 < d i m G < w + (n}Sp - 3.
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